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ABSTRACT: Life cycle sustainability of energy systems has received more and more 1 

attentions recently. In order to make an accurate comparison of the sustainability 2 

performance of different energy systems and promote the decision-making process, 3 

various prioritization methods of energy systems were developed. However, the lack of 4 

enough data for decision-making usually limits the accuracy of the prioritization. On 5 

the one hand, the decision-makers can only collect multiple types of data resources with 6 

hybrid information, for example, data in the formats of crisp numbers, interval numbers, 7 

and fuzzy numbers. On the other hand, some information for certain alternatives with 8 

respect to certain criteria is hard to be obtained. Therefore, it is of vital importance to 9 

achieve sustainability-oriented prioritization of energy systems under hybrid 10 

information and missing information. This study aims at developing a prioritization 11 

framework for energy systems ranking with missing information and hybrid 12 

information. An improved Grey Relational Analysis (GRA) is extended from the 13 

classical GRA method to handle hybrid information in this study. An innovative method 14 

to quantify linguistic expressions is proposed to deal with missing information. A 15 

hypothetical case study regarding electricity generation scenarios selection was used to 16 

evaluate the feasibility of this proposed framework. Sensitivity analysis was also 17 

conducted, and the results showed that the iGRA-MH is feasible in handling hybrid and 18 

missing information and it performs more stable than other multi-criteria decision-19 

making models. 20 

KEYWORDS: Sustainability; Multi-criteria Decision Making; Grey Relational 21 

Analysis; Hybrid information; Multi-criteria Decision Making; Life cycle sustainability  22 
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List of Acronyms 1 

 2 

iGRA-MH Improved Grey Relational Analysis for Missing and Hybrid 

information 

LCA Life cycle assessment 

LCSA Life cycle sustainability assessment 

LCC Life cycle costing 

S-LCA Social life cycle assessment 

MCDM Multi-criteria decision-making 

TOPSIS Technique for Order Preference by Similarity to an Ideal Solution 

GRA Grey Relational Analysis 

VIKOR Vlse kriterijumska optimizacija kompromisno resenje 

PROMETHEE Preference ranking organization method for enrichment 

evaluations 

MULTIMOORA Multi-objective optimization on the basis of ratio analysis with 

the full multiplicative form 

BWM Best-Worst Method 

AHP Analytical Hierarchy Process 

DEMATEL Decision Making Trial and Evaluation Laboratory 

 3 
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List of Symbols 1 

 2 

𝑎̂𝑖𝑗 The performance of the i-th alternative on the j-th criterion 

𝑎 A crisp number 

𝑎𝑙 The lower boundary of an interval number 

𝑎𝑢 The upper boundary of an interval number 

𝑎𝐿 The lower boundary of a triangle fuzzy number 

𝑎𝑀 The most possible value of a triangle fuzzy number 

𝑎𝑈 The upper boundary of a triangle fuzzy number 

𝑐𝑖 The j-th criterion 

𝑒𝑖𝑗 The preference of criterion i over the worst criterion j 

𝑤𝑗 The weight of criterion j 

𝑤𝑗
∗ The optimal weight of criteria j 

𝜉∗ The minimum error 

𝑥𝑖𝑗 
The element of the i-th row and the j-th column of normalized 

decision-making matrix X 

𝑥𝑗
+ The j-th element of the ideal criterion vector  𝑋+ 

𝛾𝑖𝑗 
The grey relational coefficient of the i-th alternative regarding the 

j-th criterion 

𝛥𝑖𝑗 
The distance of the j-th criterion with regard to the i-th alternative 

to that of the ideal option 

𝜁 Distinguishing coefficient 

𝛥min The minimum value of criteria differences 

𝛥max The maximum value of criteria differences 

𝛤𝑖 The grey relational grade of the i-th alternative 

 3 
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1. Introduction 1 

The supply of energy is essential to maintain the operations of the modern city. Energy 2 

supply not only contributes to necessity supply for mankind, such as food supply, 3 

product manufacturing, operations of electrical devices and vehicles, but also is 4 

strongly related to national security and is the basis for the development of science and 5 

technology [1–3]. Therefore, a long-term and stable supply of energy is very important. 6 

In order to measure the stability and development potential of energy supply, 7 

sustainability has been applied as an effective index for the measurement of energy 8 

systems. The concept of sustainability has been proposed for years, and it has become 9 

relatively mature and accepted. In addition to environmental concerns, sustainability 10 

can also consider economic, social, technological, and other aspects. The concept of 11 

sustainability is in line with the long-term supply needs of the energy system. Therefore, 12 

it is of great significance to evaluate the sustainability of the energy system. Life cycle 13 

assessment (LCA) is one of the well-admitted environmental sustainability assessment 14 

tools, and it has been used to analyse the environmental performance of energy systems 15 

in previous studies. Welfle et al.[4] conducted LCA for several bioenergy scenarios. 16 

Mehmeti et al.[5] examined the environmental sustainability of hydrogen production 17 

methods via LCA. The LCA of coal-fired power generation in China was conducted [6]. 18 

Since sustainability of energy systems can be addressed in more than environmental 19 

aspects, life cycle sustainability assessment (LCSA) including LCA, life cycle costing 20 

(LCC), and social life cycle assessment (S-LCA), was usually used for sustainability 21 
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assessment. Atilgan and Azapagic[7] studied the sustainability of the electricity 1 

generation system in Turkey. Patel et al.[8] reviewed the techno-economic and lifecycle 2 

assessment on lignocellulosic biomass thermochemical conversion technologies. The 3 

LCSA has also been adopted to assess the sustainability of grid-connected photovoltaic 4 

power generation in Northeast England [9]. Kabayo et al.[10] assessed LCSA of key 5 

electricity generation systems in Portugal. These studies provided quantitative results 6 

of the sustainability of energy systems. 7 

Now that energy systems are diversified, the selection of energy systems has also 8 

become an important decision-making issue. Since each energy system has its own 9 

advantages and disadvantages, the multi-criteria decision-making (MCDM) method 10 

becomes an effective decision-making tool that can help decision-makers to prioritize 11 

or select the most suitable options from more than one candidate based on multiple 12 

criteria. Multi-criteria Decision Making (MCDM) can be used to select the most 13 

sustainable one among multiple alternatives, for example, Yadav et al.[11] analysed the 14 

adoption of effective offshore outsourcing using the ELECTRE method. A classical 15 

MCDM method, Technique for Order Preference by Similarity to an Ideal Solution 16 

(TOPSIS) method, was used to select the solar form site [12]. Zhang et al.[13] 17 

conducted a water consumption evaluation based on grey relational analysis (GRA).  18 

To prioritize technologies in the energy systems based on sustainability, the study of 19 

multi-attribute decision-making based on the sustainability of energy systems has 20 

effectively solved some comparative problems of energy systems. Ren et al.[14] 21 
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proposed a framework coupling the LCSA and MCDM method to prioritize electricity 1 

generation scenarios. Lin et al.[15] also developed a novel MCDM method and 2 

constructed a similar framework that combined with LCSA to prioritize the biorefinery 3 

systems according to their sustainability performances. 4 

MCDM methods aiming at sustainability analysis have been extended to deal with 5 

uncertainties in order to solve more complicated problems. For instance, distributed 6 

energy system has been analysed by using interval VIKOR [16]. Tabaraee et al.[17] 7 

prioritize power plants by using the fuzzy PROMETHEE method. An improved fuzzy 8 

MULTIMOORA approach was proposed to select the technological forecasting method 9 

[18]. Some extended MCDM methods were also proposed to solve various situations 10 

in other fields. For instance, Mathew et al.[19] studied a novel MCDM method based 11 

on AHP and TOPSIS to select advanced manufacturing systems. A supplier selection 12 

problem was studied based on fuzzy TOPSIS [20]. However, prioritization decision-13 

making of energy systems often needs to face the problem with hybrid information. 14 

This situation is often caused by data aggregation from diverse data sources, difficulties 15 

in prioritizing the alternatives when the data for decision-making are from different 16 

sources or in different formats. Some MCDM methods to deal with hybrid types of data 17 

are proposed based on classical MCDM methods. For example, The VIKOR method 18 

was improved to deal with crisp, random and hesitant fuzzy numbers[21]. The TOPSIS 19 

method was extended to deal with hybrid information [22,23]. But the existing energy 20 

system prioritization methods based MCDM rarely consider the decision-making under 21 

hybrid information.  22 
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In addition, the limitations in data collection may also lead to missing information or 1 

incomplete information. The missing information is usually solved by using linguistic 2 

expressions. Those linguistic terms with level grading are transformed to numerical 3 

numbers by using intuitionistic fuzzy numbers [24,25]. However, the experts may 4 

express their own preference by comparative degree. For example, the technology 5 

maturity of pumped storage is recognized as “the best” among all energy storage 6 

technologies, and the fuel cost of wind power is “lower than” nuclear power. Both “the 7 

best” and “lower than” are linguistic terms and they should be transformed into 8 

numerical values.  But the quantification of these types of linguistic terms cannot be 9 

solved in existing MCDM methods. Therefore, the transformation of comparative 10 

linguistic terms to numerical values is another important problem to be solved in this 11 

prioritization framework. 12 

In this study, a generic framework for life cycle sustainability prioritization of energy 13 

systems under hybrid information and missing information is proposed to provide a 14 

more reliable and accurate analysis for sustainability performance assessment. This 15 

study could fill in the following two research gaps:  16 

1) Energy systems prioritization based on a decision-making matrix under hybrid 17 

information.  18 

2) Energy systems prioritization based on a decision-making matrix with missing 19 

information. 20 

The rest of this study is recognized as below. The sustainability prioritization 21 
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framework of energy systems to deal with hybrid information and missing information 1 

is proposed in section 2. An illustrative case study regarding electricity generation 2 

pathways selection is studied in section 3. In section 4, the result of the case study is 3 

presented and discussed. This study is concluded in session 5. 4 

2. Methodology  5 

This study aims at proposing a new life cycle sustainability prioritization framework 6 

for the energy system to handle the decision-making problem with hybrid information 7 

and missing information. In this framework, the criteria system for sustainability 8 

prioritization of energy systems is built up based on LCSA. Then, the Best-Worst 9 

