
1 

Robust and efficient data transmission over noisy 
communication channels using stacked and  

denoising autoencoders   
Faisal Nadeem Khan*, and Alan Pak Tao Lau  

Department of Electrical Engineering, The Hong Kong Polytechnic University, Kowloon, 
Hong Kong (SAR) 

*Corresponding author: fnadeem.khan@yahoo.com

Abstract: We study the effects of quantization and additive white Gaussian noise (AWGN) in transmitting 
latent representations of images over a noisy communication channel. The latent representations are 
obtained using autoencoders (AEs). We analyze image reconstruction and classification performance for 
different channel noise powers, latent vector sizes, and number of quantization bits used for the latent 
variables as well as AEs’ parameters. The results show that the digital transmission of latent representations 
using conventional AEs alone is extremely vulnerable to channel noise and quantization effects. We then 
propose a combination of basic AE and a denoising autoencoder (DAE) to denoise the corrupted latent 
vectors at the receiver. This approach demonstrates robustness against channel noise and quantization 
effects and enables a significant improvement in image reconstruction and classification performance 
particularly in adverse scenarios with high noise powers and significant quantization effects. 

Keywords: Communication channels; data compression; deep learning; autoencoders; denoising 
autoencoders. 

1. Introduction

In communications research, machine learning techniques have appeared as a new direction of 
innovation to cope with many emerging challenges. These techniques have already started 
playing a pivotal role in various networking tasks such as traffic load forecasting, capacity 
optimization, autonomous fault detection and analysis, etc. [1]. Recent developments in deep 
machine learning have further motivated the researchers to fully exploit their potential in 
communication systems [2][3]. Deep learning architectures, e.g., deep autoencoders (AEs), deep 
neural networks (DNNs), deep convolutional neural networks (CNNs), deep recurrent neural 
networks (RNNs), etc., have been applied successfully for various tasks in communication 
networks and have achieved state-of-the-art results in many cases [4]-[9]. 
     One of the major workhorses of communication systems is data compression. For images, 
discrete cosine transform (DCT) and wavelet transform are standard compression techniques to 
reduce the actual amount of data to be transmitted over the communication links [10][11]. Over 
the past few years, deep learning methods have also been considered for image compression task 
and have already shown quite impressive results [12][13]. Among these methods, reduced-
complexity deep AEs have gained significant attention recently [14]-[20]. This is due to the fact 
that in many practical scenarios, the mobile devices or wireless sensor network (WSN) nodes 
may be resource-limited in terms of processing power, storage capacity (i.e., memory), battery 
life, etc., and thus cannot afford complex image compression/decompression techniques. The use 
of relatively simple deep AE architectures may be an attractive alternative in such cases. 
     In case of AEs, the latent representation, or latent vector, of the corresponding image can be 
simply seen as a compressed description of the original image. AEs-based compression 
approaches learn statistical regularities in the data and thus may hold key advantage when a pair 
of transmitter and receiver is communicating information that corresponds to a particular domain 
with certain specific characteristics/features, e.g., transmission of sensing data between two nodes 
in a WSN or communication of certain types of files/images between two dedicated servers in 
data centres. The previously reported works in this context assumed idealized communication 
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scenarios such as 

(i) Availability of original transmitted latent vectors (i.e., compressed representations) at the
receiver for decompression while completely discarding the effects of real-world channel
impairments such as noise.

(ii) Neglecting the effects of digitization/quantization of latent variables into binary data in
practical communication systems.

(iii) Ignoring the effects of quantization of deep AEs’ parameters (i.e., weights and biases),
which might be inevitable while deploying these architectures on practical resource-limited
(in terms of storage size and computational power) devices like mobile or embedded
devices.

     In this work, we consider the scenario in which modified National Institute of Standards and 
Technology (MNIST) images are compressed/transformed into their latent representations 
through AEs. The resulting latent vectors are digitized into binary data and transmitted over a 
communication channel corrupted by additive white Gaussian noise (AWGN) and the received 
latent vectors are then used for the recovery of original images. We then propose the use of an 
additional denoising autoencoder (DAE) to restore the fidelity of latent vectors at the receiver and 
hence improve image recovery and classification performance. More specifically, the main 
highlights of this work are as follows:   

 We investigate quantitatively the effect of AWGN in communication channels on the
image recovery performance of AEs-based compression with latent vectors of various
sizes.

