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Abstract 

Gas flaring in the petroleum industry has a negative environmental impact and is a source of 

greenhouse gas (GHG) emissions. This raise concerns such that sustainability must be 

incorporated into the design of supply chains for the petroleum industry. In this study, we 

extended the inverse data envelopment analysis (DEA) model for estimating potential reductions 

in gas flaring at the national level for the Nigerian petroleum industry. These potential 

reductions when monetized, are equivalent to potential revenue and potential energy savings. In 

addition to the extended inverse DEA model, we developed an algorithm to determine the level 

of commitment of the industry to the zero-routine flaring initiative co-launched by the World 

Bank. Initial results in 2011, revealed that the Nigerian petroleum industry was inefficient 

relative to other oil producing nations, indicating that there is ample room for reduction in gas 

flaring at the current production levels. Application of our algorithm also revealed that the 

Nigerian petroleum industry is not able to adopt the zero-routine flaring initiative with the 

current technology, infrastructure, and labor force. We recommend that the Nigerian 

government should invest in better technology and a more highly skilled labor force, on par with 

those of the benchmarks identified by our extended inverse DEA model. 
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1.  Introduction 

Gas flaring refers to process of burning gas naturally dissolved in crude oil during production. 

The global rise in demand for oil over the last few decades is responsible for the increase in the 

associated gas flaring. As a source of greenhouse gas (GHG) emissions, the environmental 

impact of gas flaring can never be overemphasized. In terms of economic loss, the global 

economy loses billions of dollars annually to gas flaring, and every major oil producing nation, 

including Africa’s largest oil producer, Nigeria, contributes a significant amount to this loss. 

(Ismail and Umukoro, 2012). According to Aregbe (2017), the Nigerian National Petroleum 

Corporation (NNPC) claimed Nigeria flared an estimated 12,602,480 million ft3 of natural gas in 

a fifteen year period from 1996 to 2010, an amount equal to 12,967 × 1012 BTU loss in energy 

that can be utilized for power generation or domestic use. The continual emissions of large 

volumes of carbon dioxide and GHG during the gas flaring process is quite alarming and calls 

for proper monitoring (Mousavi et al., 2020). Unsurprisingly, GHG emissions and the negative 

impact on both the environment and climate is increasingly gaining the attention of researchers, 

climate change advocates and environmentalists (Anomohanran, 2011).  

We now highlight the common cause of gas flaring in the petroleum industry, particularly in 

developing nations. During the oil extraction process, large volumes of gas are naturally 

dissolved in petroleum, commonly referred to as associated gas, and must be separated before 

the crude oil refining process can take place. In this connection, there are three separation 

techniques: channeling and converting the associated gas for marketed production or power 

generation via turbines, reinjection into underground reservoirs for yielding more crude oil, and 

burning excess associated gas (i.e. gas flaring). The availability of state-of-art drilling 

technology has allowed the first two techniques to become common practice in developed 

nations. However, the unavailability of the appropriate technology, coupled with the fact that 

gas flaring is the cheapest separation technique, makes gas flaring a common practice in most 

oil-producing developing nations (Worila, 2002). In the recent past, offshore engineers have 

often claimed that gas flaring is a reliable safety measure for hazardous field operations, like in 

equipment failures and unexpected fluctuations in flowline conditions, but the fact remains that 

many oil producing nations capitalize on this reason by continuous flaring beyond safety levels. 

We must carefully distinguish between routine flaring and safety and maintenance flaring. Both 

terms cannot be used interchangeably. Routine flaring is the burning of unwanted associated gas 

mainly due to the absence of proper technology and amenable geology for reinjection and 

marketing purposes. On the other hand, safety and maintenance flaring are sometimes inevitable 

and are needed to reduce operational risks. In other words, routine flaring does not include 
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safety and maintenance flaring. One cannot fault an oil producer for flaring gas based on safety 

or maintenance reasons. 

To promote global gas flaring reduction, the World Bank collaborated with the Norwegian 

Government in August 2002 by launching the Global Gas Flaring Reduction (GGFR) initiative 

at a summit held in Johannesburg. The primary aim of the GGFR is to support governments of 

oil producing nations in their endeavors to reduce gas flaring (World Bank, 2004). The GGFR 

was a much-needed initiative or policy for regulating gas flaring in the petroleum industry 

because of the increasing emphasis on global warming and climate change. The World Bank 

estimates 140 billion cubic meters of global gas is flared annually, and this is equivalent to about 

750 billion kWh of power, which is more than Africa’s annual consumption of electricity. 

Further commitment to gas flaring was demonstrated in 2015, when the World Bank also 

collaborated with the United Nations (UN), and launched the Zero Routine Flaring by 2030 

initiative. This initiative is to eliminate routine flaring no later than 2030 and has been endorsed 

by several oil companies, national governments, and development institutions.  For example, 

Occidental was the first U.S. oil and gas company to endorse the initiative. On November 6, 

2019 Saudi Aramco made an official announcement that they would be joining this initiative 

after maintaining their gas flaring reduction of less than 1% of total natural gas production for 

the first half of 2019.  More recently, the International Energy Agency’s (IEA) 2019 report also 

stipulates that operators should start developing strategies for the conservation of associated gas 

for new oil fields, and eliminate, if possible, routine flaring on existing oil fields by 2030. 

Despite the launch of both initiatives, there was a significant rise in global gas flaring in 2018. 

The reasons are clear. The boost in American shale oil production coupled with political unrest 

in Syria, Yemen and Venezuela all contributed to the 3% rise (i.e. 145 billion cubic meters) in 

global gas flaring in 2018, an amount equivalent to the combined gas consumption in Central 

and South America (Bamji, 2019). While some oil producing nations give plausible reasons for 

annual gas flaring, such as safety and maintenance flaring, it is hard to determine or quantify the 

exact amount of flared gas that goes to waste annually. It all boils down to a very basic question: 

‘At current production levels of crude oil, what is the potential reduction of wasted gas? ‘The 

effective implementation of the GGFR is highly dependent on the answer to this basic question. 

Secondly, in addition to gas flaring data captured by satellite, it is imperative to determine the 

level of commitment of national governments to the Zero Routine Flaring by 2030 initiative. In 

other words, we rephrase this as another question: ‘Can an oil-producing nation adopt the Zero 

Routine Flaring initiative in any given production year assuming its production processes are 



4 / 33 

 

efficient?’ Our extension of the inverse DEA model to include negative inputs and a developed 

algorithm is a first step for finding solutions to both questions. 

This paper contributes to the literature by developing a mathematical framework that consists of 

an inverse DEA model and an algorithm for effective implementation of the gas flaring 

reduction initiatives co-launched by the World Bank in 2002 and 2015. Our extended inverse 

DEA model can determine the potential reduction of the annual flared gas for an inefficient oil-

producing nation. By applying our model to members of the Organization of the Petroleum 

Exporting Countries (OPEC), we find the inefficient oil producing nations have the capability to 

reduce a significant amount of flared gas at the current production level of inputs and outputs. 

The governments of such nations must realize they can reduce gas flaring with or without 

investment in better technology and skilled labor. We also applied our algorithm to determine 

the level of commitment of inefficient producers to the zero routine flaring initiative, and we 

find the aim can be achieved before 2030 with standard processes and investment in better 

technology.  

We review the literature related to DEA and inverse DEA in section 2 and then introduce the 

development of extended inverse DEA model with negative input and a new algorithm in 

section 3. In section 4, we apply our extended model and algorithm to selected OPEC member 

nations and discuss the results.  We conclude with suggestions for further research in section 5. 