Method (BWM) [26] is used to determine the weights of criteria and GRA [27] is 10 

extended to Improved Grey Relational Analysis for Missing and Hybrid information 11 

(iGRA-MH) to handle hybrid information and missing information. BWM model is a 12 

weight calculation method proposed by Rezeai in 2015. Comparing with some 13 

traditional weighting methods, especially the AHP method, the BWM requires only the 14 

comparison calculations between the best alternative (criterion) and the others, and 15 

between the others to the worst alternative (criterion). Therefore, BWM is recognized 16 

as an effective method to determine the weights of the criteria. GRA is a classical 17 

method to show the similarity between two systems. It was used for MCDM as it can 18 

show the relativeness of the target system and ideal system. The concept of comparison 19 

is more suitable in this situation since the treatment of hybrid information is based on 20 

the reference points. The GRA has been proven feasible and efficient for decision-21 
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making in many studies. However, the traditional GRA cannot be used to prioritize the 1 

energy systems based on the decision-making matrix with hybrid information or 2 

missing information. Therefore, the extension of GRA is prerequisite to ensure the 3 

accuracy of the result. The combination of BWM and GRA models helps to accurately 4 

prioritize the alternatives with fewer steps. The generic framework of life cycle 5 

sustainability prioritization of energy systems under hybrid information is shown in 6 

Fig.1.  7 

 8 

Figure 1. The multi-criteria decision making framework for energy system 9 

prioritization 10 

To clarify the calculation and evaluation processes, we define three hybrid types of 11 

information in this study accordingly.  12 

⚫ Type I Hybrid Information: the data with respect to the same criterion are the 13 

same data type. 14 

⚫ Type II Hybrid Information: the data of the same alternative are the same data 15 
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type. 1 

⚫ Type III Hybrid Information: the data with respect to any criterion or the data of 2 

any alternative are different data types. 3 

The examples of Type I, II, and III Hybrid Information are presented in Tables 1-3. 4 

Table 1. Example of Type I Hybrid Information 5 

Criteria Unit T1 T2 T3 T4 

Removal rate % [60,80] [50,70] [50,80] [60,70] 

Land use km2 Medium High Very high Very low 

Investment capital  RMB m-3 1900 2000 2200 3600 

Table 2. Example of Type II Hybrid Information 6 

Criteria Unit T1 T2 T3 T4 

Removal rate % The highest [50,70] 60 [60,66,70] 

Land use km2 Medium [4500,6000] 8000 [6500,7000,7500] 

Investment capital  RMB m-3 Low [2000,2400] 2200 [3000,3600,4000] 

Table 3. Example of Type III Hybrid Information 7 

Criteria Unit T1 T2 T3 T4 

Removal rate % The highest [50,70] 60 Relatively 

high 

Land use km2 3,000 [4500,6000] 8000 Very low 

Investment capital  RMB m-3 [1900,2000,2400] [2000,2400] Medium 3600 
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The accuracy of the methods related to different hybrid types will be discussed and 1 

analysed in section 4. 2 

Assume that m alternatives are prioritized based on n criteria regarding life cycle 3 

sustainability, then the decision-making matrix can be presented in Eq.(1). 4 

𝐴 =

[
 
 
 
𝑎̂11 𝑎̂12 ⋯ 𝑎̂1𝑛
𝑎̂21 ⋱ ⋮

⋮ ⋱ ⋮
𝑎̂𝑚1 ⋯ ⋯ 𝑎̂𝑚𝑛]

 
 
 
             (1) 5 

where 𝑎̂𝑖𝑗 represents the performance of the i-th alternative on the j-th criterion, and it 6 

might be any of the information types as shown in Fig.2 and Table 4. 7 
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 1 

Figure 2. Types of hybrid information 2 

Table 4. Information types and numerical expressions 3 

Value set Information type Numerical expression  

𝑁1 Crisp number 𝑎 𝑖𝑓 𝑎̂ ∈ 𝑁1 

𝑁2 Interval number (𝑎𝑙 , 𝑎𝑢) 𝑖𝑓 𝑎̂ ∈ 𝑁2 

𝑁3 Triangle fuzzy number (𝑎𝐿 , 𝑎𝑀, 𝑎𝑈) 𝑖𝑓 𝑎̂ ∈ 𝑁3 

𝑁4 Linguistic terms 

Should be transformed into 

interval numbers or 

𝑖𝑓 𝑎̂ ∈ 𝑁4 
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triangle fuzzy numbers  

Based on the above preliminaries, the prioritization framework of energy systems is 1 

specified as follows. 2 

2.1 Criteria system 3 

To assess the life-cycle performances of energy systems, a multiple-aspect criteria 4 

system should be created for an overall evaluation. In a criteria system for LCSA, 5 

criteria in economic, environmental, and social aspects are usually included. The 6 

criteria and the data with respect to the criteria are usually obtained and selected from 7 

LCSA. LCSA is an integrated lifecycle sustainability assessment, which is consists of 8 

LCA for environmental assessment, LCC for economic assessment and S-LCA for 9 

social analysis. These assessments quantify the performance of each alternative in 10 

environmental, economic and social aspects with united criteria. To be specific, the 11 

criteria in environmental, economic, and social aspects are selected from attributes in 12 

LCA, LCC, and S-LCA, respectively. The criteria to describe the environmental 13 

performance of alternatives include global warming, greenhouse gas emission, water 14 

eutrophication, land occupation, and so on. The economic criteria usually consist of 15 

criteria related to the costs and economic benefits of this system, such as capital cost, 16 

operation cost, maintenance cost, net profit, and rate of return. As for social criteria, 17 

employment, human health, and social benefits are usually considered. The criteria are 18 

presented in Fig. 3. 19 
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 1 

Figure 3 Criteria system based on Life Cycle Sustainability Assessment (Adapted from 2 

[28]) 3 

The selection of criteria should follow basic rules (Adapted from [15]): 4 

• No overlapping in the criteria system. When more than one criterion of the same 5 

meaning is selected for evaluation, the decision maker needs to determine which 6 

one is most suitable. 7 

• The criteria system should sufficiently describe the overall performance. To be 8 

specific, at least one criterion should be selected for each aspect. 9 

Since the situation of certain systems and the preference of decision makers will differ 10 
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in each case, the criteria should be selected and decided by decision makers accordingly. 1 

The data with respect to the criteria can be obtained through corresponding life cycle 2 

assessments. 3 

2.2 Determination of criteria weights - Best Worst Method (BWM) 4 

Since different decision makers hold different opinions in different cases, the weights 5 

of criteria should be determined in the prioritization framework. There are several 6 

methods that have been used to determine the weights of criteria, such as Analytical 7 

Hierarchy Process (AHP)[29], DEMATEL[30], entropy weighting method[31], and 8 

Fuzzy Delphi method[32]. In this study, the BWM [26] is used since BWM adapted the 9 

concept of pairwise comparison and can calculate criteria weights with fewer steps 10 

comparing with the AHP method. The calculation process developed by Rezaei[26, 33] 11 

was specified as follows: 12 

Step 1. Determining a set of decision criteria. Based on the criteria selected in the 13 

criteria system, the decision criteria could be summarized as a set of decision criteria 14 

written as 𝐶 = (𝑐1, 𝑐2, . . . , 𝑐𝑛). 15 

Step 2. Determining the best and the worst criteria. According to the judgment of 16 

decision-makers, the most important criterion and the less important criterion are 17 

selected as the best criterion (𝑐𝐵) and the worst criterion (𝑐𝑊), respectively.  18 

