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Hierarchical integrated machine learning model for predicting flight 1

departure delays and duration in series 2 

Abstract 3 

Flight delays may propagate through the entire aviation network and are becoming an important research topic. This paper 4 
proposes a novel hierarchical integrated machine learning model for predicting flight departure delays and duration in series 5 
rather than in parallel to avoid ambiguity in decision making. The paper analyses the proposed model using various machine 6 
learning algorithms in combination with different sampling techniques. The highly noisy, unbalanced, dispersed, and skewed 7 
historical high dimensional data provided by an international airline operating in Hong Kong was used to demonstrate the 8 
practical application of the model. The result shows that for a 4-h forecast horizon, a constructive neural network machine 9 
learning algorithm with the Synthetic Minority Over Sampling Technique-Tomek Links (SMOTETomek) sampling technique 10 
was able to achieve better average balanced recall accuracies of 65.5%, 61.5%, 59% for classifying delay status and predicting 11 
delay duration at thresholds of 60min and 30min, respectively. Similarly, for minority labels, the precision-recall and area 12 
under the curve showed that the proposed model achieved better results of 32.44% and 35.14% compared to the parallel model 13 
of 26.43% and 21.02% for thresholds of 60min and 30min, respectively. The effect of different sampling techniques, sampling 14 
approaches, and estimation mechanisms on prediction performance is also studied. 15 

Keywords: air traffic; aviation; flight delay prediction; high dimensional data; machine learning; sampling techniques. 16 

1. Introduction17 

1.1 Background and Motivation 18 

The aviation industry is growing rapidly because of the increasing demand for air transportation. In the aviation sector, 19 
passenger and cargo demands are increasing at an average rate of 7% and 4.43% each year respectively (IATA, 2019). Flight 20 
delays at airports may create an undesirable annoyance for passengers and cargo customers, possibly leading to a change to 21 
other means of transportation. Globally, in the year 2018/2019, international airlines contributed to an average of 21.19% flight 22 
departure delays (FlightStats, 2019). Such high departure delays may propagate through the entire aviation network (Du et al., 23 
2018) causing economic loss to airlines in terms of having to pay high penalties. Another consequence is flight cancellations 24 
causing wastage of time and loss of opportunities (Alderighi and Gaggero, 2018). The problem of flight delays is decreasing 25 
passenger demand and simultaneously pressurizing airlines to raise airfares to accommodate the lower demand and increase 26 
in block time (Britto et al., 2012). Flight delays cost airlines not only by reallocating resources (Abdelghany et al., 2004) but 27 
also by paying higher compensation to passengers for demand sustainability (Hu et al., 2016). High rates of flight delays in 28 
the growing aviation industry motivate further study and the need to propose a reliable machine learning prediction model to 29 
facilitate airlines in making better-informed decisions. 30 

1.2 Existing models limitation and Research questions 31 

Prediction of flight delays and possible durations in a pre-defined forecast horizon can help airlines in the prompt execution 32 
of contingency plans to minimise penalty costs and loss of business opportunities. Flight delay prediction has gained significant 33 
research attraction in the last few years. Existing flight delay models have been suggested to predict flight delays above a 34 
certain threshold (Belcastro et al., 2016; Kim et al., 2016; Rebollo and Balakrishnan, 2014) from online available data and/or 35 
domestically operated flights (Belcastro et al., 2016; Du et al., 2018; Khanmohammadi et al., 2016; Kim et al., 2016; Rebollo 36 
and Balakrishnan, 2014; Tu et al., 2008; Yazdi et al., 2017; Yu et al., 2019). These prediction models are limited in scope and 37 
further improvements can bring a breakthrough contribution to existing studies. For the current prediction models, a practical 38 
application of a single threshold model may not generate sufficient information about delay duration, and implementing 39 
multiple threshold models in parallel may result in more than one decision option which may create ambiguities in actual 40 
decision making. The majority of studies on domestically operated flights rather than international flights may restrict the 41 
applicability of existing models to domestic flights delay prediction and make it unsuitable for international flights delay 42 
prediction. The airline operations planning for international flights is considered to be different compared to domestic flights 43 
(Wu, 2016). Further, less effort has been devoted to improving flight delay prediction using constructive neural networks 44 
(CNN). Inappropriate adjustments of the extensive hyperparameter for machine learning algorithms in complex high 45 
dimensional domain problems may cause the algorithm to converge at a suboptimal solution. 46 

To overcome existing limitations, our study aims to address the following research questions: 1) What is the most suitable 47 
approach for learning and integrating multiple prediction models for forecasting the flight delay status and possible duration 48 
collectively in a hierarchical (or step-by-step) mode? 2) What estimation mechanism is more suitable for highly uncertain 49 
historical flight delays? 3) Which pre-processing, transformation and sampling techniques can be used to help to smooth the 50 
decision boundaries and improve the prediction accuracy of machine learning methods? 4) Can sampling both flight delay 51 
training and testing sets lead to the wrong decision? 5) How can linear dependence of input and hidden units in conventional 52 
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neural networks and extensive hyperparameter adjustments in machine learning algorithms be eliminated to improve the flight 53 
delay prediction? 6) How to determine the number of hidden units in the hidden layers of deep learning? 54 

1.3 Contribution and Novelty 55 

An international airline operating in Hong Kong facing the above problems has been studied. The airline planned to have an 56 
integrated flight departure delay and possible duration prediction model embedded in their system for international flights. 57 
The high dimensional data of historically operated international flights among various sectors (or airports) for two years have 58 
been analysed. Several challenges that limit the applicability of the existing models need considerable attention. The study 59 
identified and addressed those challenges as a contribution and novelty to flight delay prediction:  60 

First, in existing studies, in terms of classification, flight delays are predicted above a certain threshold (Belcastro et al., 2016; 61 
Kim et al., 2016; Rebollo and Balakrishnan, 2014). Each threshold prediction can be considered as a single model. Adopting 62 
a single threshold model may not generate sufficient information about how long the delay duration will last? Implementing 63 
multiple models in parallel above certain thresholds may result in more than a unique decision which may create ambiguities 64 
in actual decision making. For instance, the same dataset is used to learn the delay prediction models above different thresholds 65 
of 30min, 60min, 90min, and many others. In an actual scenario, if the 30min threshold model predicts a delay, the 60min 66 
model predicts a delay, and the 90min model predicts no delay, the airline may interpret that the possible delay duration is 67 
more than 30 minutes and less than 90 minutes. However, if the 30min threshold model predicts a delay, the 60min model 68 
predicts no delay, and the 90min model predicts a delay, then this may create ambiguity, e.g. is the delay greater than 30 69 
minutes and less than 60 minutes or greater than 90 minutes? In such a case, the practical decision making may become difficult 70 
because the same dataset has been used to learn models above certain threshold values. Our study addresses this limitation and 71 
proposes a classification model, implemented in series rather than in parallel. In series, we propose to predict flight delays 72 
above certain thresholds step by step by considering only a portion of the dataset relevant to the threshold learning. For 73 
instance, the classifier will predict whether the flight is on-time or a delay will occur? If a delay is predicted, then the classifier 74 
will predict the possible delay duration using some initially defined threshold (e.g. 60 min) by considering only the delay 75 
dataset. If the delay time predicted is less than a defined threshold (i.e. 60min), then the classifier will further predict the delay 76 
time for the next threshold (i.e. 30 min) using a portion of the delay dataset other than an initially defined threshold (i.e. above 77 
60 min). This approach can be applied to any number of thresholds and benefits from avoiding ambiguity in decision making. 78 

Besides, in the existing literature, most of the flight delay models are proposed based on online available data and/or flights 79 
operated domestically (Belcastro et al., 2016; Du et al., 2018; Khanmohammadi et al., 2016; Kim et al., 2016; Rebollo and 80 
Balakrishnan, 2014; Tu et al., 2008; Yazdi et al., 2017; Yu et al., 2019). For the current study, the historical high dimensional 81 
data of actual operated international flights among the various sectors were provided by one of the international airlines 82 
operating in Hong Kong. Rebollo and Balakrishnan (2014) found that the routes served by airports comprise essential elements 83 
for flight delays. Compared to domestic flights, international flights involve various additional requirements and may face 84 
critical issues in airline operations planning such as complex ground operations and enroute operations. The ground operations 85 
involve activities at the landside and airside of an airport. The landside activities most often include passenger and baggage 86 
check-in, connecting passengers, cargo handling, passenger boarding, etc. The airside operations include disembarkation and 87 
embarkation, crew changing, maintenance, re-fueling, loading, and unloading. The landside and airside arrangement time can 88 
be one and a half hours and 15 to 20 minutes for domestic flights and up to three hours and one and a half hours to two hours 89 
for international flights, respectively. The ground turnaround operations are different for international flights than those 90 
performed for domestic flights due to the difference in aircraft types, on-board services, and security requirements. The enroute 91 
operations are usually carried out by the cockpit crew and further facilitated by an air traffic controller. Enroute operations are 92 
mostly beyond the control of the airlines except they can alter the flight plans in advance. Enroute operations are greatly 93 
affected by the geographical location such as inclement weather conditions, the situation at the departure and arrival airport, 94 
long and short-haul flights, and many others. Both turnaround operations and enroute operations have a significant effect on 95 
flight on-time-performance and profitability (Wu, 2016). The added requirements for a smooth journey in an international 96 
flight make it more valuable to study for flight delays. Our study proposes a novel hierarchical integrated model to predict 97 
flight departure delays and possible duration in series by considering a case study of an international airline operating in Hong 98 
Kong. This contribution mainly addresses research question no.01 in subsection 1.2. 99 

Second, the flight delay task has been considered as either a regression (Tu et al., 2008; Yu et al., 2019) or classification 100 
(Belcastro et al., 2016; Kim et al., 2016) process or a combination of both (Rebollo and Balakrishnan, 2014). For regression, 101 
the highly skewed and dispersed historical dataset may make it challenging for regressors to correctly predict flight delays, 102 
whereas, for classification, the majority of labels belonging to one class may make it challenging for classifiers to correctly 103 
classify flight delays above a certain threshold. This study addresses the challenges of both regression and classification 104 
estimation mechanisms and recommends a suitable approach for flight delays prediction. The work mainly addresses the 105 
research question no.02 in subsection 1.2. 106 
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Third, in many cases, simple random over-sampling (Rebollo and Balakrishnan, 2014) and random under-sampling techniques 107 
(Belcastro et al., 2016) are recommended to balance the flight delay dataset to make it suitable for classification. In random 108 
over-sampling, the chances of overfitting increase because of using duplicate examples of the minority class, while, in random 109 
under-sampling, the chances of losing potentially useful data increases because of eliminating examples from the majority 110 
class (Batista et al., 2004). The current study applies various over-sampling, under-sampling and their combination techniques 111 
to balance the dataset and to make decision boundaries smoother to address research question no.03 highlighted in subsection 112 
1.2. Among various sampling techniques, the one with high prediction accuracy is proposed for flight delay prediction. In 113 
existing works, sampling techniques are applied to both training and testing sets of the dataset. Differing from existing works, 114 
our study applies balancing techniques to the training set and measures the performance by comparing with the original testing 115 
set to address research questions no.04 highlighted in subsection 1.2. Using the original testing set for measuring performance 116 
may truly represent the real-world application of the flight delay model. 117 

Fourth, among various machine learning methods, the backpropagation neural network (BPNN), support vector machine 118 
(SVM), and random forest (RF) have gained much attention in the airline domain (Evans et al., 2018; Xu et al., 2019). 119 
Extensive hyperparameter initializations in machine learning methods may require a lot of trial-and-error experimental work 120 
to determine the best optimal structure that has the capability of maximum error reduction. Excessive hyperparameter 121 
adjustment along with high dimensional data holding redundant information may cause existing algorithms to converge to a 122 
suboptimal solution (Wang et al., 2020). In this study, we propose CNN, named as hyperparameter-free cascade principal 123 
component least squares neural network (hyp-free CPCLS), having the characteristics of analytically determining the number 124 
of hidden units in hidden layers with no iterative tunning of connection weights. This makes it a novel self-organizing topology 125 
structure without involving trial-and-error experimental work. The contribution is that it requires minimal engineering 126 
experience and expertise to train the network because of no initialization and adjustment of the hyperparameters. Users do not 127 
need to define the number of hyperparameters such as learning rate, connection weights, network topology, the number of 128 
hidden layers, and the number of hidden units in each layer. This mainly addresses the research question nos. 05 & 06 129 
highlighted in subsection 1.2. The proposed algorithm eliminates the problem of the hidden unit’s coadaptation by generating 130 
linearly independent hidden units from the orthogonal linear transformation of the input variables to achieve the best least-131 
squares solution. The results from Single layer BPNN (SL-BPNN), Deep layer BPNN (DL-BPNN), SVM, hyp-free CPCLS, 132 
their Ensemble, RF, gradient boosting decision tree (GBDT) and extreme gradient boosting (XGBoost) are analysed to select 133 
the most suitable method that has better flight delay prediction capability. 134 

1.4 Major findings and Paper structure  135 

The study addresses the limitation and research questions by the contribution and novelty to existing works. The major findings 136 
of the study are:  137 

First, the hierarchical integration of the flight departure delay status and possible delay duration into a single model helps to 138 
eliminate ambiguity in decision making. The information flows in one direction (in series) which eliminates the need for 139 
implementing multiple models in parallel. The hierarchical integrated model works by generating information about the flight 140 
delay status, and if the delay is predicted, the delay duration is predicted at different thresholds. This finding support research 141 
question no. 01 and the first contribution. 142 