2. Literature review 

A dominant and vital component of the energy sector is the petroleum industry. Despite the 

global fall in oil prices due to surplus oil, the ongoing COVID-19 pandemic, emphasis on 

climate change/global warming, production of electric and hybrid vehicles, and promising 

research in renewable energy sources, the industry is still important to mankind. It continues to 

be the mainstay of the economy in some oil producing nations, providing billions of dollars in 

annual revenue, and most importantly, it currently preserves industrial civilization. However, 

this industry continues to generate huge amounts of environmental waste such as in oil spills, 

gas flaring and in drilling. 

There is no doubt that the global fall in oil prices is a significant blow to any oil exporting nation 

due to reduced oil revenue. This partly leads to consecutive current account balance deficits in 

some OPEC member nations like Nigeria. A good strategy to counteract the decline in oil 

revenue would be to convert a proportion of flared or wasted natural gas to marketed production 

of natural gas. This strategy, also known as gas flare commercialization, is a potential source of 

revenue for any oil producing nation, provided such nation is focused on the environmental 
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waste management associated with gas flaring. In this connection, one might conclude that 

sustainability must be incorporated into the design of the supply chains for the petroleum 

industry.  

Several studies have applied DEA and inverse DEA for improving environmental sustainability 

in the energy sector. In the first part of this review, we consider relevant works on DEA and 

those of inverse DEA in the second part. 

2.1 DEA for Performance Evaluation 

In the face of global competition, performance evaluation is crucial to any production or service 

work system. The performance of a work system is often defined as the degree to which inputs 

are well utilized to give outputs. Performance evaluation and efficiency are often used 

interchangeably because efficiency is a technical measure of outputs against inputs. The multi-

dimensional nature of the attributes of a system makes aggregate performance evaluation 

cumbersome and inappropriate, and this calls for evaluating the relative efficiencies of 

homogenous systems (Chen 2010).  

DEA is a benchmarking tool for evaluating the efficiency of a homogenous group of producers 

or service providers and its underlying principle is linear programming. By homogenous, we 

imply that all producers use same inputs to generate the same outputs. Conventionally, each 

producer or service provider is referred to as a decision-making unit (DMU). We now consider 

recent and relevant works on environmental efficiency using DEA. 

Sueyoshi and Wang (2014) used DEA to assess the sustainability of the supply chains of 

petroleum firms in the United States. Their results indicated that integrated firms were more 

efficient than independent firms because of their large supply chains linking upstream and 

downstream activities. Molinos-Senante et al., (2014) evaluated the overall efficiency of 

wastewater treatment plants (WWTPs) using DEA, placing much emphasis on the reduction of 

greenhouse gas (GHG) emissions. Their results show that 15 out of 60 WWTPs used in the 

analysis were efficient, and the mean performance index of the sample was less than unity 

indicating the potential for reduction in GHG emissions (i.e. estimated to be 30 % of the current 

emission level of GHG). Wu et al., (2015) used a parallel DEA model to evaluate the efficiency 

of passenger and freight transportation subsystems in China. Riccardi et al., (2012) applied DEA 

and the directional distance function in evaluating the global cement industry, considering 

carbon dioxide emissions as an undesirable output. From their results, countries utilizing 

alternative raw materials and other sources of fuels were deemed efficient by the DEA model.  
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Wu et al., (2016) used the DEA model to evaluate the efficiency of a hybrid production and 

pollution treatment system. Efficiency rankings from their results closely depict the 

environmental status of the eight regions under evaluation. Moutinho et al., (2017) used DEA to 

estimate the economic efficiency of 26 European countries over a 12-year period (2001 – 2012), 

including the impacts of environmental tax revenue, transport, and energy taxes on lower and 

higher eco-efficient countries. 

2.2 Inverse DEA: The Reverse Process of DEA 

The inverse DEA is an inverse optimization technique and considered as the reverse process of 

the conventional DEA. The DEA model computes the efficiency score of a DMU, but the 

inverse DEA model uses a predetermined efficiency score of a DMU to compute the optimal 

variations in input and output data.  We briefly discuss the relevant literature on the pioneering 

and recent works on inverse DEA. 

The first inverse DEA model was developed by (Wei et al., 2000). With the aid of the included 

examples in their work, their model solved inverse problems in real life. Yan et al., (2002) 

extended the inverse DEA model to solve resource allocation problems. Within the last two 

decades, the inverse DEA model has been extended and modified to address inverse 

optimization problems in real life. 

Gattouffi et al., (2014) applied the inverse DEA model for bank mergers. Lim (2016) developed 

an inverse DEA model for setting product goals in the development of vehicle engines. The 

overall results suggest that the inverse DEA model can act as a prescriptive tool for setting 

product goals.  Hassanzadeh et al., (2018) used inverse DEA models for assessing the 

sustainability of 20 European countries. Emrouznejad et al., (2018) applied the inverse DEA in 

allocating CO2 emissions for selected sectors in Chinese manufacturing industries. Their results 

identify three stages: CO2 total emissions reduction, allocation to two-digit industries and further 

allocation to provinces. More recently, Wegener and Amin (2018) developed a novel inverse 

DEA model for minimizing GHG emissions in 23 oil companies in the U.S and Canada. 

To the best of our knowledge, none of these works addressed the issue of routine gas flaring in 

the petroleum industry from the perspective of modeling and estimating potential flaring 

reductions. This leaves a significant gap in literature which is filled by our paper. 
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3. Methodology 

In this section, we introduce the directional distance DEA model as the base optimization model 

for our mathematical framework. We then explain the proposed inverse DEA model of Wegener 

and Amin (2018) for optimizing undesirable output(s). The following nomenclature is adopted 

in this paper. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 

𝑛: number of decision-making units (DMUs) 

𝑡: number of inefficient decision-making units (DMUs) 

𝑚: number of inputs of each DMU 

𝑠: number of good outputs of each DMU 

𝑞: number of bad outputs of each DMU 

𝐷𝑎𝑡𝑎 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠: 

𝑥𝑖𝑗: 𝑖th input of DMU𝑗 ( 𝑗 = 1, … , 𝑛) 

𝑦𝑟𝑗
𝑔

: 𝑟th good output of DMU𝑗   ( 𝑗 = 1, … , 𝑛 )  
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𝑦𝑝𝑗
𝑏 : 𝑝th bad output of  DMU𝑗  ( 𝑗 = 1, … , 𝑛 ) 

𝑦̂𝑟
𝑔

: desired production quantity of 𝑟th good output by inefficient DMUs 

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠: 

𝜃𝑘: inefficiency score of DMU𝑘 ( 𝑘 = 1, … , 𝑛 ) 

𝜆𝑗:        weight assigned to DMU𝑗   (𝑗 = 1, … , 𝑛)  

𝛼𝑖𝑘:  change in 𝑖th input of DMU𝑘 (𝑘 = 1, … , 𝑡) 

𝛽𝑟𝑘: change in 𝑟th good output of DMU𝑘  (𝑘 = 1, … , 𝑡) 

𝛾𝑝𝑘:  change in 𝑝th bad output of DMU𝑘  ( 𝑘 = 1, … , 𝑡) 

𝛾𝑝𝑘
𝑚𝑎𝑥:  maximum change in 𝑝th bad output of DMU𝑘 (𝑘 = 1, … , 𝑡) 

 

 

3.1 The Directional Distance DEA by Chung et al., (1997) 

A special type of DEA model classifies outputs into two types – good and bad outputs. While 

the conventional DEA introduced by Charnes et al., (1978) ignored bad outputs, the directional 

distance DEA model proposes a reduction of bad outputs for the purpose of waste management. 

It can minimize all forms of waste in production processes. Few works have used this model for 

environmental waste management. For this reason, we employ the directional distance DEA 

model as our reference model for this research. 