Step 3. Determining the preference of the best criterion over all the other criteria using 19 

a number between 1 and 9. The resulting Best-to-Others vector is shown as Eq.(2). 20 
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𝐸𝐵 = (𝑒𝐵1, 𝑒𝐵2, . . . , 𝑒𝐵𝑛)              (2) 1 

where 
Bje  indicates the preference of the best criterion B over criterion j. Assume that 2 

there are 4 criteria among which the 2nd criterion is the best, then the Best-to-Others 3 

vector could be expressed as Table 5. 4 

Table 5. Example of Best-to-Others vector 5 

  𝑐1  𝑐2  𝑐3  𝑐4 

 𝑐2  𝑒𝐵1  𝑒𝐵𝐵  𝑒𝐵3  𝑒𝐵𝑊 

Step 4. Determining the preference of all the criteria over the worst criterion using a 6 

number between 1 and 9. The resulting Others-to-Worst vector is presented in Eq.(3). 7 

𝐸𝑊 = (𝑒1𝑊, 𝑒2𝑊, . . . , 𝑒𝑛𝑊)
𝑇             (3) 8 

where  𝑒𝑗𝑊 indicates the preference of criterion j over the worst criterion W. Assume 9 

that there are 4 criteria among which the 4th criterion is the worst, then the Others-to-10 

Worst vector can be expressed as Table 6. 11 

Table 6. Example of Others-to-Worst vector 12 

  𝑐4 

 𝑐1  𝑒1𝑊 

 𝑐2  𝑒𝐵𝑊 

 𝑐3  𝑒3𝑊 

 𝑐4  𝑒𝑊𝑊 

Step 5. Finding the optimal weights. The weights regarding the j-th criterion, the best 13 
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criterion, and the worst criterion can be written as 𝑤𝑗, 𝑤𝐵and  𝑤𝑊 respectively. The 1 

optimal weights can be determined by solving Eq.(4). 2 

min𝜉
𝑠. 𝑡.

|
𝑤𝐵

𝑤𝑗
− 𝑒𝐵𝑗| ≤ 𝜉,for all 𝑗

|
𝑤𝑗

𝑤𝑤
− 𝑒𝑗𝑊| ≤ 𝜉,for all 𝑗

∑ 𝑤𝑗
𝑗

= 1

𝑤𝑗 ≥ 0,for all 𝑗

             (4) 3 

The solution  (𝑤1
∗ ,𝑤2

∗ , . . . , 𝑤𝑛∗) indicates the optimal criteria weights and the minimum 4 

error  𝜉∗ can be obtained when the equation is satisfied with the optimal solution. The 5 

optimal solution should be validated through consistency index calculation. The 6 

consistency ratio (CR) of BWM can be determined by Eq.(5).  7 

Consistency Ratio =
𝜉∗

Consistency Index
         (5) 8 

where consistency index (CI) can be referred to Table 7. 9 

Table 7. Consistency index table [26] 10 

 𝑒𝐵𝑊 1 2 3 4 5 6 7 8 9 

Consistency 

index 
0.00 0.44 1.00 1.63 2.30 3.00 3.73 4.47 5.23 

If CR<0.1, the result passes the consistency test. The smaller the value of CR, the more 11 

consistent the result is. If CR≥ 0.1, the result fails the consistency test, and the Best-12 

to-Others vector and the Others-to-Worst vector should be revised and repeat steps 3-5 13 

until the requirement is satisfied. 14 
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2.3 Alternatives ranking 1 

2.3.1 Grey relational analysis 2 

The GRA was originally proposed by Deng [34] as an important part of grey system 3 

theory. In this theory, grey, a colour between black and white, is applied to indicate 4 

uncertain information and the degree of grey reflects the degree of certainty The GRA 5 

can assist in calculating the grey relational coefficient which is a significant basis for 6 

decision making.  7 

Assume that there are m alternatives and n criteria in this analysis. The value of the i-8 

th alternative with regards to the j-th criterion is written as  𝑎̂𝑖𝑗 as shown in Eq.(1). 9 

The  𝑎̂𝑖𝑗 could be any data types as shown in Table 4. In this method, all inputs are 10 

crisp numbers. In another word, 𝑎̂𝑖𝑗 ∈ 𝑁1 for all  𝑖 ∈ (1,2, . . .𝑚) and  𝑗 ∈ (1,2, . . . , 𝑛) 11 

in GRA, and all  𝑎̂𝑖𝑗 can be simplified as  𝑎𝑖𝑗. The calculation process of the original 12 

version of GRA were specified in the following four steps [27,35,36]: 13 

Step 1. Normalization. Noted that the units of the criteria are different, and it is 14 

impossible to compare the alternatives with respect to different criteria with different 15 

units. In addition, the criteria can be classified as benefit-type criteria and cost-type 16 

criteria. A benefit-type criterion means that the higher value is better. On the contrary, 17 

a cost-type criterion means that the lower value is more preferred. In order to make all 18 

the criteria dimensionless, the element  𝑥𝑖𝑗  of the i-th row and the j-th column of 19 

normalized decision-making matrix X can be determined by Eqs.(6)-(7).  20 
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𝑥𝑖𝑗 =
𝑎𝑖𝑗−min

𝑖
𝑎𝑖𝑗

max
𝑖
𝑎𝑖𝑗−min

𝑖
𝑎𝑖𝑗

𝑖 = 1,2, . . . , 𝑚, 𝑗 ∈ 𝐵         (6) 1 

𝑥𝑖𝑗 =
max
𝑖
𝑎𝑖𝑗−𝑎𝑖𝑗

max
𝑖
𝑎𝑖𝑗−min

𝑖
𝑎𝑖𝑗

𝑖 = 1,2, . . . , 𝑚, 𝑗 ∈ 𝐶         (7) 2 

where B indicates the benefit-type criteria, and C represents the cost-type criteria.  3 

Step 2. Choosing ideal criterion value. An ideal alternative with all ideal criteria values 4 

is constructed as a reference for sustainability performance judgment. The j-th element 5 

 𝑥𝑗
+ of the ideal criterion vector  𝑋+ can be determined by Eq.(8). 6 

𝑥𝑗
+ = max

𝑖
𝑥𝑖𝑗 𝑗 = 1,2, . . . , 𝑛            (8) 7 

Step 3. Calculating the grey relational coefficient. The grey relational coefficient  𝛾𝑖𝑗 8 

of the i-th alternative regarding the j-th criterion can be determined by Eq.(9). 9 

𝛾𝑖𝑗 =
𝛥min+𝜁𝛥max

𝛥𝑖𝑗+𝜁𝛥max
𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛       (9) 10 

where  𝛥𝑖𝑗 represents the distance of the j-th criterion with regard to the i-th alternative 11 

to that of the ideal option and is determined by Eq.(10). 𝜁 ∈ [0,1]is the distinguishing 12 

coefficient. 𝛥min and  𝛥max represent the minimum and maximum values of criteria 13 

differences, respectively, which are shown in Eqs.(11)-(12). 14 

𝛥𝑖𝑗 = 𝑥𝑖𝑗
+ − 𝑥𝑖𝑗 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛        (10) 15 

𝛥min = min
𝑖
min
𝑗
𝛥𝑖𝑗 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛       (11) 16 

𝛥max = max
𝑖
max
𝑗
𝛥𝑖𝑗 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛       (12) 17 
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Step 4. Calculating grey relational grade. The grey relational grade  𝛤𝑖 of the i-th 1 

alternative can be determined by Eq.(13). 2 

𝛤𝑖 =∑ 𝑤𝑗𝛾𝑖𝑗
𝑛

𝑗=1
𝑖 = 1,2, . . . , 𝑚           (13) 3 

The alternatives thereafter can be prioritized by ranking grey relational grades in 4 

descending orders. 5 

2.3.2 Improved grey relational analysis (iGRA-MH) 6 

An improved GRA is proposed which is extended based on the classic one to process 7 

hybrid information including crisp numbers, interval numbers, trapezoidal fuzzy 8 

numbers, and linguistic expressions. The missing information can be dealt with in the 9 

proposed approach, which is the so-called iGRA-MH method. The calculation process 10 

mainly includes six steps: i) filling the missing information; ii) transforming linguistic 11 

terms into numerical numbers; iii) normalization; iv) identifying the ideal value for each 12 

criterion; v) calculating the grey relational coefficient; and vi) calculating the grey 13 

relational grade. Similar to what is mentioned above, assume that there are m 14 

alternatives and n criteria in this analysis. The value of the i-th alternative with regards 15 

to the j-th criterion is written as  𝑎̂𝑖𝑗 as shown in Eq.(1). The  𝑎̂𝑖𝑗 could be any data 16 

types as shown in Table 4.  17 

Step 1. Filling the missing information 18 

The situation of missing information occurs when numerical information of a certain 19 
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alternative on a certain criterion cannot be obtained. To fill the missing information, a 1 

decision maker can describe the performance of this alternative regarding this criterion 2 

by using linguistic terms based on the knowledge of the experts or their own preferences. 3 

