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Abstract 21 

Night-time light (NTL) data from the Defense Meteorological Satellite Program (DMSP) 22 

Operation Linescan System (OLS) provide important observations of human activities; however, 23 

DMSP-OLS NTL data suffer from problems such as saturation and blooming. This research 24 

developed a self-adjusting model (SEAM) to correct blooming effects in DMSP-OLS NTL data 25 

based on a spatial response function and without using any ancillary data. By assuming that the 26 

pixels adjacent to the background contain no lights (i.e., pseudo light pixels, PLPs), the blooming 27 

effect intensity, a parameter in the SEAM model, can be estimated by pixel-based regression 28 

using PLPs and their neighboring light sources. SEAM was applied to all of China, and its 29 

performance was assessed for twelve cities with different population sizes. The results show that 30 

SEAM can largely reduce the blooming effect in the original DMSP-OLS dataset and enhance its 31 

quality. The images after blooming effect correction have higher spatial similarity with Suomi 32 

National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) images 33 

and higher spatial variability than the original DMSP-OLS data. We also found that the average 34 

effective blooming distance is approximately 3.5 km in China, which may be amplified if the 35 

city is surrounded by water surfaces, and that the blooming effect intensity is positively 36 

correlated to atmospheric quality. The effectiveness of the proposed model will improve the 37 

capacity of DMSP-OLS images for mapping the urban extent and modeling socioeconomic 38 

parameters. 39 

 40 
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1. Introduction  43 

Night-time light (NTL) data records nocturnal artificial light on the Earth’s surface and 44 

provides unique observations for human activities (Elvidge et al., 1997a; Elvidge et al., 2001). 45 

Two main datasets that offer global coverage are available for NTL information, the digital 46 

archive of annual composite images since 1992 from the Operational Linescan System (OLS) 47 

instrument onboard Defense Meteorological Satellite Program (DMSP) satellite and nighttime 48 

light images from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard 49 

the Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite launched in 2011 (Bennett 50 

and Smith, 2017; Elvidge et al., 2017). In recent decades, NTL data have been widely used in 51 

socioeconomic and environmental research, including urbanization delineation and spatial 52 

distribution analyses (Small et al., 2005; Cao et al., 2009; Zhou et al., 2014; Letu et al., 2015; 53 

Xie and Weng, 2017), economic development or decline monitoring (Elvidge et al., 1997a; 54 

Henderson et al.,2012; Rohner et al., 2013), population density mapping (Zhuo et al., 2009; 55 

Townsend and Bruce; 2010), electricity consumption modeling (Lo, 2002; Letu et al., 2010; 56 

Townsend and Bruce; 2010; Cao et al., 2014; Proville et al., 2017), environmental issues such as 57 

light pollution (Cinzano et al, 2001; Longcore and Rich, 2004; Butt, 2012; Rodrigues et al. 2012; 58 

Falchi et al, 2016), air quality (Wang et al., 2016) and CO2 emissions (Zhang et al., 2017; 59 

Proville et al., 2017).  60 

DMSP-OLS provides the longest observations of NTL information, from 1992 to 2013, an 61 

unparalleled dataset for studying historical artificial lights; however, it suffers from four main 62 

problems: coarse spatial resolution, lack of onboard calibration, saturation and blooming (Imhoff 63 

et al., 1997; Small et al., 2011; Small et al., 2005; Elvidge et al, 2007; Bennett and Smith, 2017). 64 

The spatial resolution of DMSP-OLS data is 2.7 km, whereas NPP-VIIRS offers a finer 65 
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resolution of 742 m (Bennett and Smith, 2017). DMSP-OLS NTL annual composite data 66 

available from 1992 to 2013 were acquired by sensors onboard six different satellites without 67 

onboard calibration mechanisms (Elvidge et al., 2009). Pandey et al. (2017) summarized several 68 

algorithms for the relative calibration of DMSP NTL data based on the concept of pseudo-69 

invariant features (PIFs) and found that global-scale calibration methods outperform regionally 70 

based calibration methods. The saturation problem resulted from the small (6-bit) quantization 71 

and low dynamic range of OLS data, which led to the inability of the OLS to record light 72 

brighter than a digital number (DN) value of 63 (Elvidge et al., 1997b). Combined with 73 

information about vegetation indices, land surface temperature (LST) or socioeconomic statistics, 74 

researchers have developed several methods to effectively mitigate the saturation of OLS data 75 

(Lu et al., 2008; Zhang et al., 2013; Zhuo et al., 2015; Hao et al., 2015; Cao et al., 2014). The 76 

blooming effect, or overglow, refers to the lighted areas detected by the OLS larger than the 77 

geographic extents of the light sources, which leads to the overestimation of the extent of urban 78 

areas (Small and Elvidge, 2013). The blooming effect is more serious for coarser nighttime light 79 

images (Kyba et al., 2014). For example, the blooming effect was also observed in monthly 80 

VIIRS composite data (Levin, 2017) but was not as serious as in DMSP-OLS data. The 81 

blooming effect brings difficulties, bias, and challenges to the applications of nighttime light data. 82 

However, only a few studies have quantitatively evaluated the blooming effect (Small et al., 83 

2005; Townsend and Bruce, 2010; Hao et al, 2015), and no consensus on blooming effect 84 

correction has yet been reached (Bennett and Smith, 2017). 85 

     The possible reasons for the blooming effect include the large footprints of the OLS sensor 86 

