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Abstract

Decentralized peer-to-peer energy sharing techniques are highly promising to be-

come the next-generation regime for smart building energy management, which

can impulse the realization of nearly net-zero energy buildings. In this con-

text, this paper proposes a comprehensive energy sharing framework for smart

buildings in considering multiple dynamic components covering heating, venti-

lation, air conditioning (HVAC), battery energy storage systems (BESS) and

electric vehicles (EVs). Specifically, both the power loss and shadow price of

shared energy are explicitly modeled in a combined optimization framework,

which is aimed to maximize the social welfare through peer-to-peer energy co-

operation. Moreover, the role of agents acting as producers or consumers can

be endogenously determined in the proposed model. In addition, distinguished

with the classical distributed algorithms, we develop a fully decentralized al-

gorithm based on dual-consensus version of alternating direction method of

multipliers (DC-ADMM). The proposed algorithm avoids the need of coordi-

nators at both the primal and dual variable updates in the iteration process,

which suggests distinctive merits on high-level privacy protection as compared

to most of the distributed optimization-based methods. Extensive case studies

based on a smart building community demonstrate that the proposed peer-to-

peer transactive framework can admirably improve the overall welfare for the

involved smart buildings.
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1. Introduction

With the emerging technologies of Internet of Things (IoT) [1], conventional

buildings are transformed into smart buildings, which features automated con-

trol and management of heating, ventilation, air conditioning (HVAC), lighting,

battery energy storage system (BESS) and other ancillary systems [2]. More im-5

portantly, smart buildings enable greater improvement with respect to energy

savings and efficiency, while assuring occupants comforts [3]. In fact, buildings

are major energy consumers around the world, which account for over 40% of

total energy use and carbon emissions, as reported by United Nations Environ-

ment Program1 . The building sector in Hong Kong takes even more with over10

93% of total electricity consumption2 . Therefore, energy management in smart

buildings is of vital importance in the process of urban low-carbon transition

by effectually reducing carbon emissions.

Recently, the concept of peer-to-peer trading or sharing has emerged as a

next-generation energy management regime among agents, such as commercial15

buildings and prosumers [4]. The pioneering works on peer-to-peer trading have

been proposed on the mechanism in the microgrid [5], multiagent network [6],

community battery control [7], smart homes [8]. Recent works show that, peer-

to-peer energy sharing is promising to be achieved in the real-world implemen-

tation, with the advance of blockchain [9, 10]. However, the peer-to-peer energy20

sharing is confronted with unique challenges, including: 1) the energy sharing

framework should be properly designed to preserve the information privacy of

all participants. In other words, the less information exchanged, the better

respect for building privacy; 2) it is complex to design an admirable payment

scheme for the shared quantity of energy among participants. In general, the25

desirable pricing scheme should be fair to all participants. These two aspects

are seemingly repulsive while promising to be investigated for future transactive

energy development in smart buildings.

In recent years, there has been some existing work concerning the peer-

to-peer energy sharing framework for smart buildings. As for the residential30

houses, Ref [11] builds a peer-to-peer energy trading platform to coordinate de-

mand response with potential renewable energy generation. Ref [12] introduces

1International Energy Agency for the Global Alliance for Buildings and Construction.
“Global Status Report 2017-Towards a zero-emission, efficient, and resilient buildings and
construction sector,” https://www.worldgbc.org/sites.

2Electrical and Mechanical Services Department. “Hong Kong Energy End-use Data 2019,”
https://www.emsd.gov.hk.
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a new concept of energy classes via prosumer preferences to distinguish hetero-

geneous energy sources in peer-to-peer energy trading market. Refs [13] and [14]

adopt auction-based approaches to clear the energy sharing market, in which35

the fraction of shared energy is determined by individual agents. The rooftop

photovoltaic distributed generation is optimized by energy sharing framework

in [15]. However, these works are necessarily in need of coordinators to a certain

extent during the energy trading stage in the market, and thus the operation

optimization is typically achieved in a centralized or partially centralized man-40

ner.

In considering the privacy concerns of agents, distributed optimization is

more desirable in energy sharing market. Towards this end, game theoretic

approaches are widely exploited to reformulated the problem [16]. For exam-

ple, the peer-to-peer energy sharing problem is formulated as a non-cooperative45

Stackelberg game between prosumers in [17] and [18]. Moreover, it is shown in

[19] that under the Stackelberg equilibrium, the total operational cost can be

reduced and the utility can be maximized. In addition, Ref [20] demonstrates

that the cooperative coalition game can also effectively reduce the energy cost

via direct energy trading, while maintaining the local power balance. A de-50

centralized algorithm is proposed in [21] to fully decouple the social welfare

maximization problem.

To resolve the complex issue of pricing scheme in energy trading, Nash bar-

gaining method is employed in [22], in which the profit incentives are ensured for

all participants. Specially, in [23], a two-stage local transactive energy frame-55

work is formulated and the payment scheme is determined subsequent to the

energy trading solution. Theoretically, one can prove the existence and Pareto

optimality of the Nash equilibrium [22, 24]. Nevertheless, the mechanisms and

general insights behind the resultant payment schemes are fairly unclear for par-

ticipants. In [25], market power is firstly employed in energy trading to achieve60

a fair payment based on a modified bargaining method. In [26], a cost reduction

ratio metric is devised to determine the payment according to the acceptable

price range of all agents. The essential idea of these methods is to allocate the

cost savings to agents in accordance with the proportion of their contribution

over the entire scheduling horizon, e.g., one day.65

In the literature, comprehensive modeling for energy sharing among smart

buildings is rarely investigated. Firstly, a combined optimization model should

be properly employed by accounting for the load dynamics, energy loss and

optimal mutual payment. Secondly, it is a thorny task to foresee the role of pro-

sumers acting as producers or consumers ahead of time. Thirdly, the decentral-70

ization level of the distributed algorithm exposes a large room of improvements

by further reducing the local information exchanges among agents.