Second, the nature of uncertainty in flight delay data may avoid the assumption of normality in regression and class balancing 143 
in classification. The pre-processing and transformation techniques to improve the highly skewed and dispersed data 144 
distribution for the regression mechanism does not have an advantage in improving the performance of the regressors. 145 
However, applying various sampling techniques improves the performance of the classifiers by balancing the classes and 146 
making decision boundaries smoother. Therefore, the study recommends the classification mechanism as a more suitable 147 
approach than regression. The finding addresses research question no.02 and the second contribution. 148 

Third, the selection of sampling techniques depends upon the application area in improving the performance of the estimation 149 
methods. The study finds that among eight sampling techniques, the combination of oversampling and undersampling 150 
techniques named as Synthetic Minority Over Sampling Technique-Tomek Links (SMOTETomek) helps to achieve better 151 
flight delays prediction. The finding addresses research question no.03 and the third contribution. 152 

Fourth, the study finds that the improper application of sampling techniques can lead to a false conclusion. Applying a 153 
sampling technique to balance the training set and validating the performance on the original testing set is considered to be a 154 
more favorable approach rather than applying a sampling technique to both the training and testing sets. The finding addresses 155 
research question no.04 and the third contribution. 156 

Fifth, Orthogonal linear transformation of the input operational parameters and any pre-existing hidden units help to generate 157 
linearly independent hidden units, ensuring maximum error reduction at each layer. Similarly, analytically determining the 158 
number of hidden units in the hidden layer with no iterative tunning of connection weights along with self-organizing cascade 159 
architecture helps in reducing the need for extensive hyperparameter adjustments and human intervention. A comparative 160 
study with various machine learning estimation methods demonstrates that hyp-free CPCLS in combination with the 161 
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SMOTETomek sampling techniques is capable of handling the flight delay problem more accurately. This finding support 162 
research question nos. 05 & 06 and the fourth contribution. 163 

The remaining structure of the paper is organized as follows: Section 2 presents the literature review. Section 3 explains the 164 
airline flight delay problem. Section 4 proposes a novel hierarchical integrated model. Section 5 describes machine learning 165 
methodologies for predicting flight delays and duration. Section 6 discusses the experimental work with managerial 166 
implications and future work. Section 7 concludes the study. 167 

2. Literature review 168 

Recently, flight delays have gained much attention from researchers due to the importance of the growing aviation industry. 169 
Controlling flight delays benefits airlines in reducing penalty costs and improving business opportunities. In existing studies, 170 
researchers mainly used optimization methods, network analysis, probabilistic models, statistical regression, and machine 171 
learning to study flight delays. Among various approaches, machine learning has gained much popularity in the last few years 172 
due to its ability to extract useful information from high dimensional data (Khan et al., 2019b, 2019c; LeCun et al., 2015; Tkáč 173 
and Verner, 2016). 174 

To avoid flight delay propagation through the network and identify delay sources, Abdelghany et al. (2004) used a classical 175 
short path algorithm to project downline delays and generate alerts for crew/aircraft operation breaks. The delays reported due 176 
to a ground delay program (GDP), issued because of extreme weather, were investigated. The model showed the significant 177 
impact of GDP on total system delays. In the recorded GDP, aircraft and pilot issues appeared to be the main reasons for flight 178 
delays. Du et al. (2018) built a delay causality network (DCN) to understand flight delay propagation at the entire system level. 179 
The highest flight delay day, the bad weather day, was chosen to present the network analysis. The DCN topological analysis 180 
concluded that delay propagation is most likely to occur in the peak travel period. Large airports are more affected by the 181 
upstream airports as compared to downstream airports. The heavy air traffic flow indicates that some of the largest airports are 182 
helpful in reducing delay propagation. Moreover, the cause of delay propagation cannot be due to a fixed set of airports, as 183 
flight delays were also found to be significantly high for connected airport clusters. 184 

The entire delay distribution of flights and the impact of airline policies on flight delays are mainly studied by using 185 
probabilistic models and statistical regression techniques. Tu et al. (2008) applied expectation-maximization (EM) by 186 
combining it with a genetic algorithm (GA) to estimate flight departure delays. The observed delays were decomposed into 187 
three components – seasonal trends, daily propagation patterns and random residuals to understand departure delays. Rather 188 
than a point estimate, the model was implemented to estimate the entire delay distribution. Yazdi et al. (2017) studied the 189 
linkage between imposing an airline baggage fee (BF) and flight delays. The results from implementing a 3-stage-least-square 190 
model (3SLS) concluded that a BF policy directly improves the on-time performance, through improvement in loading 191 
efficiencies and airport sorting, and indirectly through lower passenger demand. However, these improvements are highly 192 
influenced by the presence of hub airports, and travel types such as business or leisure. It was also concluded that prior 193 
implementation of BF (only first checked bag free of charge) resulted in more flight delays compared to the new BF policy 194 
(no checked bag free of charge). 195 

The popularity of machine learning to predict flight delays is increasing due to its better learning ability from the available 196 
data. Rebollo and Balakrishnan (2014) suggested the random forest (RF) approach to predict departure delays 2-24 hours in 197 
the future. In addition to local variables, new network delay variables characterizing the global delay state of the entire system 198 
were studied. The effect of varying forecast horizons with a threshold of 60min and the effect of varying thresholds with a 199 
time horizon of 2 hours were studied. To improve the performance of BPNN, Khanmohammadi et al. (2016) proposed a new 200 
type of multilevel input BPNN for minimizing airport traffic. The study suggested prioritizing arriving flights for landing 201 
based on delays. The landing priority of flights is based on the scheduled arrival time and the planned priority needed to change 202 
(depending upon airport management strategies) if flight delay is predicted. Belcastro et al. (2016) developed a scalable parallel 203 
version of RF to predict the arrival delay of scheduled flights due to weather conditions. A range of experimental work was 204 
performed to understand the arrival delay for individual flights by considering different arrival and departure weather 205 
conditions, varying delay thresholds and varying target datasets. The delay was classified by using thresholds of 15min, 30min, 206 
45min, 60min and 90min. Kim et al. (2016) implemented the Long Short-Term Memory (LSTM) Recurrent neural network to 207 
predict flight arrival and departure delays, using on-time performance and weather data, by adopting a two-stage approach. In 208 
the first stage, the daily delay status was predicted. In the second stage, the individual flight delay was predicted from daily 209 
delay stage output information. Thresholds of 15min and 30min were used to classify delay output. Yu et al. (2019) employed 210 
a deep belief network and support vector machine (DBN-SVM) to predict flight delays by considering both macro and micro 211 
level influencing factors. Based on prediction results, among multifactor (macro and micro level), the key factors having the 212 
most influence on flight delays were identified as delay propagation, the air route situation, and airport crowdedness. 213 

The application of BPNN is gaining significant interest in improving various operations of airlines, such as fuel estimation 214 
(Baklacioglu, 2016; Trani et al., 2004), trajectory prediction (Gallego et al., 2019; Zhang and Mahadevan, 2020), delay 215 
prediction (Khanmohammadi et al., 2016), improving customer satisfaction (Lin and Vlachos, 2018), and many others (Chung 216 
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et al., 2017; Cui and Li, 2017). The benefit of BPNN is that it is theoretically proven to follow a universal approximation 217 
theory (Ferrari and Stengel, 2005; Z. Wang et al., 2019) and can approximate any continuous function. However, the 218 
initialization and adjustment of connection weights, hidden units, activation function, and learning rate hyperparameters in 219 
BPNN have a significant effect on network performance. It is considered that BP learning is generally more time consuming 220 
because of the iterative tuning of the connection weights. The iterative tuning may increase the complexity of the network by 221 
creating a complex coadaptation among the hyperparameters causing the network to be slow and converge at a local minimum 222 
rather than the global minimum (Huang et al., 2006; Krogh and Hertz, 1992; Liew et al., 2016; Srivastava et al., 2014). The 223 
optimal BPNN architecture is not always obvious and a lot of trial-and-error experimental work is needed to select the best 224 
possible network topology having a significant number of hidden units in the hidden layer. The survey of Y. Wang et al. (2019) 225 
on utilization of deep learning to enhance the intelligence level of transportation system concluded the shortcoming of deep 226 
learning is that it requires greater engineering experience and expertise to determine the number of hyperparameters, such as 227 
the number of hidden layers and number of hidden units in each layer of NNs. Tkáč and Verner (2016) reviewed applications 228 
of NNs in business, such as financial analysis, costs monitoring, sales, marketing, decision support, bankruptcy, and many 229 
others, summarizing that majority of existing works are focused on determining the number of hidden units and hidden layers 230 
using a trial and error approach and there is no guarantee that chosen settings are the best. Initialization and adjustment in the 231 
number of hidden units and hidden layers in BPNNs significantly affect the performance of the network (Cranenburgh and 232 
Alwosheel, 2019). Among the various means, the most popular way of determining the number of hidden units and hidden 233 
layer in BPNN is by trial-and-error experimental work or rule of thumb (Hamad et al., 2017; Xiao et al., 2016). To overcome 234 
the problem, various NNs with random weight (NNRW) was proposed by adding randomly generated hidden units in the 235 
single layer of the network. However, existing work is focused on a single layer and it is also considered that the randomization 236 
of hidden units cannot guarantee the optimal performance of NNs (Cao et al., 2018). How to determine the number of hidden 237 
units in hidden layers of deep learning is still an open problem and needs considerable attention. Similarly to BPNN, the 238 
application of SVM and RF has also shown considerable improvement in improving airline operations (Evans et al., 2018; 239 
Rebollo and Balakrishnan, 2014; Yu et al., 2019). The proper selection of hyperparameters such as the soft margin 240 
regularization term and kernel function in SVM, and decision trees in RF, GBDT and XGBoost is important to achieve better 241 
network performance. The extensive hyperparameter initialization and adjustment in BPNN, SVM, RF, GBDT and XGBoost 242 
need user expertise which may greatly affect algorithms performance and convergence rate. 243 

The contributions of researchers for predicting flight delays are noteworthy. Most existing studies focused on predicting flight 244 
delays above a certain threshold from publicly available domestic flights. According to the best of our knowledge, none of the 245 
earlier studies suggested flight delay hierarchical integrated prediction models for historical internationally operated flights 246 
using a CNN.  247 

3. Problem Explanation 248 

The purpose of this work is to propose a novel model for predicting departure delays and duration in series for an airline. In 249 
this study, data were obtained from the major international airline operating in Hong Kong to validate the proposed model. 250 
Departure delay occurs when an aircraft takes-off later than the scheduled time due to certain reasons. Before each flight, a 251 
flight plan is prepared giving details of various operational parameters needed for the smooth operation of the aircraft.  For the 252 
selected airline, the flight plan is prepared four hours before each international flight. The flight dispatcher, responsible for 253 
preparing the flight plan, obtains information from various functional departments about weather conditions, air traffic flow, 254 
aircraft performance, and many other factors for defining the optimal flight trajectory and ensuring smooth flight operation. 255 
Flight delays may significantly affect the normal operations of the airline and its great importance during the preparation of 256 
the flight plans cannot be denied. The study is focused on predicting airline flight departure delays and possible duration for a 257 
four hours forecast horizon from available operational parameters information. This will assist the airline in predicting flight 258 
delays four hours in advance of scheduled flights. The airline will be able to make a more informed decision by planning for 259 
eliminating flight delays impact. For instance, if the airline predicts a delay of 30 minutes, then they may plan for some other 260 
alternatives (for example, another possible route, higher cost index, etc) to reach the arrival airport in a timely manner to avoid 261 
aircraft rotation or passenger/load connection delays. 262 

The airline categorizes its departure delays into nine categories, as defined by the International Aviation Transport Authority 263 
(IATA). The categories are numbered 1-9 with alphabetic/numerical codes defining the delay reason in each category. The 264 
categories explaining various departure delay reasons for the airline are (Eurocontrol, 2020; Wu and Truong, 2014): 265 

1. Passenger and Baggage: The codes in this category are used to describe the delay reasons caused by late passenger 266 
and improper baggage handling. For instance, reasons reported by the airline are missing check-in passenger, 267 
baggage processing or sorting and many others. 268 

2. Cargo and Mail: The codes in this category are used to describe the delay reasons caused by inadequate cargo 269 
activities and improper mail handling. For instance, inadequate packaging and many others. 270 
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3. Aircraft and Ramp Handling: The codes in this category are used to describe the delay reasons caused by improper 271 
handling of aircraft and ramp/apron area. For instance, reasons reported by the airline are aircraft cleaning, catering 272 
late delivery, incorrect load sheet, fuelling and defueling, and many others. 273 

4. Technical and Aircraft Equipment: The codes in this category are used to describe the delay reasons caused due to 274 
technical issues and lack of aircraft equipment. For instance, reasons reported by the airline are aircraft defects, late 275 
release of aircraft from scheduled maintenance and many others. 276 

5. Damage to Aircraft or Automated Equipment Failure: The codes in this category are used to describe delay reasons 277 
due to damage to the aircraft and automated equipment failure. For instance, the computer system down and many 278 
others.  279 

6. Flight Operations and Crewing: The codes in this category are used to describe delay reasons caused because of late 280 
flight operations and crew scheduling/shortage. For instance, reasons reported by the airline are late completion of 281 
the flight plan, late crew boarding and departure, fuel altering and many others. 282 

