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in Distribution Networks
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Abstract—In this paper, we propose a novel transactive energy
trading (TET) framework to deal with the economic issues in
energy trading and the technical issues in distribution system
operation in a holistic manner. In particular, we innovatively
integrate a bilateral energy trading mechanism with the optimal
power flow (OPF) technique to increase economic benefits to
individual participants and meanwhile ensure the reliability and
security of the system operation. In order to resolve the inherent
conflict of interests, Nash bargaining theory is used to model the
TET problem which is further decomposed into a multi-period
OPF problem and a payment bargaining problem. Moreover,
we develop an efficient distributed algorithm for solving the
TET problem base on alternating direction method of multipliers
(ADMM). Instead of directly solving optimization subproblems
like most ADMM based distributed algorithms, we derive closed
form solutions to all subproblems to significantly improve the
computational efficiency. Finally, numerical tests on IEEE 37-bus
and 123-bus distribution systems demonstrate the effectiveness
of our proposed framework and the efficiency of our distributed
algorithm.

Index Terms—Transactive energy, bilateral energy trading,
distribution networks, photovoltaic system, Nash bargaining, al-
ternating direction method of multipliers, distributed algorithm.

NOMENCLATURE

Indices and sets:
i Index of nodes/lines/agents
t Index of time slots
N Set of buses
E Set of distribution lines
Ci Set of children nodes of node i
T Set of time slots
k Index of iterations

Parameters:
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ri Resistance of i-th line
xi Reactance of i-th line
di,t/di,t Upper/Lower bound of agent i’s load demand at

time t
Ei Minimum required energy of agent i over the time

horizon
di,t Preferred load demand of agent i at time t
αi Unit discomfort cost for load deviation of agent i
Qi,t/Qi,t Upper/Lower bound of reactive power output of

agent i’s PV system at time t
Si Rated apparent power of agent i’s PV system
θ Power factor angle associated with the minimum

allowed power factor
pgi,t Active power output of agent i’s PV system at time

t
λbt/λ

s
t Prices for buying/selling energy from/to the utility

company at time t
qdi,t Reactive load of agent i at time t
v/v Upper/Lower bound of squared voltage magnitude

at each node
pi/pi Upper/Lower bound of nodal active power injection

at node i
qi/qi Upper/Lower bound of nodal reactive power

injection at node i

Variables:
vi,t Squared voltage magnitude of node i at time t
li,t Squared line current magnitude of line i at time t
Pi,t/Qi,t Active/Reactive power flow on line i at time t
pi,t/qi,t Active/Reactive power injection at node i at time t
pdi,t Scheduled load demand of agent i at time t
qgi,t Reactive power output of agent i’s PV system at

time t
eji,t Energy amount agent i purchases from agent j at

time t
φji Bilateral payment from agent i to agent j

Functions:
Di,t(·) Discomfort cost function of agent i for load devia-

tion at time t
C̃i(·) Total cost function of agent i without BET
B̃i,t(·) Utility bill function of agent i at time t without BET
Ci(·) Total cost function of agent i with BET
Bi,t(·) Utility bill function of agent i at time t with BET
Wi(·) Cost function of agent i excluding bilateral

payments
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I. INTRODUCTION

RECENTLY, electric distribution networks (DNs) are un-
dergoing a dramatic change due to the increasing instal-

lations of residential solar photovoltaic (PV) systems driven
by the reduced installation cost and encouraging feed-in-tariffs
[1]. However, the proliferation of distributed PV systems poses
significant challenges to DN operation due to not only the
intermittent and volatile nature of PV generations but also the
complexity in coordinating a large number of new entities,
namely, PV prosumers. Prosumers are end-use consumers who
also have local generation sources, e.g. PV panels, and thus
are able to feed electricity back to the power grid. On the
other hand, the high entry threshold to traditional electricity
markets, either wholesale market or retail market, inhibits
active engagement of end-use customers, thus reducing eco-
nomic efficiency. Lately, the emerging transactive energy (TE)
concept sheds new lights on addressing the aforementioned
concerns [2]. In this regard, we develop a novel transactive
energy framework to increase economic benefits to customers
and to enhance the security and reliability of DN operation.

According to the Gridwise Architecture Council (GWAC),
transactive energy system is defined as a set of mecha-
nisms that use economic based instruments to achieve the
dynamic balance between the generation and consumption
while considering operation constraints of a power system
[2]. It is a multi-agent system that enables active participation
of customers to contribute to the enhancement of the system
reliability, security and efficiency. There are several works
related with transactive energy system. In [3], a transactive
control strategy with a double-auction market is proposed
for commercial buildings to coordinate the internal electric
appliances. In [4], a transactive energy framework is presented
for the decision making of virtual power plants. However,
these works overlook the impact of TE on the power system
operation. In [5], a day-ahead transactive market model is
proposed for the distribution system operator (DSO) to manage
the distribution level operation and participate in wholesale
market. Nonetheless, it does not consider the energy trading
within the distribution network. Ref. [6] conducts a cost-
benefit analysis for transactive energy sharing within a micro-
grid. Ref. [7] carries out a case study of a transactive energy
trading in distribution systems. However, these works only
focus on conceptual discussion and preliminary study without
detailed designs. Up to now, the research on applying TE to
distribution system operation is still at its very early stage.

Economic and system operating issues are two major con-
cerns of a TE based framework. Current policies of most
countries encourage self-consumption of solar PV energy so
as to mitigate its adverse influence [8]. But it is not preferable
to PV prosumers who may have excess PV generation after
meeting their own load especially during the peak irradiance
period. In order to improve the economic benefit to PV
prosumers and other consumers, some energy sharing and
trading mechanisms have been developed in recent research
works. Ref. [9] presents an energy sharing mechanism with an
internal pricing model for prosumers within a microgrid. Ref.
[10] investigates the interconnected microgrids and proposes

a holistic model for energy scheduling and trading. Ref. [11]
develops a distributed model for energy trading among multi-
ple microgrids. In [12], a study on energy exchange is carried
out using DC based interconnected nanogrids. There are also
some works [13], [14] focusing on game-theoretic approach
based energy trading in smart grid, which are summarized in
[14]. Nevertheless, few existing works have jointly studied the
economic issues of energy trading and the technical issues of
distribution system operation.

Optimal power flow (OPF) technique plays an important
role in dealing with practical issues in power systems, such as
transmission expansion planning [15], stability analysis [16],
congestion management [17], volt/var control [18], etc. In
wholesale market, the market clearing problem is often mod-
elled as an OPF problem whose objective is to maximize the
overall social welfare [19]. Consequently, the market outcome
is highly efficient and compatible with the transmission system
operation. Inspired by this, we incorporate the OPF technique
to the energy trading in distribution systems.