In consideration of the aforementioned challenges, this paper is aimed to pro-
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pose a fully decentralized framework for energy sharing among smart buildings.

The main contributions are threefold:75

• A comprehensive energy sharing framework is proposed for the smart-

building community, where individual buildings can flexibly manage the

local HVAC loads, battery storage and electric vehicles. In the model, the

role of agents to be a producer or a consumer is endogenously determined.

Unlike most existing works, the proposed model need not calculate the80

energy surplus or deficiency before conducting the energy sharing plans.

• In addition, the transmission loss and shadow price are both integrated

into the combined energy sharing model for the real-world implementation.

Specifically, a pricing scheme is designed in the proposed framework, and

the zero-sum term in the optimization model can be effectively handled85

in our model. Hence, a high-quality optimal and fair pricing solution can

be obtained for all participant buildings.

• Furthermore, a fully decentralized algorithm is developed to solve the en-

ergy sharing problem based on a modified version of ADMM. The coordi-

nator is completely removed in both the primal and dual variable updates.90

By deploying this, the information privacy of all buildings can be preserved

to a great extent. Meanwhile, the global optimality and convergence can

be ensured.

The remainder of the paper is organized as follows. In Section 2, we introduce

the system model of smart buildings. Section 3 presents the problem formulation95

for energy sharing. A fully distributed algorithm without any coordinators is

proposed in Section 4. Case studies and simulation results are reported in

Section 5. Section 6 concludes this paper.

2. System Model of Smart Buildings

In this paper, we consider a community of smart buildings that are geo-100

graphically close to each other, as shown in Fig. 1. These buildings are assumed
to be connected to the main grid via the local distribution network, and also
interacted with each other through bidirectional DC lines and communication
networks. Mathematically, we denote N := {1, 2, . . . , N} as the set of buildings,
and Ni as the neighborhood set of building i ∈ N .105

Each of the smart buildings is assumed to contain local renewable generation,
BESS, EVs, controllable load (e.g., HVAC units), and basic uncontrollable load.
To facilitate the energy management and energy sharing, each building is de-
ployed with a local Smart Building Energy Management System (SBEMS) that
consists of necessary sensors and actuators. In this paper, we focus on the peer-110

to-peer energy sharing among smart buildings in a day-ahead market, which
represents the mainstream marketplace for bulk electricity trading in practice.
The horizon is entirely divided into H = 24 time slots and T := {1, 2, . . . ,H}.
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Figure 1: Peer-to-peer energy sharing framework of smart buildings.

2.1. Building Thermal Load

HVAC units are essential components in smart building energy management
since they consume a large portion of energy in most circumstance (e.g., offices,
hotels, and hospitals). HVAC units are expected to maintain an acceptable
indoor comfort level for the occupants, of which the indoor temperature is nor-
mally a typical metric. According to the evolution law research of HVAC units
[26], the indoor temperature of buildings is controlled following the equation:

T in
i,t =

(
1− 1

GiRi

)
T in
i,t−1 +

1

GiRi
T out
i,t −

ηi
Gi
P h
i,t, ∀t (1)

where T in
i,t and T out

i,t are the indoor and outdoor temperature; P h
i,t represents115

the power consumption of HVAC units; Gi and Ri are internal parameters of
HVAC units; ηi is the energy efficiency, of which ηi > 0 indicates the cooling
mode while ηi < 0 indicates the heating mode, of building i ∈ N .

In addition, the acceptable indoor temperature should be bounded within
an operation range as expressed in (2), taking the technical limit into account.

T in
i,min ≤ T in

i,t ≤ T in
i,max, ∀t (2)

Normally, during the occupancy periods, there is a set-point for the indoor
room temperature at which the HVAC units attempts to maintain, e.g., T r

set in120

practice, which represents the desired comforts of the occupants. In this circum-
stance, the temperature setpoint T in

set is considered as the desirable temperature
at which the HVAC units attempt to maintain. For instance, a comfortable
indoor temperature is 22◦C, or within the range [20◦C, 24◦C] in summer. Any
temperature deviation from this setpoint incurs a namely discomfort of occu-125

pants.