(Elvidge et al., 2004; Elvidge et al., 2013), the scattering of light in the atmosphere, and the 87 

accumulation of geo-location errors in the compositing process (Richter, 1996; Small et al., 2005; 88 
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Small and Elvidge, 2013; Kyba et al, 2014). Existing studies have also found that the blooming 89 

effect is related to the equivalent diameter for contiguous lighted areas (Small et al., 2005), light 90 

source strength (Townsend and Bruce, 2010), adjacent water or snow surfaces (Bennett and 91 

Smith, 2017), and thin clouds (Letu et al., 2015). To reduce the blooming effect in urban area 92 

detection, Zhou et al. (2014) used a water mask to exclude pixels with water percentages over 50% 93 

along shorelines. Some saturation correction methods, such as the Vegetation Adjusted NTL 94 

Urban Index (VANUI) (Zhang et al., 2013) and the Vegetation Temperature Light Index (VTLI) 95 

(Hao et al., 2015), can also alleviate the blooming effect. However, since their main purposes are 96 

limited, their effectiveness and flexibility to tackle the blooming effect with inadequate 97 

validations is not clear. Small et al. (2005) suggested employing a scale-dependent blooming 98 

correction procedure after finding a linear relationship between lit area and blooming distance 99 

for 10 illuminated islands as samples. However, the method's effectiveness over non-coastal 100 

areas has not yet been verified. Townsend and Bruce (2010) developed the Overglow Removal 101 

Model (ORM), which corrects the blooming effect by using the relationship between regional 102 

light intensity and blooming distance considering the effects of annual atmospheric conditions, 103 

topography and elevation. However, the method needs auxiliary data, which may not always be 104 

available for locations in developing countries where NTL imagery may provide the most insight 105 

regarding economic development. Li et al. (2017) simulated the DMSP-OLS composites from 106 

the NPP-VIIRS images by using a power function and a Gaussian low-pass filter. This method 107 

can reduce the blooming effect in the simulated DMSP-OLS images because the NPP-VIIRS 108 

images have little blooming effect (Bennett and Smith, 2017). However, this method is not able 109 

to correct the DMSP-OLS images before 2012, when NPP-VIIRS images became available. 110 

Recently, Abrahams et al (2018) deblurred the DMSP images based on the assumption that light 111 



6 

 

was blurred via a symmetric Gaussian point-spread function (PSF); the dimension of the PSF 112 

could be calibrated by the frequency of illumination. This new deblurring method is effective in 113 

improving DMSP annual composite images. However, it is limited in processing annual 114 

composite images because it needs an auxiliary dataset that records the frequencies of 115 

illumination of each pixel, which may be less accurate in cloudy regions such as tropical 116 

countries. 117 

To this end, we developed the self-adjusting model (SEAM) based on a spatial response 118 

function (SRF) to correct the blooming effect without using other ancillary data. We tested the 119 

SEAM model to correct the blooming effect in China and evaluated the effectiveness of the 120 

SEAM model in twelve cities with various population scales by comparison with NPP-VIIRS 121 

data, the VANUI and VTLI methods, as well as the accuracy of urban area extraction. This 122 

simple blooming effect correction model is expected to be used as a preprocessing method for 123 

the DMSP-OLS NTL data. 124 

 125 

2. Data and methods 126 

2.1 Study area and data 127 

We used DMSP-OLS stable NTL data for China in 2013 (Fig. 1a) to test the blooming 128 

correction method proposed by this study. Twelve cities with different size of population and 129 

levels of economic development were selected to visually and quantitatively evaluate the 130 

performance of the blooming effect correction model. These cities are categorized into six 131 

groups by population: >10 million (Shanghai and Beijing), 5–10 million (Chongqing and 132 

Guangzhou), 3–5 million (Harbin and Hangzhou), 1–3 million (Lanzhou and Luoyang), 0.5–1 133 

million (Xinyu and Xingtai), and <0.5 million (Lhasa and Lijiang). The twelve center cities are 134 
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marked by black points in Fig. 1(a). Fig. 1 (b) shows an enlarged sub-region of the DMSP-OLS 135 

image covering Beijing. Because ground truth values of light intensity are not available, the 136 

NPP-VIIRS nighttime light images in 2013 are used as a reference to evaluate the effectiveness 137 

of the proposed model, assuming the blooming effects in the NPP-VIIRS images are sufficiently 138 

weak (Li and Zhou, 2017) (Fig. 1c). The DMSP-OLS and NPP-VIIRS nighttime light data 139 

(hereafter DMSP and VIIRS for short) were downloaded from the National Oceanic and 140 

Atmospheric Administration (NOAA) National Centers for Environmental Information 141 

(http://ngdc.noaa.gov/eog/download.html). The DMSP image downloaded was 142 

“F182013.v4c_web.stable_lights.avg_vis.tif”. By geolocation processing, the stable lights were 143 

summarized to grids with a nominal resolution of 30 arc seconds, which equals 1 km at the 144 

equator. For convenience, this study used “pixel” to represent the “grid” of the DMSP stable 145 

NTL data. Four seasonal VIIRS datasets were downloaded in 2013, and we used the average of 146 

the four seasonal VIIRS images as the yearly VIIRS image in 2013 to match the DMSP image. 147 

All images were re-projected to the same coordinate system, WGS_1984_UTM49N. Then, the 148 