Traditionally, distribution systems are managed by DSOs in
a centralized manner. However, with the proliferation of dis-
tributed energy resources (DERs) and household automation
products, it becomes challenging to centrally control customer-
owned assets due to privacy concerns and complex commu-
nication and control requirements. In this regard, distributed
operation and control schemes have been extensively studied in
recent years [20]–[23]. In [20], a distributed dispatch method
is proposed based on primal-dual subgradient algorithm. In
[21], an ADMM based distributed algorithm is developed for
the OPF problem in distribution systems. In [22], a distributed
method is used to optimize the active and reactive power set-
points of DER inverters. In [23], distributed approaches are
applied to voltage regulation.

In this paper, we propose a novel transactive energy trading
(TET) framework with detailed designs to accommodate high
PV penetration in distribution networks. Nash bargaining
theory is used to model the TET problem. Then we develop an
efficient distributed algorithm based on ADMM for solving the
TET problem so that the autonomy and privacy of individual
entities can be preserved. The main contributions are threefold.

• Different from most TE based works (e.g. [10]) that only
focus on addressing economic issues in energy trading,
our proposed TET framework is able to deal with both
economic and technical issues in distribution systems
in a holistic manner. In particular, we innovatively in-
tegrate a bilateral energy trading mechanism with the
distribution system OPF technique, which has not been
studied before. In this way, we can improve economic
benefits to individual participants and meanwhile ensure
the reliability and security of the distribution system.

• By applying Nash bargaining theory to our problem, we
not only resolve the conflict of interests among different
participants, but also align their interests with the need
of the entire distribution system. Consequently, we can
decompose the TET problem into a multi-period OPF
problem and a payment bargaining problem to reduce
computational complexity.
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• Most ADMM based distributed algorithms require to
solve optimization subproblems iteratively to update the
variables. In contrast, we derive the closed-form solu-
tions to all subproblems, which results in a significant
improvement in computational efficiency.

The remainder of this paper is organized as follows. In
Section II, we introduce the branch flow model, TET agent
model and bilateral energy trading model. In Section III,
we introduce some backgrounds on Nash bargaining theory
and use it to model our TET problem. Then we develop an
advanced distributed algorithm for solving it in Section IV.
Numerical results are demonstrated in Section V. Finally, we
conclude our paper in Section VI.

II. SYSTEM MODEL

A. Branch Flow Model

Consider a distribution network G := (N , E), where N :=
{0, 1, . . . , N} represents the node set and E represents the line
set. Each node except the substation node (indexed as 0) has
a unique parent node Ai and a set of child nodes, denoted
by Ci. We assume each directed line points from a node i to
its unique parent node Ai. Thus, we uniquely label the line
from i to Ai as i and have E := {1, . . . , N}. Given a radial
distribution network, the branch flow model [24] is given as

vi,t − vAi,t = 2(riPi,t + xiQi,t)− li,t(r2i + x2i ) i ∈ E (1a)∑
j∈Ci

(Pj,t − lj,trj) + pi,t = Pi,t i ∈ N (1b)∑
j∈Ci

(Qj,t − lj,txj) + qi,t = Qi,t i ∈ N (1c)

li,t =
P 2
i,t +Q2

i,t

vi,t
i ∈ N (1d)

Since (1d) is nonconvex, a second order cone relaxation [24]
can be applied as

‖(2Pi,t, 2Qi,t, vi,t − li,t)‖2 ≤ vi,t + li,t i ∈ N (2)

B. TET Agent Model

For a better energy trading coordination, TET agent is
introduced to represent the aggregation of customers on the
same node, as illustrated in Fig. 1. Each agent is allowed to
trade energy with other agents on behalf of its local customers.
Moreover, TET agents are also responsible for ensuring the
reliable and secure operation of the distribution system through
cooperation with each other.

Since each agent only concerns about the aggregated load
demand in energy trading, we only need to model it in this
paper. For conciseness, we simply term the aggregated demand
as the demand. We assume each demand is flexible and can
be scheduled across time as long as it satisfies the following
two constraints.

di,t ≤ pdi,t ≤ di,t t ∈ T (3)∑
t∈T

pdi,t ≥ Ei (4)

TET agent i TET agent j TET agent k

Utility grid

Feeder

Communication

Bilateral Energy Trading Platform

Fig. 1. Transactive energy trading framework in a distribution system, where
the solid black line represents the distribution feeder line and the dashed black
line represents communication line

We assume each customer has a preference on its power
usage due to its living habit. Hence, each agent has a preferred
demand in each time slot, which represents the actual demand
only when no incentives are provided to customers. However,
when bilateral energy trading is introduced, rescheduling de-
mand may give rise to a great cost reduction higher than
the compensation of discomfort cost incurred by the load
deviation. In this paper, the discomfort cost is modeled as

Di,t(p
d
i,t) = αi

(
pdi,t − di,t

)2
(5)

We assume each PV system operates at the maximum power
point so as to harvest as much solar energy as possible. Thus,
the aggregated PV generation of agent i, denoted as pgi,t,
is a predicted parameter. Note if agent i does not have PV
installations, then we simply set pgi,t as 0. In addition, we
assume PV systems can provide reactive power support to
the distribution system. The range of reactive power output
is given as

Q
i,t
≤ qgi,t ≤ Qi,t (6)

where Q
i,t

= −Qi,t and Qi,t = min
(√

S2
i − (pgi,t)

2, pgi,t ×
tanθ

)
.

C. Bilateral Energy Trading and Cost Functions

1) Bilateral energy trading: Consider a bilateral energy
trading between agent i and agent j. Let eji,t denote the amount
of energy that agent i buys from (if eji,t > 0) or sells to (if
eji,t < 0) agent j in time slot t. Denote φji as the total payment
of agent i to (if φji > 0) or from (if φji < 0) agent j over the
day. Then, we have the following clearing constraints.

eji,t + eij,t = 0 i ∈ N , j ∈ N\i, t ∈ T (7)

φji + φij = 0 i ∈ N , j ∈ N\i (8)

2) Cost functions: The cost function of each agent i without
bilateral energy trading (BET) is composed of utility bill and
discomfort cost, as shown below.

C̃i(p
d
i ) =

∑
t∈T

(
B̃i,t(p

d
i,t) +Di,t(p

d
i,t)
)

(9)

where pdi := {pdi,t}t∈T and B̃i,t(pdi,t) is the utility bill without
BET, defined as follows,

B̃i,t(p
d
i,t) = λbt

[
pdi,t − p

g
i,t

]+ − λst [pgi,t − pdi,t]+
where [·]+ denotes the projection operator onto the non-
negative orthant, i.e. [x]+ = max(x, 0); λbt denotes the
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price for buying energy from the utility company, which is
typically a fix value over the time; λst denotes the feed-in
tariff representing the price for selling energy to the uitlity
company. Generally, λbt is higher than λst [9].