7. Weather: The codes in this category are used to describe delay reasons caused by bad weather conditions. For 283 
instance, reasons reported by airlines are ground handling because of adverse weather, alternative route shifting, and 284 
many others. 285 

8. Air Traffic Flow Restriction and Government Authorities: The codes in this category are used to describe delay 286 
reasons caused because of air traffic control restrictions and aircraft or government authorities’ requirements. For 287 
instance, reasons reported by the airline are a restriction at the destination airport, inadequate airport facilities, 288 
runway restriction at the origin airport, mandatory security check-up, airway traffic, and many others. 289 

9. Reactionary and Miscellaneous: The codes in this category are used to describe delay reasons for reactionary and 290 
miscellaneous reasons. For instance, reasons reported by the airline are late arrival of aircraft, crew rotation, 291 
passenger/load connection, check-in error, and many others. 292 

Fig. 1 illustrates the percentage contribution of each category causing airline departure delays. The analysis shows that the 293 
highest contributors to departure delays are reactionary and miscellaneous reasons (38.31%), followed by air traffic flow 294 
restriction and government authorities’ requirements (26.88%). Other categories also make significant contributions to delays 295 
with the lowest contribution recorded for cargo and mail mishandling (0.02%), and damage to aircraft or automated equipment 296 
failure (0.01%). In many cases, the category that is considered to be the top reason for flight delays is bad weather conditions. 297 
However, the analysis shows that bad weather directly contributes to only 1.43% of the total delays. Belcastro et al. (2016) 298 
mentioned that the weather is a crucial factor in studying flight delays in that it may adversely affect and may become a source 299 
of other delay reasons. The analysis of categories helps in selecting the relevant operational parameters, from two years of 300 
flight operational data provided by the airline, for predicting flight departure delays and possible durations. The work benefits 301 
in considering flight delays recorded from all categories rather than one or a specific category.  302 

4. Proposed novel hierarchical integrated model 303 

Existing departure delay models above certain threshold values may cause the airline to adopt a single threshold model or 304 
more than one threshold model in parallel which may not provide enough information about departure delay duration. The 305 
highly dispersed and skewed historical data of internationally operated flights may make it challenging for regressors to truly 306 
approximate actual departure delays, whereas, the class imbalance and boundaries overlapping issue may make it challenging 307 
for the classifiers to accurately classify the class labels. The uncertainty in historical flights together with extensive 308 
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hyperparameter adjustment of machine learning estimation methods may cause the algorithm to converge at a suboptimal 309 
solution, resulting in low performance of the flight delay model.  310 

 311 
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Fig. 2. (a) Representation of flight departure data used at each hierarchical level, (b) Hierarchical integrated model for 323 
predicting flight delay status 324 

To overcome the limitations and facilitate airlines to make informed decisions, we propose a novel hierarchical integrated 325 
model. We propose to predict the flight departure delay and duration step-by-step in series (or hierarchical). Instead of training 326 
the machine learning algorithm on all datasets, the information relevant for the next threshold is extracted from the dataset. 327 
The hierarchical levels can be extended to 𝑁 number of levels (𝑙𝑒𝑣𝑒𝑙 − 1, 𝑙𝑒𝑣𝑒𝑙 − 2, … , 𝑙𝑒𝑣𝑒𝑙 − 𝑁) depending upon user 328 
requirements. For the sake of simplicity and a better understanding of findings, we plan to predict flight departure delay status 329 
and duration at three hierarchical levels: level-1, level-2, and level-3. If the flight is on-time, the proposed model will predict 330 
on-time status, however, if the flight experiences a departure delay in the future, the model will predict the possible delay 331 
duration. Level-1 is proposed to predict flight delay status, whereas level-2 and level-3 are proposed to predict flight delay 332 
duration at thresholds of 60min and 30min, respectively. The three levels are integrated into a single hierarchical model to 333 
improve the decision-making process. Fig. 2 illustrates the flight delay hierarchical integrated model and dataset used for each 334 
level prediction. The working mechanism of the proposed model can be explained in the following steps: 335 

a) For a given flight, level-1 will check whether the flight will experience a future departure delay? If no, it will indicate 336 
that the flight will depart on-time and the model will predict the on-time class label. If yes, the model will predict 337 
the delay status and will check the possible delay duration. 338 

b) For a possible departure delay duration, the model will initially check for a longer delay. Level-2 will check whether 339 
the delay will be between 1 minute to 60minutes? If no, it indicates that the flight may experience a delay of more 340 
than an hour. If yes, it indicates that the delay will be less than or equal to an hour. The model will further 341 
hierarchically check for narrowed delay duration to make a better-informed decision. 342 

c) Level-3 will facilitate in identifying the narrow delay duration. The level-3 will check whether the delay will be 343 
between 1 minute to 30minutes? If no, it indicates that the flight may experience a delay of between 31 minutes to 344 
an hour. If yes, it indicates that the delay will be less than or equal to 30 minutes. 345 

Step (a) or level-1 is a prerequisite because it helps to identify flight status, whereas, steps (b), (c) or levels-2&3 depend on 346 
user requirements for certain thresholds. Depending upon airlines needs, the hierarchical integrated model for flight departure 347 

Departure

(19,105 flights)

On-time

(5,313 flights)

Delay

(13,792 flights)

Delay> 60min

(2,721 flights)

1min≤ Delay ≤ 60min

(11,071 flights)

30min < Delay ≤ 
60min

(2,646 flights)

1min ≤ Delay ≤ 
30min

(8,425 flights)

1min ≤ Delay 

≤ 60 min 

Flight 

Delayed? 

1min ≤ Delay 

≤ 30 min 

Yes 

No 

Input Data 

Prediction 

(Delay in 
between 1-

30 min) 

Prediction 
(Flight on-

time) 

Prediction 

(Delay > 60 

min) 

Prediction 

(Delay in 
between 31-

60 min) 

Level 1 Level 2 Level 3 

No No 

Yes Yes 



8 
 

delay status and duration can be extended to any number of thresholds and levels to facilitate them in informed decision 348 
making. 349 

5. Machine learning methodologies 350 

In the modern competitive era, the popularity of machine learning is increasing because of its ability to make more informed 351 
decisions compared to traditional statistical techniques (Kumar et al., 1995; Tkáč and Verner, 2016). The range of applications, 352 
not limited to, includes connected flights buffer time estimation (Chung et al., 2017), traffic prediction (Cui et al., 2020), 353 
aircraft boarding prediction (Schultz and Reitmann, 2019), trajectory prediction (Khan et al., 2021), enhancing the intelligence 354 
level of the transportation system (Y. Wang et al., 2019) and many others. Various types of machine learning are supervised, 355 
unsupervised, and reinforcement. 356 

To achieve the objective of predicting flight departure delays, the supervised machine learning approach is adopted. The 357 
dataset, provided by the airline, contains both the input operational parameters and the desired output of the flight departure 358 
delay. Using any single algorithm may bias the prediction. Different learning algorithms, having the ability for both regression 359 
and classification, are tested to select a model having better prediction performance. The algorithms (or estimation methods) 360 
tested are: 361 

5.1 Backpropagation Neural Network 362 

BPNN is a type of feedforward neural network (FNN) that does not create a cycle or loop (Hecht-Nielsen, 1989). All the 363 
information flows in the forward direction and the concept originates from human brain neuron functioning (Baklacioglu, 364 
2016). It consists of processing elements (or hidden units) interconnected by channels known as connection weights. It learns 365 
by adjusting the connection weights between hidden units and attributes. 366 

5.2 Novel hyperparameter-free Cascade Principal Component Least Squares Neural Network 367 

Among the early attempts, the Cascade correlation learning algorithm (CasCor) was proposed to address the learning issues 368 
of the fixed topology BPNN (Fahlman and Lebiere, 1990). CasCor is a type of CNN and works by adding hidden units one by 369 
one to the network. The benefit of CasCor is that it does not need trial and error work to find the network architecture and 370 
experimental work concluded that the learning speed is faster than BPNN. Due to the growing interest in CNNs, researchers 371 
are making continuous efforts to improve the existing CasCor (Huang et al., 2012; Nayyeri et al., 2018; Qiao et al., 2016). To 372 
improve the performance and convergence of CasCor and its variant, an algorithm named Cascade Principal Component Least 373 
Squares Neural Network (CPCLS) was proposed (Khan et al., 2019a). CPCLS analytically calculates connection weights rather 374 
than iterative tuning and improves the existing cascade architecture by adding linearly independent multiple hidden units, 375 
rather than one by one, having the capability of maximum error reduction. This may avoid generating redundant hidden units 376 
and converges smoothly. 377 

For a given training dataset (𝑥𝑖 , 𝑦𝑖) with 𝑁 samples, where input units 𝑥𝑖ϵ 𝑅𝑛, 𝑖 = 1,2, … … . , 𝑙 and output unit 𝑦 ϵ 𝑅𝑙 , such that 378 
𝑦𝑖ϵ {1,0}, CPCLS define an only one hyperparameter, i.e. ℎ𝑖 , 𝑖 = 1,2, … … . , 𝑘 , the number of hidden units to be generated in 379 
each hidden layer. There can be multiple hidden units in each layer such that 𝑘 ≤ 𝑙. CPCLS is Initialized with the number of 380 
ℎ (𝑁ℎ) in first hidden layer 𝐻. For input connection weight 𝑤, it orthogonally linear transforms 𝑥 into linearly independent ℎ 381 
by eigen decomposition of 𝑥 covariance square matrix 𝑆: 382 

 
𝑆 =

1

𝑁 − 1
(𝒙 − �̅�)𝑇(𝒙 − �̅�) (1) 

The eigenvalues λ are determined and those having the highest value corresponding to the eigenvector. The selected 𝑁ℎ 383 
eigenvector are considered as 𝑤: 384 

 |𝑆 − λ𝐼| = 0 (2) 

 (𝑆 − λ𝐼)𝑤 = 0 (3) 

ℎ is determined by taking nonlinear activation of the product of 𝑥 and 𝑤 with added bias 𝑏: 385 

 ℎ = 𝑔(𝑤𝑇𝑥 + 𝑏) (4) 

Generating non-redundant and linearly independent ℎ by orthogonal linear transformation assures the maximum error 386 
reduction capability of 𝐻. The 𝐻 explaining maximum variance in the dataset becomes more linear in the relationship with 𝑦. 387 
This facilitates in calculating output connection weight 𝛽 by ordinary least squares: 388 

 𝛽 = (ℎ𝑇ℎ)−1ℎ𝑇𝑦 (5) 

The �̂� is determined by linearly transferring ℎ through 𝛽: 389 
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 �̂� = 𝛽𝑇ℎ (6) 

The network error 𝐸 is determined and the algorithm is stopped if 𝐸 < 𝑒, else another 𝐻 is added in the network, defining new 390 
𝑁ℎ′ such that 𝑘 ≤ 𝑙. Where 𝑒 is a predefined error. For the proceeding 𝐻𝑛, it receives 𝑤 from all 𝑥 and pre-existing 𝐻𝑛−1. To 391 
avoid linear dependencies among 𝐻, only the newly added 𝐻𝑛 is connected to 𝑦 and diminishes the previous connection of 392 
pre-existing 𝐻𝑛−1 to 𝑦. The pre-existing 𝐻𝑛−1 becomes part of 𝑥, such that: 393 

 𝑥 = (𝑥, 𝐻𝑛−1) (7) 

 𝑁ℎ = 𝑁ℎ + 𝑁ℎ′ (8) 

where 𝑁ℎ is the amount of ℎ for the proceeding 𝐻𝑛. The steps (1) to (6) are repeated and �̂� is predicted until 𝐸 < 𝑒. 394 

The CPCLS can generate non-redundant ℎ and 𝐻, which ensure maximum error reduction with smooth convergence. The 395 
generation of multiple ℎ and 𝐻 makes CPCLS a deep learning method. The network typology is determined by self-organizing 396 
ℎ and 𝐻 rather than fixed defining. This requires human intervention to determine the number of hidden units ℎ in hidden 397 
layers 𝐻 by trial-and-error experimental work. We propose novel hyp-free CPCLS to eliminate the need for initialization and 398 
adjustments of hyperparameter by trial-and-error experimental work. The number of hidden units in each hidden layer can be 399 
determined by sorting λ from largest to smallest values: 400 

 λ =  λ1 > λ2 > λ3 > ⋯ > λ𝑛 (9) 

Calculate the percentage variance 𝑉(%) explained by each λ: 401 

 
𝑉(%) =

λ𝑖

∑ λ𝑖
𝑛
𝑖=1

∗ 100% (10) 

Calculate the cumulative percentage variance 𝐶𝑉(%), such that: 402 

 

𝐶𝑉(%)𝑖 = ∑ 𝑉(%)𝑗

𝑖

𝑗=1

 (11) 

Assign the number of hidden units 𝑁ℎ in the hidden layer such that 𝐶𝑉(%) is less than 99.99%: 403 

 𝐿𝑒𝑡 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑁ℎ = 0 

𝑤ℎ𝑖𝑙𝑒 𝐶𝑉(%)𝑖 < 99.99% 

𝑁ℎ = 𝑁ℎ + 1 

(12) 