2.2. Electric Vehicle Charging Model

EVs are emerging flexible loads in the smart buildings. EV patterns are
taken into account in selecting proper charging strategies including immediate
charging and smart charging at each time interval. it is assumed thatEV ag-130

gregators (EVA) are responsible for assembling the individual energy demands
for the sake of overall management in smart buildings. EVA in the building
can collect the specific EV information such as charging demand, arriving and
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departure time, maximal charging power and driver preferences, as long as it
arrives at the building.135

First of all, the dispatch ability of the newly arriving EV is evaluated by
EVA at each time slot, according to the required time to fulfill the charging
demand as per the maximal possible charging power:

treqi,v = dEV
i,v /min

{
p̄EV
i,v , p̄

charger
}

(3)

{
immediate charging, if treqi,v > tendi,v − tsti,v + 1;

smart charging, if treqi,v ≤ tendi,v − tsti,v + 1
(4)

where dEV
i,v is charging demand of v-th EV in the building i , p̄EV

v represents the

rated charging power of EV, p̄chargeri is rated power of the charger plot cable,
treqi,v is the minimal required charging time, tstv and tendi,v are arrival and departure

time, which means that the EV arrives at the beginning of time slot tsti,v, while

leaves at the end of time slot tendi,v . In (3), the maximal charging power is
utilized to calculate treqi,v , and then it is compared to the parking duration when
determining whether the EV charging demand is dispatchable, as in (4). For
clarity, we define the rated charging power as pratedi,v , to capture the maximal
charging power of EVs:

pratedi,v = min
{
p̄EV
i,v , p̄

charger
i

}
(5)

EVs with immediate charging are treated as inflexible load to the system,
as the charging power takes the maximal possible value. On the other hand,
EVs with smart charging strategies are regarded as flexible load as the charging
power is dispatchable. In consideration of this, EVs refer to the dispatchable
EVs in the rest of the paper, for simplicity. The charging demand, under the
smart charging strategy, should be fulfilled during the parking time interval as
follows:

dEV
i,v =

∑tendi,v

t=tsti,v
ηpEV
i,v,t∆t (6)

0 ≤ pEV
i,v,t ≤ pratedi,v , t ∈

[
tsti,v, t

end
i,v

]
(7)

where η is the charging efficiency; pEV
i,v,t is the charging power of EV v of building

i at time interval t, which is non-negative in the charging available periods
[tstv , t

end
v ], and smaller than the rated power pratedv . The integration of large

number of EVs would result in a rapid increase of variables, and thus lead to
difficulty in the problem formulation and solution seeking. According to [27],
this paper regards the EVA charging power as a whole in the problem, which is
formulated as follows:

PEVA
i,t =

∑Vi

v=1
pEV
i,v,t (8)

where PEVA
i,t is the total charging power of building i. In this regard, the EVA

charging power is regarded as the variable to satisfy the charging energy demand
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as follows:

EEVA
i,t =

∑t

τ=1
ηPEVA

i,τ ∆t (9)

EEVA
min,i,t ≤ EEVA

i,t ≤ EEVA
max,i,t (10)

0 ≤ EEVA
i,t − EEVA

i,t−1 ≤ PEVA
i,max (11)

where PEVA
i,t is the aggregated charging power of EVs, EEVA

i,t denotes the accu-
mulated recharged energy of EVA, and (10) implies that the recharged energy
trajectory is upper-bounded by Emax,i,t, and lower-bounded by Emin,i,t, which
are derived by Maximal-Power-Forward-Backward Method, as in the following
equations:

EEVA
max,i,t =

∑Vi

v=1

[∑t

τ=tsti,v
ηpratedi,v ∆t

]dEV
i,v

0

(12)

EEVA
min,i,t =

∑Vi

v=1

[
dEV
i,v −

∑tendi,v

τ=t
ηpratedi,v ∆t

]dEV
i,v

0

(13)

where the notation [·]ba means that the value is projected onto the interval [a, b].

2.3. Battery Energy Storage System

Distinguished from the traditional buildings, smart buildings can involve
newly emerged BESS in energy management through SBEMS. Via charging and
discharging actions, BESS can help smart buildings smoothen out the intermit-140

tence of the renewable energies. However, frequent discharging behaviors would
inevitably cause degradation of battery life cycles [28]. Therefore, it is essential
to model the degradation cost of BESS by considering necessary operational
constraints.

Given that the building i ∈ N has installed a BESS, the following constraints
capture the operation features of the BESS at each time slot.

Si,t = (1− ηbati )Si,t−1 + ηchi P
ch
i,t∆t− P dis

i,t /η
dis
i ∆t (14)

Si,min ≤ Si,t ≤ Si,max (15)

Si,H ≥ Si,0 (16)

0 ≤ P ch
i,t ≤ P̄ ch

i schi,t (17)

0 ≤ P dis
i,t ≤ P̄ dis

i (1− schi,t) (18)

schi,t − schi,t−1 ≤ ubati,t , s
ch
i,t−1 − schi,t ≤ ubati,t (19)
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∑
t∈T

ubati,t ≤ Ubat
i (20)

where Si,t, P
ch
i,t and P dis

i,t denote the stored energy, charging and discharging145

power of the BESS i at time slot t, ηbati , ηchi , η
dis
i ∈ (0, 1) are self-discharging,

charging and discharging efficiency, binary variable si,t denotes the charging or
discharging states and binary variable ubati,t records the state switching numbers,
respectively. The time-coupling constraint (14) represents the evolutionary pro-
cess of energy storage levels in the BESS, (15) indicates that the energy level is150

bounded into a permissible range; one should also restrict the terminal energy
level for no less than the initial level Si,0 as indicated in (16); moreover, the
charging and discharging power are capped by their maximal values in (17) and
(18), (19)and (20) limit the total charging/discharging state switching numbers
over the scheduling horizon, for the safety of batteries.155

2.4. Total Cost of Building Without Energy Sharing

To supply the local demands in smart buildings, renewable energies, BESS
and the utility are three main sources that can be fully involved. As such, the
active power balance in each building is concluded as follows:

