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The impacts of longitudinal separation, efficiency loss and cruise speed adjustment in 1 

robust terminal traffic flow problem under uncertainty 2 

 3 

Abstract 4 

Minimisation of approaching time and maximisation of the utilisation of air route and airport resources are the two ultimate 5 

goals of air traffic control. This research considers the problem of decision-making in the terminal manoeuvring area during 6 

the uncertain arrival times at entry waypoints of flights and investigates the air traffic controller specific parameters in the 7 

model. The two-stage optimisation framework will first determine a deterministic schedule and optimise the approaching 8 

time and arrival time on runways while considering additional longitudinal separation, efficiency loss from deterministic 9 

schedule and cruise speed adjustment in the second-stage optimisation model via sample average approximation (SAA). 10 

The numerical experiments were performed with the support of real-world data, and the results suggested an efficiency 11 

loss of 20%, which can absorb the empirical probabilistic lateness at entry waypoints. The proposed method could 12 

determine the estimated average delay time at runways with different settings of additional buffer for longitudinal 13 

separation requirement and trade-off parameters between the estimated average delay time at runways and estimated 14 

penalty cost of cruise speed adjustment.  15 

 16 

Keywords: robust schedule design; air traffic control; sample average approximation; optimisation; aviation. 17 
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1. Introduction 1 

1.1. Problem description 2 

In this paper, we examine a robust schedule design for terminal traffic flow problem (TTFP), which is defined as the 3 

problem of designing a conflict resolution and coordinating various air traffic resources, including air route, aeronautical 4 

holding, arrival segments, joint segments, common guided path and runways, with the aim of developing an optimal air 5 

route network with efficient air traffic movement in the terminal manoeuvring area (TMA). An increase in air traffic load 6 

raises the possibility of air route congestion in the TMA. Thus, re-scheduling of flights is required in various situations by 7 

Air Traffic Control (ATC), such as during air traffic delay and adverse weather conditions (Wee, Lye, & Pinheiro, 2018). 8 

Additionally, aeronautical holding and approach path decisions are usually subjected to the current air traffic situation and 9 

traffic control regulations, which leads to complicated and dynamic air traffic flow management (C. K. M. Lee et al., 2018; 10 

K. K. H. Ng, Lee, Chan, & Qin, 2017).  11 

 12 

The volume of air transportation has been increasing significantly in recent years due to the increasing number of 13 

passengers and airlines (K. K. H. Ng, Lee, Chan, & Lv, 2018; Qin, Chan, Chung, Qu, & Niu, 2018). Air traffic networks 14 

are becoming increasingly complicated as well (Farhadi, Ghoniem, & Al-Salem, 2014; Gelhausen, Berster, & Wilken, 15 

2013). As a result, most international airports have experienced heavy air traffic delays in the past two decades. An increase 16 

in expenses for crews, fuel, maintenance and gross profit may be the consequences of flight delays (M. Ball et al., 2010; 17 

Lu, Zhu, Han, & Hu, 2019; Qin, Wang, Chan, Chung, & Qu, 2018, 2019). Hence, airport capacity management is of utmost 18 

importance to deal with issues in terms of ATC resource allocation (M. O. Ball, Hansen, Swaroop, & Zou, 2013; Nikoleris 19 

& Hansen, 2012). In practical situations, since the actual flight arrival/departure time may deviate from the predetermined 20 

or estimated time due to exogenous uncertainty (K. K. H. Ng et al., 2017), it is essential to design an appropriate model for 21 

ATC by fulfilling its current needs. This is emphasised by Artiouchine, Baptiste, and Dürr (2008) and Eun, Hwang, and 22 

Bang (2010), who considered discrete holding patterns and airborne delays in their models to design smooth landing 23 

schedules. Peterson, Neels, Barczi, and Graham (2013) indicate that the major cause for delays is usually the lack of TMA 24 

capacity. Additionally, air traffic congestion and flight delays occur frequently at busy airports, which might be attributed 25 

to the low efficiency of ATC (Samà, D’Ariano, D’Ariano, & Pacciarelli, 2017). (Samà, D’Ariano, D’Ariano, et al., 2017). 26 

Terminal traffic flow capacity deficiencies might cause delayed propagation in the subsequent TMA activities (Kafle & 27 

Zou, 2016; Pyrgiotis, Malone, & Odoni, 2013). Therefore, airport capacity management is crucial to deal with issues in 28 

terms of ATC resource allocation (Nikoleris & Hansen, 2012). It is also important for ATC to provide detailed commands 29 

to pilots regarding the approaching and aeronautical holding decisions (Samà, D’Ariano, Corman, & Pacciarelli, 2017; 30 