It is recommended to keep the number of hidden units in each layer such that 𝐶𝑉(%)𝑖−1 < 𝐶𝑉(%)𝑖  and stop when 𝐶𝑉(%)𝑖 ≈404 
𝐶𝑉(%)𝑖+1. The latter condition implies that the last few λ may explain lesser 𝑉(%) which may not be helpful in generating 405 
hidden units’ parameter 𝑤 that can extract useful information from the dataset and will increase network complexity. The 406 
value of 𝐶𝑉(%) become constant at 100% for each sorted λ. In that case, 𝐶𝑉(%)𝑖 ≈ 𝐶𝑉(%)𝑖+1 and hence 𝑉(%)𝑖 ≈ 𝑉(%)𝑖+1. 407 
Therefore, for better generalization performance, the number of hidden units in each layer should be selected that has 408 
𝐶𝑉(%)𝑖 < 99.99%. The characteristics of hyp-free CPCLS is that it has a self-organizing topology network and can determine 409 
the number of non-redundant hidden units in each hidden layer with no iterative tunning of connection weights. This makes it 410 
a novel approach with no initialization and adjustment of hyperparameters. The CPCLS and hyp-free CPCLS algorithms are 411 
shown in Appendix A. In literature, the application of CNN for predicting flight delay and duration is hardly explored. The 412 
advantages of hyp-free CPCLS motivate us to study for flight delay and duration prediction. 413 

5.3 Support Vector Machine 414 

The support vector machine (SVM) objective is to define the decision boundary (hyperplane) with the best separate cases of 415 
different class labels (Cortes and Vapnik, 1995; Evans et al., 2018). The optimal hyperplane is the one having maximum 416 
distance from the nearest data points (also known as support vectors). SVM may easily and correctly classify the linearly 417 
separable cases into different labels by finding a hyperplane that maximizes the margin, however, for linearly non-separable 418 
cases, finding a hyperplane that classifies all cases to their label might become a difficult task. SVM addresses the issue of 419 
linearly non-separable cases by introducing the concept of the soft margin and kernel trick. Various forms of the kernel are 420 
linear, polynomial, radial bias function, and sigmoid. 421 

5.4 Averaging/voting Ensemble Learning 422 
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Ensemble learning is a method that combines multiple classifiers/regressors to generate results with better prediction and less 423 
variability (Dietterich, 2002). The voting and averaging ensembles technique simply train different classifiers/regressors and 424 
combine the prediction through voting in classification and averaging in regression.  425 

5.5 Random Forest Ensemble Learning 426 

Random forest (RF) is an ensemble technique and consists of many decision trees (Breiman, 2001; Rebollo and Balakrishnan, 427 
2014). The input to each decision tree is the sampled data from the given dataset. RF collects the prediction results of each 428 
tree and chooses the most voted result (for classification) or average result (for regression) as the final prediction result. 429 

5.6 Gradient Boosting Decision Tree and Extreme Gradient Boosting Ensemble Learning 430 

Gradient Boosting Decision Tree (GBDT) and Extreme Gradient Boosting (XGBoost) are ensemble tree methods and follow 431 
the principle of gradient boosting (Chen and Guestrin, 2016; Friedman, 2001). Trees are added sequentially and trained by a 432 
gradient optimization algorithm to correct prediction errors made by the prior trees. This results in creating a strong classifier 433 
from the number of weak classifiers. 434 

6. Numerical experimental work 435 

In this paper, we consider the data obtained from the international airline operating in Hong Kong as a case study. In supervised 436 
learning, two main types of commonly known estimation mechanisms are regression and classification. For regression, the 437 
flight delay output is predicted in a continuous form. For classification, the flight delay output is classified in a binary form. 438 
In actual applications, the collected data are highly noisy, unbalanced, dispersed, and skewed which may greatly affect machine 439 
learning algorithms prediction capability. The highly skewed and dispersed data may make it challenging for the regressors to 440 
predict the flight delay, whereas, highly unbalanced and noisy data may make it challenging for the classifiers to classify flight 441 
delays. To study and overcome these challenges, both types of estimation mechanisms are employed.  442 

Prior to applying estimation methods, the dataset was normalized to reduce the magnitude of the data to a common scale, 443 
helping to give equal weight importance to each attribute in the dataset. The SL-BPNN, DL-BPNN, SVM, hyp-free CPCLS, 444 
their Ensemble, RF, GBDT and XGBoost estimation methods were applied for both regression and classification estimation 445 
mechanisms. The ensembles (Subsection 5.4) refer to averaging (for regression) or voting (for classification) results of SL-446 
BPNN, DL-BPNN, SVM, and hyp-free CPCLS to check whether their combined prediction can improve results. All the 447 
numerical experimental work was carried out in Anaconda Spyder Python v3.2.6 programming language. The BPNN, SVM, 448 

Table 2 

Data attributes for predicting flight departure delay 

Type Attributes Variables 

Airport Origin, destination, alternative 34 binary variables 

Aircraft details 
Type 10 binary variables 

Registration 107 binary variables 

Flight schedule 

Departure (month, day, hour, minutes) 4 continuous variables 

Arrival (month, day, hour, minutes) 4 continuous variables 

Flight duration (hour, minutes) 2 continuous variables 

Week day 1 continuous variable 

Weather 

Wind Speed 1 continuous variable 

Wind direction 1 continuous variable and 2 binary variables 

Atmospheric pressure 1 continuous variable 

Outside air temperature 1 continuous variable 

Temperature deviation (ground and air) 2 continuous variables 

Air traffic Altitude (initial and final) 2 continuous variables 

Runway configuration 
Runway Direction 1 continuous variable and 6 binary variables 

Runway Surface 33 binary variables 

Flight operation 

Ramp weight 1 continuous variable 

Speed 1 continuous variable 

Engine Performance 1 continuous variable 

Distance 1 continuous variable 

 

Table 1 

Statistical analysis and distribution test of the train:test dataset 

Data 

Split 

N 
on-

time 
Delay Mean Stdev Min Q1 Med Q3 Max IQR Skew Kur 

KS 

Test 

No. No. No. min min min min min min min min min min Sig. 

Train 9552 2654 6898 34.08 84.85 0 0 11 34 2115 34 9.48 144.03 
0.996 

Test 9553 2659 6894 33.55 84.14 0 0 11 35 1998 35 9.58 144.71 

Original 

dataset 
19105 5313 13792 33.81 84.50 0 0 11 35 2115 35 9.53 144.34 --- 
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RF, and GBDT were optimized using the scikit-learn module and XGBoost was optimized using the XGBoost module. The 449 
stochastic gradient descent learning algorithm with a sigmoid activation function in the hidden layer was used to train BPNN. 450 
Among different trials and error experimental work, SL-BPNN with 20 hidden units and DL-BPNN with 25 hidden units in 451 
the first layer and 10 hidden units in the second layer was considered as a best-fixed topology network. For SVM, the best 452 
combination of 𝐶, 𝛾 hyperparameters with kernel activation function was searched using grid search scikit-learn python tool, 453 
for instance, 𝐶𝜖 {0.005, 0.05, 0.5, 1, 5, 10, 20, 50, 100, 200, 300, 500, 800, 1000} and 𝛾 𝜖 {1/𝑙, 1/(𝑙 ∗ 𝑥. 𝑣𝑎𝑟( ))}. The grid 454 
search returned 𝐶 = 300 and 𝛾 = 1/𝑙  as the best optimal hyperparameters, with greater accuracy. For RF, the number of trees 455 
was set to 100Nos. with criterion was set to entropy having greater accuracy. For GBDT and XGBoost, the number of trees of 456 
100Nos. and the learning rate of 0.01 was selected as the best optimal hyperparameters, with greater accuracy. Like BPNN, 457 
the sigmoid activation function was used in the hidden layers of hyp-free CPCLS. For both estimation mechanisms, the dataset 458 
was split 50:50 for training and testing of the estimation methods. Table 1 shows the descriptive statistics of train and test data 459 
split. The N, Mean, Stdev, Min, Q1, Med, Q3, Max, IQR, Skew, Kur, and KS Test refers to a number of examples, mean, 460 
standard deviation, minimum, first quartile, median, third quartile, maximum, interquartile range, skewness, kurtosis, and two-461 
sample Kolmogorov-Smirnov test. The statistical analysis and KS tests in the table show that both training and testing datasets 462 
are from the same distribution. The KS Test having a significance value of 0.996 greater than the significance level of 0.05 463 
recommends accepting the null hypothesis by explaining that the distribution of the training and testing dataset is the same. 464 
This gives insight that both are representative of the original dataset. The training dataset has all relevant examples for the 465 
effective mapping of input to outputs. Similarly, the testing dataset also has all relevant examples for evaluating the model 466 
performance. To ensure better comparison, the same split dataset was used for the estimation methods.  467 

This section is organized as follows: Subsection 6.1 describes the historical data provided by the international airline for 468 
predicting departure flight delays and possible duration. Subsection 6.2 presents and discusses the prediction results of 469 
estimation methods applied for both estimation mechanisms. 470 

6.1 Data source and pre-processing 471 

The historical data provided by the airline for flight delay prediction comprises 19,105 international passenger and cargo 472 
flights. The actual flights were performed over two years, from April 2015 to March 2017, covering eight international OD 473 
(or sectors) airports. In total, 107 widebody aircraft (Airbus A330-300 and Boeing 747-400/747-800/777-300) were operated. 474 
The data contain information for individual flights in terms of airports, aircraft, flight scheduled dates and times, weather 475 
information, runway configuration, air traffic control, and flight operational details. Table 2 provides information about the 476 
data attributes used for predicting departure delays. For continuous variables, the data were normalized in the range [0,1], 477 
whereas for the categorical variables, one hot encoding pre-processing technique was applied to create a binary vector for each 478 
category. The attributes were selected based on information provided by the airline and the importance to each delay reason 479 
category as classified in Fig. 1. 480 

6.2 Departure delays prediction 481 

In this subsection, the departure delay prediction results are presented for both regression and classification estimation 482 
mechanisms. Various challenges in the historical departure delays were studied, and possible solutions were recommended to 483 

Table 3 

Estimation techniques prediction results and absolute error 

  Mean Stdev Q1 Med Q3 Max IQR Skew Kur R 

Prediction 

(min) 

SL-BPNN 38.58 34.42 4.24 34.18 62.03 182.29 57.78 0.68 -0.23 0.01 

DL-BPNN 35.70 15.18 24.76 33.70 45.33 98.32 20.57 0.53 0.10 0.16 

SVM 37.84 25.57 20.31 35.77 51.94 319.60 31.62 1.37 6.65 0.15 

hyp-free 

CPCLS 
33.95 21.43 18.57 30.46 45.79 221.17 27.22 1.21 3.28 0.19 

Ensembles 34.83 15.59 24.57 33.68 43.75 160.00 19.18 0.82 2.68 0.15 

RF 34.48 26.87 20.94 26.19 38.83 472.84 17.88 4.73 39.64 0.16 

GBDT 34.32 24.23 21.93 27.73 38.87 718.15 16.94 6.86 105.73 0.16 

XGBoost 34.80 34.05 17.78 25.57 40.19 892.56 22.41 6.30 85.97 0.17 

Absolute 

Error 

(min) 

SL-BPNN 47.16 78.20 12.18 32.80 60.16 1931.29 47.98 10.17 165.62 --- 

DL-BPNN 38.22 73.77 13.80 25.88 41.67 1915.53 27.87 11.75 203.04 --- 

SVM 39.31 74.68 12.59 26.38 44.49 1927.16 31.90 11.42 195.64 --- 

hyp-free 

CPCLS 
36.37 74.40 10.77 22.26 39.86 1905.90 29.09 11.50 196.45 --- 

Ensembles 37.26 74.31 13.49 25.51 38.94 1919.97 25.44 11.73 201.37 --- 

RF 36.60 75.75 12.07 20.67 35.25 1963.25 23.19 11.15 190.26 --- 

GBDT 36.42 75.38 13.41 21.39 34.94 1951.44 21.53 11.37 193.88 --- 

XGBoost 36.57 77.00 10.43 19.04 35.68 1929.80 25.24 10.41 168.61 --- 
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select the best optimal model. Subsection 6.2.1 concerns predicting delays by considering the task as regression, and 484 
Subsection 6.2.2 concerns predicting delays by considering the task as a classification problem.  485 

6.2.1 Delay prediction as a regression problem 486 

For the regression task, the objective is to minimize the difference between actual and predicted delays. Mean absolute error 487 
(𝑀𝐴𝐸), an objective function, is calculated by taking the mean absolute difference between actual and predicted delays. The 488 
objective function is expressed as: 489 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − �̂� 𝑖|

𝑁

𝑖=1

 (13) 

The measurement scale of 𝑀𝐴𝐸 is identical as 𝑦. The 𝑦 is flight delay variable measured in minutes (min). For each flight, the 490 
historical data with the value of zero (min) means flight departed on-time and values greater than zero means departure delay 491 
faced by that flight.  492 