P buy
i,t + P dis

i,t + P re
i,t = PL

i,t + P h
i,t + PEVA

i,t + P ch
i,t + P sell

i,t (21)

where the left-hand side of (21) corresponds to the energy supply, while the
right-hand side corresponds to the energy consumption in the building, in which
P re
i,t denotes the available renewable energies, and PL

i,t denotes the uncontrollable

load, P buy
i,t ≥ 0 denote the quantity of energy purchased from the utility com-

pany and P sell
i,t ≥ 0 denotes the surplus energy sold to the utility, by the building

i ∈ N at t-th time slot. Due to the physical limit Fi, the energy exchange with
the utility should be subject to:

−F̄i ≤ P buy
i,t − P

sell
i,t ≤ F̄i (22)

If the building i does not participate in the peer-to-peer energy sharing with
other buildings, the SBEMS of the building will try to minimize the utility
trading, as well as the occupant discomforts:

C̃i,t =βi
(
T in
i,t − T in

set

)2
∆t+ κbati (P ch

i,t + P dis
i,t )∆t

+
(
µb
tP

buy
i,t − µ

s
tP

sell
i,t

)
∆t, ∀t

(23)

where βi is introduced to denote the discomfort cost coefficient of building i ∈ N ,
κbati is the amortized cost of charging and discharging of batteries, µb

t and µs
t

are utility buying and selling price.
Given this context, the corresponding SBEMS is aimed to seek an optimal160

energy schedule scheme by solving the following optimization problem individ-
ually:
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P0: Building’s Optimization Without Energy Sharing

minimize
∑

t∈T
C̃i,t

subject to (1)-(22)

It is noticed that P0 is convex, and thus can be readily solved. Further, let
C̄i denote the optimal value of P0, which suggests the operation cost of building
i ∈ N without energy sharing.165

3. Problem Formulation with Energy Sharing

In this section, the proposed framework of peer-to-peer energy sharing and
the optimization problem formulation will be presented.

3.1. Energy Sharing Model

Peer-to-peer energy sharing is a promising alternative to direct trading with170

the utility company, where buildings can self-organize to resolve the energy
surplus or deficit problem via exchanging energy with each other in a fully
distributed manner. By doing so, the interconnected buildings can enable the
diversities of energy supply and demand patterns while achieving reduced energy
costs. Specifically, each building is allowed to buy/sell energy from/to any175

other buildings under the private transaction contract (including energy sharing
quantities and prices).

Consider a bilateral energy sharing between building i ∈ N and building
j ∈ Ni, and it is assumed that there is a ε ∈ (0, 1) power loss on the link
(i, j)[29]. Then, the power exchange balance on the link is formulated as follows:

ei→ij,t(1− ε) = e→jji,t, e→iij,t = ej→ji,t(1− ε) (24)

0 ≤ ei→ij,t ≤ F
p
i y

i→
ij,t, 0 ≤ e→iij,t ≤ F

p
i y
→i
ij,t (25)

y→iij,t, y
i→
ij,t ∈ {0, 1}, y→iij,t + yi→ij,t ≤ 1 (26)

where the first equation of (24) describes the case of power flowing from i to
j, in which ei→ij,t represents the exported power from i, and e→jji,t is the power
received by j; while the second equation of (24) describes the case of power180

flowing from j to i, in which ej→ji,t is the power exported by j, while e→iij,t is the
power received by i. (25) and (26) introduce the binary variables to label the
energy exchange directions and the exchange power line capacity, which means
that at most one power flow direction can exist in the power link (i, j).

Observing the energy sharing equation model, one should notice that the
variables ei→ij,t and e→iij,t represent the energy from/to the end of building i, while

the variables ej→ji and e→jji,t are energies from/to the end of building j. Towards
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this end, we introduce two variables eji,t and eij,t to collect above two equations
for simplicity, which are defined by:

eji,t = e→iij,t − ei→ij,t(1− ε) (27)

eij,t = e→jji,t − e
j→
ji,t(1− ε) (28)

By doing so, the power exchange balance equation (24) is reformulated as fol-
lows:

eji,t + eij,t = 0, ∀i ∈ N ,∀j ∈ Ni,∀t (29)

In addition, the power balance constraints are formulated as follows:

P buy
i,t +P dis

i,t + P re
i,t +

∑
j∈Ni

e→iij = PL
i,t + P h

i,t

+ PEVA
i,t +

∑
j∈Ni

ei→ij + P ch
i,t + P sell

i,t

(30)

3.2. Clearing the Shared Energy185

The energy sharing price is another critical part in the peer-to-peer trans-
action. Let λji,t denote the energy price of building i set for building j, at t-th
time slot. For any successful mutual energy sharing pairs, the following price
agreement should be satisfied:

λji,t = λij,t, ∀i ∈ N ,∀j ∈ Ni,∀t (31)

Though buildings participate in energy sharing, they are still considered as
independent and self-motivated agents. Thus, the new cost function for each
participant building i ∈ N will become:∑

t∈T

(
C̃i,t + λT

i,tei,t

)
(32)

where vectors λi,t := {λji,t}j∈Ni
and ei,t := {eji,t}j∈Ni

collect the energy sharing
price and amount profiles of building i with all neighbors at t-th time slot; the
notation (·)T denotes the transpose operation. In (32), the first term is the
internal cost defined in (23) and the second term denotes the payment to other
buildings.190

