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Abstract  
This study measures the association between resources and the atmosphere, social and 
environmental aspects of energy production have become critical. In this context, the aim of 
this research is to explore the mediating effect of renewable energy patents in developing 
potential frameworks for energy policy viewpoints on the climate. The study took panel data 
from 2010 to 2017 and used a non-radial data envelopment analysis (DEA) process and panel 
data model for 30 Chinese provinces. The findings indicate that between 2010 and 2017, the 
average environmental efficiency index (EPI) of Chinese areas increased by 9.88 percent. 
When firms' internal variables are proxied by their commodity (revenue), the relationship 
term's point approximate coefficient is about 0.05. This magnitude means that a 1% rise in a 
company's assets will result in a 5% increase is estimated to be about 0.157, implying that a 1% 
rise in firm leverage is correlated with a 15.7%. Finally, based on the study results, some policy 
implications were proposed. 
1. Introduction  

Significant research is being done to measure, investigate, and enhance energy efficiency 
as environmental degradation is a serious global concern. One of its leading causes is the 
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greenhouse emissions involving carbon dioxide (CO2), which is emitted as a result of burning 
fossil fuels (Liu et al., 2020a). Burning fossils fuels is a waste of natural resources and poses 
significant environmental risks (Taghizadeh-Hesary and Taghizadeh-Hesary, 2020; Zhang et 
al., 2020). Countries that consume the most energy are also the among the largest CO2 emitters. 
National governments must, therefore, draft new policies to conserve natural resources, 
promote energy efficiency, defend territory, and attain environmental development. Some 
countries have already declared their commitment toward reducing CO2 emissions per unit of 
GDP by 40% to 45%. Faced with significant environmental challenges, countries must 
carefully consider environmental restrictions to lower energy utilization and environmental 
pollution (Iqbal et al., 2020; Olusola, 2020).  

Three types of indices—thermodynamic, physical-based, and currency-based 
indicators—are used to measure energy efficiency (Baloch et al., 2020; Chao et al., 2020; Mi 
et al., 2020; Zhang et al., 2016). The manufacturing process utilizes energy inputs such as 
natural gas, oil, and coal, along with labor and capital, to generate value, such as GDP, and 
polluting by-products, such as CO2 and sulfur dioxide (SO2) emissions. Environmental 
efficiency must not be neglected in efficiency marking protocols. Globally, industries account 
for more than one-third of total energy requirements, with analogously higher proportions of 
CO2 emissions (Taghizadeh-Hesary and Yoshino, 2020). China's development model relies 
heavily on industries; local infrastructural development and manufacturing of export-oriented 
consumer products and heavy industrial equipment mostly entail energy-intensive production 
mechanisms. Therefore, China's share of carbon-based energy consumption is higher than the 
world average. The 2010 National Economic and Social Development statistical report states 
that the processing of raw materials of petroleum and chemical products, melting and crashing 
of metal, non-metal and ferrous metal products, and electricity generation and distribution are 
categorized as energy-intensive industries (Iqbal et al., 2019; Mohsin et al., 2021). Because of 
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the rise of energy intensity and the subsequent carbon emissions, China faced massive 
international criticism, which led the government to initiate a low carbon emission policy under 
its 13th Five Year Plan (2016–2020) by setting a maximum carbon emission limit for all 
domestic energy-intensive companies (Taghizadeh-Hesary et al., 2019). It was determined in 
the program that the ferrous metal processing industry should decrease its energy use by a 
minimum of 10%, and the petrochemical and nonferrous metal industries, by 18% (Mohsin et 
al., 2018). As fossil fuels primarily drive global warming, an emphasis on energy-efficient 
production and distribution processes may be the key to mitigating this hazard. A nation’s 
economic development is correlated with its energy intensity, carbon emissions, and global 
warming parameters. Businesses and governments should, therefore, consider human beings 
and wildlife, climate, and environmental aspects while designing their respective growth 
strategies (Taghizadeh-Hesary et al., 2021). In this regard, the initiation of the green movement 
by adopting green technology solutions for industrial production and distribution can be a 
useful undertaking. Robust energy and carbon management and control coupled with a strict 
regulatory framework and better energy policies can also improve environmental quality 
significantly.  

In the past two decades, China's economy has undergone several transformations and 
achieved significant structural and economic progress, albeit at the cost of the environment. 
China’s future growth trajectory must include a combination of economic enhancement and 
environmental safety. Decreasing the emission of pollutants, which severely affect public 
health and the environment, is one of the primary goals. The economy’s environmental 
sustainability is generally measured by environmental efficiency. Environmentally efficient 
cities produce greater economic output and revenue along with fewer environmental pollutants 
such as greenhouse gases. Using a more ecologically efficient decision-making unit leads to 
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better utilization of environmental resources and delivers the most acceptable ecological and 
economic returns to investments.  

This study aims to investigate the impact of energy policies on China’s environmental 
performance (EP) and contributes to the existing literature in three ways: First, the non-radial 
data envelopment analysis (DEA) model (which minimizes environmental pollution and 
maximizes economic benefits) is used to evaluate and compare China's environmental 
performance indices (EPIs) at a provincial level. Second, energy policy, further divided into 
emission reduction and renewable energy policies, is used as a core variable. Finally, using the 
system generalized method of moments (GMM) estimation method, the study validates the 
effectiveness of various environmental regulations and assesses the nonlinear and 
heterogeneous effects of energy policy on provincial EP.  
2. Literature review 

The use of non-renewable energy inputs in the manufacturing process discharges higher 
amounts of point source pollutants, including gases such as CO2 and SO2, which harm the 
environment. To enhance energy efficiency and decrease pollutant emissions, non-renewable 
energy inputs must be efficiently distributed and conserved (He et al., 2021). Various DEA-
type linear programming models use a dual output structure to calculate energy efficiency by 
using energy and non-energy inputs and undesirable output. In recent times, different DEA 
models have been projected to measure energy and resources instantaneously.  