VIIRS data were resampled to the resolution of DMSP images and co-registered to the DMSP 149 

images using 20 GCPs selected from isolated cities without saturated pixels (see details in 150 

Supplementary Data). 151 
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 152 

Fig. 1. The DMSP-OLS image of China in 2013 (a). Right column shows the enlarged DMSP-153 
OLS image (b) and NPP-VIIRS image (c) for Beijing (black box in a). The green points with 154 
serial numbers are the 20 cities selected to investigate the effective blooming distance (see Table 155 
3). The black points indicate the 12 cities used for evaluation. 156 

 157 

To assess the performance of the proposed blooming effect removal model, we used Moderate 158 

Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index 159 

(NDVI) and Land Surface Temperature (LST) products to implement two existing DMSP 160 

correction models: VANUI (Zhang et al., 2013) and VTLI (Hao et al., 2015). The MODIS 161 

monthly composite of NDVI and nighttime LST data for 2013 were selected for this study. The 162 

results from the proposed method were compared with these two existing methods. We also 163 

compared urban extent extracted from the blooming-adjusted results with a reference urban 164 

extent map, the Global Urban Footprint (GUF) map (Esch et al., 2017). The GUF data are 165 

provided by the German Aerospace Center (DLR, https://www.dlr.de/) with a spatial resolution 166 

of 2.8 arc seconds (approximately 75 m in mid-latitudes). This dataset was generated using data 167 
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collected by the TerraSAR-X/TanDEM-X satellites between 2011 and 2012, which matches the 168 

time of the NTL data in this study. 169 

The other data used to aid this research included the ground-level PM2.5 data in 2013 (van 170 

Donkelaar et al., 2016) (http://fizz.phys.dal.ca/~atmos/martin/). This dataset is satellite-derived 171 

and adjusted by geographically weighted regression with a 0.01° grid. We also used the 172 

GlobeLand30-2010 product (Chen et al., 2015; Chen et al., 2016) (http://www.globeland30.org) 173 

to provide further land cover information such as water and urban area.  174 

 175 

2.2. Self-adjusting blooming effect correction model 176 

(1) Theoretical basis 177 

Theoretically, the blooming effects on individual pixels in DMSP images can be described 178 

by the sensor spatial response function (SRF), which is usually modeled as kernel functions, such 179 

as the Gaussian function and inverse distance function (Liang, 2003). In this study, the inverse 180 

distance function is used to approximate the SRF considering that light intensity attenuates with 181 

squared distance: 182 

2

aSRF f d
d                             (1) 183 

where d is the spatial distance corresponding to the sensor ground instantaneous field of view 184 

(IFOV) and a is a coefficient. In a satellite image, the SRF implies the degree of signals beyond 185 

the pixel size that contribute to the pixel value, i.e., a target pixel value contains the contributions 186 

of it neighboring pixels. Therefore, the observed value of a target pixel (R) can be written as: 187 

0
1

N

i i
i

R R f d R b                         (2) 188 
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The first term on the right side of Eq. (2) indicates the light signal from the target pixel, and the 189 

second term is the incoming light from neighboring pixels via the SRF. R0 is the actual light 190 

emitted by the target pixel, β is a coefficient representing the percentage of remaining light after 191 

deducting out-scattering of R0, Ri is the pixel value of the i-th neighboring pixel selected from a 192 

moving window, N is the total number of neighboring pixels, and b is the background value. The 193 

pixel value Ri of the i-th neighboring pixel includes its actual light and the blooming light it 194 

received; Ri in Eq. (2) thus allows the model to count both the direct blooming effect (from 195 

neighbors to the target) and the indirect blooming effect (from other pixels to neighbors and then 196 

to the target). In this study we assumed that out-scattering is linearly related to the intensity of 197 

the light source, i.e., β is a constant value. We also assumed that neighboring pixels that are 198 

brighter than the target pixel (i.e., Ri>R) make a net blooming contribution because the out-199 

scattering of the target pixel can offset the contribution from darker neighboring pixels. 200 

Therefore, the key to remove the blooming effect is to model the ambient incoming light, i.e., to 201 

estimate the SRF in Eq. (2). For a given DMSP pixel, the R and Ri of its neighbors are known but 202 

not R0. To make Eq. (2) solvable, we need to search some pixels in the DMSP image that have R0 203 

equal to zero, i.e., these pixels do not have any artificial light source and are only lit by neighbors 204 

due to the blooming effect. We defined these pixels as ‘pseudo light pixels’ (PLPs), for which 205 

the DN values (R’) entirely come from the neighboring light pixels: 206 

1

N

i i
i

R f d R b                          (3) 207 

Taking Eq. (1) into Eq. (3), we obtain: 208 

2
1

N
i

i i

RR a b
d                            (4) 209 
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In Eq. (4), the unknown coefficients a and b can be estimated by regression analysis using 210 

the PLPs and their neighboring light pixels.  211 

(2) Self-adjusting model implementation steps 212 

Step 1: Search for pseudo light pixels 213 

Based on the above concept, this first step is to find the PLPs in a DMSP image to estimate 214 

the coefficients a and b. As the diagram shows in Fig. 2, the intensity of artificial lights in DMSP 215 

images generally decreases from a city center to its edges (Zhou et al., 2015), with the brightest 216 

pixels (DN = 63) located in the city centers and the darkest pixels (DN = 0) close to rural areas 217 