Therefore, for the smart building community with energy sharing, the social
welfare maximization problem can be expressed as follows:

SW-Social Welfare Maximization

maximize −
∑
i∈N

∑
t∈T

(
C̃i,t + λT

i,tei,t

)
subject to (1)-(22), (25)-(31)

10



It is worth mentioning that the objective function of SW collects welfare of
all participant buildings over the scheduling horizon T . Taking the agreement
constraints (29) and (31) into account, one may observe the zero-sum feature195

in the second term that
∑
i∈N λ

T
i,tei,t = 0 at each time slot t ∈ T , and further

simplify the objective function as −
∑
i∈N

∑
t∈T C̃i,t. However, distinguished

from most of the existing works, the mutual payment term is explicitly presented
in SW. This seemingly tedious handling is proved delicate in the subsequent
sections.200

3.3. Problem Decomposition and Decoupling with Pricing Scheme

Although SW can be solved by centralized optimization tools, this paper is
aimed to design a fully distributed framework for privacy preservation. To this
end, SW is split into N sub-problems to individual buildings that try to seek
an optimal energy schedule solution by solving P1:205

P1: Building’s Optimization with Energy Sharing

minimize
∑
t∈T

(
C̃i,t + λT

i,tei,t

)
subject to (1)-(20), (22), (25)-(31)

However, P1 cannot be solely solved for individual buildings as compared
to P0. In fact, λi,t and ei,t are variables coupled with neighboring buildings,
as in (29) and (31).

In particular, let E collect all pairs (i, j) among N buildings, then |E| =
N(N−1)/2. As such, the coupling constraint (29) contains totally |E| equations
at each time slot. Hence, (29) can be rewritten in a compact form:∑

i∈N
Eiei,t = 0 (33)

where Ei ∈ R|E|×(N−1) is a mapping matrix from nodes to lines. For a structure-
fixed building community, the matrix Ei is considered as a known parameter210

and time-invariant. It is also obvious that Ei is sparse with N − 1 elements
1, and remaining elements 0. For example, if the m-th row and j-th column
element of Ei is 1, it means that the j-th node is a neighbor of i, and the link
(i, j) locates as the m-th entry in the edge set E .

Next, let λt := {λ(i,j),t}(i,j)∈E ∈ R|E| collect the Lagrangian dual vari-
ables associated with (33). Given this context, the elements of λt represent
the marginal price of energy traded through the lines. It is thus fair for both
buildings i and j to complete the energy sharing at the price λ(i,j),t at t-th time
slot. Hence, a fair pricing scheme is devised in this paper as shown in (34):

λji,t = λij,t = λ(i,j),t, ∀(i, j) ∈ E ,∀t (34)

Furthermore, it is worth mentioning that the devised pricing scheme is
aligned with peer-to-peer pairs, which motivates us to rewrite (34) in a compact
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form with the aid of Ei:
ET
i λt = λi,t (35)

Plugging (35) into the objective function of P1, we can reformulate P1 with215

the newly devised pricing scheme:
P2: Building’s Optimization Problem Reformulation

minimize
∑
t∈T

(
C̃i,t + λT

t Eiei,t

)
subject to (1)-(20), (22), (25)-(28), (30)

Here, we already relax the coupling constraints (29) and (31) by the pro-
posed pricing scheme. Specifically, (29) is replaced by its KKT condition with
the compact form in the objective function, while the price agreement (31) is
replaced by the global variable {λt}t∈T . Consequently, each building only needs220

to minimize its own cost as modeled in P2. However, the global variable {λt}t∈T
inhibits the problem to be solved in a fully decentralized peer-to-peer manner.
In addition, retaining dual variables in the problem brings challenges in dealing
with the bilinear term λT

t Eiei,t. The detailed mathematical manipulation of
these issues will be discussed in Section 4.225

4. Proposed Decentralized Algorithm

In a distributed network, there are normally no central nodes or coordinators
to gather and diffuse variables and relevant practical constraints. In considera-
tion of this, a fully decentralized algorithm is proposed in this section.

4.1. Algorithm Design230

As commented before, to devise a fully distributed algorithm for P2, chal-
lenges are to address the global variable λt and the bilinear term λT

t Eiei,t.
In this regard, the conventional consensus ADMM is no longer applicable. In-
spired by recent works in [30], we leverage dual-consensus ADMM (DC-ADMM)
to address the arisen two challenges.235

In P2, the primal variables are considered as local variables, and only the
dual variables are exchanged between neighbors to reach a global pricing con-

sensus. Specifically, each building i ∈ N holds a pricing estimate, i.e., λ
(i)
t ,

of the global variable λt. That is, λ
(i)
t := {λ(i)(i,j),t}(i,j)∈E . With peer-to-peer

communication network, each building i can receive estimates from neighbors,

λ
(j)
t , j ∈ Ni. Upon receiving this neighboring information, the building i keeps

the following constraints:

λ̂
(i)
t = εij,t, (36)