The hybrid power model attempts to consistently raise the individual output and decrease 
the low output to simultaneously estimate total efficiency. This is known as static analysis, and 
no change in efficiency is observed because only one year's production is measured. For several 
areas, only the annual efficiency is estimated; the measurement of production in different years 
overlooks technological progress, and efficiency is observed to be worse in multiple years. 
Energy plays a vital role in the rapid and comprehensive development of countries and also 
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facilitates the survival and development of human civilization (Taghizadeh-Hesary et al., 2020). 
Coal burning generates 85% of CO2 emissions, 73% of dust emissions, and 90% of SO2 
emissions (Zuo et al., 2020). Therefore, it is vital to manage energy consumption, climate 
change, and public health (Li et al., 2021). For an enhanced “Energy–Economy–Environment” 
structure, universal greenhouse gas emissions (Du et al., 2021) should be reduced. In this fast-
paced globalized world, energy forms the core of strong economic growth, but it is also the 
root cause of global climate change. Decision-makers must, thus, formulate economic 
development strategies, keeping environmental sustainability in mind.  

Researchers have adopted various energy efficiency measures to study the energy and 
environmental efficiency levels of many different countries and regions. DEA is one of the 
most popular and useful tools for measuring energy and EP. Despite its limitations, the 
application of DEA has some unique advantages in evaluating energy efficiency. This study 
reviews the DEA application used by previous studies on energy and environmental efficiency 
and the decomposition of the Malmquist index. For example, ( Shao et al., 2014) applied DEA 
to measure energy efficiency within the metal sector, while Ma et al. (2019) studied both energy 
and pollution efficiency for China’s mining industry. Lin and Jia (2019) evaluated the 
efficiency of environmental governance for China's energy industry. 

Moreover, Zhang et al. (2021) measured the energy efficiency of the manufacturing 
industry by applying the Malmquist index decomposition, Stochastic frontier method (SFA), 
and meta frontier DEA method. Lin and Chen (2019) measured the ecological efficiency of 
Chinese regions’ nonferrous metals industry by applying the non-radial DEA method. Du et al. 
(2020) explored the green total factor production efficiency and its determinants for China's 
metal industry using the sub-boundary and global DEA approaches. Several other studies were 
also conducted on the energy and environmental efficiency of the steel, construction, and 
chemical industries of Chinese provinces. The current literature is based mainly on EP; no prior 
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studies have objectively measured China's ecological performance from the operational front. 
Also, the different industrial sub-sectors in different regions within China’s vast territory affect 
the EP of these regions. Therefore, by accounting for the heterogeneity of industries and areas, 
the total factor energy efficiency assessment of the six energy-intensive industries in the 
Chinese provinces can help policymakers develop sustainable strategies. Furthermore, the non-
radial DEA approach toward efficiency measurement is more flexible than any other 
measurement technique as it satisfies the dual requirements of maximum economic growth and 
minimum pollution emissions. This study, thus, uses the non-radial DEA method for China’s 
EPI assessment at the provincial level. Due to the extensive acceleration of ecological 
degradation, governments have undertaken many corrective measures to promote sustainable 
development. Existing studies lack consensus on how different types of regional energy 
policies affect EP. Therefore, investigating the effect of other regional energy policies is a 
timely endeavor toward ensuring environmentally sustainable economic development in China. 
3. Methodology  
3.1. Model construction 

DEA is considered a more effective efficiency measurement tool than conventional 
econometric approaches such as regression or ratio analysis. While efficiency has been defined 
by several scholars, in this study, we consider Farrell’s (1957) definition of efficiency, drawn 
from (Koopmann, 1951), to describe the measure of efficiency that constitutes multiple inputs. 
Farrell (Farrell, 1957) states that an organization's efficiency comprises two components: 
technical efficiency and allocative efficiency. In input-oriented efficiency measurement, 
technical efficiency refers to the ratio of the optimal input to the actual information. Output-
oriented efficiency measurement relates the rate of real output to the optimal production. 

On the other hand, allocative efficiency manifests in an organization's ability to utilize its 
inputs optimally with respect to its prices and technology. Based on the objective of decision-
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making units (DMU), production or cost frontiers are used to determine the optimal input and 
output. Two different methods are recommended in the literature in this regard: parametric and 
non-parametric approaches. In the parametric approach, a functional plan is assigned to the 
frontier, but no preceding specification is applied to the non-parametric approach's border. 
Charnes et al. (1978) first followed the non-parametric process to develop the DEA model for 
measuring a single DMU's efficiency.  

Assume there are n DMUs, each signifying an administration zone. Separately, a DMU's 
non-energy input and L energy input produce the predictable cost output or low output, K. 
DMUs help attain desired production targets using fewer resources. By the usual method, a 
decrease in pollutants is not permissible. This can be resolved using different methods such as 
the opposite of worse output, bad behavior output, as the input, and statistically constructing 
the undesirable result into the desired outcome. In the study of energy and environmental 
efficiency, low production is mostly done using fossil fuels through manufacturing, which must 
be minimized if less energy is used. 

EPI1 = min θ      (1) 
s.t.  ∑ λ୨x୧୨୬୨ୀଵ + s୧୶ି  =  x୧୨଴,  i =  1, . . . , m, ∑ λ୨୬୨ୀଵ e୪୨ +  s୪ୣ ି   =  θ୪ୣ e୪୨଴,   ι =

 1, . . . L, ∑ λj୬୨ୀଵ y୰୨ −  s୰୷ା  =  y୰୨଴,    r =  1, . . . s, ∑ λ୨୬୨ୀଵ b୩୨ =  θ୩ୠb୩୨,           k =
 1, . . . , k , λ୨,S୧୶ି ,S୪ୣ ି, S୰୷ା  ≥   0,   for all j, i, l, r, 

Consider that a method decreases the unwanted output and possibly the level of ideal output 
and non-energy input. For sections between 0 and 1, the energy and environmental efficiency 
index takes a value of θ; the more superior the index, the better the region's performance in 
reducing pollutant discharges and saving energy. The corresponding part is measured to be 
energy and environmentally efficient. It cannot decrease its pollutant emissions and energy 
consumption if EPI1 = 1 (θ = 1) is zero; however, if the EPI1 < 1 (θ < 1) is not zero, then the 
corresponding region is considered environmentally inefficient and can further decrease energy 
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utilization and pollutant discharges. This type of model is the radial efficiency model and may 
not yield strong energy efficiency assessments. 

