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Abstract 

The use of waste heat powered wastewater desalination by coupling an organic Rankine 

cycle (ORC) with reverse osmosis (RO) has been recognized as a promising solution to 

desalination. Herein, a tightly-coupled system that allows for optimally customizing the 

RO-ORC to a background process via heat integration (HI) is developed to minimize 

the expected desalination cost, while accounting for the seasonal wastewater variability. 

Moreover, the developed RO-ORC-HI system can improve the membrane permeability 

by preheating the feed wastewater. To achieving these goals, a stochastic optimization-

based solution strategy is proposed by sequentially considering (1) a Pinch-based 

Duran-Grossman model embedded with uncertainty realization for performing optimal 

HI during process optimization; (2) a flexible multi-scenario heat exchanger net (HEN) 

synthesis model that minimizes the total annualized cost of HEN based on a customized 

stage-wise superstructure. Finally, the behaviors of the proposed system and solution 

strategy are illustrated through its comparison with a deterministic solution. 
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Nomenclature 

Indices    

id ideal φ A big constant 

in inlet   

k stage Sets  

out outlet C cold streams 

p Pinch candidate C' extended cold streams 

R residual EQP ORC equipment 

c critical GSP gas state points 

cu cold utility H hot streams 

cw cooling water LSP liquid state points 

ele electricity PC Pinch candidates 

hu hot utility S scenarios 

i 
process hot stream/ORC equipment/ RO 

stage 
SP State points 

j process cold stream STR process streams 



s scenario   

sp state point of ORC Binary Variable  

sub subcooled y Existence of the heat exchanger 

sup superheating   

tp two phase Continuous Variable  

SW Saline wastewater CC Capital cost 

  CPF Concentration polarization factor 

Parameters  FCp Heat capacity flowrate 

A 
Temperature related dimensionless 

coefficients/ membrane permeability 
HD Heat deficit 

AF Annualized factor dt Temperature difference of the exchanger 

B Pressure related dimensionless coefficient m Mass flowrate 

CNup Maximum allowed conductance OC Operating cost 

Cp Heat capacity P Pressure 

Ea Activated energy Q Heat load 

FF Fouling factor q 
Heat load of the heat exchanger in the 

superstructure 

HRAT Heat recovery approach temperature Qp Total flow rate of permeate 

HW Hot water QSIA 
Heat load of cold streams above the Pinch 

candidates 



J Permeate flux across a membrane element QSOA 
Heat load of hot streams above the Pinch 

candidates 

NOK Number of stages in superstructure sldt 
Slack variable for temperature approach 

violations 

NOS Number of scenarios T Temperature 

OT Operating time TAC Total annualized cost 

PGP Power generation profit TCF Temperature correction factor 

prob 
Probability of occurrence of a specific 

feeding scenario 
W Work 

R Ideal gas constant Z Compressibility factor 

u Constant Sum of slack variables 

w Constant Π Osmotic pressure 

ε A small constant ∆Π̅̅ ̅̅  Actual osmotic pressure difference 

 



1. Introduction 

Both waste heat and wastewater are inevitable by-products of the process industries 

such as petrochemical, thermo-power, and metallurgy plants. It is reported that more 

than 50% of the energy that is used in the world is wasted as low-grade heat (Mahmoudi 

et al., 2018). Most of the waste heat is ultimately discharged into the ambient due to a 

lack of receiving users, which in turn causes enormous energy losses and additional 

environmental impacts. Meanwhile, the inorganic salt ions (i.e., Na+, Ca2+, Cl-, and 

SO4
2-) are easy to accumulate during each unit operation but hard to dispose of, 

resulting in a large amount of high-salinity wastewater at a concentration of 3000~8000 

ppm (Zhu et al., 2017). Due to the growing concerns over brine disposal, most countries 

and regions have forced the process industries to operate with more rigorous discharge 

specifications or even zero liquid discharge. Treating such high-salinity wastewater for 

reuse or discharge would consume a massive amount of energy, which is responsible 

for more than half of the desalination cost (Pan et al., 2020). This indicates that waste 

heat and wastewater are inextricably and reciprocally dependent from the viewpoint of 

water-energy nexus, thus entailing a need to integrally address the industrial waste heat 

recovery and high-salinity wastewater treatment. 

In the past decade, considerable efforts have been made to minimize the energy 

cost for high-salinity wastewater treatment by developing various integrated waste 

heat-driven thermal desalination technologies such as multi-stage flash (Janajreh et al., 

2013), multi-effect distillation (Mohammed et al., 2021), thermal vapor compression 

(Cao et al., 2018), and other hybrid systems (Goh et al., 2021). Recently, membrane-



based reverse osmosis (RO) desalination has played a dominant role in new installations 

in the process industry due to its advantages over thermal desalination in modularized 

design and installation, lower capital cost, and higher energy efficiency. Despite these 

advantages, the energy intensity (about 0.8~2.5 kWh/m3) remains a major drawback for 

the application of RO desalination. This is caused by the fact that RO desalination only 

relies on electricity or mechanical energy, instead of thermal energy, to drive the pumps 

and other electrical components, which takes up to about 50~80% of an RO facility's 

operational and maintenance costs especially as operated at high water recoveries. 

(Abdelhady et al., 2015) 

The organic Rankine cycle (ORC) is a mature technology to recover low-grade 

thermal heat for power generation, which enables the development of waste heat-driven 

wastewater desalination by coupling RO and ORC. In principle, the maximum amount 

of energy recovered by ORC depends on the heat transfer behavior between working 

fluid and waste heat source. The previous studies mainly focused on improving the 

techno-economic behaviors of the coupled system by (1) selecting the most appropriate 

type and composition of the working fluids (Zhang et al., 2021), and (2) integrally 

designing of processes and working fluids for ORCs (Schilling et al., 2021). Besides, 

note that there are generally multiple waste heat sources in practice that need to be 

recovered from the industrial background process. For this reason, the techno-economic 

parameters of ORC and its heat integration (HI) with the background process should be 

optimized simultaneously to take better advantage of ORCs. This leads to a challenging 

issue for HI since the flow rates and temperatures of some participated streams are 



variable. 