The cost of agents i with BET is defined as follows,

Ci(p
d
i , ei,φφφi) =

∑
t∈T

(
Bi,t(p

d
i,t, ei,t) +Di,t(p

d
i,t)
)

+
∑
j∈N\i

φji

(10)

where ei := {eji,t}j∈N\i,t∈T , ei,t := {eji,t}j∈N\i and
φφφi := {φji}j∈N\i; The last term on the right hand side of
(10) represents the total payment of agent i to other agents;
Bi,t(p

d
i,t, ei,t) is the utility bill with BET, defined as

Bi,t(p
d
i,t, ei,t) = λbt∆

+
i,t − λ

s
t∆
−
i,t

where ∆+
i,t :=

[
pdi,t−p

g
i,t−

∑
j∈N\i e

j
i,t

]+
and ∆−i,t :=

[
pgi,t−

pdi,t +
∑
j∈N\i e

j
i,t

]+
, representing the net energy exchange

with the utility company.

III. NASH BARGAINING APPROACH

The goal of this paper is to design a transactive energy
framework to facilitate bilateral energy trading among TET
agents and to ensure the reliability and security of the
distribution system operation. One biggest challenge is to
resolve the conflict of interests among different agents and
to align the interests of individual agents with the need of the
distribution system operation. Therefore, a cooperative game
theory, namely Nash bargaining theory [25] is used to study
the transactive energy trading problem as it has the potential
to achieve a mutually beneficial outcome through negotiation
and coordination.

In the following two subsections, we first present some
background on Nash bargaining theory and then develop a
novel transactive energy framework by applying Nash bargain-
ing theory to an OPF problem with bilateral energy trading.

A. Nash Bargaining Theory

For simplicity, we only introduce Nash bargaining theory for
two-player bargaining problem, but will extend to multi-player
situation in our application. In a bargaining problem, self-
interested players negotiate with each other to either achieve a
mutually beneficial agreement or end up with a disagreement.
Suppose there are two players in a bargaining problem. Let A
denote the set of feasible agreements and ui over A denote
the payoff function of player i, that reflects its preferences. We
denote the payoffs of two players from the disagreement by
d = (d1, d2) and the set of possible payoffs from an agreement
by U , defined as follows.

U :=
{(
u1(a), u2(a)

)
|a ∈ A

}
A bargaining problem is to find an agreement upon which
the payoff of each player is no less than the payoff from the
disagreement. However, the challenges lie in modelling the
detailed bargaining process and deciding which agreement is
reasonable when there exist multiple agreements. To address
these issues, Nash [25] proposed an axiomatic approach that

abstracts away the details of bargaining process and uniquely
determines a bargaining solution named as Nash bargaining
solution (NBS) if U is a convex and compact set and there
exists at least one u ∈ U such that ui > di, ∀i. NBS satisfies
the following four ”reasonable” axioms. (1) Pareto efficiency:
it is impossible to find another solution that makes some
players better off without making at least one player worse off.
(2) Symmetry: if the players are indistinguishable in terms of
payoff functions and disagreement, they will receive the same
payoffs. (3) Invariant to affine transformation: the solution is
invariant if an affine transformation is applied to the payoff and
disagreement point. (4) Independence of irrelevant alternatives:
if the bargaining solution chosen from a feasible agreement
set A is an element of a subset B ⊆ A, then replacing set A
with set B will not affect the solution. Mathematically, NBS
is defined by

Definition 1. A pair of payoffs (u∗1, u
∗
2) is a Nash bargaining

solution only if it solves the following optimization problem:

max
u1,u2

(u1 − d1)(u2 − d2) (11a)

s.t. (u1, u2) ∈ U (11b)
(u1, u2) ≥ (d1, d2) (11c)

where (u1 − d1)(u2 − d2) is so called Nash product.

B. Nash Bargaining based Transactive Energy Trading

Nash bargaining theory is applied to model the bilateral
energy trading negotiation like [10]. Here, the payoffs of each
agent for the agreement and disagreement are defined as the
minus cost with and without BET, i.e. ui = −Ci(pdi , ei,φφφi)
and di = −C̃i(p̃di ). Different from [10] that overlooks the
distribution system operation issues, we take the AC power
flow constraints into account to ensure the trading outcome is
technically implementable. The mathematical formulation of
our proposed transactive energy trading problem is given as

max

N∏
i=1

(
C̃i(p̃

d
i )− Ci(pdi , ei,φφφi)

)
(12a)

over
{
pdi,t, q

g
i,t, {e

j
i,t, φ

j
i}j∈N\i, pi,t, qi,t, Pi,t, Qi,t,

li,t, vi,t
}
i∈N ,t∈T

s.t. (3), (4) and (6) (12b)
(7) and (8) (12c)
(1a)-(1c) and (2) (12d)

pi,t = pgi,t − p
d
i,t i ∈ N\0, t ∈ T (12e)

qi,t = qgi,t − q
d
i,t i ∈ N\0, t ∈ T (12f)

v ≤ vi,t ≤ v i ∈ N , t ∈ T (12g)

C̃i(p̃
d
i ) ≥ Ci(pdi , ei,φφφi) i ∈ N (12h)

where constraints (12b)-(12g) correspond to (11b) and con-
straint (12h) corresponds to (11c). (12b) summarizes local
scheduling constraints for each agent; (12c) is associated with
bilateral energy trading; (12d)-(12f) are power flow equations
and (12g) is voltage constraint.

In order to reduce the computational complexity, problem
(12) is decomposed into two subproblems by employing the
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Pareto efficiency of the Nash bargaining solution. The detailed
illustration is presented in the following theorem.

Theorem 1. The proposed TET problem (12) can be equiv-
alently decomposed into the following two subproblems. The
first subproblem S1 solves a multi-period OPF problem with
energy sharing and the second subproblem S2 determines the
corresponding bilateral payments.

S1: multi-period OPF problem

min
∑
i∈N

Wi(p
d
i , ei)

over
{
pdi,t, q

g
i,t, {e

j
i,t}j∈N\i, pi,t, qi,t, Pi,t, Qi,t

li,t, vi,t
}
i∈N ,t∈T

s.t. (1a)-(1c), (2)-(4), (6), (7), (12e)-(12g)

where Wi(p
d
i , ei) :=

∑
t∈T

(
Bi,t(p

d
i,t, ei,t) +Di,t(p

d
i,t)
)

S2: payment bargaining problem

max

N∏
i=1

(
C̃i(p̃

d
i )−Wi(p

d∗
i , e

∗
i )−

∑
j∈N\i

φji

)
over {φji}j∈N\i,i∈N

s.t. (8)

where (pd∗i , e
∗
i ) is the optimal solution of S1.