λ̂
(j)
t = εij,t, (37)

where the hat notation means the result from the latest iteration, and εij,t is
the slack variable. Let uij,t and vij,t be the dual variables associated with (36)
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and (37), the alternating update formula for these variables are given as follows:

uij,t = ûij,t +
ρ

2

(
λ̂
(i)
t − λ̂

(j)
t

)
(38a)

vij,t = v̂ij,t +
ρ

2

(
λ̂
(j)
t − λ̂

(i)
t

)
(38b)

where ρ is the given parameter. Note that εij,t vanishes in (38) because of
its closed form of the update (See Appendix 7). Hence, the update for primal
and dual variables is in fact a minimax optimization problem, similar to the
processes in formulating ADMM:

min
{λ(i)

t }
max

{xi,t,ei,t}

∑
t∈T

(
−C̃i,t − λ

(i)T
t Eiei,t + λ

(i)T
t ẑi,t

+ρ
∑

j∈Ni

∥∥∥λ(i)
t − (λ̂

(i)
t + λ̂

(j)
t )/2

∥∥∥2) (39)

where xi,t denotes all local variables in the building i for clarity; zi,t is defined in
Appendix to represent the local auxiliary variable, as those in standard ADMM.

It is noticed that (39) is convex in {λ(i)
t }t∈T given {xi,t, ei,t}t∈T and concave

in {xi,t, ei,t}t∈T given {λ(i)
t }t∈T , so that the minimax theory is applicable here

[30]. By completing the quadratic term, the primal, dual and auxiliary variables240

are respectively solved as follows, with the initial value from last iteration λ̂
(j)
t

and ẑi,t.
Primal Variables Update
Each building i updates local primal variables in parallel:

minimize
∑
t∈T

[
C̃i,t +

ρ

4|Ni|

∥∥∥∥1

ρ
Eiei,t −

1

ρ
ẑi,t

+
∑

j∈Ni

(
λ̂
(i)
t + λ̂

(j)
t

)∥∥∥2]
subject to (1)-(20), (22), (25)-(28), (30)

variables: {xi,t, ei,t}t∈T

(40)

where |Ni| is the number of neighbors of building i ∈ N . Different from con-
ventional ADMM, DC-ADMM keeps the primal variables in privacy that would245

not be transmitted.
Dual Variables Update
Upon attaining the local primal variables, each building updates the dual

variable by the closed form in (41), and exchanges the result to neighboring
buildings.

λ
(i)
t =

1

2|Ni|

∑
j∈Ni

(
λ̂

(i)
t + λ̂

(j)
t

)
− 1

ρ
ẑi,t +

1

ρ
Eiêi,t

 (41)

Auxiliary Variables Update

13



Upon receiving the neighboring information, each building updates the local
auxiliary variable:

zi,t = ẑi,t + ρ
∑

j∈Ni

(
λ̂
(i)
t − λ̂

(j)
t

)
(42)

Algorithm 1 Proposed Fully Decentralized Algorithm

1: Initialize λ
(i)
t , zi,t = 0 for building i ∈ N ; given parameter ρ; Set iteration

k = 0;
2: repeat
3: for Each building i ∈ N (in parallel) do
4: Update primal variables xi,t, ei,t according to (40);

5: Update dual variables λ
(i)
t according to (41);

6: Transmit λ
(i)
t to neighboring buildings j ∈ Ni, and receive λ

(j)
t from

neighbors;
7: Update auxiliary variables zi,t according to (42);
8: end for
9: k = k + 1;

10: until a predefined stopping criterion.

To be clearer, Algorithm 1 summarizes the proposed decentralized algorithm
for P2. Note that the energy sharing profile and mutual payment are attained si-250

multaneously by this holistic algorithm. In addition, the individual information
privacy is preserved, since the only exchanged information are local estimates
of global prices.

4.2. Advantages of the Proposed Framework and Algorithm

• Generality. In the proposed energy sharing model, the role of agents to255

be a producer or a consumer is endogenously determined. Unlike most
existing works, the proposed model need not calculate the energy surplus
or deficiency before conducting the energy sharing plans. Instead, the
participants make communications with each other directly, in which they
determined the energy sharing directions.260

• Optimality. Due to the convexity and strong duality of P1, the solu-
tion of P2 is identical to that of P1. Hence the reformulated problem is
equivalent in term of final solution. In addition, instead of separately solv-
ing social welfare maximization problem and payment settling problem, a
holistic framework is formulated to simultaneously deal with the energy265

sharing quantity and pricing scheme. This can lead to better solution
quality with optimality guarantee.

• Fairness. The payments are integrated into the problem reformulation, in
which per unit amount of shared energy shall be cleared according to its
dual Lagrangian multiplier that economically represents the shadow price.270
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Max Social Welfare
(Centralized Problem: SW)

P21

xN, eN

λ(j)

λ(N)

λ(1)

xj, ejxi, ei

λ(i)

P2i
P2j P2N

x1, e1

Agent 1 Agent i Agent j Agent N

(Decentralized Problems: P2)

(Communication information: local copies of dual variable)

Figure 2: Problem structure and fully decentralized algorithm implementation.

As such, the proposed problem reformulation can provide a fair payment
scheme, which is distinguished from most existing works dealing with the
payment issues after the entire horizon.

• Fully Decentralized. The peer-to-peer energy sharing problem structure
and the proposed fully distributed algorithm are illustrated in Fig. 2. As275

can be seen, the proposed algorithm avoids the need of coordinators at
both the primal and dual variable updates in the iteration process, which
suggests distinctive merits on high-level privacy protection as compared
to most of the distributed optimization-based methods. We push one step
forward to further decouple the problem by introducing local copies of280

pricing variables. In this context, the proposed framework can realize a
fully decentralized real-world implementation without any central nodes
to gather or diffuse information.