In order to obtain a feasible solution, Duran and Grossmann (1986) pioneered a 

sequential method that synthesized the heat exchanger network (HEN) and utility 

system while considering all the possible integration options between process and 

utility system. Desai and Bandyopadhyay (2009) proposed a Pinch-based heuristic 

method for appropriate integration and synthesis of an ORC as a cogeneration process 

with a background process. Chen et al. (2014) proposed a two-step method in which 

the HEN is optimized before the integration with the heat recovery cycle. Yu et al. (2017) 

adopted the Duran-Grossmann model (1986) for integrating an ORC into a background 

process, which optimally considered the modifications of the ORC to increase the 

thermal efficiency and heat recovered by the working fluid. Martelli et al. (2017) 

proposed an MINLP model and two-stage algorithm to tackle the simultaneous 

synthesis of completely integrated utility systems and HENs. Xuan et al. (2020) 

proposed a two-level optimization strategy for the simultaneous optimization of ORC 

and HI involving the area estimation of heat exchangers with variable temperatures and 

flowrates based on vertical heat transfer of Pinch technology. In Elsido et al. (2021a), 

they proposed a new sequential algorithm based on the idea of optimizing the 

independent mass flow rates of the Rankine cycle superstructure with a derivative-free 

algorithm. In all, these sequential methods do not allow to rigorously optimize the trade-

off between capital cost, operating cost, and energy efficiency due to their sequential 

decomposition. Besides, utility systems are selected and sized in the first step by solving 

a MILP problem which only requires a linear objective function (Elsido et al., 2019). 



It is worth noting that most of the previous studies focused on the simultaneous 

process optimization and HI of the stand-alone ORC integrated with a background 

process without consideration of uncertainty. As the RO desalination is further coupled 

with an ORC, however, the variability of the industrial wastewater stream has to be 

addressed since it is considerably more variable in salinity, flow rate, and temperature 

in different seasons. For instance, in coal-chemical plants, the salinity profile of the 

wastewater entering the disposal facility generally shows an evident upward trend as 

both flow rate and inlet temperature are reduced in cold seasons. Besides, the 

experimental studies highlighted that the permeability of the membranes was more 

affected by the feed temperature rather than the feed pressure and concentration. 

(Shaaban and Yahya, et al., 2017) The permeate flux can increase by up to 60% as the 

feed temperature increases from 20 oC to 40 oC, which theoretically leads to much lower 

specific energy consumption. Nevertheless, the energy benefit of running a RO plant 

over a range of temperatures is significant only as the temperature variation covers a 

limited range due to the complex correlation among temperature, flow rate, and salinity 

of the feed wastewater (Huang et al., 2019). Ignorance of the variation and correlation 

of these parameters makes it is hard to maintain a feasible and steady-state operation, 

which leads to an impractical techno-economic behavior of the coupled system. 

From the abovementioned background, it is found that dealing with the uncertainty 

on feed wastewater has become one of the practical issues in optimally customizing an 

RO-ORC into an industrial background process. In the last decades, various solution 

methods for flexible HEN synthesis have been developed to account for the different 



uncertainties (Kang and Liu, 2019). These methods can be classified into four main 

categories that include sensitivity analysis (Hafizan et al., 2020), resilience and 

flexibility analysis (Zhang, 2011), and multi-scenario synthesis (Elsido et al., 2021b). 

Although the previous methods made it possible to perform flexible HEN synthesis 

with consideration of variable temperatures and flow rates, the detailed process design 

has been ignored due to their computational difficulty when integrated with HEN. For 

the considering coupled system, note that the wastewater variability not only affects the 

HEN topology, but also has a profound impact on both waste heat recovery and 

membrane performance. To the best of our knowledge, there is existing literature on the 

deep integration of ORC, RO, and HI under uncertainty for integrally addressing the 

practical issue of waste heat recovery and wastewater treatment under uncertainty. 

Moreover, existing literature do not report any approach to improve the performance of 

membrane simultaneously in the optimal design and synthesis of the coupled system. 

In this study, a new industrial waste heat-driven RO-ORC-HI system is developed 

for producing qualified permeate under changing feed wastewater conditions. It not 

only allows for the efficient integration of the RO-ORC into a background process with 

HI, but also the remarkable improvement in membrane permeability by flexibly 

adjusting the preheating temperature of the feed wastewater. To perform simultaneous 

stochastic process optimization and flexible HEN synthesis, the problem is first 

decomposed into five sub-problems, which are solved sequentially by using a two-step 

solution strategy. In particular, a finite number of correlated scenarios that 

accommodate the diverse nature of wastewater (salinity, flow rate, and temperature) is 



generated via the Monte Carlo sampling technique. It is then embedded in a Pinch-

based Duran-Grossman model for minimizing the total annualized cost of the coupled 

system without considering the detailed HEN topology. Based on a customized stage-

wise superstructure, the multi-scenario HEN of the coupled system is synthesized by 

sequential flexibility test and isothermal mixing assumption removal. Finally, an 

illustrative example based on a styrene plant is used to verify the effectiveness of the 

proposed strategy. 

2. Problem Statement 

The coupled system as illustrated in Fig. 1 can be divided into three interactive 

subsystems namely HI, ORC, and RO subsystems. The problem addressed in the study 

is stated as follows. Within the background process, given are a set of hot and cold 

streams (H and C) with known heat capacity flow rates, and each process stream has to 

be cooled or heated from its supply temperature to the target value. In addition, a set of 

available hot and cold utilities (HU and CU) is specified. To present a highly integrated 

RO-ORC-HI system, both the hot water (HW, in the ORC subsystem) and the feed 

wastewater (SW, in the RO subsystem) can exchange heat with process streams in the 

background process. Specifically, they are regarded as cold streams to recover the waste 

heat from the background process. The extended sets of the cold streams and all process 

streams are defined as C'=C∪{SW, HW} and STR=H∪C', respectively. The power 

generated by ORC is mainly used for driving the pumps and other electrical components 

of the RO subsystem. If the power generation is enough, the surplus power can be 

directly sold at market price to reduce the desalination costs. Otherwise, on-grid 



electricity can make up for the shortage of supply. 

 

Fig. 1. The schematic diagram of the coupled RO-ORC-HI system 

In Fig. 1, the saline wastewater entering the RO desalination is considerably more 

variable in salinity, flow rate, and temperature in different seasons based on a long-term 

recording. Additionally, note that these uncertain parameters normally have symmetric 

correlations, i.e., it is observed that the flow rate profile of wastewater generally shows 

an evident increase as the ambient temperature increases from a cold season to a warm 

one; whereas in turn, the increased flow rate lowers the salinity of wastewater. The 

variability of these correlated parameters not only would decrease the techno-economic 

benefits of process integration among three subsystems, but also has an underlying 

impact on HI performance and HEN topology. These uncertain parameters, together 

with the variable hot water in the ORC subsystem, making it hard for conventional 

combined HEN synthesis and process optimization methods to handle such problems. 

From the abovementioned statements, the research challenges of the developed RO-

ORC-HI system mainly include how to properly account for seasonal variability related 



to the feed wastewater, how to develop optimal process designs based on stochastic 

optimization, and how to synthesize the flexible HEN during stochastic optimization 

with unknown/uncertain variables. 