EPIଶ = min ଵଶ ቀଵ
୐ ∑ θ୪ୣ୐୪ୀଵ  + ଵ୩ ∑ θ୩ୠ୩୏ୀଵ )    (2) 

∑ λ୨x୧୨୬୨ୀଵ + s୧୶ି  =  x୧୨଴,  i =  1, . . . , m, ∑ λ୨୬୨ୀଵ e୪୨ +  s୪ୣ ି   =  θ୪ୣ e୪୨଴,   ι =
 1, . . . L, ∑ λj୬୨ୀଵ y୰୨ −  s୰୷ା  =  y୰୨଴,    r =  1, . . . s, ∑ λ୨୬୨ୀଵ b୩୨ =  θ୩ୠb୩୨,           k =

 1, . . . , k , λ୨,S୧୶ି ,S୪ୣ ି, S୰୷ା  ≥   0,   for all j, i, l, r, 
This model decreases the energy utilization and pollutant discharges by various methods 

to successfully attain the energy and environmental efficiency border. Energy and 
environmental efficiency consume altered non-proportional adjustments and assess constant 
efficiency by elected choice creators. The EP is integrated in the efficiency equation and shows 
various biases for an energy consumption presentation by decision-makers. We use this method 
to estimate the total-factor energy and environmental efficiency of the various areas because 
this model has a better-developed perceptive power than the first model. In this study, we 
design a strategy to compute the energy and environmental efficiency for various areas for 
2000–2008 to obtain data about efficiency variations.  

However, DEA window analysis is more important in increasing energy and 
environmental efficiency. It is used to develop time-varying and cross-sectional data to 
compute dynamic properties. This method works by altering medians to create efficiency 
measures, treating every DMU as an individual unit for various time periods. Therefore, the 
environmental efficiency of various areas over different periods is examined through 
overlapping windows using this technique. 

The width of a window in efficiency measurement tends to yield three or four time periods. 
This study considers a window with three widths (w=3) for attaining a consistent environment 
and energy efficiency results. The period 2010–2012 has been utilized for the first window. 
This is followed by further one-year window changes by excluding the base year and adding 
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the next one, until the last window. Thus, radial and non-radial environmental energy efficiency 
(EPI1 & EPI2) for each underlined country can be attained by applying DEA window analysis. 
4. Empirical results and discussions 
4.1. Environmental performance  

China continues to be the world's largest energy consumer, accounting for 24% of global 
energy consumption and 34% of global energy demand growth in 2018. Figure 1 presents the 
energy consumption profile of China. Energy consumption in China increased from the 10-
year average of 3.3% in 2017 and 3.9% in 2017 to 4.3% in 2018. Fossil fuel consumption was 
led by natural gas (+18%) and oil (+5.0%), while coal usage increased for the second 
consecutive year. China's energy structure is continually evolving. Although coal was still the 
primary fuel, its share of total energy consumption in 2018 (58%) reached a historical low. 
China is the world's largest importer of oil and natural gas. The dependence on oil imports rose 
to 72% in 2018, the highest in the past half-century. By 2018, the reliance on natural gas 
imports increased to 43%. There were growing concerns about energy security. Among non-
fossil fuels, solar energy consumption increased the fastest (51%), followed by wind energy 
(24%) and biomass and geothermal energy (14%). Hydropower increased by 3.2%, almost a 
third of the 10-year-average growth of 9.2%. 
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 Fig. 1 Energy consumption by source 
 

According to Table 1, the highest EPI is recorded in Hainan, Guangdong, Shanghai, 
Tianjin, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, and Sichuan. The lowest EPI is recorded in 
Shanxi, Qinghai, Heilongjiang, Yunnan, Gansu, Xinjiang, and Ningxia. Provinces in the central 
and eastern regions have high EPI, while those in the western and north-east areas have low 
EPI. Compared with the eastern and central provinces, China's western provinces have a lower 
EPI due to a poor economic foundation and backward technology. The low EPI is also because 
of highly energy-intensive industries located in north-eastern China. The old industrial base 
performs low on EPIs due to outdated equipment and severe environmental pollution.  
Table 1. The EPI of China at the provincial level from 2010 to 2017 

Province 2010 2011 2012 2013 2014 2015 2016 2017 
Guangdong 0.9 0.891 0.9 0.9 0.882 0.9 0.855 0.882 
Hainan 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 
Shanghai 0.9 0.9 0.9 0.9 0.81 0.9 0.9 0.9 
Zhejiang 0.9 0.9 0.891 0.9 0.855 0.846 0.873 0.828 
Jiangsu 0.891 0.891 0.882 0.873 0.873 0.891 0.9 0.9 
Beijing 0.846 0.792 0.873 0.837 0.792 0.9 0.9 0.9 
Fujian 0.774 0.693 0.621 0.693 0.648 0.594 0.666 0.684 
Tianjin 0.756 0.702 0.711 0.828 0.702 0.774 0.738 0.801 
Qinghai 0.657 0.765 0.684 0.675 0.522 0.54 0.531 0.531 
Jiangxi 0.558 0.468 0.441 0.468 0.513 0.432 0.414 0.459 
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Gansu 0.549 0.405 0.234 0.234 0.189 0.216 0.171 0.198 
Henan 0.531 0.549 0.423 0.45 0.396 0.387 0.342 0.378 
Liaoning 0.504 0.531 0.495 0.495 0.495 0.54 0.477 0.351 
Ningxia 0.495 0.468 0.378 0.342 0.279 0.333 0.288 0.387 
Sichuan 0.459 0.351 0.279 0.315 0.243 0.243 0.198 0.288 
Anhui 0.441 0.369 0.495 0.531 0.495 0.612 0.441 0.567 
Hebei 0.432 0.522 0.45 0.468 0.504 0.468 0.468 0.486 
Hubei 0.387 0.36 0.342 0.396 0.351 0.459 0.423 0.513 
Chongqing 0.369 0.459 0.333 0.396 0.234 0.306 0.297 0.342 
Guangxi 0.369 0.414 0.306 0.315 0.333 0.351 0.333 0.351 
Jilin 0.369 0.486 0.468 0.477 0.459 0.495 0.324 0.477 
Inner Mongolia 0.315 0.378 0.342 0.351 0.351 0.468 0.396 0.324 
Hunan 0.27 0.225 0.27 0.315 0.27 0.306 0.279 0.612 
Shaanxi 0.261 0.243 0.189 0.675 0.18 0.243 0.252 0.324 
Guizhou 0.225 0.27 0.153 0.18 0.135 0.288 0.243 0.333 
Yunnan 0.216 0.18 0.162 0.162 0.171 0.198 0.171 0.216 
Xinjiang 0.162 0.387 0.171 0.108 0.108 0.153 0.081 0.207 
Heilongjiang 0.144 0.162 0.117 0.117 0.36 0.108 0.081 0.108 
Shanxi 0.135 0.135 0.126 0.108 0.099 0.099 0.072 0.09 
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Figure 2 The spatial distribution of EPI in 2010 and 2017 