(background areas). We thus assume that PLPs can be selected from pixels next to the urban 218 

edges, i.e., the pixel itself shows weak brightness (pixel value>0) but one or more of its eight 219 

neighbors are dark (pixel value=0) in the DMSP/OLS images (e.g., the light gray pixels in Fig. 220 

2). As a result, the DN values of these pixels should mainly come from their neighboring pixels 221 

due to the blooming effect. These pixels are selected as the PLPs and their pixel values can be 222 

described by Eq. (4).  223 

Step 2: Select effective neighboring pixels for PLPs  224 

For each PLP, we need to select its effective neighboring pixels, i.e., the pixels within the 225 

effective blooming distance, for calculating its value by Eq. (4). By visual comparison between 226 

DMSP image and a referenced urban extent derived from a global 30-m land cover map (Chen et 227 

al., 2015) for 20 isolated cities in China with relatively regular shape (Fig. 1a, marked by green 228 

points and labeled by numbers), the urban extent from GlobeLand30 was used as a reference to 229 

measure the blooming effect distance of DMSP data. For each PLP of a city, we can search a 230 

nearest distance to the urban region of GlobeLand30, and the average distance of all the PLPs to 231 

their nearest urban region represent the effective blooming distance of the city. The effective 232 
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blooming distance ranges from 2.22 to 4.38 km (see Table 3 in Discussion Session for details), 233

and the average value is 3.53 km, which is equivalent to 3.5 pixels in DMSP images. Based on 234

Eq. (1), the neighboring pixels beyond 3.5 km should have very weak influence on PLPs. 235

Therefore, a 7×7 moving window (with a PLP as the center) was suggested to search the 236

effective neighboring pixels (Fig. 2). For each PLP, only the pixels within the 7×7 window with 237

DN values larger than that of the PLP are chosen as effective neighboring pixels to compute the 238

weighted sum in Eq. (4). The spatial distance between the PLP and its neighboring pixels is 239

calculated as the Euclidean distance between the centers of the pixels.240

241
242

Fig. 2. Diagram of selecting pseudo light pixels (PLPs) and their effective neighboring pixels 243
within a 7×7 moving window244

245

Step 3: Remove blooming effect for each bright DMSP pixel 246

For each bright DMSP pixel with DN larger than 0 (named as the target pixel), we can 247

apply Eq. (2) to estimate the light intensity excluding the blooming effect if we know the 248

coefficients a and b. In one DMSP image, we can select enough PLPs and their effective 249

neighboring pixels following step 1 and 2 and then estimate a and b by linear regression. 250

However, the estimated a and b are global parameters for the entire DMSP image, which may 251
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not be optimal values for removing the blooming effect for all individual DMSP pixels. 252 

Considering that the intensity of the blooming effect might be affected by some local factors, 253 

such as the total light intensity of surrounding urban pixels (Townsend and Bruce, 2010), local 254 

atmospheric conditions (Small and Elvidge, 2013) and adjacent water bodies or snow (Bennett 255 

and Smith, 2017), the coefficients in Eq. (4) may change pixel-by-pixel, and local PLPs were 256 

thus selected to estimate the coefficients for each target pixel. Specifically, for each DMSP pixel 257 

with DN larger than 0, PLPs were selected within a radius range of 150 km; a 150-km radius was 258 

used because (1) enough PLPs can be selected and (2) atmospheric conditions (e.g., particulate 259 

matter concentrations, PM2.5 and PM10) within this range are relatively uniform (Hu et al., 2014). 260 

For each PLP, its effective neighboring pixels were selected within the 7×7 window following 261 

step 2. Then, the values of PLPs and the weighted sum of their effective neighboring pixels were 262 

used as dependent and independent variables to estimate parameters a and b in Eq. (4) by 263 

ordinary least squares linear regression. Finally, for the target DMSP pixel, its pixel value 264 

without blooming effects (R*) can be estimated by: 265 

*
2

1

ˆˆ
N

i

i i

RR R a b
d                           (5) 266 

where R* is the first term on the right side of Eq. (2), β×R0, the real artificial light after deducting 267 

out-scattering.  and  are estimated coefficients. Ri is the DN value of the effective 268 

neighboring pixels of the target pixel and Ri>R. Extremely large difference between adjacent 269 

pixels may exist in the original DMSP image. This extreme large difference will lead to 270 

unreliable results (e.g., negative brightness values) of blooming adjustment using Eq. (5). To 271 

mitigate the impact of this extreme situation, we then introduced a mean filter by using a 3×3 272 
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moving window to reduce the extremely large differences among adjacent pixels while 273 

maintaining the spatial pattern of the original DMSP image. 274 

2.3 Performance assessment of blooming effect removal 275 

To evaluate the performance of SEAM for blooming effect removal, we compared SEAM 276 

with two other vegetation adjusted methods, VANUI (Eq. 6) and VTLI (Eq. 7), to correct the 277 

DMSP data. VANUI combines the MODIS NDVI with the NTL data based on the hypothesis 278 

that the vegetation abundance is highly negatively correlated with the distribution of impervious 279 

surfaces (Zhang et al., 2013). VTLI incorporates the land surface temperature (LST) information 280 

with the vegetation index due to the temperature being higher in the center of the city (Hao et al., 281 