3. Outline of the Solution Strategy 

To address the research challenges related to the developed RO-ORC-HI system, 

the problem is decomposed into five sub-problems and solved sequentially by a two-

step solution strategy, as illustrated in Fig. 2. In step I, it seeks to perform the stochastic 

optimization of the developed process flow sheet while handling the problem of optimal 

HI. First, Pinch-based Duran-Grossman model (Duran and Grossmann, 1986) coupled 

with ORC thermodynamic model and RO desalination model is adopted to perform 

simultaneous HI and process optimization. A deterministic non-linear programming 

(NLP) model (P1) that only accounts for the nominal conditions is formulated for the 

coupled system. Thereafter, a stochastic multi-scenario NLP model (P2) is developed 

by modifying (P1) to fully account for the diverse nature of the wastewater variability. 

In (P2), we employ a correlated scenarios generation approach that includes uncertainty 

characterization and Monte Carlo sampling to process input data and generate a proper 

size of distinct correlated scenarios (periods), as detailed in Section 4.1.4. Based on the 

solution of (P2), the maximum waste heat recovery and the minimum consumption of 

hot and cold utilities without considering detailed HEN are obtained. Also, the 

corresponding optimal flow rate, inlet and outlet temperatures of hot water, as well as 

the outlet temperature of saline wastewater in each scenario are resolved. 

In step II, to further obtain the detailed HEN, the generated scenarios should be 



divided into two groups, namely initial and testing scenarios. The initial scenarios are 

incorporated into a multi-scenario HEN synthesis model (P3) to derive the HEN 

topology by minimizing the total annualized cost of the HEN (TACHEN). The obtained 

structure of the HEN and the maximum allowed conductance (CNup) of each heat 

exchanger are further used as input parameters for performing a flexibility analysis in 

(P4). Meanwhile, the testing scenarios are sequentially passed to (P4) to validate the 

flexibility of the network. If the result of a flexibility test does not satisfy the target, the 

corresponding testing scenario will be identified as the “critical scenario”. The critical 

scenarios together with initial scenarios are all passed to model (P3) to re-synthesize 

the multi-scenario HEN. This iteration process continues to execute until all testing 

scenarios satisfy the flexibility target. For a specific HEN that has passed the flexibility 

test, the isothermal mixing assumption should be removed from the HEN. For this 

purpose, an NLP improvement model (P5) is finally developed by fixing the binary 

variables. 



 

Fig. 2. Outline of the solution strategy 

Through sequentially solving (P2)~(P5), the minimum expected desalination cost 

of the coupled system with flexible HEN is obtained. The final HEN design consists of 

the optimal placements of heat exchangers, heaters, coolers, as well as the minimum 



sizes of heat-transfer units which ensure feasible operations within the specified ranges 

of uncertainty. 

4. Model Description and Formulation 

4.1. RO-ORC-HI system 

In this section, the process synthesis and formulation of the RO-ORC-HI system 

are detailed for both deterministic and stochastic methods. To reduce the computational 

burden, the following assumptions are adopted: (a) constant physical properties; (b) 

regenerator and turbine bleeding are not included in ORC modelling; (c) an isothermal 

RO membrane; (d) influence of temperature variation on salt passage across the 

membrane channel is ignored (Wang et al., 2018); (e) feed wastewater only contains 

monovalent salt (NaCl) and is supplied at the ambient temperature (Li, 2015); (f) 

counter-current heat exchanger without pressure drop and fluid dynamics; (g) only 

utility duties and bypasses can be adjusted during operation of the heat exchanger. 

4.1.1 Duran-Grossmann model 

The HI subsystem collects all process streams from the background process, along 

with the hot water and saline wastewater streams from the ORC and RO subsystems to 

perform HI. In this coupled system, the heat loads of hot water and wastewater streams, 

as well as the heat capacity flow rate of ORC are unknown or uncertain. For addressing 

this issue, Duran-Grossmann model is adopted for automatically implementing HI 

during process optimization. This model is based on the Pinch method, but fixed 

temperature intervals are not required to determine the energy target. Instead, the inlet 



temperatures of all streams are considered as Pinch candidates defined as PC = {Ti
in| i

∈STR}. The inlet temperatures of hot streams are considered as Pinch candidates. As 

for cold streams, the Pinch candidates are the sum of their inlet temperatures and the 

heat recovery approach temperature (HRAT), which is set as 10 oC (Tajik Mansouri et 

al., 2019) in this study. 

 p in

i i
T T ,  i H, p PC=     (1) 

 
p in

j j
T T HRAT ,  j C', p PC= +     (2) 

In this way, the heat loads of all hot and cold streams (QSOA and QSIA) above the 

corresponding Pinch candidates can be calculated by Eqs. (3) and (4), respectively. 

 ( ) max{0, } max{0, }p in p out p

i i i

i H

QSOA x FCp T T T T ,  p PC


 = − − −     (3) 

 
'

max{0, ( )}
( )

max{0, ( )}

out p

jp

in p
j C j

T T HRAT
QSIA x ,  p PC

T T HRAT

 − −
=  

− − −  
   (4) 

The heat deficit above each Pinch candidate is derived by Eq. (5). Then, the Pinch 

point is considered as the Pinch candidate with maximum heat deficit, and the 

corresponding hot utility consumption can be determined by Eq. (6). 

 ( ) ( ) ( )p p pHD x QSIA x QSOA x ,  p PC= −    (5) 

 ( ) ( )p

hu
Q x HD x ,  p PC    (6) 

Once the hot utility is determined, the cold utility can be derived from a heat 

balance as shown in Eq. (7). 

 
'

( ) ( )in out out in

cu hu i i i j j j

i H j C

Q Q FCp T T FCp T T
 

= + − − −    (7) 

It should be pointed out that most of the NLP solvers require a continuous first-

order differential. Therein, a smooth function is imported to approximate the max 

operators in Eqs. (3) and (4), as given by 



 21
max{0, }

2
     + +

 
  (8) 

where ξ is the scalar argument and ε is a small constant between 10-3 and 10-6. 

4.1.2 ORC thermodynamic model 

 

Fig. 3. (a)The ORC flowsheet and (b) T-S diagrams of ORC 

Accurate thermodynamic properties calculation is computationally challenging in 

both process simulation and optimization. To obtain a reliable solution of the coupled 

system, a rigorous thermodynamic model of ORC must be constructed. This is essential 

to predict the true physical conditions of organic working fluid and intermedium as 

mathematically integrating an ORC into the background process. In this study, R600a 

(isobutane) is chosen as the working fluid of ORC. To improve the safety of the 

operation, hot water is used as an intermedium to transfer heat from the heat source to 

the working fluid. Fig. 3(a) shows the schematic flowsheet of the ORC subsystem. Here, 

seven different states for modelling the ORC are chosen and mapped into the T-S 

diagram as shown in Fig. 3(b). Thus, a state point set SP={sp|1, 2, 3, 4, 5, 6, 7} that 

refers to the thermodynamic state at different points is defined to facilitate the model 



formulation. Furthermore, to avoid the coincidence issue of state points 4 and 5 in the 

non-superheating thermodynamic cycle, the set SP can be divided into two subsets, 

namely liquid state points LSP={lsp|1, 2, 3} and gas state points GSP={gsp|4, 5, 6, 7}. 