 We analyze the effect of latent variables quantization on image recovery performance.
Such an analysis is particularly helpful in determining the trade-off between compression
ratio and image reconstruction quality.

 We propose denoising of received latent vectors corrupted by AWGN and/or quantization
noise through the use of an additional DAE at the receiver for enabling more robust image
recovery and classification performance in noisy communication channels.

 We study the effect of quantization of AEs’ parameters on image recovery performance
and propose the use of nonuniform quantization for significantly reducing the storage
requirements of AEs’ parameters while still offering good image reconstruction quality.

     The rest of the paper is organized as follows. Section 2 presents the proposed stacked AE and 
DAE based system model. The architectures and mathematical overview of stacked AE and DAE, 
their training and optimization procedures, and their specific functionalities within the proposed 
framework are also discussed in detail. In Section 3, we provide simulation results and 
quantitatively as well as visually compare the image reconstruction performances of systems 
without and with DAE. Section 4 concludes the paper and outlines potential future work. 

2. System Model and Proposed Approach

The system model employed in our analysis is shown in Fig. 1. As clear from the figure, we use 
two different AEs in the proposed approach. The first AE is a stacked AE with two hidden layers 
while the second is a DAE. In this work, we employ MNIST database comprising of 55,000 
training and 10,000 testing images for the learning and evaluation of AEs, respectively. Each 28  
28 image in the training or testing data set is represented as a one-dimensional vector x of length 
L = 784 by concatenating all of its columns. The training data set  (1), (2),....., ( )Nx x x  
comprising of N = 55,000 image vectors is first utilized for the unsupervised training of stacked 
AE in a greedy layer-wise manner. The training of stacked AE is assumed to take place offline 
and in one location without the detrimental effects of quantization and channel noise. After  
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Fig. 1. Schematic diagram of system model used for the analysis. 

convergence, the encoders and decoders of stacked AE are separated to form the components of 
transmitter and receiver, respectively. The first part of stacked AE, namely autoencoder-1, is a 
three-layer neural network that attempts to reconstruct its input vectors x at its output as shown in 
Fig. 2(a). For this purpose, the encoder of autoencoder-1 maps an input vector ( ) Li x   to a 
hidden representation 1( ) Ki z   (where K << L) while the decoder (shown in grey color) aims to 
reverse this mapping such that the output vector ( ) Li x   is an approximation of the original 
input vector x(i). The vectors satisfy 

 1 1 1 1( ) ( )  (1)i i z W x b

 1 1 1 1( ) ( )   (2)i i    x W z b

where W1 and 1W  are the weight matrices for the encoder and decoder, respectively, while b1 
and 1b  are the bias vectors for the encoder and decoder, respectively. On the other hand, 1( ) 
and 1( )    are the nonlinear activation functions for the encoder and decoder, respectively, and 
are chosen to be sigmoid function in our case, i.e., 

1 1
1( ) ( ) .      (3)
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 (a) 

(b) 

Fig. 2. Conceptual diagrams of (a) stacked AE and (b) DAE used in the proposed approach. 

and used gradient descent optimization procedure during the training. Once autoencoder-1 
successfully learns the mappings given by Eqs. (1) and (2), it is considered to be trained. Next, all 
the original input vectors x in the training data set are passed through the encoder of trained 
autoencoder-1. Since the size of hidden layer-1 (i.e., 150) is chosen to be much less than the size 
of vectors x (i.e., 784), the mapping learned by encoder of autoencoder-1 provides compressed 
latent representations 1z  (of size K = 150) of the original input vectors x at the encoder output. 

Next, the data set  1 1 1(1), (2),....., ( )Nz z z  comprising of N = 55,000 latent vectors 1z  is used
to train the autoencoder-2 in a similar fashion, where the size M of hidden layer-2 is selected to 
be much less than the size of latent vectors 1z  (i.e., M << K) as shown in Fig. 2(a). The encoder 
of autoencoder-2 maps an input latent vector 1( ) Ki z   to a hidden representation ( ) Mi z 
while the decoder reverses this mapping such that the output vector 1( ) Ki z   is an 
approximation of the input latent vector 1( )iz . In this way, the autoencoder-2 learns an even more 
compressed representation of the original image vectors x. Once the training of autoencoder-2 is 
complete, all 55,000 latent vectors 1z  are passed through its encoder to obtain the data set 