2015). The monthly maximum composite of NDVI and nighttime LST for MODIS in 2013 was 282 

used to calculated VANUI and VTLI, respectively:  283 

VANUI= 1- NDVI NTL                             (6) 284 

VTLI= 1- NDVI LST NTL                            (7) 285 

In summary, for the original DMSP image, three blooming-adjusted results were obtained 286 

by the proposed SEAM model (hereafter DMSP-BC) and the VANUI and VTLI methods, 287 

respectively. Two evaluation indicators, the correlation coefficient between the evaluated image 288 

and the reference image (i.e., VIIRS image) and the spatial variability of the evaluated image, 289 

were used to assess the effectiveness of different models for blooming effect removal. 290 

1) Correlation coefficients (R) between VIIRS images and the evaluated images. R is used 291 

to measure the correlation between VIIRS image and DMSP, DMSP-BC, VANUI and VTLI 292 

images. The SEAM model cannot remove the saturation effect, and pixels with DN values of 63 293 

in the DMSP images and corresponding areas in the VIIRS images were thus excluded when 294 

calculating the correlation coefficients. If blooming effect correction is effective, the blooming-295 
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adjusted images are expected to have higher R values with the VIIRS image than with the 296 

original DMSP image. The correlation coefficients were computed for each city using pixels 297 

within the minimum bounding rectangle of the city extent detected from the VIIRS image. 298 

2) Spatial variability of pixel values within urban areas of each nighttime image. 299 

Theoretically, the blooming effect makes DMSP images ‘smooth’ and decreases the spatial 300 

variability of pixel values in urban regions compared with the corresponding VIIRS images, 301 

which have minimal blooming effects. After correcting the blooming effect with the SEAM 302 

method, the spatial variability of DMSP-BC is expected to be higher than that of the original 303 

DMSP image. Since the DN values of DMSP images and VIIRS images are not comparable in 304 

value, we used the coefficient of variation (CV) to measure the relative spatial variability:  305 

CV std R mean R                          (8) 306 

where R is the DN value in each city and std(R) and mean(R) are the standard deviation and 307 

mean of the DN values, respectively. CV was calculated for VIIRS, DMSP, DMSP-BC, VANUI 308 

and VTLI images. 309 

We also evaluated the performance of NTL data for urban area extraction by comparing the 310 

results from DMSP and DMSP-BC with Global Urban Footprint (GUF) data as reference data. 311 

Because GUF data have higher spatial resolution (approximately 75 m in mid-latitudes), we first 312 

aggregated the data to 1-km spatial resolution (GUF-1km) to match the DMSP data. Then, we 313 

adopted the local optimized threshold method (Cao et al., 2009) to extract urban areas from 314 

DMSP and DMSP-BC images. The local optimized threshold is the one among all tested 315 

thresholds that can obtain the highest Kappa coefficient of the extracted urban areas using GUF-316 

1km as reference data. 317 

 318 
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3. Results 319 

3.1 Parameter estimation in the SEAM model 320 

As explained in section 2.2, for each pixel with DN values lager than 0 in the DMSP image 321 

of China, a local regression model was built to estimate parameters a and b using PLPs selected 322 

in a neighborhood. Fig. 3 shows the spatial distribution of the pixel-based regression results. The 323 

coefficients of determination (R2) for the pixel-based regression models are plotted in Fig. 3 (a). 324 

Over 97% of the pixels achieve a high coefficient of determination (>0.7), whereas some pixels 325 

in coastal areas and inland northwest areas have lower coefficients of determination. The 326 

regression models for pixels with coefficients of determination less than 0.7 were replaced by 327 

those with the highest coefficients of determination close to these pixels. Fig. 3 (b) indicates the 328 

spatial distribution of regression coefficient a in Eq. (4), which represents the intensity of the 329 

blooming effect. A higher regression coefficient a indicates a stronger blooming effect and more 330 

lights scattered from a pixel to its neighborhood. We found that the regression coefficient a is 331 

positively correlated with annual mean PM2.5 concentrations (R2 =0.3223, p<0.0001) for all of 332 

China, excluding the pixels with DN=0. This result suggests that the intensity of the blooming 333 

effect may be influenced by atmospheric conditions.  334 

 335 
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 336 

Fig. 3 Regression results for pixel-based regression models; (a) coefficients of determination 337 
(R2), and (b) regression coefficient a. 338 
 339 

3.2 Visual evaluation 340 

Fig. 4 shows the original DMSP images, the VIIRS images, the DMSP-BC images, and the 341 

VANUI and VTLI images of the twelve cities with populations from less than 0.5 million to over 342 

10 million. To make these images visually comparable, the NPP-VIIRS, VANUI and VTLI 343 

images were linearly stretched to the range of the DMSP data using the minimum and maximum 344 

pixel values. It can be observed from Fig. 4 that the DMSP data suffered from a strong blooming 345 

effect when compared with the VIIRS images, whereas the DMSP-BC images could shrink the 346 

boundaries of urban areas and decrease the values for urban outskirts. Compared with the DMSP 347 

images, the DMSP-BC, VANUI and VTLI images have higher spatial similarity with the VIIRS 348 

images. In large cities, such as Shanghai, Beijing, Guangzhou and Hangzhou, we can observe 349 

some line objects (e.g., roads) in the DMSP-BC or VIIRS images that are totally covered by the 350 

blooming effect in the original DMSP images. However, for Shanghai and Beijing in the VANUI 351 

and VTLI images, the urban centers have low DN values, which might result from the high 352 

vegetation coverage in these regions. In Chongqing, Harbin, Lanzhou, Luoyang, Xinyu, Xingtai, 353 