For each of the phase conditions at the state points, Peng-Robinson equation of state is 

used for thermodynamic properties calculation due to its applicability to wide ranges of 

temperature and pressure. The form of this equation for pure components is given by: 

3 2 2 2 2 3(1 ) ( ) 0
sp sp sp

Z B uB Z A wB uB uB Z AB wB wB , sp SP− + − + + − − − − − =   (9) 

where Z is the compressibility factor; A and B are temperature- and pressure-related 

dimensionless coefficients; u and w are the constants that rely on the actual equations 

of state, herein u=2 and w=–1 (Yu et al., 2018). The detailed information for the Peng-

Robinson equation is provided in Section 1 of Supplementary Information (SI). 

Once the thermodynamic properties calculation is completed, the energy balance 

and cost estimation in ORC operation can be determined sequentially, as detailed in 

Eqs. (S9)~(S33) in SI. The total annualized cost of this subsystem (TACORC) as well as 

the power generation profit (PGP) are given by 

 ORC cw cw i

i EQP

TAC  OC m Cp+AF CC


=       (10) 

 ele ORC
PGP  OT Pr W=     (11) 

where OCcw, mcw, and Cp represent the operating cost, mass flow rate, and heat capacity 

of cooling water used in the subsystem, respectively; AF, OT, and Prele represent the 

annualized factor, operating time, and electricity price, respectively; CCi represents the 

capital cost of equipment i in equipment set EQP, as given by Eqs. (S25)~(S33) in SI. 



4.1.3 RO desalination model 

As shown in Fig. 4, a dual-stage, once-through RO desalination process with 

consideration of feed stream preheating is employed in the RO subsystem. The feed 

wastewater stream is circulated by a low-pressure intake pump (IP) to the suction of a 

pretreatment unit for impurity removal and chemicals injection (Ghobeity and Mitsos, 

2010). The pretreated stream is preheated by exchanging heat with process streams via 

PH-1, and then is split into two branches at point S. To be in line with the actual 

wastewater treatment process (Huang et al., 2019), the upper branch is pressurized by 

a mid-pressure pump (MPP) to reach the target pressure, while the lower one passes 

through a PX to recover the pressure energy from the retentate of the last stage RO 

block. The spiral-wound FILMTEC BW30-400 and SW30-400 @elements (Solutions, 

2010) specifically designed for the desalination of brackish water and seawater are 

employed for the first- and second-stage RO, respectively. The aforementioned two 

branches mix at point M-1 and then enter the first stage RO block. The resulting 

retentate is further introduced to the next stage RO block by a high-pressure feed pump 

(HPP) for enhancing water recovery. Finally, the resulting permeate products with 

desired quality specification leaving these two RO blocks mix at point M-2 as the 

product of this integrated system. 



 

Fig. 4. Schematic diagram of the RO subsystem 

The separation performance of RO membranes is mainly determined by the 

difference between solute and permeate permeability according to the solution diffusion 

model (Wang et al., 2014). For each stage of RO, the permeate flux across a membrane 

element is the product of the membrane permeability Ai and the net driving pressure 

Pi
net, as given by 

 ( ) {1,2}
2

d

P net F i

i i i i i i

P
J A P A P , i


= =  − −     (12) 

where ΔP
F 

i  is the transmembrane pressure of feed stream, ΔΠi
̅̅ ̅̅ ̅ is the actual osmotic 

pressure difference ΔP
d 

i /2 is the average pressure drop between retentate and feed 

streams. Note that, the membrane permeability Ai should be corrected as: 

 {1,2}
i ref

A A FF TCF,  i=      (13) 

where Aref is the water permeability at the reference temperature; FF and TCF are the 

membrane fouling factor and temperature correction factor, respectively(Ghobeity and 

Mitsos, 2010; Huang et al., 2019). The permeate flow rate will increase as the feed 

stream temperature increase (T
out 

SW ), the TCF can evaluate the influence aforementioned 

via an Arrhenius-like correlation as given by 



 
1 1

exp ( ) {1,2}; { }
298

i

i out

j

Ea
TCF ,  i  j SW

R T

 
=  −   

  

  (14) 

In Eq. (19), R is the ideal gas constant, Eai is the activation energy given by: 

  
o

o

22000 J/mol  T 25 C
,  {1,2};    

25000 J/mol  T 25 C

out

j

i out

j

Ea i j SW
 

=  


，

，
  (15) 

As most of the NLP solvers require the continuous derivatives for constraints, the 

impulse activation energy can be smoothed by the following function 

  
(T 25)

3000
22000 , {1,2};    

1
− +

= +  
+

out
j

i
Ea i j SW

e
  (16) 

where φ is a big constant typically between 104 and 106. 

For each stage of RO, ΔΠi
̅̅ ̅̅ ̅ can be expressed as the product of the feed stream (Πi

F), 

concentration polarization factor (CPFi), and the concentration ratios of the feed and 

retentate streams (C
F 

i  and C
R 

i ) as given by Eq. (17). Note that, the phenomenon of the 

concentration polarization will be intensified as the increase in recovery ratio per 

pressure vessel (RRi). As such, CPFi that depends on the average recovery ratio can be 

approximated by constraint shown in Eq. (18) (Asatekin et al., 2007). Besides, 

assuming that the feed stream contains only NaCl salt, Πi
F is calculated by Van’t Hoff 

equation in Eq. (19). 

 , {1,2} =   
R

Fi

i i iF

i

C
Π CPF Π  i

C
  (17) 

 
0.7

exp( ), {1,2}i

i pv

i

RR
CPF i

N


=    (18) 

  
2

( ), {1,2};


= −  

out

jF R F

i i i

NaCl

RT
Π C C   i  j SW

M
  (19) 

where N
pv 

i  denotes the number of membrane elements inside a pressure vessel; MNaCl, 

R and ρ denote the molar mass of NaCl, ideal gas constant, and mass density of the 



stream, respectively. 