5. Numerical Simulations

To demonstrate the overall performance and effectiveness of the proposed285

energy sharing framework, numerical simulation results are reported in this

section.

In the case study, a building community comprising four smart buildings is

considered. The basic uncontrollable load data are extracted from SCE Dynamic

Load Profiles3, while HVAC units are considered as local controllable loads, with290

identical parameters given as follows: Gi = 1.5kWh/◦C, Ri = 1.33◦C/kWh, and

ηi = 0.15, for all buildings i ∈ N . The temperature discomfort coefficient βi
is set as {3.2, 3.6, 4, 4.4}. Utility line capacity is 200 kW, and energy sharing

line capacity is 80kW. The energy sharing loss ε = 0.02 for each link. Each

building is assumed to have 20 EVs. The charging demand dEV
v of the vehicles295

3Southern Califormia Edison. “SCE Dynamic Load Profiles,”,
https://www.sce.com/regulatory/load-profiles/dynamic-load-profiles.
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Figure 3: Renewable energy generation and outdoor temperature.
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Figure 4: Time-of-use electricity price.

is estimated as per the daily travel mileage for the next trip and per mile energy

consumption. According to the survey conducted by U.S. Department of Trans-

portation Federal Highway Administration [31], a statistical probability method

is conducted to analyze the travel behaviors, in which the mileage is subject to

a logarithmic normal distribution function Log-N(2.98,1,142), and the charging300

start/end time are generated randomly subject to truncated normal distribution

with N(8.92,3.22) and N(17.6,3.42).

In addition, it is assumed that all buildings are equipped with BESS, and

the energy level and charging/discharging power limited by [20, 200] kWh and

[0, 50] kW, respectively. The self discharging, charging, discharging efficiency of305

BESS are 1, 0.95, 0.95, and degradation cost is κbati = 0.05$/kWh. The maximal

state switching number is 3 per day. In the algorithm, the parameter ρ = 4.5

and the stopping criterion is both primal and dual residuals less than 0.02.

Fig. 3 shows the predicted solar, wind energy generation and outdoor tem-

perature, based on the profiles on 15th June, 2020 from HK observatory. As310

shown in Fig. 3, buildings 1 and 2 are installed with wind turbines, while build-

ings 3 and 4 are installed with PV solar panels. It is noticed that the solar

energy generation is during daytime while the wind energy generation is mostly

at night. The utility energy purchasing price is shown in Fig. 4. The energy

selling price is half of the purchasing price. All simulations are implemented315

using Yalmip with Gurobi on Matlab2021a on a personal computer.

Fig. 5 compares the utility energy purchasing profiles of four buildings with

and without energy sharing. It shows that the purchasing energy is significantly

reduced with energy sharing, facilitating the construction of ‘net-zero energy

building’. As in Fig. 5 (a), before energy sharing, building 1 and 2 (Wind320

buildings) have surplus energy to sell at most hours when wind energy supply is

16



0 4 8 12 16 20 24

Time(h)

-200

-100

0

100

200

U
ti
lit

y
 G

ri
d
 (

k
W

) Building1

Building2

Building3

Building4

(a)

0 4 8 12 16 20 24

Time(h)

-200

-150

-100

-50

0

50

U
ti
lit

y
 G

ri
d
 (

k
W

)

Building1

Building2

Building3

Building4

Total

(b)

Figure 5: Utility grid power purchasing profiles. (a) Without energy sharing; (b) With energy
sharing

sufficient as compared to the local demand, while building 3 and 4 (PV build-

ings) are energy deficient. All of them can directly trade with the utility grid

according to the TOU price. For example, PV buildings buy energy particu-

larly in the midnight when the buying price is low while wind buildings sell325

more energy at 13-th and 16-hour when the selling price is relatively high.

However, after energy sharing, buildings would prefer neighboring buildings

to exchanging the energy. In addition, it is interestingly observed in Fig. 5 (b)

that the utility trading profiles tends to be similar after energy sharing. For

instance, all buildings sell excessive energy during the net energy surplus time,330

e.g., at 13-th and 16-th hour. This observation demonstrates that the proposed

framework can reach a re-dispatch consensus of building energies.

Specifically, Fig. 6 illustrates the energy management profiles of buildings

after energy sharing. Building 1 and 3 are displayed due to space limit. As can

be seen, the local loads including HVAC, BESS and EVs are flexibly controlled335

and balanced. Most importantly, the diversity of various renewable energy (e.g.,

PV, Wind) are explicitly observed in the local transaction market. For exam-

ple, the wind building 1 has surplus energy at 1:00-9:00 and 20:00-24:00, while

the building 3 are in shortage of energy supply in these periods, owing to the

PV generation patterns. This leads to the motivation for buildings to energy340

sharing, as will be discussed.