Proof. Let Ui(pdi , ei,φφφi) := C̃i(p̃
d
i )−Ci(pdi , ei,φφφi). Plugging

in (10) and Wi(p
d
i , ei), we have

Ui(p
d
i , ei,φφφi) = C̃i(p̃

d
i )−Wi(p

d
i , ei)−

∑
j∈N\i

φji

Since φji +φij = 0, we have
∑
i∈N

∑
j∈N\i φ

j
i = 0. Thus, the

following equality holds.∑
i∈N

Ui(p
d
i , ei,φφφi) =

∑
i∈N

C̃i(p̃
d
i )−

∑
i∈N

Wi(p
d
i , ei)

where C̃i(p̃di ) represents the cost of agent i at the disagreement
and is known to agent i as it is the optimal value of the
following problem.

min
pd

i

C̃i(p
d
i )

s.t. (3) and (4)

Note
∑
i∈N Wi(p

d
i , ei) is the total cost of the entire system

at an agreement. We hence claim that the Nash bargaining
solution also minimizes problem S1. Otherwise, there exists a
solution that makes some Ui larger without making at least one
Ui smaller by reducing

∑
i∈N Wi(p

d
i , ei), which contradicts

the property of Pareto efficiency. Moreover, since problem
S1 is a strictly convex optimization problem, its optimal
solution is unique. Therefore, we can obtain the optimal

{
pdi,t,

qgi,t, {e
j
i,t}j∈N\i, pi,t, qi,t, Pi,t, Qi,t, li,t, vi,t

}
i∈N ,t∈T by solv-

ing problem S1 and then obtain the optimal {φji}j∈N\i,i∈N
by solving problem S2.

Remark 1: Theorem 1 indicates that the solution to the TET
problem (12) also minimizes the overall social cost considering
the practical operating constraints, which implies the most

efficient operation outcome like traditional locational marginal
price (LMP) based market framework. The key difference
is that TET framework enables peer to peer energy trading,
and LMP based framework does not. The Pareto efficiency
and convexity ensure there exists a unique Nash bargaining
solution to problem (12) and it represents an agreement that
is beneficial to all agents. We assume all agents are rational.
Thus, no one is willing to break the agreement.

IV. DISTRIBUTED ALGORITHM FOR TET PROBLEM

Although both problem S1 and S2 can be solved in a central-
ized fashion by the cutting-edge solvers, it will violate the pri-
vacy and autonomy of individual agents since the centralized
optimization requires the complete information of the entire
system. In this regard, we develop a distributed algorithm for
solving the TET problem in this section. Specifically, we first
decompose the multi-period OPF problem S1 into multiple
single-period OPF subproblems using Lagrangian relaxation.
Then, we develop distributed algorithms for the single-period
OPF problem and payment bargaining problem S2 by applying
a consensus version of ADMM [26]. More importantly, we
derive closed form solutions to each optimization subproblems
so as to significantly improve the computational efficiency.

A. Decoupling of Temporally Coupled Constraint

In S1, the constraint (4) couples the decision variables of
all time slots, which inhibits S1 to be solved separately at
each time slot. We hence relax it by introducing a Lagrangian
multiplier πi ≥ 0 for each agent i as

L =
∑
i∈N

Wi(p
d
i , ei) +

∑
i∈N

πi(Ei −
∑
t∈T

pdi,t)

=
∑
t∈T

∑
i∈N

Fi,t
(
pdi,t, ei,t, πi

)
+
∑
i∈N

Eiπi (16)

where Fi,t
(
pdi,t, ei,t, πi

)
:= Bi,t(p

d
i,t, ei,t)+Di,t(p

d
i,t)−πipdi,t.

Since S1 is a convex optimization problem with zero duality
gap, it can be equally transformed to problem S1′.

S1′: max
πππ≥000

∑
t∈T

(
min
yt∈Yt

∑
i∈N

Fi,t
(
pdi,t, ei,t, πi

))
+
∑
i∈N

Eiπi

where yt := {pdi,t, q
g
i,t, ei,t, pi,t, qi,t, Pi,t, Qi,t, li,t, vi,t}i∈N

and π := {πi}i∈N . Yt represents the feasible region of yt,
which is defined by the constraints (1a)-(1c), (2), (3), (6), (7)
and (12e)-(12g).

Note that the inner level problem is decoupled into several
single-period OPF problems that can be solved in parallel.
Next, we drop the subscript t for simplicity and reformulate
the single-period OPF problem as below by eliminating pdi and
qgi .

min
∑
i∈N

gi
(
pi, {eji}j∈N\i

)
(17a)

over
{
{eji}j∈N\i, pi, qi, Pi, Qi, li, vi

}
i∈N

s.t. vi − vAi
= 2(riPi + xiQi)− li(r2i + x2i ) i ∈ E (17b)∑

j∈Ci

(Pj − ljrj) + pi = Pi i ∈ N (17c)
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∑
j∈Ci

(Qj − ljxj) + qi = Qi i ∈ N (17d)

eji,t + eij,t = 0 j ∈ N\i, i ∈ N (17e)

‖(2Pi, 2Qi, vi − li)‖2 ≤ vi + li i ∈ N (17f)
v ≤ vi ≤ v i ∈ N (17g)
p
i
≤ pi ≤ pi i ∈ N (17h)

q
i
≤ qi ≤ qi i ∈ N (17i)

where gi
(
pi, {eji}j∈N\i

)
:= λb

[
− pi −

∑
j∈N\i

eji
]+

−λs
[
pi +

∑
j∈N\i

eji
]+

+ αi(pi − pgi + di)
2 + πipi

Let pdi,t[k] denote the optimal solution of (17) for a given
πππ[k]. Then the Lagrangian multiplier πi can be iteratively
updated as

πi[k + 1] =
[
πi[k] + γ

(
Ei −

∑
t∈T

pdi,t[k]
)]+

i ∈ N (18)

where γ > 0 is the step size.

B. Distributed Algorithms with Closed-form Updates

In this subsection, we develop distributed algorithms with
closed-form updates for solving problem (17) and S2. Towards
this end, both problems are first expressed in a uniform
compact matrix form for mathematical conciseness, as shown
below.

min
x

∑
i∈N

fi(xi) (19a)

s.t.
∑
j∈N

Aijxj = 0 i ∈ N (19b)

xi ∈ Xi i ∈ N (19c)

where x := {xi}i∈N and xi is a vector of decision variables
associated with agent i. For instance, xi := {φji}j∈N\i in
problem S2 and xi :=

{
{eji}j∈N\i, pi, qi, Pi, Qi, li, vi

}
in

problem (17). f(xi) is a convex function. Aij is a constant
matrix and (19b) represents a group of linear constraints that
couple all local variables xi together, such as (8) in problem
S2 and (17b)-(17e) in problem (17). Xi is a convex set and
(19c) corresponds to the local constraints of each agent, such
as (17f)-(17i) in problem (17).