To determine the inefficiency of score of DMU-k (𝑘 = 1, … , 𝑛), Chung et al., (1997) formulated 

the directional distance DEA model (1) as follows: 

𝜃𝑘
∗ = max 𝜃 

        𝑠. 𝑡. 

∑ 𝜆𝑗𝑥𝑖𝑗

𝑛

𝑗=1

≤ 𝑥𝑖𝑘                               𝑖 = 1, … , 𝑚 

∑ 𝜆𝑗𝑦𝑟𝑗
𝑔

𝑛

𝑗=1

≥ (1 + 𝜃)𝑦𝑟𝑘
𝑔

                𝑟 = 1, … , 𝑠 
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∑ 𝜆𝑗𝑦𝑝𝑗
𝑏

𝑛

𝑗=1

= (1 − 𝜃)𝑦𝑝𝑘
𝑏                𝑝 = 1, … , 𝑞 

∑ 𝜆𝑗 = 1

𝑛

𝑗=1

 

𝜆𝑗 ≥ 0           𝑗 = 1, … , 𝑛                                                                                                      (1) 

When 𝜃𝑘
∗ = 0, DMU-k is regarded as an efficient unit with a score of 1, i.e. the relationship 

between inefficiency and efficiency is expressed as: 

Efficiency,𝜀𝑘 = (1 − 𝜃𝑘
∗) (1 + 𝜃𝑘

∗)⁄ .  

Note that index 𝑘 refers only to the DMU under evaluation while 𝑗 is the general index for other 

DMUs. The directional distance DEA model offers dual benefits because it can reduce 

undesirable output(s) while increasing desirable output(s). 

 

 

3.2 Inverse DEA Model by Wegener and Amin (2018) 

Suppose 𝛼𝑖𝑘 is the change in 𝑖th input to yield a corresponding change 𝛽𝑟𝑘 in 𝑟th good output 

with associated change 𝛾𝑝𝑘 in 𝑝th bad output, then the objective is to minimize the associated 

changes 𝛾𝑝𝑘 in all bad outputs.  

With the aid of the defined notations, Wegener and Amin (2018) proposed the following inverse 

DEA model 

min 𝛾 = (𝛾11, … , 𝛾𝑞1, … , 𝛾1𝑡, … , 𝛾𝑞𝑡) 

     𝑠. 𝑡. 

         ∑ 𝜆𝑗
𝑘𝑥𝑖𝑗

𝑗𝜖𝐹

+ ∑ 𝜆̂𝑙
𝑘

𝑙𝜖𝐺

(𝛼𝑖𝑙 + 𝑥𝑖𝑙) − (𝛼𝑖𝑘 + 𝑥𝑖𝑘) ≤ 0                                 ∀𝑘 ∈ 𝑆,   𝑖 = 1, … , 𝑚  

  

       ∑ 𝜆𝑗
𝑘𝑦𝑟𝑗

𝑔

𝑗𝜖𝐹

+ ∑ 𝜆̂𝑙
𝑘

𝑙𝜖𝐺

(𝜃𝑟𝑙 + 𝑦𝑟𝑙
𝑔

) − (1 + 𝜃𝑘) × (𝛽𝑟𝑘 + 𝑦𝑟𝑘
𝑔

) ≥ 0          ∀𝑘 ∈ 𝑆,   𝑟 = 1, … , 𝑠  

                                                 

      ∑ 𝜆𝑗
𝑘𝑦𝑝𝑗

𝑏

𝑗𝜖𝐹

+ ∑ 𝜆̂𝑙
𝑘

𝑙𝜖𝐺

(𝛾𝑝𝑙 + 𝑦𝑝𝑙
𝑏 ) − (1 − 𝜃𝑘) × (𝛾𝑝𝑘 + 𝑦𝑝𝑘

𝑏 ) = 0        ∀𝑘 ∈ 𝑆,  𝑝 = 1, … , 𝑞 
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        ∑ 𝜆𝑗
𝑘

𝑗𝜖𝐹

+ ∑ 𝜆̂𝑙
𝑘

𝑙𝜖𝐺

= 1             ∀𝑘 ∈ 𝑆       

        ∑ 𝛽𝑟𝑘

𝑘𝜖𝑆

= 𝑦̂𝑟
𝑔

                       𝑟 = 1, … , 𝑠                                                                

 

       𝛼𝑖𝑘 ≥ 0, 𝛽𝑟𝑘 ≥ 0, 𝛾𝑝𝑘 ≥ 0  ∀𝑘 ∈ 𝑆,  𝑖 = 1, … , 𝑚   𝑟 = 1, … , 𝑠  𝑝 = 1, … , 𝑞 

      𝜆𝑗
𝑘 ≥ 0, 𝜆̂𝑙

𝑘 ≥ 0   ∀𝑘, 𝑙 ∈ 𝐺,   ∀𝑗 ∈ 𝐹                                                                                       (2) 

where S is a convex set consisting of two subsets 𝐹  and 𝐺  and there are 𝑡  DMUs in S . By 

definition of convexity, any DMU-k in S is a convex combination of efficient units in subset 𝐹 

having weights 𝜆𝑗
𝑘 ≥ 0  𝑗 ∈ 𝐹 and inefficient units in subset 𝐺 having weights 𝜆̂𝑙

𝑘 ≥ 0  𝑙 ∈ 𝐺. To 

preserve the efficiency score of DMU-k, one must set 𝜃𝑘 ≤ 𝜃𝑘
∗ 

 

 

By considering no change in frontier movement (refer to the proof in Wegener and Amin (2018)) 

after production and for a single undesirable output, they simplified the model as expressed 

below 

min 𝛾 = (𝛾1 + 𝛾2+, … + 𝛾𝑡) 

     𝑠. 𝑡. 

         ∑ 𝜆𝑗
𝑘𝑥𝑖𝑗

𝑗𝜖𝐹

− (𝛼𝑖𝑘 + 𝑥𝑖𝑘) ≤ 0                                 ∀𝑘 ∈ 𝑆,   𝑖 = 1, … , 𝑚  

  

        ∑ 𝜆𝑗
𝑘𝑦𝑟𝑗

𝑔

𝑗𝜖𝐹

− (1 + 𝜃𝑘) × (𝛽𝑟𝑘 + 𝑦𝑟𝑘
𝑔

) ≥ 0          ∀𝑘 ∈ 𝑆,   𝑟 = 1, … , 𝑠  

                                                 

      ∑ 𝜆𝑗
𝑘𝑦𝑝𝑗

𝑏

𝑗𝜖𝐹

− (1 − 𝜃𝑘) × (𝛾𝑝𝑘 + 𝑦𝑝𝑘
𝑏 ) = 0        ∀𝑘 ∈ 𝑆,  𝑝 = 1, … , 𝑞 

                       

        ∑ 𝜆𝑗
𝑘

𝑗𝜖𝐹

= 1                                                            ∀𝑘 ∈ 𝑆       

        ∑ 𝛽𝑟𝑘

𝑘𝜖𝑆

= 𝑦̂𝑟
𝑔

                                                       𝑟 = 1, … , 𝑠                                                                



11 / 33 

 

 

       𝛼𝑖𝑘 ≥ 0, 𝛽𝑟𝑘 ≥ 0, 𝛾𝑝𝑘 ≥ 0  ∀𝑘 ∈ 𝑆,  𝑖 = 1, … , 𝑚   𝑟 = 1, … , 𝑠  𝑝 = 1, … , 𝑞 

      𝜆𝑗
𝑘 ≥ 0, 𝜆̂𝑙

𝑘 ≥ 0   ∀𝑘, 𝑙 ∈ 𝐺,   ∀𝑗 ∈ 𝐹                                                                                     (3) 

3.3 Proposed Inverse DEA Modelling for Gas Flare Reduction 

In this section, we extend the inverse DEA model (3) by Wegener and Amin (2018) to gas flare 

reduction in the petroleum industry. It is imperative to state here that model (3) only minimizes 

the undesirable output (i.e. greenhouse gas emission) while increasing the production rate. 