 (1), (2),....., ( )Nz z z  containing final compressed representations of the initial input vectors x. 
We consider four different sizes for hidden layer-2, i.e., 10, 20, 30 and 40 as a way to realize 
various compression ratios for the original images. Note that there is no fixed rule for choosing 
the optimum number of hidden layers in a stacked AE and typically the selection is made via 
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experimentation (e.g., starting with just one hidden layer and iteratively increasing the number of 
layers until the image reconstruction quality in terms of MSE starts to decrease). This is known as 
the hyperparameter of a stacked AE. In our case, the number of hidden layers for the stacked AE 
is optimized to be 2 as shown in Fig. 2(a). 
     To cope with quantization and communication channel noise effects, we further implement a 
DAE [21][22], which is a variant of basic AE with the difference that it corrupts the original 
inputs (e.g., by adding noise into them) before mapping them to the hidden representation. A 
DAE is trained to recover the original inputs from their corrupted versions. In this work, we 
employ a DAE at the receiver to undo the effects of quantization and channel noise on the 
original transmitted latent vectors z. The structure of a single hidden layer DAE used in our work 
is shown in Fig. 2(b). The set  (1), (2),....., ( )Nz z z  of 55,000 latent vectors of the training data 
set (obtained using stacked AE as discussed earlier) is used for the training of DAE. For this 
purpose, we first quantize the latent vectors z to zq and then Gaussian noise is added to zq for 
generating the corrupted latent vectors qz . The vectors qz  are then mapped, as in case of a basic 
AE, to a hidden representation y from which we reconstruct the output vectors z . The vectors 
satisfy 
 

 q( ) ( )           (5)i i y Wz b  

 
 ( ) ( )           (6)i i    z W y b  

 
where ( )   and ( )    are the activation functions, W and W  are the weight matrices, and b  
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over the whole training data set, i.e., to have z  as close as possible to z. The above process 
enables DAE to effectively learn the mapping between corrupted latent vectors qz  and 
uncorrupted input latent vectors z of the training data set. 
     In the proposed approach, the encoder parts of trained stacked AE are deployed at the 
transmitter while the decoder parts are located within receiver. On the other hand, the trained 
DAE (excluding the quantization and Gaussian noise addition steps) is utilized inside the receiver. 
In the testing phase, the latent vectors z for the testing data set  (1), (2),....., ( )Px x x  comprising 
of P = 10,000 image vectors x are first obtained using the encoder parts of trained stacked AE. 
Next, the elements of z are quantized into 2/3/4/8 bits and the corresponding binary data sequence 
b(k) is modulated into formats such as binary phase-shift keying (BPSK). The resulting signals 
s(k) are transmitted over an AWGN channel which adds noise n(k) into the signals. The noise 
power is adjusted for achieving different bit-error ratios (BERs). The received noisy signals r(k) 
are demodulated and the detected binary data sequence ( )b k  is then used to generate vectors qz , 
which are a corrupted version of the original latent vectors z. Next, the pretrained DAE in the 
receiver is utilized to obtain estimates z  of the original transmitted latent vectors z from the 
received corrupted versions qz . Finally, the decoder parts of stacked AE are used to generate the 
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approximations x  of the original image vectors x from the DAE outputs z . To quantify the 
reconstruction performance of our proposed approach, we considered two performance criteria in 
this work, i.e., (i) MSE between original and reconstructed images and (ii) classification accuracy 
(CA) for the reconstructed images. For the second criterion, we trained a softmax layer in a 
supervised manner by utilizing the latent vectors z and labels corresponding to the training data 
set as inputs and targets, respectively. The estimated latent vectors z  pertaining to the testing 
data set are then classified using the pretrained softmax layer and the CAs are determined. 
 
3. Results and Discussion  
 
To investigate the effects of quantization and channel noise on data compression using AEs, we 
carried out extensive numerical simulations using MNIST database. For realizing various 
compression ratios, we considered four latent vector sizes, i.e., 10/20/30/40 and four different 
number of quantization bits, i.e., 2/3/4/8 to represent the latent variables. Furthermore, we 
assumed three distinct noise powers for the communication channel pertaining to BER = 0 (i.e., 
an ideal channel), BER = 4  10-3 and BER = 2  10-2, where the last two BERs correspond to 
typical hard and soft decision forward error correction (FEC) limits, respectively, for 
communication systems. We compared systems with and without DAE and used MSE and CA as 
comparison metrics.  
      