In (19), each agent’s decision variables xi are strongly
coupled with others’ via the constraint (19b). In order to
apply a consensus version of ADMM [26], problem (19) is
reformulated as the problem below by introducing a set of
auxiliary variables z(j)i for each agent i, that represents the
duplicate of xj on the side of agent i.

min
x,z

∑
i∈N

fi(xi) (20a)

s.t.
∑
j∈N

Aijz(j)i = 0 i ∈ N (20b)

xi ∈ Xi i ∈ N (20c)
xj − z(j)i = 0 j ∈ N , i ∈ N (20d)

where z := {zi}∈N and zi := {z(j)i}j∈N . The corresponding
explicit formulations of problem (17) and S2 are illustrated in
Appendix A.

Let µµµ(j)i denote the vector of Lagrangian multipliers asso-
ciated with the consensus constraint (20d). For a given penalty
parameter ρ > 0, the augmented Lagrangian is defined as

Lρ(x, z,µµµ) =
∑
i∈N
Lxi
(
xi, {z(i)j ,µµµ(i)j}j∈N

)
=
∑
i∈N
Lzi
(
{xj}j∈N , zi,µµµi

)
(21)

where Lxi
(
xi, {z(i)j ,µµµ(i)j}j∈N

)
:=fi(xi) +

∑
j∈N

(
〈µµµ(i)j ,xi − z(i)j〉+

ρ

2
‖xi − z(i)j‖2

)
Lzi
(
{xj}j∈N , zi,µµµi

)
:=fi(xi) +

∑
j∈N

(
〈µµµ(j)i,xj − z(j)i〉+

ρ

2
‖xj − z(j)i‖2

)
where 〈·, ·〉 denotes the operation of inner product and µµµi :=
{µµµ(j)i}j∈N .

Owing to the decomposability of the augmented Lagrangian
(21) as well as the constraints (20b) and (20c), problem
(20) can be solved in a fully distributed manner. The overall
iterative procedure is given as follows.

(A1) Upon receiving the latest updated zk(i)j and µµµk(i)j from
other agents, each agent i updates xi as (22) and broad-
casts it to other agents.

xk+1
i := arg min

xi∈Xi

Lxi
(
xi, {zk(i)j ,µµµ

k
(i)j}j∈N

)
(22)

(A2) Upon receiving the latest updated xk+1
j from other agents,

each agent i updates zi as (23) and broadcasts z(j)i to
agent j.

zk+1
i := arg min

zi∈Zi

Lzi
(
{xk+1

j }j∈N , zi,µµµki
)

(23)

where Zi := {zi|
∑
j∈N Aijz(j)i = 0}.

(A3) Each agent i updates µµµ(j)i as (24) and broadcasts it to
agent j.

µµµk+1
(j)i := µµµk(j)i + ρ(xk+1

j − zk+1
(j)i ) j ∈ N (24)

Proposition 1.
(a) There exist closed-form expressions for the updates of xi

and zi in problem (17).
(b) There exist closed-form expressions for the updates of xi

and zi in problem S2.

Proof. See Appendices B and C.

C. Implementation

Algorithm 1 summarizes the distributed algorithm for solv-
ing S1′, where the outer and inner loops represent dual ascent
method and ADMM based iterations, respectively. Note that
the algorithm for solving S2 is similar to the inner loop of
Algorithm 1. Thus, for conciseness, it is not presented here.
Furthermore, the individual privacy is preserved since each
z(j)i only contains partial information of xj , i.e. power flow
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Algorithm 1: Distributed Algorithm for Solving S1′

1 Initialize all zi,t, µµµi,t and πi. Set the inner and outer
loop tolerance levels, ε1 and ε2. Initialize the iteration
indices, k = 0 and m = 0;

2 repeat
3 for t = 1 to T do
4 while ‖xkt − zkt ‖ > ε1 or ρ‖zkt − zk−1t ‖ > ε1 do
5 Each agent i updates xi,t according to (22);
6 Each agent i updates zi,t according to (23);
7 Each agent i updates µµµ(j)i,t according to (24);
8 Update inner loop iteration index k = k + 1;
9 end

10 end
11 Each agent i updates πi according to (18);
12 Update outer loop iteration index m = m+ 1;
13 until ‖πππm − πππm−1|| ≤ ε2;

information and energy trading information as illustrated in
Appendix A. The information exchange among TET agents
can be facilitated by the advanced information and commu-
nication technologies (ICTs), e.g. LTE technology, which is
designed for high-speed wireless communication.

V. NUMERICAL RESULTS

In this section, we test our proposed TET framework on
the modified IEEE 37-bus and 123-bus distribution systems.
Detailed information of the systems can be found in [27].
We consider three-phase balanced scenarios for simplicity. In
addition, we classify the distribution nodes into residential
nodes and commercial nodes based on their load patterns. We
assume each residential node is installed with a PV system
with the rated capacity being 200 kVA. The data of the load is
simulated using the same technique as our previous work [28]
and the PV generation data is calculated using the actual solar
irradiance data provided by [29]. Without loss of generality,
the purchasing price λbt is set as $0.8/kWh during the off-
peak periods (12:00 a.m.-6:00 a.m.) and $1/kWh during other
periods, and the selling price λst is set as $0.4/kWh. All the
costs and prices are presented in HK dollars. The length of
the entire horizon |T | is 24 hours and the duration of each
time slot is 1 hour. The tolerance level for the convergence
of the distributed algorithm is 10−4. Other parameters are
summarized as follows: αi = 500, ρ = 1, v = 0.952 and
v = 1.052. All tests are implemented using MATLAB on a
computer with an Intel Core i5 of 2.4GHz and 12GB memory.

A. Case Study 1: IEEE 37-bus Distribution System

The nominal voltage value of the 37-bus distribution system
is 4.8 kV and the network topology is shown in Fig. 2. Per
unit value is used in the case studies.

1) From the Perspective of the Distribution System: Table
I lists the total operating cost of the distribution system with
and without TET. We can see that TET can bring about
24.8% cost saving resulting from the emergence of competitive
bilateral energy trading among TET agents. Fig. 3 shows

nodes with PV installations

Fig. 2. IEEE 37-bus distribution system with PV installations

TABLE I
TOTAL OPERATING COST OF 37-BUS SYSTEM WITH AND WITHOUT TET

Cost without
TET ($)

Cost with
TET ($)

Cost reduc-
tion ($)

Relative cost
reduction

18812 14138 4674 24.8%

5 10 15 20
Time/hours

0.95

1

1.05

V
ol

ta
ge

 m
ag

ni
tu

de
/p

.u
.

without TET

with TET

upper bound

lower bound

Fig. 3. Voltage magnitudes of node 30 in 37-bus system with and without
TET
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Fig. 4. load schedule of two agents in 37-bus system with and without TET,
(a) agent 1: commercial load, (b) agent 4: residential load

the voltage profile of node 30 with and without TET. We
only demonstrate the voltage profile of node 30 because it
is a terminal node and is more likely to experience voltage
violations. Without TET, overvoltage violation is observed
at noon when peak PV generation occurs and undervoltage
violation is observed at early night when peak load occurs.
However, all voltage violations are removed when TET is
introduced. The reason is that without TET each agent merely
schedules its local power consumptions without systematic
coordination with other agents. By contrast, TET takes the
system operating constraints into account and thus enables
coordinated management of the distribution system. Therefore,
TET can not only facilitate bilateral energy trading but also
improve the system performance in terms of economic effi-
ciency and voltage security.