The frequently used linguistic expressions could be either level grading or comparative 4 

grading. As for level grading, the performance of certain alternatives with respect to 5 

certain criterion is judged without comparison. For example, the greenhouse gas 6 

emission of coal-based electricity generation can be determined as “poor”, and the 7 

electricity scale of nuclear electricity generation can be judged as “very good”. As for 8 

comparative grading, the performance of certain alternative with respect to certain 9 

criterion is expressed based on comparison with other alternatives with respect to this 10 

criterion. For instance, the technology maturity of pumped storage is “the best” among 11 

all energy storage technologies. The capital cost of one energy system is lower than that 12 

of another energy system. 13 

To avoid the failure in transforming linguistic expressions to numerical terms, the 14 

following rules should be followed when handing the missing information: 15 

1) There should not be such a set of criteria, with respect to whose values are 16 

determined and only determined by referring to the value with respect to other 17 

criteria in this set. If two or more criteria are the reference criteria for each other, 18 

the values of those criteria cannot be determined. 19 

2) The data of at least one alternative with respect to each criterion is obtained, 20 

otherwise, the analysis cannot be conducted. If the requirement cannot be fulfilled, 21 
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which means no data is provided, this criterion is suggested to be removed from 1 

the criteria system. 2 

Step 2. Transforming linguistic expressions to numerical terms 3 

The linguistic term  (𝑎̂𝑖𝑗 ∈ 𝑁4) needs to be transformed into the numerical expressions 4 

before adapted in the ranking calculation. Numerical terms transformation for level 5 

grading has been studied in some intuitionistic MCDM, such as fuzzy AHP[37] and 6 

fuzzy BWM[31]. The transformation approach is presented in Table 8.  7 

Table 8. Numerical transformation for level-grading linguistic terms [25] 8 

Linguistic term Numerical expression after normalization 

Very poor (0, 0.1, 0.2)  

Poor (0.1, 0.2, 0.3)  

Medium poor (0.3, 0.4, 0.5)  

Fair (0.4, 0.5, 0.6) 

Medium good (0.5, 0.6, 0.7)  

Good (0.7, 0.8, 0.9)  

Very good (0.8, 0.9, 1) 

The transformation for comparative grading is seldom mentioned in the MCDM studies. 9 

In this study, we proposed a transformation method for comparative linguistic terms. 10 

For the value of the  𝑖0 -th alternative with respect to the  𝑗
0
 -th criterion, the 11 

comparative linguistic terms can be transformed to numerical terms 𝑎̂𝑖0𝑗0. The details 12 

of transformation are presented below. 13 
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• If this alternative is better than a set of alternatives Q, the value of the 1 

alternative 𝑎̂𝑖0𝑗0 = [𝑎𝑖0𝑗0
𝑙 , 𝑎𝑖0𝑗0

𝑢 ] can be determined by Eqs.(14)-(15). The lower bound 2 

of 𝑎̂𝑖0𝑗0 can be determined by the maximum value of alternatives in the set Q with 3 

respect to the 𝑗0-th criterion. The upper bound of 𝑎̂𝑖0𝑗0 can be determined by the lower 4 

bound and the maximum potential range of the fuzzy number of all alternatives with 5 

respect to the 𝑗0-th criterion. 6 

𝑎𝑖0𝑗0
𝑙 = max(𝑏𝑖𝑗0

𝑢 )

where

𝑖 ∈ 𝑄

𝑏𝑖𝑗0
𝑢 = {

𝑎𝑖𝑗0 , 𝑎̂𝑖𝑗0 ∈ 𝑁1
𝑎𝑖𝑗0
𝑢 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝑈 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

            (14) 7 

𝑎𝑖0𝑗0
𝑢 = 𝑎𝑖0𝑗0

𝑙 +max(𝜗𝑖𝑗0)

where

𝑖 = 1, . . . , 𝑚

𝜗𝑖𝑗0 = {

0, 𝑎̂𝑖𝑗0 ∈ 𝑁1

𝑎𝑖𝑗0
𝑢 − 𝑎𝑖𝑗0

𝑙 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝑈 − 𝑎𝑖𝑗0

𝐿 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

          (15) 8 

• If this alternative is worse than a set of alternatives R, the value of the 9 

alternative 𝑎̂𝑖0𝑗0 = [𝑎𝑖0𝑗0
𝑙 , 𝑎𝑖0𝑗0

𝑢 ] can be determined by Eqs.(16)-(17). The upper bound 10 

of  𝑎̂𝑖0𝑗0 can be determined by the minimum value of alternatives in the set R with 11 

respect to the  𝑗0 -th criterion. The lower bound of  𝑎̂𝑖0𝑗0 can be determined by the 12 

upper bound and the maximum potential range of the fuzzy number of all alternatives 13 

with respect to the  𝑗
0
 -th criterion. But the lower bound should be a positive number. 14 
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𝑎𝑖0𝑗0
𝑙 = max[(𝑎𝑖0𝑗0

𝑢 −max(𝜗𝑖𝑗0)),0]

where

𝑖 = 1, . . . , 𝑚

𝜗𝑖𝑗0 = {

0, 𝑎̂𝑖𝑗0 ∈ 𝑁1

𝑎𝑖𝑗0
𝑢 − 𝑎𝑖𝑗0

𝑙 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝑈 − 𝑎𝑖𝑗0

𝐿 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

         (16) 1 

𝑎𝑖0𝑗0
𝑢 = min(𝑏𝑖𝑗0

𝑙 )

where

𝑖 ∈ 𝑄

𝑏𝑖𝑗0
𝑙 = {

𝑎𝑖𝑗0 , 𝑎̂𝑖𝑗0 ∈ 𝑁1

𝑎𝑖𝑗0
𝑙 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝐿 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

            (17) 2 

• If this alternative is described as the highest or the best for benefit-type 3 

criterion or the worst for cost-type criterion, the value of the alternative 𝑎̂𝑖0𝑗0 =4 

[𝑎𝑖0𝑗0
𝑙 , 𝑎𝑖0𝑗0

𝑢 ]  can be determined by Eqs.(18)-(19). The lower bound of  𝑎̂𝑖0𝑗0  can be 5 

determined by the maximum value of all other alternatives with respect to the 𝑗0-th 6 

criterion. The upper bound of 𝑎̂𝑖0𝑗0 can be determined by the lower bound and the 7 

maximum potential range of the fuzzy number of all alternatives with respect to the 𝑗0-8 

th criterion. 9 

𝑎𝑖0𝑗0
𝑙 = max(𝑏𝑖𝑗0

𝑢 )

where

𝑖 = 1,2, . . . , 𝑖0 − 1, 𝑖0 + 1, . . . , 𝑚

𝑏𝑖𝑗0
𝑢 = {

𝑎𝑖𝑗0 , 𝑎̂𝑖𝑗0 ∈ 𝑁1
𝑎𝑖𝑗0
𝑢 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝑈 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

          (18) 10 

𝑎𝑖0𝑗0
𝑢 = 𝑎𝑖0𝑗0

𝑙 +max(𝜗𝑖𝑗0)

where

𝑖 = 1, . . . , 𝑚

𝜗𝑖𝑗0 = {

0, 𝑎̂𝑖𝑗0 ∈ 𝑁1

𝑎𝑖𝑗0
𝑢 − 𝑎𝑖𝑗0

𝑙 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝑈 − 𝑎𝑖𝑗0

𝐿 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

          (19) 11 
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• If this alternative is described as the lowest or the worst for benefit-type 1 

criterion or the best for cost-type criterion, the value of the alternative 𝑎̂𝑖0𝑗0 =2 

[𝑎𝑖0𝑗0
𝑙 , 𝑎𝑖0𝑗0

𝑢 ]  can be determined by Eqs.(20)-(21). The upper bound of 𝑎̂𝑖0𝑗0  can be 3 

determined by the minimum value of all other alternatives with respect to the 𝑗0-th 4 

criterion. The lower bound of 𝑎̂𝑖0𝑗0 can be determined by the upper bound and the 5 

maximum potential range of the fuzzy number of all alternatives with respect to the 𝑗0-6 

th criterion. 7 

𝑎𝑖0𝑗0
𝑙 = max[(𝑎𝑖0𝑗0

𝑢 −max(𝜗𝑖𝑗0)),0]

𝑖 = 1, . . . , 𝑚

𝜗𝑖𝑗0 = {

0, 𝑎̂𝑖𝑗0 ∈ 𝑁1

𝑎𝑖𝑗0
𝑢 − 𝑎𝑖𝑗0

𝑙 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝑈 − 𝑎𝑖𝑗0

𝐿 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

         (20) 8 

𝑎𝑖0𝑗0
𝑢 = min(𝑏𝑖𝑗0

𝑙 )

𝑖 = 1,2, . . . , 𝑖0 − 1, 𝑖0 + 1, . . . , 𝑚

𝑏𝑖𝑗0
𝑙 = {

𝑎𝑖𝑗0 , 𝑎̂𝑖𝑗0 ∈ 𝑁1

𝑎𝑖𝑗0
𝑙 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝐿 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

          (21) 9 

• If this alternative is better than a set of alternatives Q, but is worse than a set 10 

of alternatives R, then the value of the alternative 𝑎̂𝑖0𝑗0 = [𝑎𝑖0𝑗0
𝑙 , 𝑎𝑖0𝑗0

𝑢 ] can be determined 11 

by Eqs.(22)-(23). The lower bound of 𝑎̂𝑖0𝑗0 can be determined by the maximum value 12 

of alternatives in the set Q with respect to the 𝑗0-th criterion. The upper bound of 𝑎̂𝑖0𝑗0 13 

can be determined by the minimum value of alternatives in the set R with respect to the 14 