 

                  
                                                (a)                                                                            (b) 

                        
                                                (c)                                                                             (d) 

Fig. 3. MSEs for various latent vector sizes and number of quantization bits for systems (a) without 
denoising and (b) with denoising approaches. CAs for various latent vector sizes and number of 
quantization bits for systems (c) without denoising and (d) with denoising approaches. The channel 
considered is noiseless, i.e., BER = 0. 
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     The simulation results (which are mean of 3 trials) for different BERs are presented in Figs. 
35 for both autoencoding approaches discussed earlier. Fig. 3 shows MSE and CA for BER = 0. 
Since in this case the channel is completely noiseless, the received latent vectors qz  = qz  are 
corrupted only by the noise introduced due to quantization of original latent variables. Fig. 3(a) 
and (c) depict results for the autoencoding approach involving no DAE while Fig. 3(b) and (d) 
show results for the approach where a pretrained DAE is first applied to denoise the received 
corrupted latent vectors qz  from quantization noise and the resulting estimates z  of original 
latent vectors z are then used for image reconstruction and classification. It is clear from Fig. 3 
that the use of DAE reduces MSE and improves CA significantly, thus showing the effectiveness 
of proposed approach in diminishing the adverse effects of quantization noise. 
     It is also evident from Fig. 3(b) that the MSE decreases with an increase in size of the latent 
vector. However, this decrease is not linear and tends to saturate for larger latent vector sizes. The 
CA results in Fig. 3(d) show similar trends. Furthermore, it can be observed from Fig. 3 that MSE 
increases while CA decreases only slightly as the number of quantization bits is decreased from 8 
bits to 4 bits. On the other hand, both parameters change drastically as the number of quantization 
bits is varied from 4 bits to 2 bits. This clearly indicates that both MSE and CA scale nonlinearly 
with the number of quantization bits. 
     Figures 4 and 5 present results for BERs of 4  10-3 and 2  10-2, respectively. Note that in 
contrast to BER = 0 case, the received latent vectors qz  are now corrupted by both quantization 
and channel noise. Once again, parts (a) and (c) of both figures show results for the approach 
using no DAE while parts (b) and (d) of both figures depict results for the proposed method 
employing a DAE first for obtaining reasonably good estimates z  of the original transmitted 
latent vectors z before actual image reconstruction. A comparison with the BER = 0 case in Fig. 3 
reveals that both MSE and CA deteriorate significantly with an increase in BER since the latent 
vectors get more corrupted. It is also evident from these plots that communication using fewer 
number of quantization bits, such as 2 or 3 bits, is more vulnerable to the channel noise as 
compared to the case where relatively larger number of quantization bits is utilized. 
     Moreover, parts (b) and (d) of Figs. 4 and 5 clearly illustrate that the use of DAE reduces MSE 
and improves CA substantially. This is attributed to the fact that the pretrained DAE is able to 
recover reasonably good estimates z  of the original transmitted latent vectors z from qz . This in 
turn makes data recovery process more robust against channel noise and quantization effects. It 
can also be observed from Figs. 4 and 5 that the use of DAE is more advantageous for larger 
latent vector sizes. This is due to the fact that for smaller latent vector sizes, the effect of 
dimensionality reduction on reconstruction performance is more dominant. However, as the size 
of latent vector increases, the reconstruction error caused by dimensionality reduction decreases 
and the effect of noise on reconstruction performance prevails and this is where the benefits of 
using DAE become more evident. 
     Furthermore, if one considers total number of bits used for representing the whole latent 
vector, there exists an optimal combination of latent vector size and number of quantization bits 
per latent variable that minimizes MSE and maximizes CA. For example, if the number of 
transmission bits allowed for a given MNIST image is fixed to be 80 then this can be potentially 
realized by using a latent vector of size 10 with 8 quantization bits, a latent vector of size 20 with 
4 quantization bits, and a latent vector of size 40 with 2 quantization bits. Comparing parts (b) 
and (d) of Figs. 35, it can be noted that a latent vector of size 20 with 4 quantization bits yields 
minimum MSE and maximum CA for all three BERs considered in this work. It is therefore an 
optimum choice for this particular compression scenario. We note that an in-depth study of the 
trade-offs between latent vector size and number of quantization bits per latent variable is 
interesting as well as important and this will be explored in the future. 
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                                              (a)                                                                           (b) 

                            
                                              (c)                                                                          (d) 
Fig. 4. MSEs for various latent vector sizes and number of quantization bits for systems (a) without 
denoising and (b) with denoising approaches. CAs for various latent vector sizes and number of 
quantization bits for systems (c) without denoising and (d) with denoising approaches. The BER is 4  10-3. 
 