2) From the Perspective of TET Agents: We select two
representative agents to demonstrate the results. Particularly,
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Fig. 5. Hourly net load and procurement of two representative agents in
37-bus system

TABLE II
COST COMPARISON WITH AND WITHOUT TET FOR AGENT 1 AND 4 IN

37-BUS SYSTEM ($)

Items Agent 1 Agent 4
Cost without TET 3163.7 222.9
Utility bill plus discomfort cost 1781.6 373.0
Payment to other agents 1209.0 −323.2
Cost with TET 2990.6 49.7
Cost reduction 173.1 173.1
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Fig. 6. Convergence result for 37-bus system, (a) subproblem S1′, (b)
subproblem S2

agent 1 represents a commercial node and agent 4 represents
a residential node. Fig. 4(a) and 4(b) show the load schedule
of two agents with and without TET, respectively. We can see
that both agents shift part of their power consumption from
the peak load periods (18:00-20:00) to the periods of peak
PV generation (10:00-16:00). As a result, the energy utiliza-
tion efficiency is improved as more PV power is consumed
locally instead of feeding back to the grid during daytime
and less power is consumed at early night. Fig. 5(a) and
5(b) demonstrate the energy procurements of two agents in
TET framework, respectively. The negative values in Fig. 5(b)
mean agent 4 sells energy to the utility company and other
agents. We can observe that when the PV power is unavailable,
both agents are supplied only by the utility company. When
the PV power is sufficiently high, agent 1 procures all the
required energy from other agents through bilateral energy
trading (BET) and agent 4 sells its excess energy to the
utility company after meeting its own need and the needs of
other agents. Thus, both the prosumers and the consumers
prefer BET over energy trading with the utility company as
they can procure energy with lower costs or sell energy with
higher profits. Table II shows the cost comparison with and
without TET for agent 1 and 4. Both agents are awarded with
an equal benefit for participating in TET. Therefore, TET is
economically feasible for individual agents.

3) Computational efficiency: Fig. 6(a) and 6(b) semi-
logarithmically plot the convergence results for solving prob-

TABLE III
COMPUTATION TIME FOR IEEE 37-BUS DISTRIBUTION SYSTEM

Problem Iteration Total
Time (s)

Time/iteration (s)
(Algorithm 1)

Time/iteration
(s) (SDPT3)

S1′ 1411 4.32 3.1× 10−3 12.19
S2 27 0.01 3.8× 10−4 2.82
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Fig. 7. Voltage magnitudes of node 122 in 123-bus system with and without
TET

TABLE IV
COST COMPARISON WITH AND WITHOUT TET FOR AGENT 1 AND 5 IN

123-BUS SYSTEM ($)

Items Agent 1 Agent 5
Cost without TET 1883.1 39.7
Utility bill plus discomfort cost 1071.3 218.7
Payment to other agents 690.8 −300
Cost with TET 1762.1 −81.3
Cost reduction 121 121
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Fig. 8. Convergence result for 123-bus system, (a) subproblem S1′, (b)
subproblem S2

lem S1′ and S2 using our proposed distributed algorithm,
respectively. It is observed that solving problem S1′ takes more
iterations due to its great complexity. However, the total com-
putation time is relatively short for both problems, as shown
in Table III where the comparison of computational efficiency
using Algorithm 1 and an off-the-shelf solver (SDPT3) [30] are
also demonstrated. Significant time reduction (more than 3000
times faster) is achieved by using Algorithm 1 because of the
employment of closed form solutions. Note that all simulations
are run on a single computer. The computation time in Table
III is obtained by dividing the computation time on a single
computer with the number of agents.

B. Case Study 2: IEEE 123-bus Distribution System

In this subsection, we test our proposed TET framework
and advanced distributed algorithm on the modified IEEE 123-
bus distribution system to verify their effectiveness on large
systems. The nominal voltage is 4.16 kV. Forty distributed PV
systems are installed with the capacity of each being 200k VA.
The network topology is not presented here due to page limits.
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The total operating costs of the 123-bus system are $40579
and $29681 without and with TET, respectively. Just like
we observed in the 37-bus system, the introduction of TET
significantly lowers the operating cost in the 123-bus system as
well. Fig.7 shows the voltage profile of a terminal node without
and with TET. We can observe overvoltage and undervoltage
violations over the day without TET due to the lack of
coordination among different agents. In contrast, when TET
is introduced, all voltage violations are eliminated.

The costs and benefits of two representative agents are
demonstrated in Table IV, where agent 1 represents a commer-
cial node and agent 5 represents a residential node. We can
see both agents are better off in participating in TET. Actually,
all agents are better off and their economic gains are equal.
Therefore, the proposed TET framework is beneficial to the
individual agents and the distribution system.

Fig. 8(a) and 8(b) depict the convergence result for solv-
ing S1′ and S2, respectively. The total computation time is
20.9s and 0.05s for S1′ and S2, respectively, if the proposed
algorithm is implemented in a distributed manner. Thus, our
proposed algorithm is effective and efficient in solving the
TET problem.

VI. CONCLUSIONS

In this paper, we propose a novel transactive energy trading
framework in DNs aiming at dealing with economic and tech-
nical issues in a holistic manner. In particular, we innovatively
integrate a bilateral energy trading mechanism with the OPF
technique. The Nash bargaining theory is used to model our
problem in order to align the interests of individual agents
with the interest of the entire system. We decompose our
problem into a multi-period OPF subproblem and a payment
bargaining subproblem by utilizing the Pareto efficiency of the
Nash bargaining solution. Moreover, we develop an efficient
distributed algorithm with closed-form updates for solving our
problem based on ADMM. Case studies on IEEE 37-bus and
123-bus distribution feeders demonstrate the effectiveness of
our proposed framework and the efficiency of our distributed
algorithm.

In this work, we assume the DNs are three-phase balanced
for simplicity. We will extend our proposed framework to
three-phase unbalanced distribution systems in our future work
by considering the coupling between phases.