Samà, D’Ariano, D’Ariano, et al., 2017; L. Xu, Zhang, Xiao, & Wang, 2017). Moreover, the total approaching time of a 31 

flight in TMA, TMA throughput might be affected by metrological conditions and route traffic situations (X. Chen et al., 32 

2020; Pohl, Kolisch, & Schiffer, 2020; Yang, Gao, & He, 2020). In practice, since the actual flight arrival/departure time 33 

might deviate from the predetermined or estimated time due to exogenous uncertainty, it is essential to design an appropriate 34 

model for ATC by fulfilling its current needs. The uncertain variables are designed based on a probability-known 35 

distribution using historical data (X. Chen et al., 2020; Jacquillat, Odoni, & Webster, 2017).  36 

 37 

In order to enhance the level of practical usage and the robustness of the solution, a detailed control of the ATC practices, 38 

including air segments, holding patterns and landing operations, is required to provide aid and assistance in resolving 39 

potential conflicts and offering collision-free guidance to all flights within a TMA (Givoni & Chen, 2017; Qian, Mao, Chen, 40 
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Chen, & Yang, 2017). Any accident due to improper terminal resource usage would cause dramatic loss, disrupt airport 1 

operations, have adverse effects on subsequent activities and delay propagation (Sinclair, Cordeau, & Laporte, 2014). 2 

Therefore, the TTFP schedule should inherently include a certain degree of robustness. A robust scheduling approach for 3 

airport operations should perform appropriately even when the time required for operations is uncertain, which increases 4 

the vulnerability of disruption of airside operations. In fact, the management of flight approaching and departing procedures 5 

are key components of an efficient air transportation system (Gillen, Jacquillat, & Odoni, 2016). 6 

 7 

1.2. Literature review 8 

The TTFP is an extension of the Aircraft Sequencing and Scheduling Problem (ASSP) (K. K. H. Ng et al., 2018). The ASSP 9 

model offers a microscopic view of the traffic flow framework. It mainly considers runway assignments and sequencing 10 

problems that are constrained by the capacity of the available runway resources, safety and the efficient allocation of 11 

landing directions and positions in a multi-runway system (Deng et al., 2018; K. K. H. Ng et al., 2017). However, the final 12 

approach operations are also affected by the manner of the ATCOs at the TMA (Hansen & Zou, 2013; Zou & Hansen, 13 

2012). For example, inefficient terminal ATC and poor management of the approach route selection may lead to TMA 14 

capacity being uncaptured (C. K. Lee, Zhang, & Ng, 2019; Samà, D’Ariano, D’Ariano, et al., 2017). Nonetheless, 15 

increasing the number of aeronautical holdings further increases the possibility of flight delays, ASSP re-scheduling and 16 

extra fuel consumption (Artiouchine et al., 2008). ATC and airspace congestion control are the most interesting research 17 

directions warranting attention. As the airport network, approach fix and terminal traffic route are predetermined, the 18 

relevant studies can be classified into different classes of mathematical modelling, including discrete-time network 19 

approach (Balakrishnan & Chandran, 2010), time-space network approach (Bertsimas, Lulli, & Odoni, 2011; Kafle & Zou, 20 

2016; Yang et al., 2020), graph theory (Samà, D’Ariano, Corman, et al., 2017; Samà, D’Ariano, D’Ariano, et al., 2017) 21 

and rolling horizon method (Prakash, Piplani, & Desai, 2018; Samà, D’Ariano, & Pacciarelli, 2013b). Extensive research 22 

has been conducted in the past decade to address the terminal traffic flow and airspace congestion control, including the 23 

resolutions and decisions on runway configuration (Gillen et al., 2016; Jacquillat & Odoni, 2015a, 2015b, 2018; Jacquillat 24 

et al., 2017), runway scheduling (Heidt, Helmke, Kapolke, Liers, & Martin, 2016; Lieder, Briskorn, & Stolletz, 2015; 25 

Lieder & Stolletz, 2016; Prakash et al., 2018), approach route (Samà, D'Ariano, Corman, & Pacciarelli, 2018; Samà, 26 

D’Ariano, D’Ariano, et al., 2017; Toratani, 2019), waypoint merge system (Youkyung Hong, Choi, & Kim, 2018; Y. Hong, 27 

Choi, Lee, & Kim, 2018), aeronautical holding (Samà, D’Ariano, Corman, et al., 2017), fuel consumption (Khan, Chung, 28 

Ma, Liu, & Chan, 2019), runway and waypoint arrival time determination (Liang, Delahaye, & Marechal, 2018; Murça, 29 

Hansman, Li, & Ren, 2018). In order to provide complementary information on ATC at a TMA, Bianco, Dell’Olmo, and 30 

Giordani (1997) proposed the formulation of TTFP, which uses a no-wait job-shop scheduling method. Artiouchine et al. 31 