𝑗0-th criterion. 15 
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𝑎𝑖0𝑗0
𝑙 = max(𝑏𝑖𝑗0

𝑢 )

where

𝑖 ∈ 𝑄

𝑏𝑖𝑗0
𝑢 = {

𝑎𝑖𝑗0 , 𝑎̂𝑖𝑗0 ∈ 𝑁1
𝑎𝑖𝑗0
𝑢 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝑈 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

            (22) 1 

𝑎𝑖0𝑗0
𝑢 = min(𝑏𝑖𝑗0

𝑙 )

where

𝑖 ∈ 𝑅

𝑏𝑖𝑗0
𝑙 = {

𝑎𝑖𝑗0 , 𝑎̂𝑖𝑗0 ∈ 𝑁1

𝑎𝑖𝑗0
𝑙 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝐿 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

            (23) 2 

• If this alternative is described as about average, the value of the alternative 3 

𝑎̂𝑖0𝑗0 = [𝑎𝑖0𝑗0
𝐿 , 𝑎𝑖0𝑗0

𝑀 , 𝑎𝑖0𝑗0
𝑈 ]  can be determined by Eqs.(24)-(26). The value of this 4 

alternative can be determined by the average value of all other alternatives for the upper, 5 

most possible, and the lower bound, respectively. 6 

𝑎𝑖0𝑗0
𝐿 =

∑ 𝑏𝑖𝑗0
𝐿

𝑖≠𝑖0

𝑚−1

where

𝑖 = 1,2, . . . , 𝑚

𝑏𝑖𝑗0
𝐿 = {

𝑎𝑖𝑗0 , 𝑎̂𝑖𝑗0 ∈ 𝑁1

𝑎𝑖𝑗0
𝑙 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝐿 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

            (24) 7 

𝑎𝑖0𝑗0
𝑀 =

∑ 𝑏𝑖𝑗0
𝑀

𝑖≠𝑖0

𝑚−1

where

𝑖 = 1,2, . . . , 𝑚

𝑏𝑖𝑗0
𝑀 =

{
 

 
𝑎𝑖𝑗0 , 𝑎̂𝑖𝑗0 ∈ 𝑁1

𝑎𝑖𝑗0
𝑙 +𝑎𝑖𝑗0

𝑢

2
, 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝑀 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

           (25) 8 
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𝑎𝑖0𝑗0
𝑈 =

∑ 𝑏𝑖𝑗0
𝑈

𝑖≠𝑖0

𝑚−1

where

𝑖 = 1,2, . . . , 𝑚

𝑏𝑖𝑗0
𝑈 = {

𝑎𝑖𝑗0 , 𝑎̂𝑖𝑗0 ∈ 𝑁1
𝑎𝑖𝑗0
𝑢 , 𝑎̂𝑖𝑗0 ∈ 𝑁2

𝑎𝑖𝑗0
𝑈 , 𝑎̂𝑖𝑗0 ∈ 𝑁3

            (26) 1 

Based on the equations above, the numerical data for each alternative can be obtained. 2 

It is worth attention that if the values with respect to the reference criteria are empty 3 

too, the reference criteria should be determined before the value of other criteria can be 4 

determined. 5 

Step 3. Normalization. Normalization can be conducted by Eqs.(27)-(28) where ref. 6 

[38] is applied as the method of distance measure. 7 

𝑥̂𝑖𝑗 =

{
  
 

  
 𝑥𝑖𝑗 =

𝑎𝑖𝑗−𝐷𝑗
𝑙

𝐷𝑗
𝑢−𝐷𝑗

𝑙 , 𝑎̂𝑖𝑗 ∈ 𝑁1

(𝑥𝑖𝑗
𝑙 , 𝑥𝑖𝑗

𝑢 ) = (
𝑎𝑖𝑗
𝑙 −𝐷𝑗

𝑙

𝐷𝑗
𝑢−𝐷𝑗

𝑙 ,
𝑎𝑖𝑗
𝑢−𝐷𝑗

𝑙

𝐷𝑗
𝑢−𝐷𝑗

𝑙), 𝑎̂𝑖𝑗 ∈ 𝑁2

(𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑀 , 𝑥𝑖𝑗
𝑈) = (

𝑎𝑖𝑗
𝐿 −𝐷𝑗

𝑙

𝐷𝑗
𝑢−𝐷𝑗

𝑙 ,
𝑎𝑖𝑗
𝑀−𝐷𝑗

𝑙

𝐷𝑗
𝑢−𝐷𝑗

𝑙 ,
𝑎𝑖𝑗
𝑈−𝐷𝑗

𝑙

𝐷𝑗
𝑢−𝐷𝑗

𝑙), 𝑎̂𝑖𝑗 ∈ 𝑁3

𝑗 ∈ 𝐵   (27) 8 

𝑥̂𝑖𝑗 =

{
  
 

  
 𝑥𝑖𝑗 =

𝐷𝑗
𝑢−𝑎𝑖𝑗

𝐷𝑗
𝑢−𝐷𝑗

𝑙 , 𝑎̂𝑖𝑗 ∈ 𝑁1

(𝑥𝑖𝑗
𝑙 , 𝑥𝑖𝑗

𝑢 ) = (
𝐷𝑗
𝑢−𝑎𝑖𝑗

𝑢

𝐷𝑗
𝑢−𝐷𝑗

𝑙 ,
𝐷𝑗
𝑢−𝑎𝑖𝑗

𝑙

𝐷𝑗
𝑢−𝐷𝑗

𝑙 ), 𝑎̂𝑖𝑗 ∈ 𝑁2

(𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑀 , 𝑥𝑖𝑗
𝑈) = (

𝐷𝑗
𝑢−𝑎𝑖𝑗

𝑈

𝐷𝑗
𝑢−𝐷𝑗

𝑙 ,
𝐷𝑗
𝑢−𝑎𝑖𝑗

𝑀

𝐷𝑗
𝑢−𝐷𝑗

𝑙 ,
𝐷𝑗
𝑢−𝑎𝑖𝑗

𝐿

𝐷𝑗
𝑢−𝐷𝑗

𝑙 ), 𝑎̂𝑖𝑗 ∈ 𝑁3

𝑗 ∈ 𝐶   (28) 9 

where B indicates the benefit-type criteria, C represents the cost-type criteria. 𝐷𝑗
𝑙 and 10 

𝐷𝑗
𝑢  are the minimum and maximum values of the j-th criterion and determined by 11 

Eqs.(29)-(30); 𝑁1, 𝑁2, 𝑁3indicate the data of the crisp numbers, interval numbers, and 12 

triangular fuzzy numbers, respectively. 13 
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𝐷𝑗
𝑙 = min

𝑖
(𝑑𝑖𝑗

𝑙 )

𝑑𝑗
𝑙 = {

𝑎𝑖𝑗 , 𝑎̂𝑖𝑗 ∈ 𝑁1

𝑎𝑖𝑗
𝑙 , 𝑎̂𝑖𝑗 ∈ 𝑁2

𝑎𝑖𝑗
𝐿 , 𝑎̂𝑖𝑗 ∈ 𝑁3

             (29) 1 

𝐷𝑗
𝑢 = max

𝑖
(𝑑𝑖𝑗

𝑢 )

𝑑𝑗
𝑢 = {

𝑎𝑖𝑗 , 𝑎̂𝑖𝑗 ∈ 𝑁1
𝑎𝑖𝑗
𝑢 , 𝑎̂𝑖𝑗 ∈ 𝑁2

𝑎𝑖𝑗
𝑈 , 𝑎̂𝑖𝑗 ∈ 𝑁3

             (30) 2 

After normalization of the data, all the criteria have been shifted to benefit-type criteria, 3 

and all the data in the decision-making matrix can be transformed into values between 4 

0 and 1. Accordingly, the normalized decision-making matrix X can also be obtained, 5 

as presented in Eq.(31). 6 

𝑋 =

[
 
 
 
𝑥̂11 𝑥̂12 ⋯ 𝑥̂1𝑛
𝑥̂21 ⋱ ⋮

⋮ ⋱ ⋮
𝑥̂𝑚1 ⋯ ⋯ 𝑥̂𝑚𝑛]

 
 
 
            (31) 7 

Step 4. Choosing the ideal criterion value. An ideal alternative with all ideal values for 8 

all the criteria is constructed as a reference for sustainability performance judgment. 9 

The value of the ideal alternative regarding the j-th criterion can be determined by 10 

Eq.(32). 11 

𝑥̂𝑗
+ = (𝑥𝑗

+𝐿 , 𝑥𝑗
+𝑀, 𝑥𝑗

+𝑈)             (32) 12 

where ,L M

j jx x+ +   and U

jx+  represent the lower bound, most possible value, and the 13 

upper bound of the triangular fuzzy number respectively and are determined by Eqs.(33)14 

-(35). 15 
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𝑥𝑗
+𝐿 = max

𝑖
(𝑐𝑖𝑗
𝐿 )