However, our methodology focuses on maintaining the production rate while reducing the 

undesirable output (i.e. gas flaring) in accordance with the two global gas flare reduction 

(GGFR) initiatives. In this connection, we pose two research questions: 

 At current production levels of inputs and outputs and with the current technology and 

workforce, what is the potential reduction in gas flaring during the production process 

of crude oil?  

 Can the petroleum industry adopt the Zero Routine Flaring Initiative in any given 

production year? 

To address the first research question, we initially set the changes in input and good output, 

   𝛼𝑖𝑘 = 𝛽𝑟𝑘 = 0,  and 𝛾𝑝𝑘 becomes a reduction or negative change in volume of flared gas. We 

incorporate these changes into model (3) for a feasible extension. Routine gas flaring is the only 

bad output considered for this research, this implies index  𝑝 = 1 and change in bad output 𝑝 of 

DMU𝑘,  𝛾𝑝𝑘 = 𝛾1𝑘  (∀ 𝑘 = 1, … , 𝑡). The larger the potential reductions in gas flaring, the greater 

the potential savings in energy and revenue, coupled with less environmental impact. Hence, the 

objective here is to maximize the potential reductions, as shown in the following model 

max 𝛾 = (𝛾1 + 𝛾2+, … + 𝛾𝑡) 

     𝑠. 𝑡. 

         ∑ 𝜆𝑗
𝑘𝑥𝑖𝑗

𝑗𝜖𝐹

− 𝑥𝑖𝑘 ≤ 0                                 ∀𝑘 ∈ 𝑆,   𝑖 = 1, … , 𝑚  

  

        ∑ 𝜆𝑗
𝑘𝑦𝑟𝑗

𝑔

𝑗𝜖𝐹

− (1 + 𝜃𝑘) × 𝑦𝑟𝑘
𝑔

≥ 0          ∀𝑘 ∈ 𝑆,   𝑟 = 1, … , 𝑠  

                                                 

      ∑ 𝜆𝑗
𝑘𝑦𝑝𝑗

𝑏

𝑗𝜖𝐹

− (1 − 𝜃𝑘) × (𝑦𝑝𝑘
𝑏 − 𝛾𝑝𝑘) = 0        ∀𝑘 ∈ 𝑆,  𝑝 = 1, … , 𝑞 
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        ∑ 𝜆𝑗
𝑘

𝑗𝜖𝐹

= 1                                                            ∀𝑘 ∈ 𝑆       

        𝛾𝑝𝑘 ≤ 𝑦𝑝𝑘
𝑏  

       𝛼𝑖𝑘 ≥ 0, 𝛽𝑟𝑘 ≥ 0, 𝛾𝑝𝑘 ≥ 0  ∀𝑘 ∈ 𝑆,  𝑖 = 1, … , 𝑚   𝑟 = 1, … , 𝑠  𝑝 = 1, … , 𝑞 

      𝜆𝑗
𝑘 ≥ 0, 𝜆̂𝑙

𝑘 ≥ 0   ∀𝑘, 𝑙 ∈ 𝐺,   ∀𝑗 ∈ 𝐹                                                                                     (4) 

The additional constraint  𝛾𝑝𝑘 ≤ 𝑦𝑝𝑘
𝑏  implies the potential reduction of an undesirable or bad 

output can not exceed its actual quantity.  Model (4) is an extension of model (3) but it partially 

answers the first research question because of the possibility of modelling negative inputs.  

A basic assumption of the classical DEA model is that inputs and outputs are positive. For this 

research, an input takes both positive and negative values. This implies model (4) must be 

further extended to accommodate negative inputs. 

 

 

3.3.1 Modelling Negative Inputs 

Consider a special case of 𝑖 = 2 inputs and 𝑗 DMUs:  

 𝜆𝑗
𝑘𝑥1𝑗 + 𝜆𝑗

𝑘𝑥2𝑗 − 𝑥𝑖𝑘 ≤ 0  …………constraint 1 of model (4) 

𝜆𝑗
𝑘𝑥1𝑗 + 𝜆𝑗

𝑘𝑥2𝑗 ≤ 𝑥𝑖𝑘. Suppose 𝑥1𝑗  is a positive input and 𝑥2𝑗 is a negative input such that the 

expression becomes: 

𝜆𝑗
𝑘𝑥1𝑗 − 𝜆𝑗

𝑘𝑥2𝑗 ≤ 𝑥𝑖𝑘 …………… (i)                         

The inequality (i) can be represented by a combination of two different inequalities: 

                                                            𝜆𝑗
𝑘𝑥1𝑗 ≤ 𝑥𝑖𝑘 ………………. (ii)    

                                   −𝜆𝑗
𝑘𝑥2𝑗 ≤ 0    ……………… (iii) multiply by (-1) 

This is equivalent to:                          𝜆𝑗
𝑘𝑥1𝑗 ≤ 𝑥𝑖𝑘  ……………… (iv) 

                                                           𝜆𝑗
𝑘𝑥2𝑗 ≥ 0     ……………… (v) 

Define positive input 𝑥1𝑗 = 𝑥𝑖𝑗
+ and negative input 𝑥2𝑗 = 𝑥2𝑗

− , and we have      

     𝜆𝑗
𝑘𝑥1𝑗

+ ≤ 𝑥𝑖𝑘  ……………… (vi) 
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                                                                  𝜆𝑗
𝑘𝑥2𝑗

− ≥ 0      …………….  (vii)                                                         

We generalize all positive and negative inputs as follows: 

                                                            𝜆𝑗
𝑘𝑥𝑖𝑗

+ ≤ 𝑥𝑖𝑘  ……………… (vi) 

                                                                  𝜆𝑗
𝑘𝑥𝑖𝑗

− ≥ 0      …………….  (vii) 

Constraint 1 of model (4) can now be expressed as: 

                                ∑  𝜆𝑗
𝑘𝑥𝑖𝑗

+
𝑗∈𝐹 ≤ 𝑥𝑖𝑘 (positive inputs) ………… (ix) 

                     ∑  𝜆𝑗
𝑘𝑥𝑖𝑗

−
𝑗∈𝐹 ≥ 0    (negative inputs) ………… (x) 

 

 

 

 

Using this representation of negative inputs, and for a single producer and only one bad output 

we modify model (4) to give an extended model (5) 

max 𝛾∗ = 𝛾𝑝𝑘  

     𝑠. 𝑡. 