The salt concentrations of the permeate and retentate streams can connect with the 

feed concentrations by using the following constraints  

 (1 ) {1,2}P F

i i
C sr C ,  i= −    (20) 

 {1,2}
1

F

R i

i

i

sr C
C ,  i

RR


= 

−
  (21) 

where sr is the salt reject factor of the membrane, which indicates the ratio of salt flux 

in the feed stream not across the membrane element. 

The total flow rate of permeate of the system is calculated by: 

 {1,2}e e P

p i

i

Q S N J ,  i=    (22) 

where Ne is the number of membrane elements inside an RO block and S
e 

i  is the active 

surface area for a membrane element. Once the mass balance is completed, the energy 

balance of the RO subsystem can be further determined, as detailed in Eqs. (S34)~(S39) 

in SI. 

The total annualized cost of the RO subsystem (TACRO) is made up of a total of 

the operating cost (OCRO) and the annualized capital cost (AF×CCRO) as given in Eq. 

(28). For brevity, the detailed calculations of OCRO and CCRO are detailed in Eqs. 

(S40)~(S51) in SI. 

 RO RO RO
TAC =OC +AF CC   (23) 

4.1.4 Correlated scenarios generation 

This study focuses on the generation of stochastic scenarios to properly describe 

the seasonal uncertainty associated with the wastewater data (salinity, flow rate, and 



temperature of feed wastewater). It should be noted that some uncertain parameters (i.e., 

salinity and flow rate) normally have an asymmetric relationship that inevitably affects 

the sampling points in the space of interest (Huang et al., 2019). Sampling the space 

that does not appear in the real world would lead to a waste of computing resources. 

For addressing this issue, this study leverages the historical data provided by plant 

engineers and starts with an uncertainty characterization that assumes that all uncertain 

parameters can follow multivariate Gaussian correlated distribution, as shown in Fig.2. 

In this way, the uncertain parameters are mathematically modelled as a finite set of 

correlated scenarios with known probabilities of occurrence, and their corresponding 

random values restricted by the distribution boundaries are generated via the Monte 

Carlo sampling technique (Shastri and Diwekar, 2011). It should also be noted that the 

same probability of occurrence is presumed for all correlated scenarios, and each 

correlated scenario corresponds to a single point in the multivariate probability 

distribution. 

In practice, the correlated scenarios can be generated from the multivariate 

Gaussian correlated distribution via a pseudorandom number generator implemented in 

MATLAB toolbox (i.e. mvnrnd function) based on the Mersenne algorithm (Matsumoto 

and Nishimura, 1998). The probability density function for correlated random 

parameter sets (X1,…, Xd) with sample size n is given by: 
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( ) exp[ ( ) ( )]
2(2 ) det( )

T
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n
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−= − −  −


  (24) 

where μi and det(Σ) are the mean value of each parameter set and the corresponding 

determinant of covariance matrix dXd. The diagonal elements of Σ containing the 



variances for each parameter (σ
2 

i ) form a symmetric positive definite matrix. The off-

diagonal elements that describe the implying correlation between uncertain parameters, 

as given by 

 ( ) ( ) i j

ij ij i j ij
D X D X    = =   (25) 

where ρij and σij denote the correlation matrix and covariance between parameters. Note 

that, ρij contains the information on each pair of correlated parameters by setting all 

non-diagonal elements with a value between −1 and 1 (Onishi et al., 2017). Herein, a 

value of ρij ranging between -1 and 0 indicates a negative correlation, while 0 and 1 

indicate a positive correlation. In addition, ρij=±1 indicates the strongest correlations 

and 0 indicates non-correlation. The generated correlated scenarios set is defined as S 

= {1, 2, … , NOS}. The parameter NOS indicates the number of scenarios. 

4.1.5 Objective function 

As shown in Fig. 2, the original optimization problem involved in this study is a 

deterministic NLP model where a single set of process variables is considered to obtain 

the minimum total annualized cost of the coupled system regardless of the cost of the 

heat exchangers in the HEN, which are subject to three types of constraints including 

the Duran-Grossmann model, ORC thermodynamic model, and RO desalination model. 

The generic form of the deterministic problem is given in (P1). 

(P1)        

min (

) / ( )

Duran- Grossmann model Eqs. (1) ~ (8)

ORC thermodynamic model Eqs.(9) ~ (16),Eqs.(S9) ~ (S28)

         RO desalination mo

hu hu cu cu ORC

RO p

 Obj= OC Q OC Q TAC

                  +TAC PGP Q OT

s.t.     

          

 

+ +

− 

del Eqs.(17) ~ (34),Eqs.(S29) ~ (S46)

 

where OChu and OCcu are the operating costs related to the hot utility and cold utility. 



The generated correlated scenarios along with their corresponding probabilities 

are then used as input data for solving the stochastic optimization problem. In particular, 

the underlying effects of uncertain parameters are propagated through incorporating 

these scenarios into detailed techno-economic modelling of the coupled system that 

includes detailed mass and energy balances, techno-economic equations, and 

constraints for each scenario, as described in Sections 4.1.1~4.1.3. The stochastic model 

of the coupled system is formulated as a multi-scenario NLP model as shown in (P2), 

which is optimized to obtain an optimal solution by minimizing the expected value of 

the objective distribution. The objective function accounts for the capital investment in 

all equipment, as well as the expected expenses related to equipment operation and 

maintenance (i.e., external utilities, membrane clean and replacement, and chemical 

dose) for desalination. 

(P2)     

min

/ ( )

Duran- Grossmann model Eqs. (1) ~ (8)

ORC thermodynamic model Eqs.(9) ~ (16

exp

s s

s S

hu hu cu cu

s p

s S ORC RO s

   Obj = prob Obj

OC Q OC Q
                    = prob Q OT  

TAC TAC PGP

s.t.     

          







 + +  
   

+ −  





), Eqs.(S9) ~ (S28)

RO desalination model Eqs.(17) ~ (34), Eqs.(S29) ~ (S46)

 

           

 

where Objs denotes the total cost of the coupled system for the same scenario, and probs 

denote the probability of occurrence of a specific feeding scenario s. In this model, the 

capital cost belongs to the scenario-independent variable, while the operating cost is 

formulated by stochastic functions to capture all variability in the uncertainty space. 

That is, the equipment capacities (such as membrane elements and pressure vessels) 

should be the same for all correlated scenarios. 



4.2. Flexible HEN synthesis  

4.2.1 Initial HEN synthesis 

In this section, the techno-economic results of the coupled system obtained from 

Section 4.1 are improved by accounting for more precise cost data of HEN (i.e. heat 

exchanger investment cost) under uncertainty. For this purpose, based on a customized 

stage-wise superstructure (Yee and Grossmann, 1990), the initial scenarios together 

with their corresponding probabilities are used as input data for addressing the HEN 

synthesis problem. It involves a set ST = {k|1, 2, …, NOK} that stands for the stage in 

the superstructure, and in principle, it allows many different possibilities for stream 

matching to take place at each stage, as shown in Fig. 5. The only notable exception is 

that no heat-exchange matches existed between the streams from ORC and RO 

subsystems and the hot utility at the end of the superstructure. 