𝑐𝑖𝑗
𝐿 = {

𝑥𝑖𝑗 , 𝑥̂𝑖𝑗 ∈ 𝑁1

𝑥𝑖𝑗
𝑙 , 𝑥̂𝑖𝑗 ∈ 𝑁2

𝑥𝑖𝑗
𝐿 , 𝑥̂𝑖𝑗 ∈ 𝑁3

             (33) 1 

𝑥𝑗
+𝑀 = max

𝑖
(𝑐𝑖𝑗
𝑀)

𝑐𝑖𝑗
𝑀 =

{
 

 
𝑥𝑖𝑗 , 𝑥̂𝑖𝑗 ∈ 𝑁1

𝑥𝑖𝑗
𝑙 +𝑥𝑖𝑗

𝑢

2
, 𝑥̂𝑖𝑗 ∈ 𝑁2

𝑥𝑖𝑗
𝑀 , 𝑥̂𝑖𝑗 ∈ 𝑁3

             (34) 2 

𝑥𝑗
+𝑈 = max

𝑖
(𝑐𝑖𝑗
𝑈)

𝑐𝑖𝑗
𝑈 = {

𝑥𝑖𝑗 , 𝑥̂𝑖𝑗 ∈ 𝑁1
𝑥𝑖𝑗
𝑢 , 𝑥̂𝑖𝑗 ∈ 𝑁2

𝑥𝑖𝑗
𝑈 , 𝑥̂𝑖𝑗 ∈ 𝑁3

             (35) 3 

Step 5. Calculating grey relational coefficient. The grey relational coefficient can be 4 

calculated by using Eq.(36). 5 

𝛾𝑖𝑗 =
𝛥min+𝜁𝛥max

𝛥𝑖𝑗+𝜁𝛥max
𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛       (36) 6 

where 𝛥𝑖𝑗 represents the distance of the j-th criterion with regard to the i-th alternative 7 

to that of the ideal option and is determined by Eq.(37); 𝜁 ∈ [0,1]is the distinguishing 8 

coefficient; 𝛥minand 𝛥max represent the minimum and maximum values of criteria 9 

differences, respectively, which are shown in Eqs. (38)-(39). 10 

𝛥𝑖𝑗 = 𝑥̂𝑗
+ − 𝑥̂𝑖𝑗 = {

𝑥𝑖𝑗
+𝑀 − 𝑥𝑖𝑗 , 𝑥̂𝑖𝑗 ∈ 𝑁1

max(𝑥𝑖𝑗
+𝐿 − 𝑥𝑖𝑗

𝑙 , 𝑥𝑖𝑗
+𝑈 − 𝑥𝑖𝑗

𝑢 ), 𝑥̂𝑖𝑗 ∈ 𝑁2

max(𝑥𝑖𝑗
+𝐿 − 𝑥𝑖𝑗

𝐿 , 𝑥𝑖𝑗
+𝑀 − 𝑥𝑖𝑗

𝑀 , 𝑥𝑖𝑗
+𝑈 − 𝑥𝑖𝑗

𝑈), 𝑥̂𝑖𝑗 ∈ 𝑁3

  (37)  11 

𝛥min = min
𝑖
min
𝑗
𝛥𝑖𝑗 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛       (38) 12 
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𝛥max = max
𝑖
max
𝑗
𝛥𝑖𝑗 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛       (39) 1 

Step 6. Calculating grey relational grade. The grey relational grade of the i-th 2 

alternative can be calculated by determining the weighted sum of all the grey relational 3 

coefficients, as presented in Eq.(40). 4 

𝛤𝑖 =∑ 𝑤𝑗𝛾𝑖𝑗
𝑛

𝑗=1
𝑖 = 1,2, . . . , 𝑚           (40) 5 

The alternatives thereafter can be prioritized by ranking grey relational grades in 6 

descending orders. 7 

3. Case study 8 

A hypothetical case based on the Ref. [39] about electricity generation scenarios 9 

selection was studied by using the proposed methods. There were five alternatives listed 10 

in the case study which were Systems 1-5. To evaluate the performance of the five 11 

electricity generation systems, four criteria were selected from each aspect including 12 

environmental, economic, and social aspects, and 12 criteria were selected in total (see 13 

Table 9). In the economic aspect, economic dispatch, capital cost, operation, and 14 

maintenance cost, and fuel cost are considered as the indicators for measuring economic 15 

performances. From an environmental perspective, the indicators including 16 

recyclability, global warming, freshwater ecotoxicity, and land occupation are used. For 17 

the social aspect, total employment, worker injuries, human toxicity potential, and 18 

depletion of fossil fuels are adapted as indicators for social sustainability assessment. 19 

Among those criteria, the benefit-type criteria in this case include economic dispatch, 20 
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recyclability, and total employment. The remaining criteria including capital cost, 1 

operation and maintenance cost, fuel cost, global warming, freshwater ecotoxicity, land 2 

occupation, worker injuries, human toxicity potential, and depletion of fossil fuels 3 

belong to cost-type criteria. 4 

Table 9. Criteria system  5 

Criteria  Unit 

Economic   

 Economic dispatch (EC1) no units 

 Levelised cost: capital  (EC2) £/MWh 

 Levelised cost: Operation and 

Maintenance  

(EC3) £/MWh 

 Levelised cost: fuel  (EC4) £/MWh 

Environmental  

 

 Recyclability  (EN1) ratio 

 Global warming  (EN2) kg CO2 eq/kWh 

 Freshwater ecotoxicity  (EN3) kg DCB eq/kWh 

 Land occupation  (EN4) m2yr 

Social  

 

 Employment: total  (S1) person-years/TWh 

 Worker injuries  (S2) injuries/TWh 

 Human toxicity potential  (S3) kg DCB eq/kWh 

 Depletion of fossil fuels  (S4) MJ/kWh 
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The data of the three hypothetical cases constructed by the authors for illustrating Type 1 

I, and Type II, and Type II hybrid types are shown in Supplementary Materials Table 2 

A1-A3. As for the Type I dataset, the data of the same criterion should share the same 3 

data types. Therefore, the data with respect to the economic dispatch is revised as 4 

linguistic terms, and that with respect to the recyclability is revised as interval numbers. 5 

The crisp numbers are used for the employment and worker injuries. The triangular 6 

fuzzy numbers are used for the remaining criteria. As for the Type II dataset, the data 7 

of the same alternative use the same data type. Therefore, crisp numbers, triangular 8 

fuzzy numbers, comparative linguistic terms, interval numbers, and grading linguistic 9 

terms are used to describe these five electricity generation systems, respectively. Type 10 

III hybrid type contains different data types in both column and row. In this study, the 11 

dataset of Type III is a mix of Type I and Type II datasets. 12 

3.1 Determining the weights 13 

The first step is to determine the criteria weights by using BWM according to Eqs.(2)-14 

(5). Taking the calculations of the weights of different aspects as an example.  15 

Step 1. The set of decision criteria 𝐶 = (𝑐1, 𝑐2, 𝑐3) is determined and 𝑐1, 𝑐2, 𝑐3 refer 16 

to economic, environmental, and social aspects, respectively.  17 

Step 2. The environmental aspect and the economic aspect are selected as the most 18 

important criterion and the less important criterion and written as 𝑐𝐵  and 𝑐𝑊 , 19 

respectively, because the environmental aspect plays a significant role in sustainability 20 



34 

 

and has a larger influence on the whole world. By contrast, the economic aspect is 1 

merely related to the benefit of a company.  2 

Step 3. Since environmental aspect has been recognized as “significantly important” 3 

than economic aspects in this study, the value of 𝑎𝐵1  is assigned as 4. The 4 

environmental aspect is relatively important to the social aspect, because the 5 

environmental aspect has a long-term impact on the livelihood of the earth. So, the 6 

value of 𝑎𝐵3 is 2. The last one, 𝑎𝐵2, can also be presented as𝑎𝐵𝐵=1. Therefore, the 7 

resulting Best-to-Others vector is shown in Eq.(41). 8 

𝐴𝐵 = (𝑎𝐵1, 𝑎𝐵2, 𝑎𝐵3)=(4,1,2)            (41) 9 

Step 4. Similarly, the resulting Others-to-Worst vector can be determined by Eq.(3) as 10 

shown in Eq.(42). 11 

𝐴𝑊 = (𝑎1𝑊, 𝑎2𝑊, 𝑎3𝑊)
𝑇=(1,4,2)

𝑇
           (42) 12 

Step 5. The optimal weights can be determined by solving Eq.(4) as shown in Eq.(43). 13 
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min𝜉
𝑠. 𝑡.

|
𝑤1

𝑤1
− 1| ≤ 𝜉

|
𝑤1

𝑤2
− 4| ≤ 𝜉

|
𝑤1

𝑤3
− 2| ≤ 𝜉

|
𝑤1

𝑤2
− 4| ≤ 𝜉

|
𝑤2

𝑤2
− 1| ≤ 𝜉

|
𝑤3

𝑤2
− 2| ≤ 𝜉

𝑤1 + 𝑤2 +𝑤3 = 1
𝑤1, 𝑤2, 𝑤3 ≥ 0

              (43) 1 

The solution * * *

1 2 3( , , ) (0.143,0.571,0.286)w w w =  is determined by solving the Eq.(43). 2 

The consistency ratio is obtained by using Eq.(5) as shown in Eq.(44). According to 3 