         ∑ 𝜆𝑗
𝑘𝑥𝑖𝑗

+

𝑗𝜖𝐹

≤ 𝑥𝑖𝑘                                 ∀𝑘 ∈ 𝑆,   𝑖 = 1, … , 𝑚  

 

         ∑ 𝜆𝑗
𝑘

𝑗𝜖𝐹

𝑥𝑖𝑗
− ≥ 0                                   ∀𝑘 ∈ 𝑆,   𝑖 = 1, … , 𝑚  

 
  

        ∑ 𝜆𝑗
𝑘𝑦𝑟𝑗

𝑔

𝑗𝜖𝐹

− (1 + 𝜃𝑘) × 𝑦𝑟𝑘
𝑔

≥ 0          ∀𝑘 ∈ 𝑆,   𝑟 = 1, … , 𝑠  

                                                 

      ∑ 𝜆𝑗
𝑘𝑦𝑝𝑗

𝑏

𝑗𝜖𝐹

− (1 − 𝜃𝑘) × (𝑦𝑝𝑘
𝑏 − 𝛾𝑝𝑘) = 0        ∀𝑘 ∈ 𝑆,  𝑝 = 1, … , 𝑞 
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        ∑ 𝜆𝑗
𝑘

𝑗𝜖𝐹

= 1                                                            ∀𝑘 ∈ 𝑆       

 

         𝛾𝑝𝑘 ≤ 𝑦𝑝𝑘
𝑏  

                                                  

       𝛼𝑖𝑘 ≥ 0, 𝛽𝑟𝑘 ≥ 0, 𝛾𝑝𝑘 ≥ 0  ∀𝑘 ∈ 𝑆,  𝑖 = 1, … , 𝑚   𝑟 = 1, … , 𝑠  𝑝 = 1, … , 𝑞 

      𝜆𝑗
𝑘 ≥ 0, 𝜆̂𝑙

𝑘 ≥ 0   ∀𝑘, 𝑙 ∈ 𝐺,   ∀𝑗 ∈ 𝐹                                                                                     (5) 

To retain the efficiency score of DMU-k from model (1), we select 𝜃𝑘 < 𝜃𝑘
∗ (to be specific, we 

set 𝜃𝑘  to two decimals without approximation). The value of 𝛾∗ in model (5) is the potential 

reduction in gas flaring for any given production year and the answer to our first research 

question. If 𝛾∗ = 0, it implies the current level of gas flared is a minimum and cannot be 

reduced. There exists a relationship between 𝛾∗ and 𝜃𝑘  which leads to a theorem and proof. 

LINGO 18 solver is employed for solving all proposed models in this study.  

 

 

THEOREM 

The maximum potential reduction occurs at zero inefficiency i.e. when 𝜃𝑘 = 0,  𝑦𝑝𝑘
𝑏 = 𝛾𝑝𝑘

𝑚𝑎𝑥 

Proof 

In model (5) 𝐹 denotes the subset of efficient producers that created the efficiency frontier of 

model (1) and need no further improvement. In constraints 3 and 4 of model (5), the terms 

 ∑ 𝜆𝑗
𝑘𝑦𝑟𝑗

𝑔
𝑗𝜖𝐹  and ∑ 𝜆𝑗

𝑘𝑦𝑝𝑗
𝑏

𝑗𝜖𝐹  only apply to efficient producers in 𝐹, while the terms (1 + 𝜃𝑘) ×

𝑦𝑟𝑘
𝑔

 and (1 − 𝜃𝑘) × (𝑦𝑝𝑘
𝑏 − 𝛾𝑝𝑘) only apply to the inefficient DMU-k that needs improvement. 

At zero inefficiency, DMU-k will be considered efficient and added to set 𝐹. This implies from 

constraint 4 that no further improvement in gas flaring reduction is needed for DMU-k and we 

have that: 

(1 − 𝜃𝑘) × (𝑦𝑝𝑘
𝑏 − 𝛾𝑝𝑘) = 0 

When 𝜃𝑘 = 0, 𝑦𝑝𝑘
𝑏 − 𝛾𝑝𝑘 = 0  

 𝑦𝑝𝑘
𝑏 = 𝛾𝑝𝑘 = 𝛾𝑝𝑘

𝑚𝑎𝑥 and this completes the proof. 
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We also demonstrate this theorem by sensitivity analysis in subsequent sections. In the next 

section, we develop an algorithm based on the application of model (1), model (5) and the stated 

theorem as a framework for implementing the zero routine flaring initiative. 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 The Zero Routine Flaring Initiative 

Introduced by the World Bank in 2015, this initiative brings together governments of oil 

producing nations, oil and energy companies for the purpose of eliminating routine gas flaring 

no later than 2030. While some industry experts claim there is a sufficient time frame for oil 

producing nations to standardize production processes and eliminate routine flaring, the recent 

spike in global gas flaring proves otherwise. This is partly due to the unavailability of the 

technical means for effective implementation of this initiative. Put simply, it is difficult to really 

determine the level of commitment of oil producing nations.  

To determine if this initiative can be adopted by any petroleum industry, we state the following 

definitions and algorithm. 

DEFINITION ONE: Through model (5) the maximum reduction of bad output 𝛾𝑝𝑘
𝑚𝑎𝑥 occurs at 

 𝜃𝑘 = 0 or 𝜀𝑘 = 1 

DEFINITION TWO: Zero routine flaring initiative is adoptable, if and only if, 𝑦𝑝𝑘
𝑏 = 𝛾𝑝𝑘

𝑚𝑎𝑥. 

ALGORITHM 
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Step 1: Through model (1) evaluate 𝜃𝑘
∗ for each DMU𝑗 ∀ 𝑗 = 1,2, … , 𝑛 

Step 2: If 𝜃𝑘
∗ = 0 add DMU𝑗 to set 𝐹 and go to step 3; if 𝜃𝑘

∗ > 0 add DMU𝑗 to set 𝐺 and go to 

step 4 

Step 3: For all DMU𝑗 ∈ 𝐹  If 𝑗 < 𝑛 go to step 1; if 𝑗 = 𝑛 go to step 5 

Step 4: For all DMU𝑗 ∈ 𝐺  If 𝑗 < 𝑛 go to step 1; if 𝑗 = 𝑛 go to step 5 

Step 5: Apply model (5) by combining all DMU𝑗 ∈ 𝐹 with each DMU𝑗 ∈ 𝐺 and go to step 6 

Step 6: Through definition one, determine 𝛾𝑝𝑘
𝑚𝑎𝑥 

Step 7: Zero routine flaring initiative is adoptable through definition two 

This algorithm provides the answer to the second research question because if the maximum 

reduction of bad output is equivalent to actual amount of bad output, we have a zero difference. 

Otherwise, an inefficient producer should invest more in better technology and more highly 

skilled workforce, coupled with standard practices. 

 

 

3.4 Data Collection 

The production data of the13 OPEC members in 2011 were obtained from the 2016 OPEC 

Annual Statistical Bulletin. It is also an open data source that can be downloaded from the 

official OPEC site. Data from the 2016 ASB publication covers a five–year period (i.e. 2011- 

2015). We chose OPEC member nations for this study because they supply a combined 43.5 

percent of global crude oil and have 81.9 percent of the global oil reserves. Another reason is 

our case study, Nigeria, is a major OPEC member nation and still Africa’s largest oil producer. 

It is imperative to determine how Nigeria performs relative to other OPEC members. In 2011, 

the Nigerian petroleum industry flared the highest volume of natural gas (i.e. 14270 million 

cubic metres, refer to Table 1). Hence, we base our analysis on the 2011 production year. 

 

Table 1: Annual Gas Production in Nigeria (million cubic metres) 
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Source: 2016 OPEC Annual Statistical Bulletin (ASB) 

 

3.4.1 Data Description 

Inputs 

The following inputs were chosen for this research because all producers provide annual data on 

each input to OPEC as part of the stipulated obligations for each member nation, and to ensure 

homogeneity of all producers (DMUs) in subsequent analysis 

I. Current account balance 

Knowing the current account balance of an oil producing nation is important when trying 

to figure out whether the producer is a net exporter or importer. A positive current 

account balance is a surplus, implying that the producer is a net exporter, while a 

negative current account is a deficit which implies the producer is a net importer. Both 

cases influence the production rate of crude oil in the long run. In this study, we denote 

surplus and deficit as positive and negative inputs, respectively. 

 

II. Wells completed 

This refers to number of oil wells developed and completed for exploration and 

production of crude oil. 