Lhasa and Lijiang, dark pixels in the VIIRS images (the rural areas) were brightened in the 354 
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original DMSP images due to the effect of blooming, whereas these pixels are adjusted to nearly 355 

zero in the DMSP-BC images. Visual inspection of these twelve cities indicate that the SEAM 356 

model can mitigate the blooming effect of the original DMSP image. 357 

 358 
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 359 

Fig. 4. Comparison of the NTL images in the twelve cities of China: (a) the original DMSP-OLS 360 
images, (b) the NPP-VIIRS images, (c) the DMSP-BC images, (d) the VANUI images, and (e) 361 
the VTLI images. The black lines are transects whose values are plotted in Fig. 5.  362 
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 363 

Fig. 5 shows the DN values of the transects in the DMSP images (blue lines), VIIRS images 364 

(black lines) and DMSP-BC images (red lines) for the twelve cities. It can be observed that all 365 

three NTL images have lower DN values in rural areas and higher values in urban areas, 366 

especially in the city center. The values of the DMSP-BC images are smaller than those of the 367 

original DMSP images after removing the blooming parts, especially in the rural regions. These 368 

transects also show that the variations of DN values in the DMSP-BC images have greater 369 

similarity with the VIIRS images compared with the DMSP images. Moreover, the variation of 370 

DN values in the urban areas of the DMSP images is smaller than those of the DMSP-BC and 371 

VIIRS images. For transects of Shanghai, Beijing and Guangzhou (Fig. 5 a, b and d), many 372 

saturated values in the DMSP images close to urban cores were also adjusted into lower values in 373 

the DMSP-BC images. This result suggests that the SEAM model can also partly remove the 374 

effect of saturation. In the rural areas where DN values of VIIRS are close to zero, the DMSP 375 

images maintain high values of approximately 10–20 (e.g., the west part of Lanzhou, Luoyang 376 

and Xinyu in Fig. 5 g, h and i) due to the blooming effect, and the DN values of these pixels in 377 

the DMSP-BC image were adjusted to 0–5. These transects suggest that the SEAM model can 378 

effectively remove the blooming effect and partly remove the saturation effect in DMSP images.  379 

 380 
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 381 

Fig. 5. Profiles of transects (the black lines in Fig. 4) of Shanghai (a), Beijing (b), Chongqing (c), 382 
Guangzhou (d), Harbin (e), Hangzhou (f), Lanzhou (g), Luoyang (h), Xinyu (i), Xingtai (j), 383 

Lhasa (k), and Lijiang (l) from the DMSP, VIIRS and DMSP-BC images.  384 

 385 

3.3 Quantitative evaluation 386 

Table 1 lists the correlation coefficients (R) with VIIRS images for DMSP, DMSP-BC, 387 

VANUI and VTLI and CV values calculated by Eq. (8) for DMSP, VIIRS, DMSP-BC, VANUI 388 

and VTLI in twelve selected cities and the whole of China, excluding pixels with DN equal to 0 389 

in the DMSP-BC image. When comparing original DMSP and DMSP-BC images, the 390 

correlation coefficients with VIIRS images in the whole of China are 0.62 and 0.69 for the 391 

original DMSP and DMSP-BC images, respectively, whereas all twelve cities have higher 392 

correlation coefficients after blooming effect correction by the SEAM model. The increase of the 393 

correlation coefficients indicates that the DMSP-BC images are more similar to the VIIRS 394 

images compared with the original DMSP images. In terms of spatial variability, the images after 395 

blooming effect removal for all twelve cities can have higher CVs than the original DMSP 396 

images. The CV values of the twelve cities from DMSP-BC are between the CV values from the 397 

DMSP and VIIRS images, and the CVs of the whole of China are 1.53, 0.94 and 2.64 for DMSP-398 
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BC, DMSP, and VIIRS images, respectively, which suggests that the spatial variability of the 399 

DMSP images was enhanced after blooming effect correction. However, the spatial variability of 400 

the DMSP-BC images is still not as high as that of the VIIRS images. The possible reasons 401 

include the existence of saturated pixels, the discrepancy of spatial resolutions between DMSP 402 

and VIIRS, and the remaining blooming effect. 403 

The results in Table 1 show that in some cities the DMSP-BC images from SEAM perform 404 

better than VANUI and VTLI. The correlation results show lower values for VANUI and VTLI 405 

in Shanghai, Beijing, Guangzhou, Hangzhou, Lhasa and Lijiang. The possible reason for this 406 

result may be that the high percentage of green space makes the assumption of the two indexes 407 

invalid. For the other cities, SEAM’s results are comparable with those of VANUI and VTLI. 408 

These results suggest that the auxiliary data, such as NDVI and LST, may introduce extra errors 409 

in blooming correction. The CV values indicate similar spatial variabilities for SEAM, VANUI 410 

and VTLI. We noticed that VANUI and VTLI show comparable or even better results than 411 

SEAM in some cities; however, the axillary datasets required by these methods impede their 412 

applicability.  413 

 414 

 415 

 416 

 417 

 418 
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3.4 Urban area extraction 423 

The results of urban areas extraction are shown in Fig. 6 and Table 2. Fig. 6 indicates that 424 

the spatial distributions of the urban areas are more similar to the GUF data after blooming effect 425 

removal. For example, the urban region of Shanghai extracted from the DMSP data by the local 426 

optimal threshold is only the urban core area, whereas the DMSP-BC result could extract the tiny 427 

urban regions that also exist in the GUF image. Table 2 lists the urban areas of the 12 cities 428 

extracted from the DMSP and DMSP-BC images as well as the reference urban areas from the 429 