Table 6, the consistency index should be 1.63 since the maximum ratio used in this 4 

study is 4. 5 

* 0
= =0

1.63
CR

CI


=               (44) 6 

Since CR<0.1, the aspect weights are feasible and acceptable. Similar to determining 7 

the weights of these three aspects, the criteria in each aspect are adopted as inputs for 8 

BWM and the corresponding local weights of the criteria in each aspect can be obtained, 9 

respectively. The results are shown in Table 10. 10 

Then the global weights can be determined by Eq.(45) and the results are shown in 11 

Table 10. 12 

j p kw w w=                  (45) 13 
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where 
jw  represent the global weight of the j-th criterion. 

pw  indicates the aspect 1 

weight of the p-th aspect which the j-th criterion belongs to.
kw  represents the local 2 

weight of the k-th criterion in the p-th aspect. 3 

Table 10. Criteria weights 4 

Aspect Aspect 

weight 

Criterion Local 

weight 

Global 

weight 

Economic 0.143  Economic dispatch 0.500 0.071 
  

 Levelised cost: capital  0.167 0.024 
  

 Levelised cost: O and M  0.167 0.024 
  

 Levelised cost: fuel  0.167 0.024 

Environmental 0.571  Recyclability  0.429 0.245 
  

 Global warming  0.286 0.163 
  

 Freshwater ecotoxicity  0.143 0.082 
  

 Land occupation  0.143 0.082 

Social 0.286  Employment: total  0.167 0.048 
  

 Worker injuries  0.333 0.095 
  

 Human toxicity potential  0.333 0.095 
  

 Depletion of fossil fuels  0.167 0.048 

3.2 Alternatives ranking 5 

Then the electricity generation pathways in those three cases were prioritized by using 6 

the iGRA-MH method according to Eqs.(14)-(40), respectively. To better illustrate the 7 
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calculation process of the model, the dataset of Type II hybrid information (see 1 

Supplementary Materials Table A2) was taken as an example.  2 

Step 1. The missing information has been filled by linguistic terms as presented in 3 

Supplementary Materials Table A2. 4 

Step 2. The data for System 3 and System 5 are recognized as level-grading linguistic 5 

terms and comparative linguistic terms respectively. They need to be transformed 6 

expressions to numerical terms. As for level-grading linguistic terms, the information 7 

will be transformed into triangular fuzzy numbers according to Table 8 and will be 8 

added to the matrix after normalization. Taking economic dispatch with regards to 9 

System 5 as an example, the expression “very good” can be transformed to (0.8,0.9,1.0). 10 

As for comparative linguistic terms, the data can be transformed into interval numbers 11 

in step 2 according to Eqs.(14)-(26). Taking depletion of fossil fuels with regards to 12 

System 3 as an example, it is recognized as “the best” one for a cost-type criterion. 13 

Therefore, the value could be transformed according to Eqs.(20)-(21) as shown in 14 

Eq.(46).  15 

𝑎̂312 = [𝑎312
𝑙 , 𝑎312

𝑢 ]              (46) 16 

where  17 

𝑎312
𝑢 = min(𝑎112, 𝑎212

𝐿 , 𝑎412
𝑙 ) = 0.0574  18 

𝑎312
𝑙 = max[(𝑎312

𝑢 −max(𝜗112, 𝜗212, 𝜗412)), 0]=0 19 

Similarly, the remaining data of the Systems 3 and 5 can be transformed into numerical 20 

terms. 21 
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Step 3. According to Eqs.(27)-(28), the normalized decision-making matrix can be 1 

determined. The recyclable ratio with regard to System 2 can be used as an example of 2 

benefit-type criteria, and the normalization is proceeded by Eq.(47). The fuel cost 3 

regarding System 1 is used as an instance for cost-type criteria, then the normalized 4 

value could be determined by Eq.(48). 5 

𝑥̂24 = (𝑥24
𝐿 , 𝑥24

𝑀 , 𝑥24
𝑈 ) = (

𝑎24
𝐿 −𝐷4

𝑙

𝐷4
𝑢−𝐷4

𝑙 ,
𝑎24
𝑀−𝐷4

𝑙

𝐷4
𝑢−𝐷4

𝑙 ,
𝑎24
𝑈 −𝐷4

𝑙

𝐷4
𝑢−𝐷4

𝑙 )=(0,0.495,0.495)    (47) 6 

𝑥̂13 = 𝑥13 =
𝐷3
𝑢−𝑎13

𝐷3
𝑢−𝐷3

𝑙 =0.697            (48) 7 

Similarly, all data originally from Table A2 can be normalized accordingly. 8 

Step 4. The ideal criterion value can be determined by Eq.(32), and the results are 9 

presented in Eq.(49). 10 

𝑋+ =

(

 
 
 
 
 
 
 
 
 
 

(0.800,0.900,1.000)
(0.990,0.999,1.000)
(1.000,1.000,1.000)
(1.000,1.000,1.000)
(0.700,0.800,1.000)
(0.991,0.996,1.000)

(0.695,0.957,1.000)
(0.989,0.994,1.000)
(1.000,1.000,1.000)
(1.000,1.000,1.000)
(0.912,0.985,1.000)
(0.996,0.998,1.000))

 
 
 
 
 
 
 
 
 
 

           (49) 11 

Step 5. The grey relational coefficient can be calculated using Eq.(36)-(39). For 12 

example, the grey relational coefficient for recyclability with regard to System 1 can be 13 

calculated as Eq.(50). The distinguishing coefficient 𝜁=0.5  is assigned. The 14 
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distinguishing coefficient refers to how much the largest difference has an impact on 1 

the final result. If the distinguishing coefficient is closer to 1, more impact is considered 2 

in the final score. If it is closer to 0, less impact of the largest difference is considered. 3 

In this case study, the middle number is chosen, to balance the impacts. 4 

𝛾14 =
𝛥min+𝜁𝛥max

𝛥14+𝜁𝛥max
=

0+0.5×1

0.555+0.5×1
=0.474          (50) 5 

Similarly, the grey relational coefficient for all the data values in the decision-making 6 

matrix could be obtained. 7 

Step 6. The grey relational grade can be determined by Eq.(40), and the grey relational 8 

grade of the example of System 1 is presented as Eq.(51). 9 

𝛤1 =∑ 𝑤𝑗𝛾1𝑗
12

𝑗=1
= 0.071 × 0.547 + 0.023 × 0.682+. . . +0.048 × 0.334 = 0.432710 

                  (51) 11 

Then, the grey relational grade of Systems 2-5 can be calculated similarly to that of 12 

System 1. The alternatives will be finally prioritized by descending grey relational 13 

grades. Similar to the Type II hybrid dataset, the final results of iGRA-MH by adopting 14 

Type I and Type III hybrid data are shown in Table 11. 15 

Table 11. Results of iGRA-MH 16 

 Type I Type II Type III 

 Score Rank Score Rank Score Rank 

System 1 0.474 5th 0.433 5th 0.493 5th 
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System 2 0.725 3rd 0.647 3rd 0.747 3rd 

System 3 0.815 2nd 0.681 2nd 0.770 2nd 

System 4 0.853 1st 0.770 1st 0.893 1st 

System 5 0.676 4th 0.600 4th 0.564 4th 

4. Result and discussion 1 

4.1 Case study result 2 

As shown in Table 11, the case studies with different hybrid data types generate the 3 

same ranking results through the proposed MCDM framework. The prioritization 4 

sequence of this case study is System 4 > System 3 > System 2 > System 5 > System 1. 5 

The result is consistent with the data in ref. [39]. Based on the ref. [39], System 4 is 6 

superior among all electricity generation alternatives in fuel cost, recyclability ratio, 7 

global warming, land occupation, employment, human toxicity potential, and depletion 8 

of fossil fuels.  System 3 is the second priority among all alternatives. According to 9 

the study of Stamford and Azapagic [39], System 3 performs well in global warming 10 

and worker injuries and has average performance on the other criteria. System 2 is more 11 

sustainable than System 5 and System 1. Known from the original dataset, System 2 12 

performs better in capital cost, operation and maintenance cost, global warming, 13 

freshwater ecotoxicity, land occupation, worker injuries, and human toxicity potential. 14 

System 5 is more sustainable than System 1 according to ranking results in most of the 15 

criteria, including economic dispatch, fuel cost, recyclability ratio, global warming, 16 
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freshwater ecotoxicity, land occupation, employment, human toxicity potential, and 1 

depletion of fossil fuels. It is obvious that System 5 performs better in the environmental 2 

aspect comparing to System 1.  3 

As explained above, the sustainable prioritization framework has been proved feasible 4 

and rational, since the ranking result is consistent with a real-life situation. Apart from 5 

that, the results of the framework show its consistency and accuracy. Known from Table 6 