III. Producing wells 

Total number of completed oil wells (excluding oil wells that do not produce    

economically) that continually yielded crude oil till end of production year (i.e. 31st 

December). 

IV. Active rigs 

Total number of operational oil rigs (including workover rigs) used in the production of 

crude oil as at the end of the production year. Active rigs and wells completed; both have 

a significant influence on the quantity of the refined petroleum outputs taking into 

consideration the refinery capacity of each producer. In other words, as more rigs are 
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engaged and more wells are completed, the refinery capacity will be upgraded to 

accommodate more crude oil input. 

V. Refinery capacity 

This refers to the maximum number of barrels of crude oil that can be processed by the 

refinery to give refined petroleum products like gasoline, kerosene, distillates, residual 

fuels, and other miscellaneous products. Expressed in thousand barrels per calendar day 

(1000b/cd). This input determines the volume of refined products available for export 

and domestic use. Countries with large refinery capacity, like those of Saudi Arabia and 

Iran, generate significant revenue from exports of refined products in both the short and 

long run. Unfortunately, the converse holds for an oil giant like Nigeria with low 

refinery capacity and utilization. Currently, Nigeria has four functioning refineries – 

Kaduna Refining and Petrochemicals (KRPC) Limited, Port Harcourt Refining Company 

(PHRC), and Warri Refining and Petrochemicals Company (WRPC) and Niger Delta 

Petroleum Resources (NDPR), all contributing to a total refining capacity of 446 

thousand barrels per day (Refer to Table 2) but the combined utilization of all three 

refineries was 8.67 percent in 2018. The old Port Harcourt refinery is not operational.  

 

 

 

Table 2: Annual Domestic Refining Capacity Utilization in Nigeria (1000 b/cd) 

 

Source: 2017 Nigerian Oil and Gas Industry Report by the Department of Petroleum Resources 

Good Output 
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I. GDP per capita  

This is computed as the GDP at current oil prices divided by the national population, 

expressed in US dollars per person. This economic output of OPEC member nations 

partly reflects the revenue or wealth earned from the export of crude oils and refined 

petroleum products per population size. For example, Qatar was an OPEC member 

nation from 1961 till the end of 2018 and is still considered the richest country in the 

world in terms of GDP per capita. Population is crucial to this study because the usage of 

production rates of crude oil or refined products could be misleading. Currently, Nigeria 

produces more crude than any other African oil producing nation, but had the lowest 

GDP per capita compared to Algeria, Angola, and Libya in 2011. This is due to the large 

population of Nigeria. Consequently, there is a dire need to improve the production 

efficiency and generate more revenue for the Nigerian economy with respect to its 

population size.  

 

 

Bad Output 

I. Routinely flared gas 

Volume of routinely flared gas by each producer expressed in million standard cubic 

metres. Does not include safety or maintenance flaring.  

NOTE 

Observation of data obtained from the 2016 ASB revealed that some OPEC member 

nations recorded no data for flared gas. For example, Saudi Arabia and Iran recorded no 

data for flared gas in 2011. This must not be interpreted as the complete absence of gas 

flaring, in fact both nations flared gas, but the proportions can be attributed to safety or 

maintenance. Furthermore, Saudi Arabia is more committed to reduction in gas flaring 

than other OPEC member nations when one considers the nation’s vast oil and gas 

reserves. 

On this basis, we proceed with caution and consider two different scenarios for this study. 

In the first scenario, we exclude Saudi Arabia and Iran from our production possibility 

set (PPS) on the basis of no recorded flaring data. We then consider a second scenario 

where both nations are added to the PPS and we input zero entries for their flare data. 

The main difference is the first scenario involves only 11 members, without any 

assumptions, while the second involves all 13 members based on the assumption that 
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Saudi Arabia and Iran had zero routine flaring. We compare results of both cases in the 

next section. 

 

 

 

4. Application, Results and Analysis 

4.1  Application of the Models 

We follow Wegener and Amin (2018) by applying our reference DEA model (1) in evaluating 

the efficiency of OPEC member nations. Through our proposed model (5), we calculate the 

potential reduction for any selected inefficient producer. We conclude each analysis by applying 

our algorithm to determine if such an inefficient producer can adopt the zero-routine initiative. 

For ease of proper analysis, all producers in alphabetical order are denoted as                                          

DMU-j where 𝑗 = 1,2, … , 𝑛. 

4.2 Results and Analysis 

2011 Production Year (Scenario 1: Eleven OPEC members) 

Table 3 presents the initial results including five inputs, one good output, one bad output, 

inefficiency (θ), and efficiency (ε) scores for each OPEC member nation. From Table 3, we 

observe six DMUs are inefficient i.e. DMU1 (Algeria), DMU4 (Indonesia), DMU5 (Iraq), DMU8 

(Nigeria), DMU10 (United Arab Emirates), and DMU11 (Venezuela). Their efficiency scores are 

less than one. Hence, we denote the subsets of efficient and inefficient producers as 𝐹 and 𝐺 

respectively, such that  

𝐹 = {DMU2, DMU3, DMU6, DMU7, DMU9}, and  

𝐺 = {DMU1, DMU4 DMU5, DMU8, DMU10DMU11, }. We need to do a separate analysis for each 

inefficient DMU in 𝐺 starting with our case study DMU9 and then compute and compare the 

results of the other five DMUs. 

Table 3: Data, inefficiency, and efficiency scores for 11 OPEC member nations  

DMU     Current 

Account 

Balance 

(m US$) 

 Wells 

Comp. 

Producing 

Wells 

Active 

Rigs 

Ref. 

Cap. 

(1000b/cd) 

GDP per 

Capita 

(US$/person) 

Rout. Flared  

Gas 

(million cu m) 

Ineff 

(θ) 

Eff. 

(ε) 

1-Algeria 17770 249 2010 33 592 5453.5 3604 0.83 0.093 

2-Angola 13085 112 1476 22 65 4666.95 7183 0 1.000 
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3-Ecuador -402 207 3079 39 188.4 5193.04 539 0 1.000 

4-Indonesia 1685 838 10423 80 1125 3121 2452 0.78 0.124 

5-Iraq 26365 76 1695 59 810 5571.55 9612 0.91 0.047 

6-Kuwait 65743 523 1798 32 936 41672 217 0 1.000 

7-Libya 3173 76 609 55 380 5858 1302 0 1.000 

8-Nigeria 10757 124 2116 38 445 2451.75 14270 0.91 0.047 

9-Qatar 51906 29 517 6 283 97983.27 558 0 1.000 

10-UAE 50948 266 1592 19 675 40819.31 982 0.55 0.290 

11-Venezuela 16342 1050 14915 116 1872 10283.2 9284 0.94 0.031 

 

Taking DMU8  (Nigeria) as our case study, we apply model (5) to determine the potential 

reduction of gas flaring.  

From solution report, the potential reduction in gas flaring for the Nigerian petroleum industry is 

𝛾8 = 382.9901million cubic metres from a total flare of 14270 million cubic metres in 2011.    