APPENDIX A

For problem (17), z(j)i only contains partial information of
xj . xi and z(j)i are defined as

xi :=
{
pxi , q

x
i , P

x
i , Q

x
i , l

x
i , v

x
i , {e

j,x
i }j∈N\i

}

zj(i) :=



{
pz(i)i, q

z
(i)i, P

z
(i)i, Q

z
(i)i, l

z
(i)i, v

z
(i)i, {e

k,z
(i)i}k∈N\i

}
j = i{

P z(j)i, Q
z
(j)i, l

z
(j)i, e

i,z
(j)i

}
j ∈ Ci{

vz(j)i, e
i,z
(j)i

}
j = Ai{

ei,z(j)i)
}

otherwise

where the superscript x and z is used to differentiate the
categories of variables. Then, the consensus form of (17) is
given as

min
x,z

∑
i∈N

gi
(
pxi , {e

j,x
i }j∈N\i

)
(25a)

s.t. vz(i)i − v
z
(Ai)i

= 2(riP
z
(i)i + xiQ

z
(i)i)− l

z
(i)i(r

2
i + x2i )

i ∈ E (25b)∑
j∈Ci

(P z(j)i − l
z
(j)irj) + pz(i)i = P z(i)i i ∈ N (25c)∑

j∈Ci

(Qz(j)i − l
z
(j)ixj) + qz(i)i = Qz(i)i i ∈ N (25d)

ej,z(i)i + ei,z(j)i = 0 j ∈ N\i, i ∈ N (25e)

‖(2P xi , 2Qxi , vxi − lxi )‖2 ≤ vxi + lxi i ∈ N (25f)
vi ≤ vxi ≤ vi i ∈ N (25g)
p
i
≤ pxi ≤ pi i ∈ N (25h)

q
i
≤ qxi ≤ qi i ∈ N (25i)

xj − zj(i) = 0 j ∈ N , i ∈ N (25j)

where the consensus constraint (25j) is written explicitly as
below with a slight abuse of notations.

0 = xj − z(j)i

:=



{
pxi − pz(i)i, q

x
i − qz(i)i, P

x
i − P z(i)i, Q

x
i −Qz(i)i,

lxi − lz(i)i, v
x
i − vz(i)i, {e

k,x
i − ek,z(i)i}k∈N\i

}
j = i{

P xj − P z(j)i, Q
x
j −Qz(j)i, l

x
j − lz(j)i, e

i,x
j − e

i,z
(j)i

}
j ∈ Ci{

vxj − vz(j)i, e
i,x
j − e

i,z
(j)i

}
j = Ai{

ei,xj − e
i,z
(j)i

}
otherwise

For problem S2, xi and z(j)i for each agent i is defined as

xi :={φj,xi }j∈N\i

z(j)i :=

{
{φk,z(i)i}k∈N\i j = i

φi,z(j)i otherwise

The consensus form of S2 is given as

min
x,z

∑
i∈N
−ln
(
ξi −

∑
j∈N\i

φj,xi

)
(26a)

s.t. φj,z(i)i + φi,z(j)i = 0 j ∈ N\i, i ∈ N (26b)

φj,z(i)i − φ
j,x
i = 0 j ∈ N\i, i ∈ N (26c)

φi,z(j)i − φ
i,x
j = 0 j ∈ N\i, i ∈ N (26d)

where ξi = C̃i(p̃
d
i )−Wi(p

d∗
i , e

∗
i ) is a parameter.

APPENDIX B

Proof of part (a) of Proposition 1: We first prove that zi-
update problem (23) has a closed-form solution. To this end,
it is reformulated as

min
zi

Gi(zi) (27a)

s.t.
∑
j∈N

Aijz(j)i = 0 (27b)
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where Gi(zi) :=
∑
j∈N

(
− 〈µµµ(j)i, z(j)i〉 + ρ

2‖xj − z(j)i‖2
)

is convex quadratic function. Hence, problem (27) can be
generalized as

min
zi

1

2
zTi Qzi + cT zi (28a)

s.t. Bzi = 0 (28b)

where Q and B are constant matrices, and c is a constant
vector. (28) has a unique solution that can be expressed as

zi =
(
Q−1BT (BQ−1BT )−1BQ−1 −Q−1

)
c

Then we will show the xi-update in problem (17) can also
be solved in a closed-form. The recent proposed distributed
OPF algorithm in [21] is utilized to prove the proposition. To
this end, we first specify the related Lagrangian multipliers,
as shown in Table V. Through expansion and recollection of
quadratic terms, the xi-update problem (22) can be further
decomposed into three subproblems. The tedious process is
not elaborated here for clarity. Interested readers may refer to
the subsection III-B of [21].

The first subproblem solves the optimal (P xi , Q
x
i , l

x
i , v

x
i ),

i.e.

min
(
P xi − P̂i

)2
+
(
Qxi − Q̂i

)2
+
(
lxi − l̂i

)2
+
|Ci|+ 1

2

(
vxi − v̂i

)2
(29a)

over P xi , Q
x
i , l

x
i , v

x
i

s.t. (25f) and (25g) (29b)

where

P̂i =
P z(i)i + P z(i)Ai

2
−
µ
(1)
(i)i + µ

(1)
(i)Ai

2ρ

Q̂i =
Qz(i)i +Qz(i)Ai

2
−
µ
(2)
(i)i + µ

(2)
(i)Ai

2ρ

l̂i =
lz(i)i + lz(i)Ai

2
−
µ
(3)
(i)i + µ

(3)
(i)Ai

2ρ

v̂i =
vz(i)i +

∑
j∈Ci

vz(i)j

|Ci|+ 1
−
µ
(4)
(i)i +

∑
j∈Ci

µ
(4)
(i)j

ρ(|Ci|+ 1)

According to [21], (29) has a closed form solution.
The second subproblem solves the optimal qxi , i.e.

min
qxi

(
qxi − q̂i

)2
(30a)

s.t. q
i
≤ qxi ≤ qi (30b)

where q̂i = qz(i)i −
µ
(6)

(i)i

ρ . The optimal solution can be easily

obtained as
[
q̂i
]qi
q
i

, where [·]ba represents the projection operator
onto the range [a, b].

TABLE V
MULTIPLIERS ASSOCIATED WITH CONSENSUS CONSTRAINTS

µ
(1)
(j)i

: Px
j = P z

(j)i
j ∈ i ∪ Ci µ

(2)
(j)i

: Qx
j = Qz

(j)i
j ∈ i ∪ Ci

µ
(3)
(j)i

: lxj = lz
(j)i

j ∈ i ∪ Ci µ
(4)
(j)i

: vxj = vz
(j)i

j ∈ i ∪Ai

µ
(5)
(i)i

: pxi = pz
(i)i

µ
(6)
(i)i

: qxi = qz
(i)i

µ
j,(7)
(i)i

: ej,xi = ej,z
(i)i

j ∈ N\i µ
i,(7)
(j)i

: ei,xj = ei,z
(j)i

j ∈ N\i

The third subproblem solves the optimal
(
pxi , {e

j,x
i }j∈N\i

)
,

i.e.

min (αi +
ρ

2
)
(
pxi − p̂i

)2
+
∑
j∈N\i

ρ
(
ej,xi − ê

j
i

)2
(31a)

over pxi , {e
j,x
i }j∈N\i

s.t. p
i
≤ pxi ≤ pi (31b)

ei ≤
∑
j∈N\i

ej,xi ≤ ei (31c)

where

p̂i =
1

2αi + ρ

(
2αi(p

g
i − di) + ρpz(i)i + λ− πi − µ(5)

(i)i

)
êji =

ej,z(i)i + ej,z(i)j

2
+
λ− µj,(7)(i)i − µ

j,(7)
(i)j

2ρ

The values of λ, ei and ei depend on the sign of pxi . If pxi ≤ 0,
then λ = λb, ei = 0, ei = −pxi ; otherwise λ = λs, ei =
−pxi , ei = 0.