Various statistical analyses were performed to get a better insight about the estimation methods, in order to recommend an 493 
estimation method capable of truly approximating actual flight delays. Table 3 shows the descriptive statistics of estimated 494 
flight delays and their absolute error. The statistics in Tables 1 & 3 help to understand the central tendency, dispersion, and 495 
spread of the actual flight delay and the results generated by the estimation methods. The 𝑅 value refers to the correlation 496 
relationship between actual and predicted flight delays. The actual flight delay (Table 1) mean value of 33.55 min with Stdev 497 
84.14min, skew 9.58min, and kur 144.71min indicates that the data is highly dispersed, right-skewed, and leptokurtic. 498 
Although the mean values of the estimation methods, for instance, SL-BPNN = 38.58min, DL-BPNN = 35.70, SVM = 499 
37.84min, hyp-free CPCLS = 33.95min, Ensembles = 34.83min, RF = 34.48min, GBDT = 34.32min and XGBoost = 34.80 500 
are much closer to the actual flight delay mean value, but the Stdev, skew and kur indicate that the distribution is clustered and 501 
symmetrical at the centre. The hyp-free CPCLS showed a better linear trend with 𝑅=0.19, whereas SL-BPNN showed a worse 502 
linear trend with 𝑅= 0.01. For quartiles, more specifically med (2nd quartile), the SL-BPNN, DL-BPNN, SVM, hyp-free 503 
CPCLS, Ensembles, RF, GBDT and XGBoost estimated mean flight delays of 34.18 min, 33.70 min, 35.77 min, 30.46 min, 504 
33.68 min, 26.19min, 27.73min and 25.57min respectively do not truly represent the actual flight delay mean value of 11.00 505 
min. The maximum departure flight delay approaches 1998.00 min in actual delay, whereas, for estimation methods, it 506 
approaches a maximum of 892.56 min. Similarly, the Stdev, skew, and kur of absolute error comparisons indicate that for all 507 
the estimation methods the error distributions are highly dispersed and skewed to the right side with leptokurtic peak. 508 
Preferably, in the regression estimation mechanism, the estimation method should be able to truly approximate actual flight 509 
delay in all quartiles. In our study, the MAE of 47.16min, 38.22 min, 39.31min, 36.37min, 37.26min, 36.60min, 36.42min and 510 
36.57min with Stdev 78.20min, 73.77min, 74.68min, 74.40min, 74.31min, 75.75min, 75.38min and 77.00min for SL-BPNN, 511 
DL-BPNN, SVM, hyp-free CPCLS, Ensemble, RF, GBDT and XGBoost from the actual delay implies the regression 512 
mechanism maybe not appropriate for predicting flight delays.  513 

To investigate the reasons, the distribution and normality of the actual flight delays were studied. The one sample KS normality 514 
test and Quantile-Quantile plot (Q-Q plot) were performed to check the normality of the actual flight departure delay dataset. 515 
The one sample KS normality test rejects the null hypothesis of the normal population distribution because of the p-value < 516 
0.05 (level of significance). The Q-Q plot showed that flight delay data points are not along the diagonal of the line which 517 
does not fulfil the assumption of normality. To overcome the above normality assumption limitations, various pre-processing 518 
and transformation techniques were tested to convert the non-normal distribution into a normal distribution. In pre-processing, 519 
the extreme values, long tails, outliers, and noisy data were removed to improve the performance of the estimation methods. 520 
In transformation, various techniques were employed to improve the distribution by taking the square root or logarithmic. The 521 
pre-processing and transformation techniques were tested individually and collectively. However, no significant improvement 522 
in the distribution of dataset and minimization of the objective function was found.  523 

The descriptive and graphical statistical analyses of the actual flight delays, estimation methods for predicted flight delays, 524 
and their absolute errors imply that the regression mechanism may not be a suitable approach when the historical flight dataset 525 
is highly dispersed and positively skewed. Efforts to improve the data distribution and estimation methods performance by 526 
various pre-processing and transformation techniques do not show significant support in minimizing the objective function. 527 

6.2.2 Delay prediction as a classification problem 528 

To compare the estimation mechanisms, the same historical highly dispersed and positively skewed dataset used for regression 529 
is applied to evaluate the performance of the classification task. The regression flight delays continuous variable is converted 530 
to a binary variable by labelling. The zero-minute values are labelled as on-time and value greater than zero minutes are 531 
labelled as delays. The objective is to improve the prediction accuracy of the classifiers by correct classifying labels. Other 532 
than simple accuracy measurement, which may lead to the wrong conclusion, confusion matrix and classification report 533 
performance indicators were also used to evaluate the performance of the classifiers.  534 
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6.2.2.1 Delay prediction results with the original dataset 535 

Table 4 summarizes the results generated by the estimation methods. The table shows model accuracy, label classification 536 
report, and confusion matrix. The estimation methods were able to achieve an average model accuracy of 72.56% with a 537 
standard deviation of 0.34%. The average recall of 96.88% for the delay class and 9.63% for the on-time class in the 538 
classification report shows that the estimation methods predict the delay class at higher accuracy as compared to the on-time 539 
class. Predicting the delay class at high frequency compared to the on-time class may make the model unsuitable for actual 540 
applications because the model will suggest most often that the flight will experience departure delay. This problem can be 541 
easily understood from the confusion matrix. In the actual original dataset, among 9553 flights from the testing dataset, 2659 542 
flights belong to the on-time class and 6894 flights belong to the delay class. The confusion matrix shows that the estimation 543 
methods predict a delay class more often compared to an on-time class. 544 

Most often, it is desired to get a balanced, highest recall and precision percentage. The objective of this study is to get a 545 
balanced recall for both classes, with better precision. The results with the original dataset show that model prediction is 546 
unbalanced. The in-depth study shows that the main reason for this is due to unbalanced datasets. Among the 19105 flights, 547 
72% belong to the delay class and 28% belong to the on-time class. The majority of datasets belonging to the delay class causes 548 
the machine learning estimation methods to learn concepts related to the delay class and ignore the on-time class. The class 549 
imbalance may make it very challenging for the estimation methods to accurately classify class labels. To overcome this 550 
challenge, various sampling techniques are recommended to balance the classes and remove noisy, overlapping data on the 551 
decision boundaries. 552 

6.2.2.2 Sampling techniques for class imbalance and decision boundaries overlapping 553 

The issue of class imbalance and overlapping may significantly affect the performance of machine learning classifiers. Class 554 
imbalance can be defined as the training set belonging heavily to one class compared to another class. Class Overlapping can 555 
be defined as one class in a training set occupying a large space of another class. For the sake of simplicity, the class in training 556 
set occupying a large space is named a majority class and another a minority class. Class imbalance and overlapping may 557 
cause the classifier to learn concepts related to the majority class and dominate the minority class. This may create the problem 558 
of low classifier accuracy by wrongly predicting a minority class. Class distribution and overlapping can be improved by 559 
collecting more datasets that approximately represent both classes equally. In a real scenario, collecting data is costly and 560 
involves stakeholder interests. In such a scenario, collecting additional data may not be feasible and there is a need to apply 561 
alternative machine learning approaches. A possible alternative strategy can include sampling the training set to improve class 562 
distribution and avoid overlapping. Sampling techniques include under-sampling, over-sampling and hybrid (combination) 563 
approaches. The major objective of sampling techniques is to improve the class distribution decision boundary by removing 564 
noisy, overlapping, and borderline samples. The most popular and widely used techniques are: 565 

Under-Sampling Techniques (US) 566 

a. Random Under-Sampling (RUS): RUS balances the datasets by randomly eliminating examples from the majority 567 
class to bring them equal to the minority class. This technique only applies to the majority class. In RUS, the chances 568 

Table 4  

Estimation techniques classification prediction result with the original dataset 

Dataset 

type 

Estimation 

Technique 

Model Accuracy 

(%) Label 

Classification Report 

(%) 

Confusion Matrix 

(Nos.) 

Train Test Precision Recall F1 On-time delay 

Original 

Dataset 

SL-BPNN 72.21 72.16 
On-time 0 0 0 0 2659 

delay 72 100 84 0 6894 

DL-BPNN 73.51 72.35 
On-time 51 14 22 374 2285 

delay 74 95 83 356 6538 

SVM 74.39 72.35 
On-time 52 10 17 263 2396 

delay 74 96 83 245 6649 

hyp-free 

CPCLS 
73.36 72.62 

On-time 53 17 25 439 2220 

delay 75 94 83 396 6498 

Ensembles 73.44 72.29 
On-time 52 6 10 147 2512 

delay 73 98 84 135 6759 

RF 77.95 72.65 
On-time 58 6 11 163 2496 

delay 73 98 84 116 6778 

GBDT 74.96 73.12 
On-time 59 12 19 309 2350 

delay 74 97 84 218 6676 

XGBoost 74.67 72.94 
On-time 57 12 19 306 2353 

delay 74 97 84 232 6662 
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of losing potentially useful data increase because of eliminating examples from the majority class (Batista et al., 569 
2004). 570 

b. Edited Nearest Neighbours (ENN): ENN edit examples by removing them from the majority that does not agree 571 
with their neighbours. The examples are removed based on the predefined nearest neighbour 𝐾 (typically 𝐾 = 3 in 572 
most cases). An example will be removed from the dataset if a number of neighbours from another class are 573 
predominant (Wilson, 1972). This helps to make the decision boundary smoother by editing noisy and close border 574 
examples (Wilson and Martinez, 2000).  575 

c. Tomek Links (Tomek): Tomek can be considered as an under sampling method and a data cleaning method, 576 
eliminates noisy examples from the majority class and borderline examples from both classes. Let 𝑥𝑚𝑎𝑗 be an 577 
example of the majority class, 𝑥𝑚𝑖𝑛 be an example of the minority class and 𝑑(𝑥𝑚𝑎𝑗 , 𝑥𝑚𝑖𝑛) is the distance between 578 
both examples. The pair (𝑥𝑚𝑎𝑗 , 𝑥𝑚𝑖𝑛) is called Tomek if there is no case 𝑥𝑚, such that 𝑑(𝑥𝑚𝑎𝑗 , 𝑥𝑚) <579 

𝑑(𝑥𝑚𝑎𝑗 , 𝑥𝑚𝑖𝑛) or 𝑑(𝑥𝑚𝑖𝑛, 𝑥𝑚) < 𝑑(𝑥𝑚𝑎𝑗 , 𝑥𝑚𝑖𝑛). If Tomek is formed between both examples, then either one of 580 
these examples is noisy or both are on borderline. Besides helping in eliminating noisy examples, this helps to clean 581 
overlap between classes and makes the decision boundary smoother (Tomek, 1976). 582 

Over-Sampling Techniques (OS) 583 

a. Random Over-Sampling (ROS): ROS balances the dataset by randomly adding examples to the minority class. The 584 
dataset is balanced by randomly replicating/duplicating examples from the minority class to bring them equal to the 585 
majority class. This technique is only applied to the minority class. Contrary to the RUS, in ROS, the chances of 586 
overfitting increases because of using duplicate examples of the minority class (Batista et al., 2004). 587 

b. Synthetic Minority Over Sampling Technique (SMOTE): SMOTE oversamples the minority class by creating 588 
“synthetic” examples rather than replicating or duplicating to avoid overfitting. SMOTE works by taking the 589 
difference between the minority sample 𝑥𝑚𝑖𝑛 and a randomly selected K-nearest neighbour 𝑥𝐾𝑁𝑁 (i.e.: 𝑑𝑖𝑓𝑓 =590 
 𝑥𝑚𝑖𝑛 − 𝑥𝐾𝑁𝑁). Multiplying the difference with a random number between 0 to 1 and adding to the minority sample 591 
under consideration (i.e.: 𝑁𝑒𝑤 𝑠𝑎𝑚𝑝𝑙𝑒 =  𝑥𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1) ∗ 𝑑𝑖𝑓𝑓), generates a new random synthetic sample 592 
between the minority sample and its K-nearest neighbour (Chawla et al., 2002). 593 

c. Adaptive Synthetic (ADASYN): This concept of ADASYN is similar to SMOTE. ADASYN also oversamples the 594 
minority class by creating “synthetic” samples with some improvement compared to SMOTE. In SMOTE, an equal 595 
number of synthetic samples is generated for each minority sample, whereas, ADASYN gives weight to minority 596 
samples that are closer to the majority class and harder to learn. The more minority samples closer to the majority 597 
class and harder to learn, the more it will generate synthetic samples for those samples (He et al., 2008). 598 

Combination of under and over-sampling Techniques (UOS) 599 

a. SMOTETomek: Batista et al. (2003) explained that oversampling techniques can balance the class distribution but 600 
cannot solve the problem of skewed class distributions. The class cluster (decision boundary) may not be well 601 
defined since some majority class examples may be occupying minority class space. Another issue can be the 602 
generating of artificial synthetic samples that may introduce minority examples too deeply in the majority class 603 
space. Batista et al. (2003) proposed applying Tomek to the oversampled SMOTE examples as a data cleaning 604 

 
Fig. 3. Improving class distribution and decision boundaries by applying various sampling techniques to the training set 
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method. The basic idea is to oversample the minority class by SMOTE and then remove the noisy majority class and 605 

Table 5  

Estimation methods classification prediction result for sampled datasets 

Sampled 

Dataset 

Estimation 

Method 

Model Accuracy 

(%) Label 

Classification Report 

(%) 
Confusion Matrix (Nos.) 