According to Figure 2a, Beijing, Guangdong, Shanghai, Hainan, Qinghai, Guangxi, 
Shandong, Zhejiang, Jiangsu, and Liaoning have the highest EPI (0.82–1.00), whereas Guizhou, 
Henan, Inner Mongolia, Heilongjiang, Yunnan, and Shanxi have the lowest EP (0.07–0.20). 
According to Fig. 2b, an EPI score within the range of 0.74–1 is evident in Jiangsu, Shandong, 
Guangdong, Hainan, Zhejiang, Shanghai, and Fujian. In contrast, with a score of 0.07–0.26, 
Shanxi, Chongqing, Yunnan, Xinjiang, Heilongjiang, Sichuan, Hebei, Hubei, Hunan, Guangxi, 
and Guizhou show lower values. Beijing, Shanghai, Jiangsu, Guangdong, and Hainan are 
considered the most environmentally efficient provinces. With a particular focus on the western 
and north-eastern regions, China requires further improvement in EPI at the provincial level. 
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With better energy management and pollution control, Jiangxi and Sichuan show a relatively 
high EPI. The worst values are observed for the central region of Shanxi, the western part of 
Xinjiang, Yunnan, and Gansu. A significantly poor economic foundation, backward 
technological conditions, and low efficiency are evident in these provinces.  
4.2. Average EPI values 

Figure 3 shows the average EPI results from 2008 to 2017 based on the non-radial DEA 
model. From 2010 to 2017, the average EPI of China at the provincial level showed an upward 
trend. However, the average EPI was still weak, with an average value between 0.44 and 0.52, 
far below the optimal value of 1. Chinese industries consume large amounts of energy and emit 
large amounts of CO2, resulting in low power and EPI, and thus, environmental inefficiency. 
However, the Chinese government has emphasized pollution control measures, and high 
emitting industries such as petrochemicals and metals have been subjected to severe 
environmental scrutiny. Because of this ecological regulatory initiative, the EPI for high carbon 
emission industries has dramatically increased. This finding is also in line with (Wu et al., 
2020), who investigated the energy and environmental efficiency of Chinese provinces. 

 Figure 3. The average EPI of China's at the provincial level from 2010 to 2017 
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4.3. Econometric modelling and variable selection 
4.3.1. The dynamic panel data model effect  

The following equation examines the relationship between environmental regulation and 
total factor energy efficiency:  

EPI௜௧ = α + βEPI௜,௧ିଵ + γenergy_policy௜௧ + θ ௜ܺ௧ + ௧ݑ + ௜ݒ + ௜௧ߝ      (3) 
In this equation, ߙ represents the intercept, and ߛ ,ߚ and ߠ are the coefficients to be estimated. 
energy_policy௜௧ is the independent variable, that is, the vector that represents the energy policy. 
EPI௜,௧ିଵ is the first lag term of EPI௜௧. This lagged dependent variable EPI௜,௧ିଵ is added as the 
independent variable considering the impact of the lagged EPI on the current EPI. ௜ܺ௧  matrix 
indicates the set of control variables. ݑ௧  is fixed time effect, ݒ௜  is a single fixed-effect, and ߝ௜௧ 
is a random error term.  
(a) Dependent variable: The dependent variable for this study is the EPI. 
(b) Independent variables: By providing economic incentives, services, new legislation or 
laws, and public education, current energy policies are expected to affect EPI (Liu et al., 2020b). 
The Chinese government's energy policy has been classified as a reduction or a renewable 
energy policy. We used the current number of provincial laws, regulations, and detailed plans 
as key independent policy variables, based on information collected from the Law Star website. 
To check and classify the provincial policies belonging to each group, we used keywords such 
as “emission reduction” and “renewable energy.” In addition to energy policy variables as 
experience variables, socioeconomic and environmental variables were also used as control 
variables to illustrate their EPI impact. These included secondary industry GDP, consumer 
spending, education level, and population density. Ecological variables included the emission 
levels of private cars, exhaust emissions, investment in treatment of departmental pollution 
sources, and investment in anti-pollution programs. Financial support in terms of investment 
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in industrial waste source treatment and pollution prevention programs is necessary for 
environmental pollution management.  
Table 2. Descriptive statistics  

Variable Mean SD Min Max 
EPI 4.579 0.338 2.708 5.72 

EMRP 2.056 1.517 0 4.89 
REPO 0.938 1.014 0 3.584 
GDP 3.822 0.212 2.955 4.119 

CEXP 9.382 0.459 8.5 10.59 
EDU 8.026 0.257 7.021 8.503 

REPAT 4.714 1.263 2 7 
PopD 3.88 0.295 3.037 4.495 
InvP 4.322 1.673 −2.303 7.256 

 
4.3.2. The empirical results of the panel data model 

The panel data model approach was applied to fix the issues in dynamic panel estimation 
as stated in Equation 3. System GMM assumes that there is no autocorrelation within the 
disturbance terms. This approach also resolves the endogeneity issue by taking lag variables. 
The results of the GMM test are presented in Table 5. Additionally, the study also included 
Arellano–Bond (AR), Sargan–Hansen, and Wald chi-square test results for a more robust 
estimation. The AR test comprises both first and second-order autocorrelation of residuals tests, 
known as AR (1) and AR (2), respectively. The equation's residuals are regarded to not be 
autocorrelated if AR (2) is accepted and AR (1) is not. The Sargan–Hansen test is applied to 
check for homogeneity among the variables. The Wald test is performed to check the level of 
significance of each regression. 