GUF data. Table 2 also shows differences in urban areas between GUF and DMSP (denoted as 430 

Difference_DMSP) and between GUF and DMSP-BC (denoted as Difference_DMSP-BC). From 431 

Table 2 we find that the areas of the urban areas extracted from the DMSP-BC images are closer 432 

to the reference values than those from the DMSP data. The kappa coefficients in Table 2 also 433 

confirm that urban areas extracted from DMSP-BC are more similar to the GUF reference than 434 

those from DMSP. In conclusion, DMSP images after removing the blooming effect by the 435 

SEAM model can obtain more accurate urban extents than the original DMSP data. 436 

 437 

Table 2 Urban areas extracted from the DMSP and DMSP-BC images for the twelve cities 438 
(unit=km2) 439 

City/Province Kappa for 
DMSP 

Kappa for 
DMSP-BC 

Area from 
DMSP 

Area from 
DMSP-BC 

Area from 
GUF 

Difference 
_DMSP 

Difference 
_DMSP-BC 

Shanghai/Shanghai 0.7302 0.7382 2399 2798 2798 399 0 
Beijing/Beijing 0.7756 0.8437 3754 4294 4359 605 65 
Chongqing/Chongqing 0.5181 0.6604 1058 992 711 347 281 
Guangzhou/Guangdong 0.7364 0.7950 11274 10962 9221 2053 1741 
Harbin/Heilongjiang 0.6718 0.8120 975 1153 1266 291 113 
Hangzhou/Zhejiang 0.6200 0.6317 2005 1908 1712 293 196 
Lanzhou/Gansu 0.5925 0.7823 359 320 330 29 10 
Luoyang/Henan 0.6652 0.8639 518 596 672 154 76 
Xinyu/Jiangxi 0.6401 0.7305 177 205 209 32 4 
Xingtai/Hebei 0.4713 0.6916 500 495 576 76 81 
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Lhasa/Xizang 0.3767 0.4581 120 86 99 21 13 
Lijiang/Yunnan 0.7160 0.8843 65 56 59 6 3 

 440 
441 

442 

Fig. 6. Comparison of the urban area of (a) the Global Urban Footprint images at 1-km resolution 443 
(GUF-1km) and urban area extracted from (b) DMSP-OLS images and (c) DMSP-BC images in 444 
the twelve cities of China 445 
 446 
4. Discussion and Conclusions 447 

DMSP datasets are useful for studying regional economic development because of their 448 

strong relationship with economic development, energy consumption and population. However, 449 
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DMSP datasets severely suffer from saturation and blooming effects. This research proposed a 450 

simple blooming effect correction method, the self-adjusting model (SEAM), based on spatial 451 

response functions without using any ancillary data. The SEAM model was tested in the whole 452 

of China and produced blooming-effect-corrected images, e.g., DMSP-BC, compared with the 453 

original DMSP and NPP-VIIRS images. The visual and quantitative evaluations as well as the 454 

results of urban area extraction suggested that the SEAM model can largely remove the 455 

blooming effect in the original DMSP dataset and enhance its spatial quality.  456 

The greatest strength of the SEAM method is that it estimates the important parameters in 457 

the spatial spread function from the DMSP image itself rather than requiring any other ancillary 458 

data, and the estimated parameters are then used to remove blooming effects on all DMSP pixels. 459 

This advantage makes the SEAM method very applicable and easy to implement. In contrast, 460 

existing methods, such as the frequency threshold method (Small et al., 2005) and the overglow 461 

removal model (Townsend and Bruce, 2010), need other ancillary datasets and extra effort. The 462 

frequency threshold method (Small et al., 2005) needs urban extent derived from Landsat images 463 

to determine the optimal frequency threshold, and this study also suggested that it is very 464 

difficult to find one threshold that works for a majority of cities in the world. The overglow 465 

removal model is an iterative process that needs administrative division boundaries as masks and 466 

census population data to stop the iterative process (Townsend and Bruce, 2010); moreover, this 467 

model was only tested in Australia due to the availability of an ancillary dataset.    468 

The second strength of the SEAM method is that the SEAM model was developed based 469 

on reasonable assumptions, one of which is that DMSP images have pseudo light pixels (PLPs), 470 

i.e., pixels containing little artificial light source but lit by neighboring light sources. The pixels 471 

adjacent to the background were defined as PLPs, and their neighbors with larger DN values 472 
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were used as neighboring light sources. Such PLPs should exist in any countries that have cities 473 

visible in the DMSP images. Another assumption is that the effective blooming distance is 474 

approximately 3.5 km, and a 7×7 moving window was thus used to removing blooming from the 475 

neighboring pixels. We investigated the effective blooming distance in 20 isolated cities using a 476 

land cover product, GlobeLand30 (Chen et al., 2015; Chen et al., 2016). Table 3 lists the 477 

effective blooming distances and the average light intensities measured from the DMSP image, 478 

mean concentrations of PM2.5 at ground-level (van Donkelaar et al., 2016) and neighboring water 479 

areas of the 20 cities. The results indicate that the smallest distance is 2.22 km in Turpan (No. 04 480 