Train Test Precision Recall F1 On-time delay 

RUS 

SL-BPNN 63.33 62.06 
On-time 39 63 48 1664 995 

delay 81 62 70 2629 4265 

DL-BPNN 65.27 61.15 
On-time 38 66 49 1751 908 

delay 82 59 69 2803 4091 

SVM 63.77 57.33 
On-time 37 76 50 2025 634 

delay 84 50 63 3442 3452 

hyp-free 
CPCLS 

67.28 64.15 
On-time 41 68 51 1795 864 

delay 83 63 72 2561 4333 

Ensembles 65.09 60.67 
On-time 38 68 49 1812 847 

delay 82 58 68 2910 3984 

RF 76.52 62.80 
On-time 41 75 53 1989 670 

delay 86 58 69 2883 4011 

GBDT 68.97 62.89 
On-time 41 72 52 1922 737 

delay 85 59 70 2808 4086 

XGBoost 80.32 60.05 
On-time 39 77 52 2052 607 

delay 86 53 66 3209 3685 

ENN 

SL-BPNN 73.67 60.58 
On-time 38 68 49 1797 862 

delay 82 58 68 2903 3991 

DL-BPNN 77.14 60.64 
On-time 38 68 49 1807 852 

delay 82 58 68 2908 3986 

SVM 75.73 60.28 
On-time 39 72 50 1914 745 

delay 84 56 67 3049 3845 

hyp-free 
CPCLS 

77.18 61.62 
On-time 39 70 50 1867 792 

delay 84 58 69 2874 4020 

Ensembles 75.64 60.79 
On-time 39 70 50 1849 810 

delay 83 57 68 2935 3959 

RF 75.48 63.12 
On-time 40 68 50 1796 863 

delay 83 61 71 2660 4234 

GBDT 80.76 59.92 
On-time 39 77 52 2058 601 

delay 86 53 66 3228 3666 

XGBoost 68.11 64.17 
On-time 41 68 51 1810 849 

delay 84 63 72 2573 4321 

Tomek 

SL-BPNN 70.13 72.17 
On-time 50 10 16 257 2402 

delay 73 96 83 256 6638 

DL-BPNN 78.27 69.40 
On-time 45 42 44 1126 1533 

delay 78 80 79 1390 5504 

SVM 75.23 71.98 
On-time 49 30 37 795 1864 

delay 77 88 82 812 6082 

hyp-free 

CPCLS 
71.71 72.14 

On-time 50 31 38 813 1846 

delay 77 88 82 815 6079 

Ensembles 73.28 72.78 
On-time 52 23 32 620 2039 

delay 76 92 83 561 6333 

RF 81.12 72.87 
On-time 52 29 37 771 1888 

delay 77 90 83 703 6191 

GBDT 73.63 72.97 
On-time 53 22 32 596 2063 

delay 76 92 83 519 6375 

XGBoost 73.20 72.34 
On-time 51 27 36 730 1929 

delay 76 90 82 713 6181 

ROS 

SL-BPNN 63.90 61.00 
On-time 38 65 48 1734 925 

delay 82 59 69 2800 4094 

DL-BPNN 66.15 61.88 
On-time 39 65 49 1741 918 

delay 82 61 70 2723 4171 

SVM 63.40 57.33 
On-time 37 76 50 2025 634 

delay 84 50 63 3442 3452 

hyp-free 

CPCLS 
67.27 64.21 

On-time 41 67 51 1772 887 

delay 83 63 72 2532 4362 

Ensembles 64.84 60.45 
On-time 38 68 49 1821 838 

delay 83 57 68 2940 3954 

RF 66.92 63.10 
On-time 41 70 51 1863 796 

delay 84 60 70 2729 4165 

GBDT 68.64 63.64 
On-time 41 72 53 1921 738 

delay 85 60 71 2735 4159 

XGBoost 68.15 63.30 
On-time 41 72 52 1918 741 

delay 85 60 70 2764 4130 
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borderline majority and minority classes by Tomek to make the decision boundary smoother. 606 

Table 5  

Continued 

Sampled 

Dataset 

Estimation 

Method 

Model Accuracy 

(%) Label 

Classification Report 

(%) 
Confusion Matrix (Nos.) 

Train Test Precision Recall F1 On-time delay 

SMOTE 

SL-BPNN 63.64 62.12 
On-time 39 63 48 1676 983 

delay 81 62 70 2635 4259 

DL-BPNN 70.47 62.67 
On-time 39 64 49 1695 964 

delay 82 62 71 2602 4292 

SVM 63.06 63.35 
On-time 39 58 47 1544 1115 

delay 80 65 72 2386 4508 

hyp-free 
CPCLS 

67.53 65.07 
On-time 42 66 51 1757 902 

delay 83 65 73 2435 4459 

Ensembles 64.07 62.81 
On-time 39 62 48 1651 1008 

delay 81 63 71 2544 4350 

RF 68.14 65.35 
On-time 42 64 51 1696 963 

delay 83 66 73 2347 4547 

GBDT 70.48 64.48 
On-time 42 68 51 1798 861 

delay 84 63 72 2532 4362 

XGBoost 70.19 64.03 
On-time 41 68 51 1815 844 

delay 84 62 71 2592 4302 

ADASYN 

SL-BPNN 61.42 62.78 
On-time 39 60 47 1596 1063 

delay 81 64 71 2492 4402 

DL-BPNN 63.42 63.20 
On-time 39 60 48 1596 1063 

delay 81 64 72 2452 4442 

SVM 61.07 63.35 
On-time 39 58 47 1544 1115 

delay 80 65 72 2386 4508 

hyp-free 
CPCLS 

65.83 65.85 
On-time 42 63 51 1683 976 

delay 83 67 74 2286 4608 

Ensembles 61.70 63.33 
On-time 39 59 47 1581 1078 

delay 81 65 72 2425 4469 

RF 66.84 66.62 
On-time 43 60 50 1585 1074 

delay 82 69 75 2114 4780 

GBDT 69.70 66.63 
On-time 43 59 50 1572 1087 

delay 82 70 75 2101 4793 

XGBoost 68.11 64.17 
On-time 41 68 51 1810 849 

delay 84 63 72 2573 4321 

SMOTETomek 

SL-BPNN 64.20 62.17 
On-time 39 63 48 1670 989 

delay 81 62 70 2624 4270 

DL-BPNN 72.25 62.67 
On-time 39 61 48 1626 1033 

delay 81 63 71 2533 4361 

SVM 63.40 63.35 
On-time 39 58 47 1544 1115 

delay 80 65 72 2386 4508 

hyp-free 

CPCLS 
67.90 65.23 

On-time 42 66 52 1766 893 

delay 83 65 73 2429 4465 

Ensembles 64.72 62.75 
On-time 39 62 48 1647 1012 

delay 81 63 71 2546 4348 

RF 66.12 64.26 
On-time 40 60 48 1586 1073 

delay 81 66 73 2341 4553 

GBDT 71.19 64.29 
On-time 41 67 51 1777 882 

delay 83 63 72 2529 4365 

XGBoost 68.11 64.17 
On-time 41 68 51 1810 849 

delay 84 63 72 2573 4321 

SMOTEENN 

SL-BPNN 80.36 53.41 
On-time 36 83 50 2199 460 

delay 86 42 57 3990 2904 

DL-BPNN 82.46 54.72 
On-time 36 79 49 2111 548 

delay 85 45 59 3777 3117 

SVM 78.34 49.60 
On-time 34 86 49 2274 385 

delay 86 36 51 4429 2465 

hyp-free 

CPCLS 
89.62 60.26 

On-time 39 72 50 1906 753 

delay 84 56 67 3043 3851 

Ensembles 80.89 53.39 
On-time 36 83 50 2205 454 

delay 86 42 57 3998 2896 

RF 81.79 54.40 
On-time 36 83 50 2211 448 

delay 87 43 58 3908 2986 

GBDT 84.95 52.95 
On-time 36 87 51 2319 340 

delay 89 40 55 4155 2739 

XGBoost 83.88 58.05 
On-time 38 80 51 2120 539 

delay 86 50 63 3468 3426 
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b. SMOTEENN: The working method of SMOTEENN is similar to SMOTETomek. The basic difference between 607 
Tomek and ENN is in the sampling mechanism. Tomek removes noisy majority class examples and borderline 608 
examples from both cases, whereas, ENN removes examples misclassified by the nearest neighbours. It is considered 609 
that ENN tends to remove more examples from both classes by doing more in-depth cleaning compared to Tomek 610 
(Batista et al., 2004). 611 

6.2.2.3 Delay prediction results with a sampled dataset 612 

To improve the prediction accuracy of the estimation methods, the sampling techniques mentioned in section 6.2.2.2 are 613 
applied to the original training set. Fig. 3 illustrates the original training dataset and sampled training dataset generated by each 614 
sampling technique. The sampled data were used to train the estimation methods and the original testing set was used to 615 
validate the performance. For actual applications, exact knowledge about which sampling technique will perform better is 616 
unknown. Detailed experimental work was carried to select the best suitable combination of sampling technique and estimation 617 
method so as to achieve better prediction performance.  618 

Table 5 summarizes the results generated by the estimation methods using various sampling techniques. In-depth analysis of 619 
the table demonstrates that the hyp-free CPCLS classifier with the SMOTETomek sampling technique was able to achieve 620 
better prediction performance compared to the others. The recall accuracy for the delay was 65% and for on-time 66%. The 621 
precision accuracy for the delay was 83% and for on-time 42%. However, the recall and precision accuracies of hyp-free 622 
CPCLS_SMOTE were also the same as the hyp-free CPCLS_SMOTETomek, suggesting that the SMOTE sampling technique 623 
may be also helpful in improving prediction accuracy. In such cases, other performance metrics were studied to select the best 624 
sampling technique. Referring to the f1 score and confusion matrix, the hyp-free CPCLS_SMOTETomek overall performance 625 
is better than hyp-free CPCLS_SMOTE. The model average f1 score demonstrated that hyp-free CPCLS_SMOTETomek was 626 
able to achieve accuracies of 62.5%, slightly better than hyp-free CPCLS_SMOTE at 62%. Similarly, the confusion matrix 627 
shows that hyp-free CPCLS_SMOTETomek predicted 1766 flights for TP and 4465 flights for TN comparatively better than 628 
hyp-free CPCLS_SMOTE for 1757 flights for TP and 4459 flights for TN. An interesting fact, for both sampling techniques, 629 
was that the classifier is the same (i.e. hyp-free CPCLS). Moreover, the hyp-free CPCLS was able to achieve learning much 630 
faster compared to SL-BPNN, DL-BPNN, SVM, RF, GBDT and XGBoost. The hyp-free CPCLS was able to get balanced 631 
recall accuracy in 0.73s compared to SL-BPNN of 7.62s, DL-BPNN of 17.14s, SVM of 82.20s, RF of 0.79s, GBDT of 10.31s 632 
and XGBoost of 1.03s. 633 

Furthermore, it can be seen that the prediction capability of the estimation methods is considerably lower with Tomek 634 
compared to other sampling techniques. The Tomek sampling technique generated an average recall of 89.5% for the delay 635 
class and 26.75% for the on-time class. The recall accuracies were lower than other sampling techniques but considerably 636 
better than the results predicted by the original dataset (Table 4). The selection of any sampling technique based on prior 637 
judgment may not be quite optimal. Different combinations of estimation methods and sampling techniques results help to 638 
select the hyp-free CPCLS_SMOTETomek technique having better prediction capability. In comparison with each sampling 639 
technique, the performance of the hyp-free CPCLS classifier is found to be superior to other estimation methods such as SL-640 
BPNN, DL-BPNN, SVM, Ensembles, RF, GBDT and XGBoost. The experimental work gives insight that generating linearly 641 
independent and non-redundant hidden units in each hidden layer with no iterative tuning of connection weights helps to 642 
improve the predictive performance of the network. Unlike BPNN (SL and DL), hyp-free CPCLS make sure that each hidden 643 
unit generated in the hidden layer is orthogonal in relationship to other hidden units in the same layer. Similarly, analytically 644 
calculating connection weights and self-organizing topology reduces the complexity of the network which facilitates 645 
improving the learning process. 646 

The comparison of hyp-free CPCLS_SMOTETomek was also performed with Cost-Sensitive Weighted RF (CSWRF) and 647 
Nested SVM (NSVM) to demonstrate the effectiveness. Table 6 summarizes the results generated by the CSWRF and NSVM. 648 
CSWRF achieved recall accuracy of 64% for the delay class and 61% for the on-time class. For NSVM, the number of folds 649 
was set to 𝑘 = 5 in the outer loop and 𝑘 = 3 in the inner loop. The best combination of 𝐶, 𝛾 hyperparameters (mentioned in 650 
Section 6) was searched using grid search. Two types of experimental work were performed. Without applying sampling 651 
techniques, NSVM achieved recall accuracy of 95.2% with Stdev 1.30% for the delay class and 14.8% with Stdev 3.49% for 652 

Table 6 

CSWRF and NSVM prediction results 

Estimation 

Technique 

Model Accuracy (%) 
Label 

Classification Report (%) 

Train Test Precision Recall F1 

CSWRM 63.72 63.29 
On-time 40 61 48 

delay 81 64 72 

NSVM 72.82 (0.23) 
72.88 

(0.81) 

On-time 54.8 (3.03) 14.8 (3.49) 22.8 (4.44) 

delay 74.4 (1.14) 95.2 (1.30) 83.6 (0.55) 

NSVM with 

SMOTETomek 
79.98 (0.26) 

67.3 

(1.02) 

On-time 41.4 (1.14) 41.6 (2.19) 41.2 (1.64) 

delay 77.2 (1.10) 77.2 (1.10) 77.6 (0.89) 
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the on-time class. By applying the SMOTETomek sampling technique, NSVM achieved recall accuracy of 77.2% with Stdev 653 
1.10% for the delay class and 41.6% with Stdev 2.19% for the on-time class. The downside of NSVM is that it took 3688s and 654 
11348s to train the model without and with the sampling technique. The comparison of results in Table 6 with results in Table 655 
5 demonstrates that hyp-free CPCLS_SMOTETomek has better and balanced recall accuracy of 65% for the delay class and 656 
66% for the on-time class compared to both CSWRF and NSVM. 657 