 
Table 3. The results of the panel data regression 
 Emission reduction policy Renewable energy policy 
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Constant 1.0384(0.117) 1.0586***(0.1225) 1.1112***(0.0519) 1.1477***(0.0701) 
EMRP 0.0286***(0.1551)    
EMRP_lag  0.0342***(0.1137)   
REPO   0.0304***(0.0052)  
REPO_lag1    0.0605***(0.0761) 
GDP -0.0342***(0.0011) -0.0350***(0.0012) -0.0294***(0.0203) -0.0301***(0.0214) 
CEXP 0.0151(0.0014) 0.0160*(0.0017) 0.0209(0.0159) 0.0241*(0.0022) 
EDU 0.03251***(0.0445) 0.03607***(0.045) 0.04251***(0.0624) 0.04399***(0.0661) 
REPAT 0.0009**(0.0006) 0.0011***(0.0008) 0.0010***(0.0009) 0.0012***(0.001) 
Pop -0.0120***(0.0038) -0.0135***(0.004) -0.0201***(0.0114) -0.0263***(0.0118) 
InvP 0.0293***(0.0046) 0.0311***(0.0053) 0.0413***(0.0058) 0.0438***(0.0059) 
AR (1) test −2.0632 −2.0841 −2.4149 −2.5243 

 [0.023] [0.023] [0.019] [0.013] 
AR (2) test −1.1591 −1.2374 −1.2580 −1.3001 

 [0.171] [0.138] [0.166] [0.154] 
Sargan test 21.3797 19.9903 23.5612 18.5531 

 [0.068] [0.069] [0.11] [0.139] 
Wald test 176396 280449 192133 305156 
  [0] [0] [0] [0] 
N 240 240 240 240 
Note: Standard errors are in parentheses (). ***= 1% level of significance; **= 5% level of 
significance, and *=10% level of significance  

Table 3 shows the result of the Tobit regression analysis for the study variables for four 
different models. It is observed that the lagged EPI coefficients are positive and statistically 
significant at a 1% level of significance, showing that the present EPI performance is affected 
by the previous period's EPI's performance. It is further observed that the coefficients of 
emission reduction policy (EMRP) and renewable energy policy (REPO) are 0.0286 and 
0.0304, respectively, indicating that both EMPR and REPO are statistically significant at the 
1% level. The results confirm that provincial renewable energy policies and emission reduction 
have different effects on improving EPI. This shows that energy policy positively influences 
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the improvement in the EPI. This is in line with the Porter effect for China. Meanwhile, the 
control variables' regression estimation shows that both GDP and population negatively affect 
the EPI at 1% level of significance in all cases.  

A 1% increase each in GDP and population reduces the EPI by 3.42% and 1.2%, 
respectively. On the other hand, investment in education and investment in anti-pollution 
projects have a significantly positive effect at a 1% level of significance. A 1% increase in 
education investment and investment in anti-pollution projects improves EPI by 3.25% and 
2.93%, respectively. This affirms that spending more on education and air pollution control 
can help in improving EPI. Renewable energy patents positively affect EPI. On the other hand, 
it is observed that consumption expenditure has no significant influence on EPI improvement. 
Considering the probable lag effect of energy policy, the estimation of emission reduction 
policy and renewable energy policy was performed taking the lagged values of EMRP and 
REPO. 

The results were identical to those of the baseline regression, reflecting a statistically 
significant EMRP over EPI, and the control variables are also consistent with the estimated 
coefficients. However, for the case of REPO, the coefficients (0.0605) of lagged variables were 
found to be positive and statistically significant at a 1% level of significance, proving that EPI 
is affected by lag terms. For a rigorous REPO practice, the influence of the “innovation offset” 
is more powerful than that of the “compliance cost” effect in the long run. This result matches 
the findings of Guo and Yuan (2020) and (Xu and Chen, 2019), who argued that taking the 
lagged variables instead of current variables may increase the chances of a positive and 
significant effect on energy efficiency.  
4.3.3. The moderating effect of renewable energy patents  

Table 4 presents the results for the moderating effect of renewable energy patents on 
China’s EPI. The findings indicate that all the moderating coefficients are positive and 



18 
 

statistically significant at a 1% level of significance, validating the moderating effect of 
renewable energy patents (REPAT) for energy policy. The regression results show that a 
greater number of REPAT can boost the EPI. Porter argues that, by making a well-structured 
energy policy, a positive effect can be established based on renewable energy patents and 
technology empowerment. Therefore, the moderation effect of renewable energy patents and 
energy policy on the EPI must be studied further to enhance the EPI to the highest level possible.  
Table 4. Regression results of the renewable energy patents’ effect on the EPI 

  EMRP REPO EMRP REPO 
EPI_lag1 0.3711***((0.0026) 0.3996***(0.0011) 0.4028***((0.0031) 0.4154***(0.0013) 
Constant 1.1383***(0.0390) 1.1099***(0.0590) 1.2353***(0.0490) 1.0723***(0.0590) 
EMRP 0.0293***(0.0556)       
EMRP_lag1 0.0415***(0.0603)       
REPO   0.0322**(0.0046)     
REPO_lag1   0.0519***(0.0054)     
EMRP* REPAT     0.0410***(0.0069)   
EMRP_lag1* REPAT     0.0466***(0.0072)   
REPO* REPAT       0.0912***(0.1120) 
REPO_lag1* REPAT       0.1032***(0.0589) 
GDP -.0306***(0.0033) -0.0375***(0.0046) -0.0323***(0.0042) -0.0391***(0.0051) 
CEXP 0.0158(0.0020) 0.0162(0.0017) 0.0183*(0.0021) 0.0204(0.0018) 
EDU 0.2491*(0.0248) 0.3466(0.0516) 0.3157(0.0346) 0.0112(0.1737) 
REPAT 0.0006**(0.0002) 0.0010**(0.0001) 0.0009***(0.0003) 0.0013(0.0002) 
Pop -0.0122**(0.0046) -0.0239***(0.0054) -0.0126***(0.0051) -0.0301**(0.0056) 
InvP 0.0193***(0.0177) 0.0201***(0.0170) 0.0234***(0.0186) 0.0355***(0.0199) 
AR(1) test −2.2932 −2.1575 −2.3024 −2.1235 
  [0.023] [0.019] [0.023] [0.013] 
AR(2) test −1.3401 −1.2380 −1.2552 −1.1895 
  [0.1749] [0.1382] [0.1411] [0.1312] 
Sargan test 21.3771 17.8685 20.1098 15.596 
  [0.0752] [0.1123] [0.0706] [0.1269] 
Wald test 198472.3 232216 300239.2 291644.1 
  [0] [0] [0] [0] 
N 240 240 240 240 
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4.3.4 The dynamic threshold model 
The moderating effects model fails to identify the key areas and relevant environmental energy 
policy breaks. This study thus considered a single threshold model in line with the idea of 
(Hansen 1999) non-dynamic panel threshold model to explore the nonlinear causality between 
energy policy and the EPI and confirm the rationale of the sample interval segment in reducing 
the errors in model estimate. The following section addresses the energy policy variable as the 
threshold-dependent variable to construct a threshold effect model as follows:  
௜௧ܫܲܧ  = ߙ + ௜௧ିଵܫܲܧଵߚ + ௜,௧ܴܧଶߚ ∘ ሺܳ௜ܫ ≤ Cሻ + ௜,௧ܴܧଵߜ ∘ ሺܳ௜ܫ > Cሻ + ∑ ௞ܺ௞௜௧ହ௞ୀଵߜ + ௜ߙ +