Fig. 7 and Fig. 8 show the energy level trajectory of BESS and EVA of

four buildings. As is observed, the batteries are fully utilized to store exces-

sive energy in wind buildings at first four hours, owing to the high level of wind

power generation. Moreover, the battery energy level trajectories become almost345

identical after energy sharing. As such, the results suggest that the proposed

framework can harmonize the distributed batteries efficiently by limited infor-

mation exchange among buildings. In Fig. 8, the EVA charging requirements

in four buildings are all met, and the trajectories are bounded by the dashed

curves EEVA
min and EEVA

max , which are calculated offline as per (12) and (13).350

Fig. 9 displays the internal peer-to-peer trading profiles of each building

pair over the schedule horizon. Compared with the neighboring energy impor-

tation profiles in Fig. 9 and the utility trading profiles in Fig. 5, buildings
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Figure 6: Energy management results after energy sharing.
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Figure 7: Battery energy level trajectories.
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Figure 8: EVA charging power and energy trajectory.

prioritize neighbors when energy deficit or surplus exists after energy sharing.

In particular, buildings 3 and 4 import energies from buildings 1 and 2 at night355

when wind energy generation exceeds the local demand. It is obvious to see

the proactive trading between PV buildings and wind buildings, which proves

the advantage of the proposed model in facilitating cooperative utilization of

distributed renewable energies.

Fig. 10 plots the consensus sharing price as well as the convergence of pricing360

vector λ
(i)
t in each agent. It is noticed that the each building holds a local copy

of the global shadow price vector,which are simultaneously determined along

with energy quantities, in the proposed combined model. The energy sharing

price profile is located below the buying price and above the selling price. This

is reasonable since it is basically an incentive for buildings to participate in365

energy sharing; otherwise, they may opt to trade directly with the utility. In

addition, it is observed that the resulting clearing price is time-varying, which

implies a time-varying marginal sensitivity to energy trading of the building
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Figure 9: Energy sharing profiles among all building pairs
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Figure 10: Energy sharing price. (a)The energy sharing consensus price profile; (b) The price
residual in each building.

Table 1: Cost Comparison with and without Energy Sharing ($)

Metric Bldg 1 Bldg 2 Bldg 3 Bldg 4

Total cost without ES -26.34 -305.20 210.11 289.98

Local cost with ES 6.75 -21.65 -30.31 0.07
Payment to others -52.99 -394.12 201.46 245.64
Total cost with ES -46.24 -415.77 171.15 245.72

Cost reduction 19.9 110.57 38.96 44.26

community. Fig. 10 (b) demonstrates that the proposed algorithm converges at

each buildings.370

Table 1 presents the social cost of the smart building community with and

without energy sharing. It is observed that energy sharing brings a significant

cost reduction for all buildings, ranging from $19.9 to $110.57. From the row

of mutual payment, it is clear to see that four buildings proactively settle the

payments issues, e.g., λ
(i)T
t Eiei,t in the proposed model, based on the energy375

sharing quantities in Fig 9 and the hourly price in Fig 10.
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6. Conclusion

In this paper, we investigate the problem on peer-to-peer energy sharing

among smart buildings by considering the dynamics of both BESS and EVs. A

detailed energy sharing model is formulated in presence of the energy transmis-380

sion loss. Instead of separately resolving energy trading and energy payment, the

newly proposed framework can integrate the mutual payment into a combined

optimization problem, which can effectively generate optimal pricing scheme. In

addition, a fully decentralized algorithm based on modified version of ADMM is

developed to reach the global pricing consensus, which can preserve the privacy385

of participant buildings to a significant extent. Numerical case studies demon-

strate the effectiveness of the proposed framework and suggest a high potential

of practical application in facilitating a zero-emission building community.

7. Appendix: Proof for the updates of distributed algorithm

Proof. By leveraging standard ADMM, dual variables are the updated as fol-

lows:
uij,t = ûij,t + ρ(λ̂

(i)
t − εij,t)

vij,t = v̂ij,t + ρ(λ̂
(j)
t − εij,t)

(43)

Then the update for slack variables is to solve the problem:

minimize ûT
ij,t(λ̂

(i)
t − εij,t) + v̂T

ij,t(λ̂
(j)
t − εij,t)

+
ρ

2
‖λ̂(i)

t − εij‖2 +
ρ

2
‖λ̂(j)

t − εij,t‖2

variables: εij,t

(44)

The closed form solution of (44) is given by:

εij,t =
1

2
(λ̂

(i)
t + λ̂

(j)
t ) +

1

2ρ
(ûij,t + v̂ij,t) (45)

Plugging (45) into (43), they are updated as follows:

uij,t = ûij,t +
ρ

2
(λ̂

(i)
t − λ̂

(j)
t )− 1

2
(ûij,t + v̂ij,t)

vij,t = v̂ij,t +
ρ

2
(λ̂

(j)
t − λ̂

(i)
t )− 1

2
(ûij,t + v̂ij,t)

(46)

To further simplify the update formula, it is observed in (46) that, uij,t[k] +390

vij,t[k] = 0 holds for every iteration k, if initialized with uij,t[0] + vij,t[0] = 0.

Hence, the update for εij,t is integrated into uij,t and vij,t, of which the updates

are shown in (38a) and (38b).
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Moreover, (45) is accordingly simplified as follows:

εij,t =
1

2
(λ̂

(i)
t + λ̂

(j)
t ) (47)

By observing the structures of (38) and (47), we have the following equalities

by symmetry for j of each pair (i, j) ∈ E :

εij,t = εji,t, uij,t = −uji,t = vji,t (48)

Let zi,t = 2
∑
j∈Ni

uij,t =
∑
j∈Ni

(uij,t+vji,t), we have the minimax problem

and update formula as in (39)-(42).395
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