In Table-4, the better classifier hyp-free CPCLS was able to achieve recall accuracy of 94% for the delay class and 17% for 658 
the on-time class which gives insight that the classifier overtrained the delay class by learning noisy, overlapping, and 659 
borderline examples. The comparison of results in Table-4 and Table-5 provides intuition that the application of sampling 660 
techniques helps to remove noisy, overlapping, borderline examples, improve class decision boundaries, and class distribution 661 
which results in better generalization performance and avoids overfitting compared to the original unbalance and noisy data. 662 
More specifically, the application of SMOTETomek facilitated in oversampling the minority class by SMOTE, and then 663 
removed the noisy majority class and borderline majority and minority classes by Tomek to make the decision boundary 664 
smoother. The results in Table-5 shows that hyp-free CPCLS-SMOTETomek predicted delay and on-time classes at better and 665 
balance recall accuracy of 65% and 66% compared to an imbalanced dataset (Table-4) of 94% and 17%, respectively. This 666 
shows that the model with hyp-free CPCLS-SMOTETomek does not suffer from overfitting and has better and balance 667 
generalization performance. 668 

Unlike existing works, the sampling techniques in the current study are applied to the training set, and performance is evaluated 669 
on the original testing set. Training on synthetic sampled examples and evaluating an original testing set may help to study the 670 
application of estimation methods on actual application examples. Applying sampling techniques to both training and testing 671 
sets may lead to inaccurate findings. The sampling techniques applied to the testing set will remove noisy and overlapping 672 
examples by improving the class distribution but may not truly represent the actual flight delay distribution. A new set of 673 
experiments was carried out by applying sampling techniques to both the training and testing sets to see any difference in 674 
improvement. The work was carried out by considering the hyp-free CPCLS classifier because of its superior performance 675 
compared to other estimation methods. Table 7 shows the best results predicted by hyp-free CPCLS with SMOTETomek and 676 
SMOTEENN, using two different types of sampling approaches. For the sake of simplicity, approach-one refers to sampling 677 
techniques applied to only the training set and approach-two refers to sampling techniques applied to both the training and 678 
testing set. Compared to the results of approach-one shown in Table 5, the sampling techniques with approach-two show better 679 
results. Table 7 summarizes the results of both approaches. For approach-two, SMOTEENN generated the highest 680 
improvement in prediction accuracy. The approach-two recalls of 73% and 86% compared to approach-one recalls of 56% and 681 
72% for the delay and on-time class labels respectively, indicate a significant difference in prediction results. The comparison 682 
of SMOTETomek is also important because for our recommended approach (Table 5) its prediction accuracy is superior. Like 683 
SMOTEENN, the prediction accuracy of SMOTETomek increased by using approach-two. The approach-two recalls of 79% 684 
and 70% compared to approach-one recalls of 65% and 66% for delay and on-time class labels respectively, showing the 685 
significant difference in prediction results. The results in Table 7 demonstrate that a wrong application of sampling techniques 686 
on both the training and testing sets may lead to an inaccurate conclusion, which may create the problem of poor accuracy in 687 
real-world applications. 688 

Experimental work using a different combination of sampling techniques, sampling approaches, and estimation methods 689 
suggests that the hyp-free CPCLS classifier with SMOTETomek sampling techniques applied to the training set (approach-690 
one) shows reliable results. The prediction of the departure flights in a future four-hour time horizon as being on-time or 691 
delayed is of major importance to airlines, however, as knowing the delay duration can help airlines to make informed decisions 692 
in order to avoid or minimize delays. In the following section, we explain a novel hierarchical integrated machine learning 693 
model for predicting the flight delay and its duration at a certain threshold in the series. 694 

6.2.2.4 Hierarchical integrated model prediction results 695 

Table 7 

Hyp-free CPCLS classifier prediction results by using two types of sampling approaches 

Dataset 

type 

Sampling technique applied to only training 

dataset 

Sampling technique applied to both training and 

testing dataset 

Model 

Accuracy (%) Label 

Classification Report 

(%) 

Model 

Accuracy (%) Label 

Classification Report 

(%) 

Train Test Precision Recall F1 Train Test Precision Recall F1 

SMOTETomek 67.90 65.23 

On-

time 
42 66 52 

78.44 74.42 

On-

time 
77 70 73 

delay 83 65 73 delay 72 79 76 

SMOTEENN 89.62 60.26 

On-

time 
39 72 50 

90.65 82.33 

On-

time 
88 86 87 

delay 84 56 67 delay 71 73 72 
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Following the study approach of section 6.2.2.3, the departure delay duration at a certain threshold, in series, was studied using 696 
the hyp-free CPCLS classifier with SMOTETomek sampling techniques applied to the training set. For a better understanding 697 
of the hierarchical integrated model, we propose to predict departure delay and duration at three levels. Level-1 is the prediction 698 
model proposed in section 6.2.2.3 (Delay prediction results with sampled dataset). Level-2 and level-3 are models proposed at 699 
thresholds of 60min and 30min respectively, to predict the flight departure duration. The three levels are integrated into one 700 
hierarchical model. Unlike existing works, the predictions at 60min and 30min thresholds are based on the relevant hierarchical 701 
dataset. For level-2, the binary classes are labelled as predicting a departure delay at duration 1-60min (TP) and greater than 702 
60min (TN). For level-3, the binary classes are labelled as predicting a departure delay at duration 1-30min (TP) and 31-60min 703 
(TN). For each proceeding threshold, the dataset relevant to that specific threshold was used for model training, and Fig. 2(a) 704 
illustrates this concept. For level-2, the dataset greater than zero minutes (excluding the on-time dataset) was used for training 705 
and testing the classifier. For level-3, the dataset greater than zero and less than 60 minutes (excluding level-1 on-time and 706 
level-2 delay greater than 60min dataset) was used for the training and testing classifier. 707 

Fig. 2(b) and Table 8 summarize the hierarchical integrated model implementation and prediction results respectively. In the 708 
table, the results of level-1, discussed in section 6.2.2.3, are imported from Table 5. The hyp-free CPCLS classifier, with the 709 
SMOTETomek sampling technique applied to the training set, was used to classify binary classes for level-2 and level-3. The 710 
model predicted testing accuracy for level-2 and level-3 are approximately near to level-1. The levels testing accuracies 711 
indicates that the classifier prediction capabilities increase by selecting a higher threshold and vice versa. In level-2 and level-712 
3, recalls of 64% for the 1-60min class label and 59% for >60min class label, and the recall of 61% for the 1-30min class label 713 
and 57% for 31-60min class label respectively indicate the balanced prediction. In terms of model learning time, the hyp-free 714 
CPCLS classifier required 0.73s for level-1, 0.62s for level-2, and 0.51s for level-3. The recall accuracy and learning time are 715 
useful indicators to understand the scalability of the hyp-free CPCLS classifier. Scalability is defined as the effect of an increase 716 
in training size on the computational performance of the classifier. It is important to have the same effect of training size on 717 
both accuracy and learning time. Comparative study show that level-1 (19,105 flights) achieved average accuracy of 65.5% in 718 
0.73s, level-2 (13,792 flights) achieved average accuracy of 61.5% in 0.62s, and level-3 (11,071 flights) achieved average 719 
accuracy of 59% in 0.51s using same hyperparameters of hyp-free CPCLS. For all three levels, results are consistent. For 720 
instance, comparing results from small to large data set, accuracy is improving, and training time is increasing. 721 

6.2.2.5 Factors influencing flight delay 722 

Impact factor analysis was performed to identify attributes (or factors) that have a great influence on the prediction 723 
performance. The mutual information (bits) evaluation method was adopted to determine the most influencing factor that 724 
highly contributes to the flight delay. Fig. 4 illustrates the impact factor analysis of prediction. The attributes are ranked 725 
according to their increase in mutual information. The top five influencing factors that contribute to flight delays are distance 726 
travelled, aircraft registration, ramp weight, cruise initial altitude, and aircraft type. Figs. 5 and 6 show the analysis of 727 
influencing factors highly contributing to flight delays. The dataset consists of eight sectors covering short-range flights and 728 
long-range flights on long-haul routes. The two sectors having a distance of 3373Nautical Mile (NM) and 3454NM are 729 
abbreviated as SD3373 and SD3454. Both sectors belong to short-range flights with an average flight time of 433min duration. 730 
Where SD3373, for example, means sector distance (SD) of 3373NM. The other six sectors having a distance of 4693NM, 731 
4762NM, 5537NM, 5632NM, 6584NM, and 6665NM are abbreviated as SD4693, SD4762, SD5537, SD5632, SD6584, and 732 
SD6665. These six sectors belong to long-range flights with an average flight time of 696min duration.  733 

Table 8 

Hierarchical integrated model prediction results 

Estimation 

Technique 

Model Accuracy 

(%) Label 

Classification Report 

(%) 

Confusion Matrix 

(Nos.) 

Train Test Precision Recall F1 On-time delay 

Departure Delay (Level-1) 67.90 65.23 
On-time 42 66 52 1766 893 

delay 83 65 73 2429 4465 

Threshold 60 min (Level-

2) 
68.17 62.95 

1-60min 87 64 74 3563 2021 

>60min 28 59 38 534 778 

Threshold 30 min (Level-

3) 
64.99 60.21 

1-30min 82 61 70 2583 1644 

31-

60min 
31 57 41 559 750 
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Fig. 5 summarizes the influence of distance, ramp weight, and cruise altitude on the flight delay. The horizontal axis, primary 734 
vertical axis, and secondary vertical axis refer to the sector, weight in kilogram (Kg) and altitude in feet (ft), and delay time 735 
(min), respectively. The analysis illustrates that the short-range sectors experience less average delay time compared to long-736 
range sectors. The short-range sectors 3373NM and 3454NM reported average delay time of 26min and 16min, respectively. 737 
The long-range sectors 4693NM, 4762NM, 5537NM, 5632NM, 6584NM, and 6665NM reported average delay time of 51min, 738 
49min, 33min, 21min, 27min, and 34min, respectively. The analysis in the figure shows that short-range sectors are operated 739 
with less ramp weight and high altitude compared to long-range sectors. This provides intuition that operating flights at high 740 
altitudes experience less delay compared to operating flights at low altitudes. For instance, high altitudes may be less crowded 741 
compared to low altitudes. Similarly, ramp weight leads to the intuition that flights with high weight may experience high 742 
delays because of the complex ground and enroute operations compared to flights with less weight. 743 

Fig. 6 summarizes the influence of aircraft registration and aircraft type on the flight delay. The horizontal axis shows aircraft 744 
and sector, and the vertical axis is about delay time (min). The aircraft registration and aircraft type subcategories are merged 745 

 
Fig. 4. Impact factor analysis 
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Fig. 5. Distance, weight, and altitude influencing flight delays 
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into one common category named aircraft size. The dataset consists of widebody aircraft of Airbus A330-300 and Boeing 747-746 
400/747-800/777-300. Airbus A330-300 was mainly operated on short-range sectors, whereas the Boeing 747-400/747-747 
800/777-300 were mainly operated on several long-range sectors. The analysis in the figure shows that the low passenger 748 
carrier Airbus A330-300 experiences an average delay of 21min compared to Boeing 747-400/747-800/777-300 which 749 
experiences an average delay of 35.83min. The three sizes of Boeing aircraft, Boeing 747-400, Boeing 747-800, and Boeing 750 
777-300 were operated alternatively on long-range six sectors. The Boeing 747-400 operated in SD4693, SD4762, and SD6665 751 
experience an average delay of 47min, Boeing 747-800 operated in SD4693, SD4762, and SD6665 experience an average 752 
delay of 50min, and Boeing 777-300 operated in SD5537, SD5632, SD6584, and SD6665 experience an average delay of 753 
29min. Further analysis was performed to study the relation of aircraft engine performance on flight delays. The existing airline 754 
measures aircraft engine performance in percentage compared to new aircraft in the fleet. Airbus A330-300 and Boeing 747-755 
400/747-800/777-300 having an average engine performance of 4.92%, and -9.95 experience an average delay of 21min, and 756 
36 min, respectively. This gives intuition that aircraft having efficient engines may experience comparatively less delay 757 
because of less non-schedule maintenance and fewer breakdowns of parts compared to aircraft having inefficient engines. 758 

Other than five influencing factors, results show that alternative airport, altitude (final), arrival airport, departure airport, 759 
departure schedule (hour), runway direction, aircraft speed, arrival schedule (hour), and wind speed are also the factors that 760 
highly contribute to flight delay prediction. However, because of the data confidentiality agreement, international airline 761 
demands not to disclose information about attributes in detail. 762 

6.2.2.6 Comparison of Hierarchical integrated (series) model with parallel model and multiclass classification scheme 763 

In this subsection, two types of comparisons are performed to demonstrate the effectiveness of the hierarchical integrated 764 
(series) model. In the first comparison, the series model is compared with the parallel model, whereas, in the second 765 
comparison, the series model is compared to the multiclass classification scheme to understand the improvement in threshold 766 
prediction.  767 