௧ݑ +  ௜௧   (4)ߝ
C is the estimated threshold value, and I(·) is the symptomatic function, which holds true if the 
corresponding condition is equal to 1 and false if the value is 0. The test results may indicate 
the presence of multiple thresholds, allowing extensions from the base single threshold model 
to double and numerous threshold models. 
4.3.5 Analysis of threshold regression test 

We first checked the number of thresholds to perform threshold regression analysis. In 
this study, we used Hansen's threshold panel model with bootstrap technology and repeated it 
for 500 iterations to test the threshold. We found a major dual-threshold effect of pollution 
mitigation and clean energy policies on the environmental efficiency index, wherein energy 
policy is the threshold component. The results of the importance assessment are summarized 
in Table 5. The impact of agricultural systems on carbon emissions can be seen in Model 1, 
while the impact of urbanization on carbon emissions can be seen in Model 2. The single-value 
and dual-value p-value threshold models passed the 1% significance test (as shown in Model 
1), confirming the dual-threshold effect. The estimated thresholds were 0.240 and 0.82, each 
within the 95% confidence intervals [0.225, 0.692] and [0.692, 0.817], respectively. The 1% 
significance test also showed a potent dual-threshold effect in Model 2. The estimated 
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thresholds were 0.762 and 0.823 and [0.801, [2.863] and [0.762, 2.861] were the corresponding 
95% confidence intervals (Table 6). 

 Table 5. Results of the threshold test  Threshold test F-value P-value Critical value 
 1% 5% 10% 

Model 1 Single 52.589∗∗∗ 0.000 24.557 14.670 10.134 
Double 28.661∗∗∗ 0.008 24.734 15.678 10.940 

Model 2 Single 57.481∗∗∗ 0.000 24.521 14.987 10.623 
Double 27.229∗∗∗ 0.000 2.893 −5.832 −11.843 

 
Table 6. Estimated threshold variables 
Threshold variables  Estimated thresholds 95% confidence interval 

Model 1 γ1 0.240 [0.220, 2.762] 
 γ2 0.821 [0.762, 2.823] 

Model 2 γ1 0.762 [0.801, 2.163] 
γ2 0.823 [0.762, 2.361] 

 
Table 7 presents the level of provincial EPI based on the threshold values. The number of 

provinces with an EPI of less than 0.301 increased from 62.3% to 85.2% between 2010 and 
2017 and showed an upward trend throughout the period. Simultaneously, provinces with EPI 
levels between 0.301 and 0.438 increased from 3.2% to 22.6%, indicating improved provinces' 
EPI during the study period. Provinces with an EPI higher than 0.438 also showed a similar 
steady growth trend. This happened due to the increasing levels of regional economic and 
technological development (Xu and Chen, 2019; Zhao et al., 2020), from 9.7% to 16.1%, and 
the growth of the regional innovation system. However, after 2013, provinces’ EPI with a 
regional economic development level higher than 0.438 changed. Between 2010 and 2017, the 
proportion of regions with a regional economic development level of less than 0.438 declined 
from approximately 90.3% to 83.9%. Regional technological innovation has different positive 
effects on regional sustainable development capabilities. During the study period, the 
proportion of areas where regional technological innovation contributed to sustainable 
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development dropped from 87.1% to 61.3%. Also, the proportion of regions where 
technological innovation weakly affected sustainable development increased from 3.2% to 
22.6%. Therefore, it can be concluded that the overall situation in China was optimistic for the 
study period. When the LR value is 0, the corresponding threshold parameters of the provincial 
EPI are 0.346 and 0.456, respectively. The threshold estimate is the interval of the provincial 
EPI. When the confidence interval is 95%, it is less than the LR = 6.503. Therefore, the 
confidence intervals of the threshold estimate of 0.324 and 0.447 are [0.030, 0.709] and [0.038, 
0.539], respectively. The true threshold value, that is, the authenticity is used to test the two 
threshold estimates of the dual-threshold model.  
Table 7. The level of provincial EPI with respect to the threshold value  
 Low threshold  Medium  threshold High 

threshold  EPI≤ 0.301 0.301 < EPI ≤ 0.438 EPI > 0.438 

2010 
Anhui, Chongqing,  Chongqing,  Fujian, Gansu, Guangxi, 
Guizhou, Hainan,  Heilongjiang, Jiangxi, Jilin,  Ningxia, 
Qinghai, Shanxi, Xinjiang,  Xizang,  Yunnan, 
Shanxi 

Beijing, Zhejiang, 
Hebei, 

Jiangsu, 
Shandong, 
Guangdong 

2011 
Anhui ,Chongqing ,Chongqing ,Fujian ,Gansu, Guangxi, 
Guizhou ,Hainan ,Heilongjiang, Inner Mongolia, Jiangxi, 
Jilin, Ningxia, Qinghai, Shanxi, Xinjiang, Xizang, 
Yunnan, Shanxi 

Zhejiang, Henan 
Jiangsu, 
Shandong, 
Guangdong 

2012 
Heilongjiang, Jiangxi, Hainan, Anhui, Shanxi, 
Chongqing, Chongqing, Guangxi, Jilin, Shanxi, Fujian, 
Inner Mongolia, Qinghai, Gansu, Xizang, Ningxia, 
Yunnan, Guizhou, Beijing,  Xinjiang 