This is equivalent to 𝛾8 = 382.9901 × 35.3 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑢𝑏𝑖𝑐 𝑓𝑒𝑒𝑡 

                                𝛾8 = 13519.55𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑢𝑏𝑖𝑐 𝑓𝑒𝑒𝑡 = (
13519.55𝑚𝑖𝑙𝑙𝑖𝑜𝑛

3.41
) 𝑘𝑊ℎ 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦  

                                𝛾8 = 3964.68𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑘𝑊ℎ 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 

                                𝛾8 = 13519.55𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑐𝑢𝑏𝑖𝑐 𝑓𝑒𝑒𝑡 = 13519550 𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑 𝑐𝑢𝑏𝑖𝑐 𝑓𝑒𝑒𝑡    

       At US$3.00 per thousand ft3 of natural gas, the economic loss equals: 

𝛾8 = 13519550 𝑡ℎ𝑜𝑢𝑠𝑎𝑛𝑑 𝑐𝑢𝑏𝑖𝑐 𝑓𝑒𝑒𝑡 × $3.00 = US$40,558,650 

4.2.2 Application of Proposed Algorithm 

Through steps 1 to 6, we obtain 𝛾8
𝑚𝑎𝑥 = 13020.17 million cubic meters. This is equivalent to 

459612million cubic feet. The corresponding maximum savings in energy and revenue are 

134,783.58𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑘𝑊ℎ and US$1.379 billion, respectively. From Table 3, the actual volume 

of routinely flared gas by DMU8 is 𝑦8
𝑏 = 14270 million cubic meters. 

Now since 𝑦8
𝑏 > 𝛾8

𝑚𝑎𝑥, we conclude that the Nigerian petroleum industry could not adopt the 

initiative in 2011, assuming the industry is relatively efficient compared to the other OPEC 

member nations. However, the deviation from this initiative (i.e. 𝑦8
𝑏 − 𝛾8

𝑚𝑎𝑥 =1249.83 million 

cubic metres) suggests that a continual investment in better technology and skilled labor can 

achieve this goal within the decade.  

4.2.3 Sensitivity Analysis 
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We find from sensitivity analysis that as the inefficiency measure of DMU8  (i.e. 𝜃8 = 0.91) 

decrease in steps of 0.1 the potential reductions, 𝛾8  increases. When 𝜃8 = 0 , 𝛾8  achieves a 

maximum value 𝛾8
𝑚𝑎𝑥 = 13020.17 million cubic metres from a total flare of 14270 million 

cubic metres in 2011. This implies an inverse relationship between 𝜃 and γ. Fig. 1 shows the 

measure of inefficiency is a function of the potential reductions. 

 

Fig 1: Effect of inefficiency on potential reductions in gas flaring for DMU8(Nigeria)  

The sensitivity analysis proved to be in accordance with our developed algorithm for the zero 

routine flaring initiative. Fig. 1 summarizes steps 1 to 6 of our algorithm, which, in fact, helps to 

determine the maximum potential reduction, 𝛾8
𝑚𝑎𝑥 for DMU9.  

4.2.4 Comparative Analysis 

We need to apply our extended model and algorithm to DMU1, DMU4, DMU5, DMU10  and 

DMU11, and compare their results with those of DMU8. The aim is to validate our model and 

algorithm and to determine which DMU is more committed to the zero-routine initiative.  

Table 4 presents the obtained results, including the computed deviations. Similarly, all five 

DMUs could not adopt the initiative in 2011. Consequently, we need to compute their deviations. 

In terms of least deviation, it is obvious from Table 4, that DMU10(UAE) is most committed to 

the zero-routine initiative while DMU8(Nigeria)  least committed because it has the largest 

deviation. In order of least deviation, we rank them as follows: 

DMU10 > DMU11 > DMU4 > DMU1 > DMU5 > DMU8 
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However, in terms of other yardsticks such as maximum potential revenue, maximum energy 

savings and maximum potential reductions, our case study, DMU8 (Nigeria) outperformed the 

other five DMUs. This implies to a reasonable extent, that DMU8 stands a far better chance of 

improvement with investment in improved technology that will place it on par with the other 

efficient DMUs. In this regard, the efficient DMUs of the subset 𝐹  serve as the ideal 

benchmarks for DMU8. Fig. 2 gives a perfect illustration of the scenarios involving maximum 

savings and makes the strong case that all inefficient DMUs have ample room for reduction in 

routine gas flaring. The maximum reductions are quite high compared to the other yardsticks. 

Also, the low deviations are indicators that the producers are on track to achieving the zero 

routine initiative provided further investments are made. Fig. 3 illustrates the potential 

improvements with current technology and workforce. Here the potential improvements refer to 

the case where producers are not willing to invest in better technology due to financial 

constraints or the unpredictability of global oil prices. 

 

 

 

 

 

Table 4: Summary of results for inefficient DMUs (Scenario 1) 

DMU Potential 

Reduction 𝛾 

(𝑚 𝑐𝑢3) 

Potential 

Energy 

Savings 

(𝑀𝑊ℎ) 

 

Potential 

Revenue 

 (𝑚 $) 

Maximum 

Potential  

Reduction  

𝛾𝑘
𝑚𝑎𝑥  

(𝑚 𝑐𝑢3) 

 

Maximum 

Energy 

Savings 

(𝑀𝑊ℎ) 

Maximum 

Potential 

Revenue 

(𝑚 $) 

Deviation 

(𝑦𝑘
𝑏 − 𝛾𝑘

𝑚𝑎𝑥) 

(𝑚 𝑐𝑢3) 

1-Algeria 23.69 0.245 2.51 2995.35 31.00 317.20 608.65 

4-Indonesia 39.51 0.409 4.18 1921.25 19.89 203.46 530.75 

5-Iraq 658.56 6.817 69.74 8806.19 91.16 932.58 805.81 

8-Nigeria 382.99 3.965 40.56 13020.20 134.78 1379 1249.83 

10-UAE 16.63 0.172 1.76 547.58 5.67 57.99 434.42 

11-Venezuela 1229.85 12.731 130.24 8825.04 91.36 934.57 458.96 
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Fig 2: Deviations and Maximum Potential Improvements for inefficient producers  

 

Fig 3: Potential Improvements for inefficient producers  

To further support our claim that DMU inefficiency is a function of the potential reductions, we 

extend the sensitivity analysis to the other five inefficient DMUs. The results are presented in 

Figs. 4 to 8. In each case, the inefficiency score was decreased in similar steps of 0.1 and the 

maximum reduction occurred at zero inefficiency or when the DMU became efficient. 
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Fig 4: Effect of inefficiency on potential reductions in gas flaring for DMU1(Algeria)  

 

Fig 5: Effect of inefficiency on potential reductions in gas flaring for DMU4 (Indonesia) 
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Fig 6: Effect of inefficiency on potential reductions in gas flaring for DMU5 (Iraq) 

 

 

 

 

 

Fig 7: Effect of inefficiency on potential reductions in gas flaring for DMU10 (UAE) 
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Fig 8: Effect of inefficiency on potential reductions in gas flaring for DMU11 (Venezuela) 

 

 

 

 

2011 Production Year (Scenario 2: Thirteen OPEC members) 

In this section, we consider all the 13 OPEC members by adding Saudi Arabia and Iran to the 

PPS. We assume that both members had zero routine flare for the 2011 production year. This 

makes them ideal benchmarks for the inefficient producers identified by the directional distance 

DEA model (1). Table 5 presents the initial results containing values of θ and ε for each 

producer. Once again, we have same number of inefficient DMUs, like Table 3, but two more 

efficient DMUs taking the number to seven. We define new subsets as follows: 

𝐹 = {DMU2, DMU3, DMU5, DMU7, DMU8, DMU10, DMU11}, and  

𝐺 = {DMU1, DMU4 DMU6, DMU9, DMU12DMU13, }. 

The values of θ and ε remain the same for the previous 11 members and we have same set of 

inefficient DMUs.  
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Table 5: Data, inefficiency, and efficiency scores for 13 OPEC member nations  

DMU     Current 

Account 

Balance 

(m US$) 

 Wells 

Comp. 

Producing 

Wells 

Active 

Rigs 

Ref. 

Cap. 

(1000b/cd) 

GDP per 

Capita 

(US$/person) 

Rout. Flared  

Gas 

(million cu m) 

Ineff. 