Predicting flight delay and duration in a hierarchical series of steps can be considered a more novel approach, above a certain 768 
threshold, than implementing multiple prediction models in parallel. The experiment (first comparison) was conducted to 769 
demonstrate the effectiveness of a series prediction model compared to parallel prediction models. Fig. 7 shows the precision-770 
recall curve in order to understand the performance of both models. The precision-recall (PR) curve is an important tool to 771 
evaluate the performance of models dealing with imbalanced classification problems having minority class. The objective is 772 
to improve the PR curve and select a model having a larger area under the curve (AUC). Step (a) or Level (1) is similar for 773 
both series and parallel models. This means that classification of flight departure status as delay or on-time is the same because 774 
both models are using the same data and hence no comparison is needed.  However, for threshold prediction, the comparison 775 
can be performed because both models have a different method of extracting information from the dataset. The figure illustrates 776 
the comparison for thresholds of 60min and 30min for both series and parallel models. The figure shows that the AUC for the 777 
series model of 32.44% and 35.14% is better compared to the parallel model 26.43% and 21.02% for thresholds of 60min and 778 
30min respectively. The results demonstrate that the series model facilitates improving the PR curve for threshold minority 779 
class prediction. This makes the series model a favourable approach for flight delays and duration prediction rather than a 780 
parallel model. 781 

 

Fig. 6. Aircraft registration and type influencing flight delay 
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For comparison of the series model with the multiclass classification scheme (second comparison), the output variable was 782 
encoded with multiple labels. For instance, the flights with no delay were labelled as “on-time”, flights with delay 1 to 30 783 
minutes were labelled as “1-30min”, flights with delay 31 to 60 minutes were labelled as “31-60min” and flights with delay 784 
greater than 60 minutes were labelled as “>60min”. This results in a total of four labels for multiclass classification prediction. 785 
Table 9 summarizes the results for multiclass classification prediction. Comparison of Table 8 and Table 9 shows that the 786 
series model (involving binary labels) has better recall accuracy of 66%, 61%, 57%, and 59% compared to the multiclass 787 
model recall accuracy of 8%, 79%, 36% and 0% for labels on-time, 1-30min, 31-60min, and >60min, respectively. The 788 
classification report and confusion matrix give insight in that the prediction results of the multiclass model are imbalanced. 789 
The reason is that labels are imbalanced, and the majority class is learned more compared to the minority class. For that reason, 790 
the majority class label (1-30min) shows higher recall but lower precision. The comparison demonstrates that the series model 791 
has improved and balanced the recall accuracy compared to multiclass classification. This makes the series model a more 792 
favourable approach compared to the multiclass model. 793 

6.2.2.7 Prediction of delay category 794 

Fig. 1 shows that categories such as passenger and baggage handling, aircraft and ramp handling, air traffic flow restriction 795 
and government authority, and reactionary and miscellaneous are the main reason for airline departure delay. In terms of 796 
percentage, the categories reported in total 91.41% to departure delay making them considerably important for further study. 797 
The better results of hyp-free CPCLS_SMOTETomek in predicting flight departure delay status and duration motivates us to 798 
check the performance of the method in the prediction of delay category. Table 10 summarizes the result obtained by hyp-free 799 
CPCLS_SMOTETomek in predicting delay categories. The results show that the impact of air traffic flow restriction and 800 
government authority on delay is higher compared to other categories. Hyp-free CPCLS_SMOTETomek predicted air traffic 801 
flow restriction and government authority at the recall of 62% and F1 at a higher percentage of 47% as a most influencing 802 
delay reason. For a smooth and safe flight, the airlines have less control over the restrictions imposed by air traffic control and 803 
government authority which mainly contribute to long delays. 804 

6.2.2.8 Managerial implications and future work 805 

The proposed model serves three main purposes. First, the better results of the proposed hierarchical integrated model 806 
demonstrate that the prediction of flight delay and duration in series helps is improving the accuracy of the model. This makes 807 
it a better decision tool for airlines to initially forecast flight delay and then possible duration so as to plan for a contingency 808 
strategy. The application of major international airline's historical data further validates the performance of the proposed 809 
hierarchical integrated model. Second, the model can work as an alternative in applications where the regression and multiclass 810 
classification estimation mechanism cannot generate the best results. The regression mechanism is useful in getting 811 
information in continuous form. However, highly noisy, unbalanced, dispersed, and skewed data may make it difficult for 812 
regression to generate desired results. Similarly, class imbalance and overlapping might make it difficult for a multiclass 813 
classification scheme to accurately classify class labels. The use of binary labels in the hierarchical integrated model along 814 
with the usage of data sampling techniques makes it the best alternative approach to regression and multiclass classification. 815 
Third, the work considered flight delays data caused by all delay categories rather than considering one or a specific category 816 
delay. This facilitates that the hierarchical integrated model can be embedded with airlines existing information system by 817 

Table 9 

Multiclass classification prediction results 

Model Accuracy (%) 
Label 

Classification Report (%) Confusion Matrix (Nos.) 

Train Test Precision Recall F1 On-time 1-30min 31-60min >60min 

43.95 41.76 

On-time 46 8 13 200 2252 207 0 

1-30min 46 79 58 172 3308 718 0 

31-60min 25 36 29 30 820 481 0 

>60min 0 0 0 30 788 547 0 

 

Table 10 

Delay category prediction results 

Delay Category 

Model Accuracy 

(%) Label 
Classification Report (%) 

Train Test Precision Recall F1 

Passenger and Baggage 

Handling 
70.87 61.39 

No delay 91 59 71 

delay 29 74 42 

Aircraft and Ramp Handling 61.78 59.09 
No delay 83 59 69 

delay 30 60 40 

Air Traffic Flow Restriction 

and Government Authority 
67.15 64.99 

No delay 84 66 74 

delay 37 62 47 

Reactionary and 

Miscellaneous 
73.03 72.16 

No delay 88 76 81 

delay 37 57 45 
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taking into consideration possible flight delays, such as changing the normal parameters to reach arrival airport on-time to 818 
improve the overall traveling experience and customer satisfaction. 819 

The comparison of the hierarchical integrated model with the parallel model and multiclass classification scheme demonstrates 820 
its effectiveness. However, the average balanced recall accuracies of 65.5%, 61.5%, and 59% for delay status and duration, 821 
and 63.25% for delay categories need considerable attention for improvement in the future. The main objective and scope of 822 
the current study were to propose a novel hierarchical integrated model and prediction method to predict flight delay status 823 
and duration in series to improve the decision-making process. The current study used a dataset having information about the 824 
total delay and the category that highly contributes to the total delay on a particular day for each flight instance. Generally 825 
speaking, in the real scenario, the reason for the flight delay can be from one subcategory or a combination of many 826 
subcategories. Similarly, each subcategory may contribute differently to the flight delay duration. Future work is to obtain 827 
information about subcategories along with their respective delay time for each flight instance. The idea is to predict the flight 828 
delay status and duration for each category and analyze the importance of the subcategories in each category to enhance the 829 
prediction accuracy and further improve the decision-making process. Moreover, in the current work, the historical data was 830 
highly noisy, unbalanced, dispersed, and skewed making prediction tasks more challenging. In the future, efforts will be made 831 
to obtain more flight delay data and information about attributes such as crew member allocation, air traffic restrictions at 832 
arrival and departure airport, immigration mandatory security, and aircraft rotation may facilitate minimizing the problem of 833 
class overlapping and improve prediction accuracy. 834 

Machine learning is growing significantly and has gained much attraction in recent years in a wide range of applications due 835 
to the advent of big data. Big data enables machine learning to discover more hidden patterns and facilitate improving the 836 
predictive power of algorithms. However, big data presents a major challenge of model scalability for machine learning. In 837 
this work, we made an effort to address the scalability problem, however, in applications of big data (having gigabytes of data 838 
with millions of examples) the stated learning process might be not as scalable and needs further investigation. In the future, 839 
challenging work can be to obtain flight delay big data and recommend machine learning algorithms to improve scalability 840 
performance with the increasing training dataset. It is well-known that the training dataset plays a significant role in prediction 841 
accuracy. Sufficient historical big data and accurate extraction of data contribute to model performance. To ensure that the key 842 
attributes are available when needed for training, it is thus required to establish a database for storing historical big data from 843 
every aspect of aircraft operation. Thus, the training dataset must be updated regularly so that existing big data and new 844 
instance are involved in studying and measuring scalability. 845 

One of the promising but challenging future works is to further explore the influencing factors contributing to flight departure 846 
delay. In current work, due to confidentiality constraints, the impact factor analysis cannot be explored in detail. In the future, 847 
one of the possible works is to use a hierarchical integrated model to predict flight departure delays using online available or 848 
public data sources. The Impact factor analysis can be performed to identify key influencing factors and to compare the results 849 
with the currently identified key influencing factors. By this approach, the detailed information about key influencing factors 850 
can be explored in the future. 851 

7. Conclusions852 

Fig. 7. Precision-recall curve for series model and parallel model 
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This paper proposed a novel hierarchical integrated model for predicting flight departure delay status and duration in series 853 
rather than parallel to avoid ambiguity in decision making. The proposed model performance was demonstrated by obtaining 854 
historical high dimensional data from the international airline operating in Hong Kong. The highly disperse, right-skewed, 855 
noisy, and unbalanced data made it challenging for estimation mechanisms to truly approximate flight departure delays. Our 856 
findings show that the proposed model is the best alternative in applications where regression and multiclass classification 857 
estimation mechanisms cannot perform. Various sets of experimental work and comparison among SL-BPNN, DL-BPNN, 858 
SVM, hyp-free CPCLS, their Ensembles, RF, GBDT and XGBoost estimation methods along with various sampling 859 
techniques was performed to investigate the flight delay problem. The statistical analysis of the regression estimation 860 
mechanism shows that SL-BPNN, DL-BPNN, SVM, hyp-free CPCLS, Ensembles, RF, GBDT and XGBoost achieved a mean 861 
absolute error of 47.16min, 38.22min, 39.31min, 36.37min, 37.26min, 36.60min, 36.42min and 36.57min respectively. Using 862 
various pre-processing and transformation techniques does not benefit from improving the regression estimation. Similarly, 863 
multiclass classification mechanisms showed an imbalance recall accuracy of 8%, 79%, 36%, and 0% for labels on-time, 1-864 
30min, 31-60min, and >60min, respectively. The results of both regression and multiclass classification show that both 865 
estimation mechanisms may not be a suitable approach when the historical flight dataset is highly dispersed, positively skewed 866 
with overlapping class decision boundaries.  867 

For the proposed model, the results show that the hyp-free CPCLS machine learning algorithm with the SMOTETomek 868 
sampling technique achieved a better-balanced average recall accuracy of 65.5%, 61.5%, 59% for classifying delay status and 869 
predicting delay duration hierarchically at thresholds of 60min and 30min, respectively. In a comparison of the proposed model 870 
with the parallel model, the result shows that the proposed model was able to predict minority labels more accurately. The area 871 
under the precision-recall curve shows that the proposed model achieved a better result of 32.44% and 35.14% compared to 872 
the parallel model 26.43% and 21.02% for thresholds of 60min and 30min respectively. 873 
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877 

Appendix A. Pseudocode of CPCLS and hyp-free CPCLS algorithms 878 

CPCLS hyp-free CPCLS 

Given a training set {(𝐱𝑖 , 𝑦𝑖)|𝐱𝑖 ∈ 𝐑𝒏, 𝑦𝑖 ∈ 𝐑, 𝑖 = 1, ⋯ , 𝑁}

and nonlinear activation function. 

Given a training set {(𝐱𝑖 , 𝑦𝑖)|𝐱𝑖 ∈ 𝐑𝒏, 𝑦𝑖 ∈ 𝐑, 𝑖 = 1, ⋯ , 𝑁}

and nonlinear activation function. 

// Step 1 

Initialisation: Define the number of hidden units in the 

first hidden layer 𝑁ℎ and proceeding hidden layers 𝑁ℎ′,

and expected learning accuracy 𝑒 

// Step 1 

Initialisation: Define expected learning accuracy 𝑒 

// Step 2 

Learning process: 

// Step 2 

Learning process: 

while ‖𝐸‖ > 𝑒 do while ‖𝐸‖ > 𝑒 do 

a) calculate the covariance matrix 𝑆 according to (1)

b) calculate eigenvalue λ and corresponding

eigenvector (or input connection weight) 𝑤 according

to (2) and (3)

a) let 𝑁ℎ = 0

b) calculate the covariance matrix 𝑆 according to (1)

c) calculate eigenvalue λ and corresponding

eigenvector (or input connection weight) 𝑤 according

to (2) and (3)

d) Sort λ from largest to smallest value according to

(9)

e) Calculate the percentage variance 𝑉(%) and

cumulative percentage variance 𝐶𝑉(%) according to

(10) and (11)

f) select 𝑁ℎ according to (12), such that:

while 𝐶𝑉(%)𝑖 < 99.99% do

𝑁ℎ = 𝑁ℎ + 1

end while 

c) calculate user-defined hidden unit ℎ by taking

nonlinear activation of the product of 𝑥 and 𝑤 with

added bias 𝑏 according to (4)

d) calculate the output connection weight 𝛽 according

to (5)

g) calculate selected hidden unit ℎ by taking nonlinear

activation of the product of 𝑥 and 𝑤 with added bias 𝑏

according to (4)

h) calculate the output connection weight 𝛽 according

to (5)
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e) predict the target output �̂� according to (6)

f) calculate 𝐸: 𝐸 = 𝑦 − �̂�

g) stack pre-existing hidden units with 𝑥 according to

(7)

i) predict the target output �̂� according to (6)

j) calculate 𝐸: 𝐸 = 𝑦 − �̂�

k) stack pre-existing hidden units with 𝑥 according to

(7)

h) increase the number of hidden units 𝑁ℎ by 𝑁ℎ′

according to (8)

end while end while 
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