11, the ranking results of three different hybrid data types are the same. It shows the 7 

consistency and accuracy of the iGRA-MH framework. The results of the prioritization 8 

framework under hybrid information are robust with the change of data types.  9 

4.2 Evaluation 10 

To further evaluate the feasibility and consistency of generation results, the fuzzy GRA 11 

[40] was also used to rank these five alternatives. The data of the same alternatives as 12 

selected in the case study presented in ref. [39] was used for this evaluation. In this 13 

study, the minimum and maximum values are recognized as the lower and upper bound 14 

in the fuzzy number, and the central numbers are assumed to be the middle number in 15 

the fuzzy number. The details of the evaluation are presented in Supplementary 16 

Materials Part IV. Based on the assumption above, the results are shown in Table 12. 17 

Table 12. Results generated by fuzzy GRA 18 

 Score Rank 

System 1 0.474 5th 
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System 2 0.725 3rd 

System 3 0.815 2nd 

System 4 0.853 1st 

System 5 0.676 4th 

The ranking results generated by both methods are consistent which indicated the 1 

feasibility of the iGRA-MH model. As the feasibility of fuzzy GRA has been proven in 2 

ref. [40], the feasibility and accuracy of iGRA-MH have been revealed as well. 3 

To validate the feasibility of the proposed method, the Pearson’s correlation coefficients 4 

between the case study result and the comparison results are calculated based on the 5 

equations below[41].  6 

𝐶𝑜𝑟(𝐴, 𝐵) =
∑ (𝐴𝑖−𝐴̅)(𝐵𝑖−𝐵̅)
𝑚
𝑖

√∑ (𝐴𝑖−𝐴̅)
2𝑚

𝑖 √∑ (𝐵𝑖−𝐵̅)
2𝑚

𝑖

          (52) 7 

where A refers to the result of alternatives determined by the proposed method. B refers 8 

to the result of alternatives determined by evaluation method, 𝐴𝑖 refers to the value of 9 

the i-th alternative based on the proposed method. 𝐵𝑖 refers to the value of the i-th 10 

alternative based on the evaluation method. 𝐴̅ and 𝐵̅ indicate the average value of 11 

score for the proposed method and evaluation method, respectively. 12 

The coefficients are presented in Table 13. 13 

Table 13. Pearson’s correlation coefficients between different hybrid types and the 14 

evaluation result 15 

 Type I Type II Type III 
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Pearson’s correlation 

coefficients  
0.955 0.950 0.976 

The higher the value of the correlation coefficient is, the more correlated the two results 1 

are. Because the fuzzy GRA model has been peer-reviewed, the evaluation result is 2 

regarded as the recommended prioritization. In this case, the higher the value of the 3 

coefficient, the more accurate the result is. Based on this case study, Hybrid Type II is 4 

recognized as slightly more difficult to be treated and transformed to accurate numbers, 5 

because the Pearson’s correlation coefficient for Hybrid Type II and the evaluation 6 

result is slightly lower than that of other hybrid types. Since all coefficients are close to 7 

1, the ranking results of three hybrid types are highly correlated to the result of fuzzy 8 

GRA. Therefore, the proposed method for three hybrid types can be recognized as 9 

effective and feasible.  10 

4.3 Sensitivity analysis 11 

In this study, sensitivity analysis is used to evaluate the robustness and objectiveness of 12 

the model by testing the model while changing the criteria weights. The sustainability 13 

prioritization framework will be conducted repeatedly with different criteria weights. 14 

In every running, one of the criteria will be set as the major criterion and the other as 15 

minor criteria. To investigate the influence of changing the weight of a specific criterion 16 

(major criterion), the weight of one criterion will be set as the largest values in turn 17 

while the weights of other criteria are the same. This one criterion is called major 18 

criterion. In addition, the total values of weights should always be equal to 1. Therefore, 19 
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we conducted three sensitivity analyses for three different sets of criteria weights. In 1 

the first test, the weight of the major criterion is 0.12 and the weights of the minor 2 

criteria are 0.08. Secondly, 0.45 and 0.05 are used as the weights for the major criterion 3 

and minor criteria, respectively. Lastly, the weights of major and minor criteria are 0.78 4 

and 0.02, respectively. The differences of weights between major and minor criteria are 5 

increasing to test the robustness of the model. The results of sensitivity analysis are 6 

shown in Figs.4-7.  7 

 8 
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 1 

Figure 4. Sensitivity analysis results of Fuzzy GRA 2 

 3 

 4 

Figure 5. Sensitivity analysis results of iGRA-MH (Type I) 5 

 6 
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 1 

 2 

Figure 6. Sensitivity analysis results of iGRA-MH (Type II) 3 
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 1 

 2 

Figure 7. Sensitivity analysis results of iGRA-MH (Type III) 3 

Fig.4 illustrates the sensitivity analysis results of the fuzzy GRA model. Figs.5-7 4 

illustrate the sensitivity analysis results of the iGRA-MH model based on three datasets 5 

(shown in Supplementary Materials Table A1-A3). According to Fig.7, the ranking 6 

results changed with a swift of the major criterion. The model is more robust if the 7 
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ranking sequence changes less when the major criterion swifts. based on this concept, 1 

if the lines show the same trend, the model is less sensitive. It is obvious that when the 2 

difference between the weights of major criterion and minor criterion increases the 3 

model will present higher sensitivity. Since All the diagrams show similar complexity 4 

and clutter, the hybrid MCDM model proposed in this study achieved the same 5 

robustness level as the fuzzy GRA.  6 

Based on the illustration of Fig.7, when the weight of the major criterion is slightly 7 

higher than the weight of the minor criterion, the ranking of alternative keeps the same. 8 

On the one hand, the ranking results show that the prioritized sequences in each model 9 

have slight differences, but they are basically similar. System 1 definitively is the worst 10 

option in this decision-making case, and System 4 is one of the top options. On the 11 

other hand, the ranking results are similar but slightly different in these four figures, 12 

which means the revised hybrid information is slightly different from what is shown in 13 

ref. [39]. This phenomenon might be led by the uncertainty of linguistic expression, 14 

especially the comparative linguistic expression. For instance, System 5 performs the 15 

best in the fuel cost among all alternatives, since the source of System 5 is free of charge. 16 

When the decision-makers describe the performance of the alternative with respect to 17 

this criterion by using “the best”, the value will be quantified by analysing the 18 

maximum value of this criterion regarding all alternatives except System 5. In this case 19 

study, the fuel cost of System 4 is 0￡/kWh as well, so the quantified value of this 20 

criterion of System 5 is 0￡/kWh. But if System 4 is excluded from this decision-21 

making, then the value will be determined as [0,4.2] based on the proposed 22 
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transformation method. The error will be accumulated and led to differences in 1 

prioritization results. Therefore, the proposed MCDM method under hybrid 2 

information is feasible but the results will be affected by the uncertainty brought by 3 

linguistic expression. 4 

5. Conclusion 5 

It is difficult to directly solve the decision-making problems for energy systems 6 

prioritization especially under the conditions of hybrid information or missing 7 

information. MCDM methods provide a feasible way to prioritize energy systems, and 8 

the integration of MCDM and LCSA helps to analyse energy systems from a life-cycle 9 

sustainability perspective. However, few of the existing studies considered the hybrid 10 

data types in the decision-making problem. In the practice, the types of data are various 11 

since the difference in the data sources. To fill in this gap, this study defined three 12 

different hybrid data types and proposes a life cycle sustainability prioritization 13 

framework for the raking of energy systems from sustainability perspective based on 14 

the decision-making matrix with hybrid data types.  15 

In this framework, a criteria system is established for sustainability assessment of 16 

energy systems, the best-worst method is employed to determine the weights of criteria 17 

and a novel MCDM model for decision-making under hybrid information is proposed 18 

for the sustainability prioritization of energy systems. This model consists of an 19 

innovative extension of grey relational analysis to solve decision-making problem with 20 

hybrid data types.  21 
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A case study regarding electricity generation was constructed for illustrating the 1 

proposed sustainability prioritization framework and evaluating the feasibility of the 2 

developed framework to achieve energy systems ranking with hybrid information.  3 

The fuzzy GRA developed in the previous work of others, was applied to validate the 4 

results and evaluate the feasibility of the proposed method. Then, the sensitivity 5 

analysis was also conducted to investigate the robustness of the MCDM method under 6 

hybrid information proposed in this study. After the evaluations, the proposed method 7 

has been proven to be feasible for sustainability prioritization of energy systems under 8 

hybrid information. In addition, the accuracy and robustness of the proposed model 9 

have been investigated. And it could be concluded that the proposed approach is 10 

feasible for the decision-making problems with hybrid information or missing 11 

information.  12 

The iGRA-MH model solves the decision making problem with missing information 13 

and hybrid information. However, the linguistic expressions, especially comparative 14 

linguistic terms, will definitely bring uncertainty and affect the accuracy of the results 15 

of the decision-making model. Some more complicated numerical expressions for 16 

uncertainty will be used in this method to improve the transformation accuracy of 17 

linguistic terms in the further study. 18 

 19 

 20 
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