in Fig. 1a) and the largest is 4.38 km in Jinchang (No. 08 in Fig. 1a). The average distance for 20 481 

cities is 3.53 km, which is equivalent to 3.5 pixels in DMSP images. Therefore, it is reasonable 482 

to use the 7×7 window to define the neighboring pixels whose blooming light can reach the pixel 483 

at the window center. We also found that this effective blooming distance is not related to the 484 

average light intensity of the city (R=0, p=0.50) and PM2.5 concentration (R=0.10, p=0.35), 485 

which suggests that the 7×7 window is good for cities with different sizes and under different 486 

atmospheric conditions. An experiment using different window sizes suggests that the proposed 487 

method is not very sensitive to the window size (see Supplementary Data). Therefore, the 7×7 488 

window should obtain acceptable accuracy and is recommended for most areas, although we 489 

suggest further studies to test the parameter in more countries. Note that the effective blooming 490 

distance may be longer than 3.5 km in coastal cities or cities with many water surfaces. From the 491 

20 cities listed in Table 3, the effective blooming distance is positively correlated to the water 492 

area surrounding a city (R=0.53, p<0.05). Although the 7×7 window can obtain satisfactory 493 

results of blooming effect removal by the SEAM model for coastal cities (see Supplementary 494 

Data), a larger window is recommended for processing DMSP images in coastal areas.  495 
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 496 

Table 3 Effective blooming distance for 20 cities in China 497 

Serial 
number City/Province 

Effective 
blooming 

distance (km) 

Average light 
intensity of the 

city (DN) 

PM2.5 
concentration 

(μg/m³) 

Water area 
surrounding the 

city (km²)* 
01 Xilinhot/Inner Mongolia 4.08 15.37 16.77 1.24 
02 Hami/Xinjiang 3.31 23.13 18.30 0.21 
03 Korla/Xinjiang 2.49 13.93 17.80 0.46 
04 Turpan/Xinjiang 2.22 14.70 16.39 0.00 
05 Jiuquan/Gansu 2.84 14.14 29.10 0.35 
06 Bayannur/Inner Mongolia 2.36 23.10 23.79 0.00 
07 Xinzhou/Shanxi 3.27 19.15 31.61 0.00 
08 Jinchang/Gansu 4.38 16.60 36.35 1.18 
09 Yan’an/Shaanxi 2.73 10.65 38.20 1.42 
10 Yushu/Qinghai 3.36 13.38 31.12 1.00 
11 Delingha/Qinghai 3.63 13.40 43.73 0.84 
12 Tianshui/Gansu 4.39 14.92 6.65 3.89 
13 Xuancheng/Anhui 3.31 12.36 64.36 0.22 
14 Lhasa/Xizang 4.35 18.54 29.64 9.99 
15 Enshi/Hubei 3.07 16.61 27.83 0.18 
16 Jiujiang/Jiangxi 3.74 19.66 29.19 3.45 
17 Chongqing/Chongqing 4.32 14.29 29.35 0.59 
18 Huaihua/Hunan 4.33 17.16 39.42 10.56 
19 Ji’an/Jiangxi 4.01 14.72 31.50 0.21 
20 Kaili/Guizhou 4.33 15.40 32.26 2.11 

Average 3.53 16.06 29.67 1.89 
*The water area surrounding each city was calculated by the range of effective blooming distance for each city. 498 

Both the urban extent and water surface were provided by the GlobeLand30-2010 land cover product.  499 
 500 

The third strength is that the proposed SEAM method optimizes the parameters in the 501 

adjustment model locally rather than globally. Blooming effect intensity, represented by the 502 

regression coefficient a (Fig. 3b), was found to be positively correlated with the annual mean 503 

PM2.5 concentration (R2 =0.3223, p<0.0001), which suggests that the blooming effect is 504 

strengthened by the scattering of aerosol particles in the air (Xu et al., 2015). Considering that 505 

the PM2.5 concentration varies in space, it is necessary to build the adjusting model for removing 506 

the blooming effect in DMSP images locally. 507 

In this study, we only tested the SEAM model in China, and more countries should be used 508 

to further evaluate the effectiveness of our method. We did not compare the SEAM model with 509 

many other methods, such as the ORM model (Townsend and Bruce, 2010) because it is difficult 510 
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to collect the auxiliary data required by these methods. Some saturation pixels remained in the 511 

blooming-effect-corrected images for big cities, e.g., Shanghai, Beijing, Guangzhou and Harbin 512 

(Fig. 4). Saturation correction methods (Zhang et al., 2013; Zhuo et al., 2015; Hao et al., 2015) 513 

could further improve the quality of DMSP data after applying the proposed method. By 514 

mitigating the blooming effect in DMSP images by the proposed SEAM method, the corrected 515 

DMSP images are expected to map the socioeconomic parameters and monitor urbanization 516 

processes with improved performance (see an example in the Supplementary Data). Note that 517 

blooming correction is not necessary for other applications such as mapping light pollution. Due 518 

to its simple principle, the SEAM method has the potential to produce blooming-adjusted DMSP 519 

NTL images in large areas. The SEAM model requires computational resources to select PLPs 520 

and build regression models for each pixel. Processing the entire region of China (5074×4001 521 

pixels) required approximately 17 hours using one CPU of a quad-core desktop computer (3.3 522 

GHz, Intel(R) Core(TM) i5-4590). The computational efficiency can be further improved by 523 

parallel computing and high-performance computers. 524 
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