Hebei, Liaoning, 
Henan 

Jiangsu, 
Zhejiang, 
Shandong, 
Guangdong 

2013 
Heilongjiang, Fujian,  Guangxi,  Shanghai,  Xizang,  
Jiangxi,  Hainan,  Chongqing,  Jilin,  Shanxi,  Anhui,  
Inner Mongolia,  Gansu,  Shanxi,  Yunnan,  Qinghai,  
Guizhou,  Chongqing, Beijing,  Ningxia,  Xinjiang 

Hebei, Liaoning, 
Henan, Hubei, 
Sichuan 

Jiangsu, 
Zhejiang, 
Shandong, 
Guangdong 

2014 
Heilongjiang,  Fujian,  Hunan,  Shanghai,  Yunnan,  
Jiangxi,  Guangxi,  Chongqing,  Jilin,  Shanxi,  Anhui,  
Inner Mongolia,  Shanxi,  Xizang,  Guizhou,  Gansu,  
Chongqing,  Hainan, Beijing,  Qinghai,  Ningxia,  
Xinjiang 

Hebei, Liaoning, 
Hubei, Hunan, 
Sichuan 

Jiangsu, 
Zhejiang, 
Shandong, 
Henan, 
Guangdong 

2015 
Heilongjiang,  Fujian,  Hubei,  Shanghai,  Sichuan,  
Jiangxi,  Hunan,  Chongqing,  Jilin,  Shanxi,  Anhui,  
Inner Mongolia,  Yunnan,  Guizhou,  Chongqing,  
Xizang,  Hainan,  Guangxi, Beijing,  Shanxi,  Gansu,  
Qinghai,  Ningxia,  Xinjiang 

Hebei, Liaoning, 
Shanghai, Hubei, 
Hunan, Sichuan 

Jiangsu, 
Zhejiang, 
Shandong, 
Henan, 
Guangdong 

2016 Hainan,  Heilongjiang,  Fujian,  Liaoning,  Chongqing,  
Shanghai,  Jiangxi,  Anhui,  Hunan,  Shanxi,  Jilin,  Inner 

Being, Hebei, 
Liaoning, Shanghai, 

Jiangsu, 
Zhejiang, 



22 
 

Mongolia,  Guizhou,  Sichuan,  Hubei,  Yunnan,  
Chongqing,  Henan, Guangxi,  Xizang,  Shanxi,  Gansu,  
Qinghai,  Ningxia,  Xinjiang 

Hubei, Hunan, 
Sichuan 

Shandong, 
Henan, 
Guangdong 

2017 
Liaoning,  Shanghai,  Jiangxi,  Jilin,  Hainan,  Anhui,  
Chongqing,  Fujian,  Inner Mongolia,  Hebei,  
Heilongjiang,  Shanxi,  Sichuan,  Chongqing,  Guangxi,  
Guizhou,  Hunan,  Hubei, Beijing,  Yunnan,  Xizang,  
Shanxi,  Gansu,  Qinghai,  Ningxia,  Xinjiang 

Being, Hebei, 
Liaoning, Shanghai, 
Hubei, Hunan, 
Sichuan 

Jiangsu, 
Zhejiang, 
Shandong, 
Henan, 
Guangdong 

 
Table 8 presents the results of regression for the threshold model. As the values of 

emission reduction policies and renewable energy policies exceed the corresponding thresholds, 
the positive impact of energy policy on EPI gradually increases. The coefficient estimates for 
the threshold effect model are 0.0571 and 0.012, respectively, and there is an improvement in 
their corresponding level of significance from 5% to 1%. This indicates that when the energy 
policy's pull-out position improves by 1%, the EPI increases by 3.32% to 8.05%. It proves that 
the J-shaped curve has a marginal growth trend. These results depict how different regulations 
affect the causality between environmental regulations, the EPI, and the threshold or turning 
point in this relationship. 
Table 8. Threshold regression results  
  EMRP REPO EMRP REPO 
EPI_lag1 0.00499***(0.02) 0.0084***(0.016) 0.00502***(0.02) 0.0079***(0.017) 
EMRP  < γ1 0.0332**(0.019)  0.0274**(0.018)  
EMRP≥ γ1 0.0805***(0.108)  0.160***(0.069)  
REPO < γ2  0.0202*(0.019)  0.0013**(0.04) 
REPO ≥ γ2  0.0924***(0.025)  0.110***(0.045) 
GDP −0.707(0.844) −0.422(1.018) −0.716(0.848) −0.363(1.032) 
CEXP 0.0266(0.119) 0.0794(0.07) 0.0239(0.121) 0.0776(0.07) 
EDU 0.542***(0.271) 0.201***(0.4) 0.543***(0.274) 0.248***(0.417) 
REPAT 0.217(-0.259) 0.688∗∗∗(0.208) 0.214(0.269) 0.690∗∗∗(0.209) 
Pop −0.0169∗(0.009) −0.00538(0.01) −0.0100(0.009) −0.00683(0.01) 
InvP 0.423(0.431) 0.423(0.439) 0.345(0.403) 0.494(0.444) 
EMRP* REPAT 2.234***(0.845) 0.604**(0.53) 2.206***(0.848) 0.631***(0.534) 
EMRP_lag1* REPAT 8.138**(2.778) 8.409***(3.796) 8.166***(2.764) 7.920***(3.771) 
REPO* REPAT 1.217***(0.468) 0.0310(0.493) 1.133∗∗(0.461) 0.0673(0.499) 
REPO_lag1* REPAT 0.466∗∗∗(0.168) 0.703∗∗(0.278) 0.439∗∗∗(0.166) 0.660∗∗(0.291) 
Observations 240 240 240 240 
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Constant 2.914(3.099) 0.832(3.56) 2.822(3.121) 0.553(3.607) 
R-squared 0.441 0.109 0.439 0.101 
Threshold Value 2.15 0.09 2.146 0.08 
Threshold Test p-value 0.047 0.00 0.146 0,00 
 
4.4 Robustness analysis 

The robustness of the EPI analysis of Chinese provinces was measured using the newly 
developed data set having [±15]  in DEA. Similar to mathematical composite indicators, 
robustness analysis can be measured by assigning equal weight to underlying indicators. One 
major concern is to evaluate the changing score of environment performance by adding [±15] 
shock to the existing data set.  