 

Fig. 5. Simplified stage-wise superstructure used in this work. 

Once the temperature and heat capacity flow rate for each scenario are determined 

by solving (P2), the stage-wise superstructure that aims at minimizing TACHEN can be 



directly applied. The mathematical model of initial HEN can be reformulated as (P3), 

in which the detailed energy balance and cost estimation are provided in Section 2.3 in 

SI. 

(P3)        
min     given in Eq.(S72)

. .    Stage-wise superstructure Eqs.(S47) ~ (S71)

HENTAC

s t
 

4.2.2 Feasibility test for multi-scenario HEN 

After the optimal HEN structure for certain scenarios has been provided for a 

multi-scenario MINLP model, the feasibility of the HEN structure between defined 

conditions remains a challenge. The strategy to ensure the feasible operations of the 

developed HEN structure is not only in these specified scenarios but also in the whole 

range of the specified parameters. This is referred to as the task of keeping the outlet 

temperatures in the network defined by the abovementioned MINLP model at their 

target values during a short- or long-time horizon. Here, an LP algorithm is formulated 

to analyze the structural and final flexibility of the HEN (Chen and Hung, 2007). The 

isothermal mixing assumption remains used in the formulation to maintain the linear 

constraints. It guarantees the model compatible with the MINLP model, indicating that 

the critical conditions found with the LP model are suitable for further MINLP 

optimization. The LP model for the minimum temperature approach violations of a 

given network configuration is formulated by using the same indices and sets as used 

by the MINLP model. 

The constraints for the LP model consist of the linear constraints as shown in Eqs. 

(S52)~(S73) and the following additional equations. 



 
, , , , , , ,
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i j s i s j s i j s i j
dt t t sldt  i H  j C'  k ST  s S  y − +     =   (26) 
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i j s i s j s i j s i j
dt t t sldt   i H  j C'  k ST  s S y+ + + + − +     =   (27) 

where sldt
k 

i,j,s is the slack variable for temperature approach violations related to match 

(i, j) at temperature location k in scenario s. Eqs. (26) and (27) are used to ensure the 

feasible driving forces for the existing heat exchangers by calculating the temperature 

differences for each temperature at each location. The fixed binary variable acquired 

from the result of the multi-scenario stage-wise superstructure model is used to define 

whether the constraint is involved or not. Additional slack variables are introduced to 

allow violations for feasible driving forces for existing exchangers. 

The maximum allowed conductance for each exchanger CNup
k 

i,j is restricted by 

inequality constraint in Eq. (28), where the arithmetic means of temperature differences 

are used instead of the LMTD to avoid high nonlinearity of the model. Note that, in Eq. 

(29), parameters (q
k 

i,j,s)MINLP and (dt
k 

i,j,s)MINLP obtained from MINLP model are connected 

with matches (y
k 

i,j,s=1) and scenarios with maximum exchanger areas. Therefore, the 

conductance of each match in the LP model is limited to be smaller than or equal to 

conductance related to the maximum areas of each match in the MINLP model. 

 
1

, , , , , , , ,
( ) 1k k k k k

i j s i j s i j s i j i j
q dt dt CNup ,  i H, j C', k ST, s S, y+ +     =   (28) 

 
, ,

, 1

, , , ,

( )
max

( ) ( )

k

i j s MINLPk

i j k k

i j s MINLP i j s MINLP

q
CNup ,  i H, j C', k ST, s S

dt dt +

 
=     

+  
  (29) 

The next step is to minimize the summation of the additional slack variables, i.e. 

temperature approach violations. The objective function is expressed as 
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'

( )k k
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= +   (30) 

The feasibility test model for multi-scenario HEN is given by 



(P4)      

min     given in Eq. (35)

. .     Stage-wise superstructure Eqs. (S47) ~ (S68)

          LP feasibility test Eqs. (31) ~ (34)

s t   

The goal of this formulation is to minimize the overall violation of temperature 

approaches for each set of testing data. The most violating point, i.e., the testing 

scenario with maximum positive , value over all s∈S, can be taken as a critical 

scenario for subsequent network synthesis. That is, when at least one testing scenario 

fails to pass the simplified LP flexibility test, the problem (P3) is resolved for network 

synthesis with the included critical scenario. The loop including the MINLP synthesis 

and the LP flexibility test as shown in Fig. 2 should be repeated until the resulting HEN 

is feasible for all test points within the specified range of parametric variations. 

4.2.3 Isothermal mixing assumption removal 

When stream splits take place (i.e. a given stream has two or more exchangers at 

a given stage), an additional NLP model is developed for removing the isothermal 

mixing assumption by explicitly optimizing the outlet variables at the heat exchangers 

with splitting. For this purpose, the NLP improvement model of HEN can be formulated 

as (P5), in which the mass and energy balances and the logical constraints are provided 

in Section 2.4 in SI. 

(P5)      

min     given in Eq.(S85)

. .    Stage-wise superstructure Eqs.(S47) ~ (S62) , (S67) ~ (S71)

         Isothermal mixing assumption removal Eqs.(S73) ~ (S84)

HENTAC

s t  

Note that, the results of Section 4.1 provide the initial input for HEN synthesis that 

only accounts for the utility cost, while this section provides a rigorous cost calculation 

of HEN including utility cost, installation and area costs of the heat exchangers. As a 



result, the utility cost derived in (P2) should be subtracted from the cost calculation to 

avoid the double-counting issue, and the minimal expected desalination cost per unit 

permeate (DCPexp, $·m-3) is given by: 
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  (31) 

where the TACsys is the total annualized cost of the RO-ORC-HI system. 

5. Illustrative Example 

The developed coupled system and solution strategy are applied to an industrial 

example. The background process comes from a styrene plant of PetroChina Lanzhou 

Petrochemical Company, which consists of five cold and five hot process streams. The 

properties of these background process streams are listed in Table 1. Besides, the major 

assumptions and parameters used for the modelling and optimization of the illustrative 

example are listed in Table S-1 in SI. 