As long as the problem (31) can be solved in closed
form, we would complete the proof. Indeed, we derive the
closed form solution to (31). Since (31) is a convex quadratic
optimization problem with linear inequalities, it has a unique
global minimizer. Without loss of generality, suppose pxi ≤ 0
and update pi as min(pi, 0). Then (31) is transformed to

min (αi +
ρ

2
)
(
pxi − p̂i

)2
+
∑
j∈N\i

ρ
(
ej,xi − ê

j
i

)2
(32a)

over pxi , {e
j,x
i }j∈N

s.t. p
i
≤ pxi ≤ pi (32b)

0 ≤
∑
j∈N\i

ej,xi ≤ −p
x
i (32c)

In the following, we will derive its closed form solution by
enumerating the activeness of the inequality constraints.

Case 1: (32c) is inactive.
Then px∗i =

[
p̂i
]pi
p
i

and ej,x∗i = êji , j ∈ N\i.

Case 2: (32c) is active and
∑
j∈N\i e

j,x
i = 0.

Then (32) can be decomposed into two subproblems. One
subproblem only involves variable pxi , i.e.

min
pxi

(αi +
ρ

2
)
(
pxi − p̂i

)2
s.t. p

i
≤ pxi ≤ pi

whose optimal solution is px∗i =
[
p̂i
]pi
p
i

. The other subproblem

only involves variables {ej,xi }j∈N\i, i.e.

min
∑
j∈N\i

ρ
(
ej,xi − ê

j
i

)2
over {ej,xi }j∈N

s.t.
∑
j∈N\i

ej,xi = 0

It can be generalized as problem (28) and thus can be solved
in closed form.

Case 3: (32c) is active and
∑
j∈N\i e

j,x
i = −pxi .
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Then (32) can be reformulated as the problem below by
eliminating pxi .

min Fi
(
{ej,xi }j∈N\i

)
(35a)

over {ej,xi }j∈N
s.t. − pi ≤

∑
j∈N\i

ej,xi ≤ −pi (35b)

where Fi
(
{ej,xi }j∈N\i

)
= (αi + ρ

2 )
(∑

j∈N\i e
j,x
i + p̂i

)2
+∑

j∈N\i ρ
(
ej,xi − ê

j
i

)2
. Similarly, we solve (35) in closed form

by enumerating the activeness of the constraint (35b).
• Subcase 3.1: (35b) is inactive .

Then the optimal solution can be obtained by solving the
following linear system:

∂Fi
(
{ej,xi }j∈N\i

)
∂ej,xi

= 0 j ∈ N\i

Denote X :=
∑
j∈N\i e

j,x
i . Then, we have

X∗ =
−(N − 1)(ρ+ 2αi)p̂i + 2ρ

∑
j∈N\i ê

j
i

(N − 1)(ρ+ 2αi) + 2ρ

ej,x∗i = êji −
ρ+ 2αi

2ρ
(X∗ + p̂i)

• Subcase 3.2: (35b) is active and
∑
j∈N\i e

j,x
i = −pi.

Then, the problem (35) can be converted to the following
problem.

min
∑
j∈N\i

ρ
(
ej,xi − ê

j
i

)2
(37a)

over {ej,xi }j∈N
s.t.

∑
j∈N\i

ej,xi = −pi (37b)

With a slight abuse of notation, (37) can be generalized
as

min
y

1

2
yTDy + bTy (38a)

s.t. Ey = f (38b)

where y is the vector of decision variables constituted by
ej,xi ; D := 2ρIN−1; b is a vector constituted by −2ρêji ;
E = 1T and f = −pi; IN−1 is a N − 1 dimensional
identity matrix. (38) has a closed form solution given by

y∗ =
(
D−1ET (ED−1ET )−1ED−1 −D−1

)
b

+ D−1ET (ED−1ET )−1f

• Subcase 3.3: (35b) is active and
∑
j∈N\i e

j,x
i = −p

i
.

Then the optimal {exij |j ∈ N\i} can be obtained simi-
larly as the subcase 3.2.

APPENDIX C

Proof of part (b) of Proposition 1: zi-update can be
solved in closed form as shown in Appendix B. In this
Appendix, we show the closed-form expression for updating
xi in problem S2. Let µj(i)i and µi(j)i denote the multipliers

for (26c) and (26d), respectively. Then the explicit form of
Lxi
(
xi, {z(i)j ,µµµ(i)j}j∈N

)
is given as

Lxi
(
xi, {z(i)j ,µµµ(i)j}j∈N

)
:= −ln

(
ξi −

∑
j∈N\i

φj,xi
)

+
∑
j∈N\i

(
µj(i)i(φ

j,x
i − φ

j,z
(i)i) +

ρ

2
(φj,xi − φ

j,z
(i)i)

2
)

+
∑
j∈N\i

(
µj(i)j(φ

j,x
i − φ

j,z
(i)j) +

ρ

2
(φj,xi − φ

j,z
(i)j)

2
)

Note that in problem S2 there is no local constraints. Hence,
the optimality condition for the xi-update problem is given by

∂Lxi
(
xi, {z(i)j ,µµµ(i)j}j∈N

)
∂φxij

= 0 j ∈ N\i

Denote Yi :=
∑
j∈N\i φ

j,x
i . Then the optimal Yi at (k+ 1)-th

iteration, denote as Yi[k + 1], can be obtained by solving the
following quadratic equation.

Y 2
i +

(ai[k + 1]

2ρ
− ξi

)
Yi −

ai[k + 1]ξi
2ρ

− N − 1

2ρ
= 0

where

ai[k+1] =
∑
j∈N\i

(
µj(i)i[k] + µj(i)j [k]− ρφj,z(i)i[k]− ρφj,z(i)j [k]

)
Finally, we obtain the closed-form expression for updating

xi, as shown below.

φj,xi [k + 1] =
φj,z(i)i[k] + φj,z(i)j [k]

2
−
µj(i)i[k] + µj(i)j [k]

2ρ

− 1

2ρ(ξi − Yi[k + 1])
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