(θ) 

Eff. 

(ε) 

1-Algeria 17770 249 2010 33 592 5453.5 3604 0.83 0.093 

2-Angola 13085 112 1476 22 65 4666.95 7183 0 1.000 

3-Ecuador -402 207 3079 39 188.4 5193.04 539 0 1.000 

4-Indonesia 1685 838 10423 80 1125 3121 2452 0.78 0.124 

5-Iran 59364 204 2026 123 1715 7511.1 0 0 1.000 

6-Iraq 26365 76 1695 59 810 5571.55 9612 0.91 0.047 

7-Kuwait 65743 523 1798 32 936 41672 217 0 1.000 

8-Libya 3173 76 609 55 380 5858 1302 0 1.000 

9-Nigeria 10757 124 2116 38 445 2451.75 14270 0.91 0.047 

10-Qatar 51906 29 517 6 283 97983.27 558 0 1.000 

11-Saudi Arabia 158545 312 3245 121 2107 23594.13 0 0 1.000 

12-UAE 50948 266 1592 19 675 40819.31 982 0.55 0.290 

13-Venezuela 16342 1050 14915 116 1872 10283.2 9284 0.94 0.031 

 

Table 6 summarizes the results. Except for DMU4  (Indonesia) and DMU13  (Venezuela), the 

other four DMUs had same values of reductions and savings, like those of Table 4. With the 

addition of two new members to the PPS, we observe slight improvements in reductions and 

savings for DMU4 and DMU13. In order of least deviation, we define a new ranking: 

DMU13 > DMU12 > DMU4 > DMU1 > DMU6 > DMU9 

DMU9(Nigeria) still better than all five in terms of maximum savings and potentials. 

Table 6: Summary of results for inefficient DMUs (Scenario 2) 

DMU Potential 

Reduction 𝛾 

(𝑚 𝑐𝑢3) 

Potential 

Energy 

Savings 

(𝑀𝑊ℎ) 

 

Potential 

Revenue 

 (𝑚 $) 

Maximum 

Potential  

Reduction  

𝛾𝑘
𝑚𝑎𝑥  

(𝑚 𝑐𝑢3) 

 

Maximum 

Energy 

Savings 

(𝑀𝑊ℎ) 

Maximum 

Potential 

Revenue 

(𝑚 $) 

Deviation 

(𝑦𝑘
𝑏 − 𝛾𝑘

𝑚𝑎𝑥) 

(𝑚 𝑐𝑢3) 

1-Algeria 23.69 0.245 2.51 2995.35 31.00 317.20 608.65 

4-Indonesia 64.26 0.665 6.81 1928.3 19.96 204.21 523.7 

6-Iraq 658.56 6.817 69.74 8806.19 91.16 932.58 805.81 

9-Nigeria 382.99 3.965 40.56 13020.20 134.78 1379 1249.83 

12-UAE 16.63 0.172 1.76 547.58 5.67 57.99 434.42 

13-Venezuela 1502.58 15.55 159.12 8869.33 91.81 939.26 414.67 
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For both scenarios, the 2011 reductions in gas flaring for the Nigerian petroleum industry are 

equal. We conclude our analysis by saying with the addition of efficient producers (i.e. Saudi 

Arabia and Iran) to the production possibility set, there are no better results for Nigeria. This 

implies our proposed model and algorithm yielded best results for our case study.   

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0   SUMMARY, MANAGERIAL INSIGHTS AND CONCLUSIONS 

5.1 Summary 

In our study, we extended the inverse DEA model and developed an algorithm for global gas 

flaring reductions. We applied our proposed model and algorithm to OPEC member nations and 

selected Nigeria as our case study. In doing so, we considered two different scenarios, eleven 

and thirteen member nations. The first scenario was without assumptions, while the second 

assumed that the added members had zero-routine flaring. Initial results identified efficient and 

inefficient nations. Algeria, Indonesia, Iraq, Nigeria, United Arab Emirates (UAE), and 

Venezuela were deemed inefficient in both cases. Reductions in gas flaring, savings in revenue 

and energy were computed using our proposed model and algorithm for all six nations. For 

Nigeria, the maximum reduction in gas flaring, maximum potential savings in energy and 

revenue were estimated to be 13020.20 million cubic meters, 134.78 MWh and US$ 1.379 



30 / 33 

 

billion, respectively in 2011. In addition, Nigeria had the highest estimates in maximum 

reductions and potentials. 

In the second scenario, the production possibility set was expanded by the addition of Saudi 

Arabia and Iran, and both nations served as extremely efficient producers and benchmarks for 

the inefficient nations. The estimates remained the same for Algeria, Iraq, Nigeria, and United 

Arab Emirates. However, there were improvements for Indonesia and Venezuela. 

From the obtained results, we also observed that inefficient member nations could reduce their 

annual gas flaring, with or without investment in better technology and a more highly skilled 

force. Application of our algorithm provided deviations, indicating the level of commitment of 

each nation to the zero-routine flaring initiative. UAE and Venezuela are more committed 

having the least deviation in the first and second scenarios, respectively. Nigeria is the least 

committed, having the largest deviations in both scenarios. We proved that the inefficiency 

estimated by the directional DEA model is a function of the potential reductions. The reductions 

are maximum with zero inefficiency. 

5.2 Managerial Insights 

The future challenges for crude oil make waste management an integral part of corporate long-

term planning in the petroleum industry. Gas flaring is a huge waste in this industry and is 

regarded as an environmental hazard and a huge economic loss. Based on the results obtained in 

the previous section, we recommend the extended inverse DEA model for the Nigerian 

petroleum industry due to the following reasons: 

 I. Gas flare capture or reduction is a potential source of revenue when converted to marketed 

production of natural gas. Our model estimated the maximum revenue that can be obtained from 

flared gas to be US$ 1.379 billion in 2011. According to PricewaterhouseCoopers (PwC), 

Nigeria lost US$761 million worth of flared natural gas in 2018. Both amounts can be used to 

fund government projects like housing, renovation of roads and airports, and healthcare. 

II. As an environmental hazard, gas flaring is responsible for some health problems within the 

oil producing regions of Nigeria. Respiratory illnesses, adverse skin disorders and heat burns are 

common, among other health problems. This has led some health experts to conclude that gas 

flaring is one of several factors responsible for the decline of average life expectancy to 53 in 

Nigeria. Another potential benefit of gas flare capture to society is reduced air pollution. This 

reduces health risks associated with gas flaring. 
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II. Erratic power supply is another huge problem in Nigeria and a cause of inflation. A major 

goal of the 2020 Nigerian Gas Flare Commercialization Programme (NGFCP) is the conversion 

of flared/wasted gas for power generation using turbines. However, technical knowledge of the 

right technology for such a conversion process is highly dependent on the gas flare volume 

captured during the production process. The volumes are the estimates determined in this study. 

5.3 Conclusions and Future Research 

Our extended inverse DEA model provided satisfactory results for a given set of homogenous 

DMUs. It allows reduction of the undesirable output at current production rates while retaining 

the efficiency of each DMU. Our model is the first to estimate the potential reductions in global 

gas flaring.  However, there are two limitations we must state here. Firstly, as with all DEA 

models, the efficient units cannot be improved further. Our inverse DEA model imposes gas 

flare reduction on the inefficient units but lacks the capability of applying the same technique to 

the efficient units. This calls for further development or extension for improving the 

performance of the efficient units. A recurrent problem in DEA analysis is the ranking of 

efficient units. Several works in the literature have addressed this problem but none dealt with 

units having bad or undesirable outputs. Hence, there is a need to modify our inverse DEA 

model to fully rank efficient units with bad outputs. 
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