                           
                                             (a)                                                                          (b) 

                           
                                             (c)                                                                          (d) 
Fig. 5. MSEs for various latent vector sizes and number of quantization bits for systems (a) without 
denoising and (b) with denoising approaches. CAs for various latent vector sizes and number of 
quantization bits for systems (c) without denoising and (d) with denoising approaches. The BER is 2  10-2.  
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     We also visually analyzed the effects of quantization and channel noise on the image 
reconstruction performance. Fig. 6 shows few original and reconstructed MNIST images for 
different latent vector sizes, number of quantization bits and BERs for systems without and with 
DAE. It is clear from the figure that without denoising the received corrupted latent vectors, the 
reconstructed images are severely distorted especially when fewer number of quantization bits is 
utilized. On the other hand, the use of DAE significantly improves the reconstruction quality, as 
expected, thus demonstrating the advantage of proposed autoencoding approach. 
  

                 
                                                             (a)       (b)       (c)       (d)        (e) 
Fig. 6. (a) Original images ; reconstructed images (b) without denoising  and (c) with denoising using latent 
vector size = 40, 3 bits quantization for latent variables and BER = 2  10-2; reconstructed images (d) 
without denoising and (e) with denoising using latent vector size = 30, 2 bits quantization for latent 
variables and BER = 4  10-3.  
 
     Finally, we investigated the effect of quantization of AEs’ parameters on image recovery 
performance in addition to the latent variables quantization considered earlier. For this purpose, 
we analyzed uniform as well as nonuniform quantization (i.e., Lloyd-Max quantization) of AEs’ 
weights and biases. Fig. 7 shows mean quantization errors per weight/bias using 4 bits for both 
quantization approaches. It is evident from the figure that for the same number of quantization 
bits used, nonuniform quantization introduces comparatively much less errors into the 
weights/biases. This is due to the fact that AEs’ weights and biases are not uniformly distributed 
and hence nonuniform quantization would be an optimum choice in this case. Fig. 8 shows MSE 
and CA results when both latent variables and AEs’ parameters are quantized using 4 bits. The 
results for the case where only latent variables are quantized are also shown as a reference. It is 
clear from the figure that both MSE and CA deteriorate significantly when AEs’ parameters are 
uniformly quantized, as expected. On the other hand, nonuniform quantization of AEs’ 
parameters reduces MSE and improves CA substantially as evident from the figure. In fact, the 
MSE and CA results for nonuniform quantization are quite close to the case where no 
quantization of AEs’ parameters is performed at all. From these results, we can conclude that 
nonuniform quantization can substantially decrease the storage requirements of AEs’ parameters 
while still offering quite similar image reconstruction performance, thus highlighting the critical 
advantage of this approach in practical resource-limited devices. 
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                                                (a)                                                                              (b)          

Fig. 7. Mean quantization error per (a) weight and (b) bias using uniform and nonuniform quantization 
approaches. The number of quantization bits used for each weight/bias is 4. 
 

      
                                            (a)                                                                      (b) 

Fig. 8. Effect of quantization of latent variables and AEs’ parameters on (a) MSE and (b) CA. The number 
of quantization bits used for each latent variable/AE parameter is 4 and the BER considered is 2  10-2.  
 
4. Conclusion 
 
In this paper, we studied the effects of quantization and channel noise on systems in which latent 
representations of MNIST images, obtained using AEs, are quantized and transmitted over noisy 
communication channels. The results show that the corruption of latent vectors severely degrades 
image reconstruction and classification performance. We demonstrated that the use of an 
additional DAE at the receiver can mitigate deleterious quantization and channel noise effects on 
latent vectors and thus significantly improve image reconstruction quality and CA. We also 
explored various trade-offs between data recovery performance and the number of latent 
variables/quantization bits used. Much more remains to be investigated to better understand the 
most appropriate way to derive and transmit latent representations of images and other data over 
practical communication channels. 
     In the future, we will explore the use of more advanced AE architectures such as variational 
autoencoder (VAE) or convolutional autoencoder (CAE) in combination with DAE and compare 
their data recovery performance and computational complexity with the method proposed in this 
paper. Moreover, we will evaluate the generalization capabilities of these approaches by training 
them using images from one domain and later applying them to compress images from a different 
domain. 
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