Table 1. The property data of background process streams 

Stream Tin /
oC Tout /

oC FCp/kW oC-1 

C1 192 197 950 

C2 32 197 10 

C3 17 132 10 

C4 32 117 10 

C5 192 227 20 

H1 287 57 10 

H2 287 57 10 

H3 167 162 500 

H4 97 62 30 

H5 247 217 40 



The statistic of daily average dry-bulb temperature during 2016~2018 retrieved 

from the National Oceanic and Atmospheric Administration (NOAA) database is used 

to construct the seasonal probability distribution functions and to estimate the statistical 

distribution parameters. In the correlated scenarios generation, it is assumed that the 

standard deviations are 5% and 10% of the nominal flow rate and salinity listed in Table 

2, respectively, according to the record of plant data. Besides, the flow rate and the 

salinity of wastewater are negatively correlated with ρij=-0.5, while the flow rate and 

the inlet temperature have a positive correlation with ρij=0.5. In order to emphasize the 

importance of the stochastic method, a deterministic optimization model is also 

developed based on the nominal conditions (a single scenario) in each season as listed 

in Table 2. It should be highlighted that the deterministic model can be easily solved by 

using the strategy stated in Section 3. In particular, the solution of (P1) is regarded as 

the input of the HEN synthesis model by sequentially solving (P3) and (P5) (if needed) 

for a more accurate cost calculation of HEN. 

Table 2. The nominal values of uncertain parameters for each season used in 

deterministic model. 

Season T/ oC Flow rate/ (m3·h-1) Salinity/ ppm 

Spring 5.91 390 4100 

Summer 20.74 420 3800 

Autumn 15.99 400 4000 

Winter -2.23 380 4200 

For each season, the uncertainty on feed data can be mathematically modeled using 

20 distinct scenarios, resulting in a total number of 80 scenarios (see Table S-2 in SI) 

that are investigated in the stochastic model. The models (P1)~(P5) are formulated 



using GAMS 24.4 modelling environment and solved on a workstation with an Intel 

Xeon E5 at 2000 MHz with 128 GB memory. GAMS/CONOPT 3.0 (Drud, 1994) is 

used to solve the NLP problems, GAMS /DICOPT (Kocis and Grossmann, 1989) is 

used for the MINLP problems (Ipopth and the Gurobi 6.0 are NLP and MILP sub-

solvers in the DICOPT, respectively), GAMS/ Gurobi 6.0 is employed for solving the 

LP problems. The final reports show that the optimal solutions for the NLP and LP 

problems can be obtained within 0.03~10 CPUs, and for the MINLP problem within 

120~420 min. More detailed iteration processes for HEN synthesis can be found in 

Section 5 in SI. 



 

Fig. 6. The desalination cost distribution of the coupled system in (a) spring, (b) 

summer, (c) autumn, and (d) winter. The subscripts DM and SM denote the 

deterministic and stochastic methods. 

Fig. 6 presents the scatter plots of the optimal desalination cost obtained from both 

the stochastic and deterministic methods. For a better understanding of the impact of 

uncertainty on system’s performance, the green circles denoting the stochastic solutions 

are grouped into four distinct cases according to the corresponding seasons. The green 

line across the circles denotes the average performance of the stochastic solutions in 

terms of the expected value of desalination costs, which is $0.329 m-3 for the spring 

case, $0.292 m-3 for the summer case, $0.317 m-3 for the autumn case, and $0.365 m-3 

for the winter case. Fig. 6 also presents the optimal desalination costs based on perfect 

information (no uncertainty) by solving the deterministic model for the four cases. As 

denoted by blue lines, the desalination costs are $0.325 m-3, $0.293 m-3, $0.307 m-3, 



and $0.350 m-3, respectively. This increment of the desalination costs indicates that the 

incorporation of wastewater variability in process design and optimization can lead to 

additional costs. Besides, it is seen that the desalination costs in winter and spring are 

relatively higher than those in summer and autumn for both deterministic and stochastic 

solutions. This reflects that the increase in salinity of wastewater in cold seasons 

contributes more portion to the desalination cost, compared with the increase in flow 

rate in hot seasons. 

The feasibility of synthesized HEN grids should be examined in the model (P4) 

by using a set of testing scenarios to meet the heat transfer requirement. For presenting 

a clearer result of the examination, a binary parameter Θ(s) defined in Eq. (32) is used 

as an index according to the optimal value of the summation of the additional slack 

variables in the solution of (P4). For example, Θ(s)=0 represents that the HEN structure 

is suitable for the testing scenario (s). 
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Fig. 7. The feasibility test results of the HEN structure. (a) Deterministic solution and 

(b) stochastic solution. 

 



All 80 scenarios listed in Table S-1 in SI are regarded as the testing scenarios and 

the resulting Θ(s) are shown in Fig. 7. It can be found that for the deterministic method, 

only 60 testing scenarios, accounting for 75 % of the total satisfy the heat transfer 

requirement (Θ(s)=0). By contrast, the satisfactory scenarios can remarkably increase 

to 80 for the stochastic method. From the comparison, we can conclude that as the 

uncertainty on wastewater is considered in the HEN design of the coupled system, the 

deterministic solution based on the nominal conditions is far from flexible in 

comparison with the stochastic one despite its relatively low desalination cost. 

 



 

Fig. 8. The optimal HEN grids obtained from the (a) deterministic solution and (b) 

stochastic solution.  

Fig. 8 presents the optimal solutions of the HEN grids obtained from both methods 

after removing the isothermal mixing assumption in model (P5). As shown in this figure, 

both solutions yield different HEN structures especially for the process-process heat 

exchangers, although the numbers and areas of the heat exchangers are closed to each 

other. Note that, the hot utilities for both solutions have reached their upper bounds and 

thus the resulting numbers and areas of the heaters are completely the same as shown 

on the left side of Fig. 8. The annualized area cost of the HEN grid for the stochastic 

solution is $0.067MM, which is only 1.64% higher than that of the deterministic one. 

By combining the results from Figs. 7 and 8, it can be found that the slight increase in 

the economic cost of the heat exchangers and the rearrangement of the HEN structure 

can bring significant benefits for the flexibility of the HEN structure. Therefore, the 

following sections are merely focused on the stochastic solution. 



 

Fig. 9. The comparisons of the feed wastewater w/wo preheating operation for the 

stochastic solution. (a) Inlet temperature and (b) Membrane permeability. 

Fig. 9 reveals the underlying effects of preheating and non-preheating operations 

for the wastewater stream in terms of inlet temperature and membrane permeability. As 

shown in Fig. 9(a), the optimal temperatures of preheated wastewater denoted by green 

circles are 1.04 ~16.97 % higher than that of the non-preheated wastewater denoted by 

triangles depending on the specific scenarios. According to the industrial experience of 

plant engineers, it is suggested that the requirement for the feed solution temperature is 

between 2oC and 42oC. From Fig. 9(a), it is seen that for the non-preheating operation, 

a total of 28 feeding scenarios denoted by red triangles that fall in the low-temperature 

zone are not satisfying this requirement, while the unsatisfactory scenarios sharply drop 



to zero for the preheating operation. The RO membrane permeability is directly related 

to the temperature of the feed solution according to Eqs. (14)~(16). This leads to the 

same number of unsatisfactory scenarios with infeasible membrane permeability, as 

shown in Fig. 9(b). Excluding these infeasible scenarios, the RO membrane 

permeability can still increase by 10.63 ~ 158.64 % compared with the non-preheating 

operation. 