We analyzed the EPI of Chinese provinces by putting the original simulations through the 
maximal multiplier, minimal multiplier, and a combination of both models without ignoring 
any variable. Table 9 shows little variation in the EPI (almost similar to the actual mean), 
indicating the robustness of our results.  
Table 9. Robustness analysis of the EPI 
Province 2010 2011 2012 2013 2014 2015 2016 2017 
Guangdong 0.91 0.88 0.92 0.91 0.89 0.92 0.91 0.89 
Hainan 0.90 0.92 0.94 0.90 0.90 0.94 0.95 0.91 
Shanghai 0.92 0.92 0.90 0.92 0.88 0.93 0.90 0.92 
Zhejiang 0.90 0.91 0.89 0.92 0.86 0.85 0.87 0.87 
Jiangsu 0.91 0.89 0.88 0.87 0.87 0.89 0.92 0.92 
Beijing 0.88 0.79 0.87 0.84 0.79 0.92 0.91 0.92 
Fujian 0.78 0.69 0.62 0.69 0.65 0.59 0.67 0.65 
Tianjin 0.78 0.70 0.71 0.83 0.70 0.77 0.74 0.82 
Qinghai 0.69 0.77 0.68 0.68 0.52 0.54 0.53 0.55 
Jiangxi 0.62 0.47 0.44 0.47 0.51 0.43 0.41 0.46 
Gansu 0.59 0.41 0.23 0.23 0.19 0.22 0.17 0.21 
Henan 0.59 0.55 0.42 0.45 0.40 0.39 0.34 0.39 
Liaoning 0.56 0.53 0.50 0.50 0.50 0.54 0.48 0.42 
Ningxia 0.49 0.47 0.38 0.34 0.29 0.35 0.33 0.41 
Sichuan 0.45 0.35 0.28 0.32 0.24 0.24 0.20 0.31 
Anhui 0.49 0.37 0.50 0.53 0.50 0.61 0.44 0.58 
Hebei 0.47 0.52 0.45 0.47 0.50 0.47 0.47 0.43 
Hubei 0.40 0.36 0.34 0.40 0.35 0.46 0.42 0.53 
Chongqing 0.39 0.46 0.33 0.40 0.23 0.31 0.30 0.38 
Guangxi 0.39 0.41 0.31 0.32 0.33 0.35 0.33 0.32 
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Jilin 0.39 0.49 0.47 0.48 0.46 0.50 0.32 0.49 
Inner 
Mongolia 0.37 0.38 0.34 0.35 0.35 0.47 0.40 0.39 
Hunan 0.28 0.23 0.27 0.32 0.27 0.31 0.28 0.63 
Shaanxi 0.26 0.24 0.19 0.68 0.18 0.24 0.25 0.33 
Guizhou 0.22 0.27 0.15 0.18 0.14 0.29 0.24 0.34 
Yunnan 0.25 0.18 0.16 0.16 0.17 0.20 0.17 0.29 
Xinjiang 0.15 0.28 0.17 0.11 0.11 0.15 0.08 0.22 
Heilongjiang 0.14 0.16 0.12 0.12 0.36 0.11 0.08 0.12 

 

 
Figure 3. Environmental performance trend 

 
The robustness analysis score shows that energy consumption in China increased from 

3.3% in 2017 and 3.9% in 2018 to 4.3% in 2018. The total energy consumption in 2017 (57%) 
reached a historical low. Beijing, Guangdong, Shanghai, Hainan, Qinghai, Guangxi, Shandong, 
Zhejiang, Jiangsu, and Liaoning showed the maximum EPI (0.83–1.00), whereas Guizhou, 
Henan, Inner Mongolia, Heilongjiang, Yunnan, and Shanxi had the lowest EPI (0.07–0.20). 
Therefore, China requires further development in terms of EPI at the provincial level.  
5. Discussion and policy implications  

This study used non-radial DEA and panel data models for 30 Chinese provinces using 
panel data from 2010 to 2017. The results showed that economic development affects energy 
policies and industrial structure, but in different directions, leading to environmental 
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degradation. The p-values of the single and double threshold models passed the 1% 
significance test, implying the existence of a double threshold effect, with estimated thresholds 
of 1.240 and 2.821. EPI scores were within the range of 0.74 to 1 Jiangsu, Shandong, 
Guangdong, Hainan, Zhejiang, Shanghai, and Fujian. With scores of 0.07–0.26, Shanxi, 
Chongqing, Yunnan, Xinjiang, Heilongjiang, Sichuan, Hebei, Hubei, Hunan, Guangxi, and 
Guizhou showed lower values. This study performed a comparative analysis of the causality 
and communication mechanisms in different situations. Economic development significantly 
increases carbon emissions, as confirmed through DEA and econometric estimation. 
Furthermore, it is an indirect source of increased carbon emissions by limiting the strength of 
environmental regulations and requiring upgradation of the industrial structure. The two 
mechanisms leading to environmental deterioration are entirely different.  

The coefficient estimates for the threshold effect model are 0.0571 and 0.012, respectively, 
with an improved level of significance from 5% to 1%. This implies that when the pull-out 
position of the environmental regulations improves by 1%, the high emitting industries' total 
factor energy efficiency increases by 1.2% to 5.7%. The central region exhibits higher level 
and scale than the eastern and western regions, with apparent heterogeneity in the east, west, 
and central regions. Regardless of the environmental regulations or industrial structure, the 
central area's transmission path is much more important and extensive than that of the eastern 
and western regions. The insignificant impact of environmental regulations and industrial 
structure hinders the transmission path in the western region. 

The study highlights that revenues must match responsibilities so that local governments 
have both financial resources and corresponding environmental management rights and 
obligations to improve environmental quality. Also, making full use of transfer payments, tax 
rebates, and other support systems to enhance environmental governance and public service 
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capabilities of local governments is necessary to stimulate their enthusiasm and efficiency 
toward protecting the environment.  

Furthermore, policymakers should pay close attention to the distortionary effects of 
energy consumption on local government behavior and maintain close supervision to improve 
environmental governance efficiency. It is necessary to reduce pollution through cooperation 
and flexible government expenditure in environmental protection and monitoring. 
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