Although an increased temperature of the feed solution intensifies the membrane 

permeability and improves the permeate productivity, the benefit is significant only as 

the temperature variation covers a limited range. As reflected by the green circles in 

Fig. 9(a), there are almost none of the scenarios reaching the upper bound of the 

specified temperature range. This is because a higher preheating temperature for feed 

wastewater not only reduces the energy allocated to ORC for power generation, but also 

in turn lowers the net driving pressure of the RO membrane to a certain degree. This 

highlights the importance of providing external energy for addressing uncertainty on 

wastewater by properly adjusting its inlet temperature, especially in cold seasons. 

 

Fig. 10. Breakdown of expected TAC of the coupled system for each season. 



Fig. 10 shows the detailed cost breakdowns of the expected total annualized cost 

of the coupled system for the stochastic solution. From the positive axis of this figure, 

it is clear that TACHEN and TACRO account for the major shares of the total for both 

methods. The remaining minor contribution (only 7.06%) comes from TACORC. Note 

that, the sum of TACHEN, TACRO, and TACORC for all seasons are nearly the same. A 

major reason for this phenomenon is that the annual capital cost of each subsystem 

based on the scenarios of one season is equal to that based on the other one for the same 

solution. In this case, thus the profit of power generation becomes a key contributor to 

determine the final TAC of the coupled system. As shown, for both methods the 

annualized power profit drops from a hot season to a cold season, and the resulting 

ranking is as follows: summer>autumn>spring>winter. The corresponding profit values 

are $0.311MM, $0.286 MM, $0.238MM, and $0.178MM, respectively. 

In Fig. 10, it is interesting that for both methods the TACORC has a similar tendency 

to the power profit. In summer and autumn, on average the TACORC is 21.3~74.43% 

higher than that of the spring and winter. However, the TACRO has an opposite tendency, 

and the values based on the spring and winter are slightly 0.99~22.24% higher than 

those based on the summer and autumn. This can be attributed to the fact that there is a 

trade-off between ORC and RO for obtaining available resources of waste heat from 

the background process. More specifically, the amount of waste heat allocated to 

preheat wastewater stream is very sensitive to the inlet temperature depending on the 

exact realization of uncertainty, which can be reflected by the temperature profiles 

shown in Fig. 9. Consequently, in cold seasons like spring and winter, RO is inclined 



to absorb more waste heat for preheating feed wastewater, which can effectively 

improve the productivity of permeate. On the contrary, in summer and autumn, a greater 

portion of available waste heat is supplied for increasing the power profit in the ORC 

subsystem. This phenomenon reflects that the uncertainty of feed wastewater varying 

with seasons results in the competition and cooperation between the ORC and RO 

subsystems. 

 

Fig. 11. Cumulative probability curves for the desalination costs of current work 

against conventional technology. The subscripts SM and CT denote the solutions 

based on the current work and the conventional BWRO technology. 

In Fig. 11, the results of green circles in Fig. 6 in each season are rearranged to 

better present the corresponding possibility distribution, as denoted by the green curve. 

Besides, the desalination cost of brackish water RO (BWRO) based on conventional 

stand-alone plants, which in fact vary with the capacities of the plants regarding flow 

rate of permeate according to the following correlation derived from Bhojwani et al., 

(2019). 
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Using the aforementioned correlation, we estimate the stochastic desalination cost 

of the conventional BWRO plants by applying the optimal flow rate of permeate in each 

scenario. The corresponding cumulative probability is represented by the red curve in 

Fig. 11. As shown, the solutions of desalination cost obtained from the conventional 

BWRO technology and the stochastic model are concentrated at the ranges of $0.59 

~0.66 m-3 and $0.28~0.39 m-3. Accordingly, the average economic performance in 

terms of the expected desalination cost has almost halved from $0.626m-3 to $0.308m-

3. The widening gap between the two solutions implies that the proposed system and 

the solution strategy can bring huge benefits to the techno-economic performance of 

the desalination system compared with the conventional technology. 

6. Conclusions 

This study presented a new industrial waste heat-powered wastewater desalination 

system that integrated RO and ORC into a background process with HI to minimize the 

expected desalination cost under seasonal uncertainty on the feed wastewater (salinity, 

flow rate, and temperature). It provided more opportunities that not only can efficiently 

recover the waste heat from the background process for sustainable desalination, but 

intensified the RO membrane permeability by properly preheating the feed wastewater. 

In order to attain an optimal design, the problem was decomposed into five sub-

problems and solved sequentially by a two-step solution strategy. In the first step, the 

seasonal uncertainty on the wastewater was characterized and quantitated by generating 



a finite size of scenarios via a stochastic generation method. The uncertainty realization 

was then embedded in a Pinch-based Duran-Grossman model for minimizing the 

expected desalination cost ignoring a detailed HEN topology. In the second step, based 

on a customized stage-wise superstructure, a flexible HEN synthesis model that 

minimized the total annualized cost of HEN of the coupled system was proposed and 

solved by sequential flexibility test and isothermal mixing assumption removal. In this 

way, the optimal design of the coupled system with flexible HEN was obtained. 

An illustrative example was presented to evaluate the applicability of the proposed 

solution strategy through its comparison with a deterministic method. The optimization 

results indicated that the desalination costs obtained from the stochastic solution ranged 

from $0.28 m-3 to $0.39m-3 depending on the exact realization of uncertainty, which 

were slightly higher than that of the deterministic solution by 0.85~2.71% in most 

seasons. Nevertheless, the economic cost brought significant benefits to strengthen the 

system's flexibility and to reduce the feasibility risks of the HEN during plant operation. 

Besides, the non-preheating operation resulted in a total of 20 infeasible scenarios 

accounting for 25% of the total that unsatisfied the temperature requirement. As for the 

preheating operation, the unsatisfactory scenarios dropped to zero and the membrane 

permeability raised by 1.04~16.97 % compared with the non-preheating operation. 

Finally, the desalination cost of the stochastic solution of the coupled system was 

compared with the conventional stand-alone BWRO plants. The comparison results 

showed that the expected desalination cost had almost halved from $0.626 m-3 for the 

BWRO to $0.308 m-3 for the stochastic solution, indicating that the proposed RO-ORC-



HI system and the solution strategy can substantially improve the techno-economic 

performance of the desalination system. 
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