(2008) and Eun et al. (2010) also considered the absorption of airborne delays by determining the number of aeronautical 32 

holdings for approaching flights. Moreover, Samà, D’Ariano, D’Ariano, and Pacciarelli (2014) proposed a novel alternative 33 

graph approach to the TTFP. Alternatively a rolling horizon method for TTFP problem proved to be able to trim the problem 34 

into several subproblems (Samà, D’Ariano, & Pacciarelli, 2013a). The structure of the TTFP is also subjected to the actual 35 

air traffic network, air segment structure, wind direction and the terrain constraints near a TMA. The deterministic nature 36 

of the TTFP model has been well studied in relation to a conflict-free approach and the minimisation of total flow time 37 

within a TMA. However, computational loading using a no-wait job-shop scheduling, rolling horizon or alternative graph 38 

approach has proven to be significant in practical use. 39 

 40 
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Various approaches in managing ATC decisions under the dynamic changes of the environment were proposed in the 1 

literature of the ASSP model. It is noteworthy that solving such large-scale TTFP and airport arrival demand management 2 

are computationally intractable and fail to meet the industrial needs in near-time decisions. The model might involve 3 

complex constraints with regard to the air route and airport geographical structure, runway orientation and slope, 4 

aeronautical holding stack level and meteorological conditions. The contemporary research in traffic flow management 5 

focuses on the recovery approach, which is a reactive approach that handles delays when they arise (Z. Liang et al., 2018). 6 

Stochastic and robust scheduling are proactive approaches that avoid delay propagation and fault-driven re-scheduling 7 

efforts when delays occur over a particular period (Gehlot, Honnappa, & Ukkusuri, 2020; Tang & Wang, 2020; Yan & 8 

Chen, 2021). Additionally, the uncertainty in air traffic flow management increases the complexity of ATC modelling (K. 9 

K. H. Ng et al., 2017). In terms of the stochastic approach, the uncertain variables are designed based on a probability-10 

known distribution using historical data (Jacquillat & Odoni, 2015a, 2015b; Jacquillat, Odoni, & Webster, 2016). However, 11 

the expected outcome may not be derived from historical records in certain situations. In contrast, robust modelling is a 12 

risk-averse approach that deals with conservative decision-making (K. K. H. Ng et al., 2017). Robust optimisation in an 13 

optimisation approach that handles the ambiguous distribution of uncertainty and is used to estimate the possible outcome 14 

without precise measurements on uncertain parameters (Habibi, Battaïa, Cung, Dolgui, & Tiwari, 2019; He, Guan, Xu, 15 

Yue, & Ullah, 2020; Hu, Ng, & Qin, 2016; Maiyar & Thakkar, 2019). The robust approach considers a possible deviation 16 

as an interval-based uncertainty while developing the robust performance instead of considering the statistical control of 17 

uncertainty distribution (K. K. H. Ng, C. K. M. Lee, F. T. S. Chan, C.-H. Chen, & Y. Qin, 2020b; K. K. H. Ng et al., 2017). 18 

Therefore, a robust schedule design approach is desirable in a complex environment (Qiu, Sun, & Sun, 2020).  19 

 20 

The ambiguity aversion, in economics literature, is referred to as that the decision maker and tends to prefer known risk 21 

over unknown risk or uncertainty (Epstein, 1999; Gilboa & Schmeidler, 1989; Schmeidler, 1989). Ben-Tal, Bertsimas, and 22 

Brown (2010) first developed the soft robust model for convex optimisation under ambiguity aversion. The 23 

conservativeness of solutions under the convex risk measure guarantees that the solution quality is against the downside 24 

performance in terms of uncertainty in convex optimisation (Bertsimas, Nohadani, & Teo, 2010). Furthermore, the 25 

estimation of unknown parameters in robust optimisation usually falls into interval cases. In this regard, the robust solution 26 

is deemed to be too conservative but less vulnerable to disruption (De La Vega, Munari, & Morabito, 2020). It is not 27 

possible to monitor closely when dealing with delay estimations for all approaching flights. The choice of robust 28 

optimisation methods is subject to the preference and the balance between the levels of disruption and resilience (Aissi, 29 

Bazgan, & Vanderpooten, 2009). Absolute robustness, robust deviation and relative deviation are well-known robust 30 

optimisation methods (X. Xu, Cui, Lin, & Qian, 2013). The aim of robust optimisation is to neutralise the outcome of 31 

uncertainty if wrong decisions create a dramatic failure in operations (Basso, 2008; Delavernhe, Lersteau, Rossi, & Sevaux, 32 

2020). K. K. H. Ng et al. (2017) proposed a min-max regret approach with regard to hedging the arrival and departure 33 

uncertainty under the worst-case scenario in order to develop a robust ASSP schedule for a mix-mode parallel runway 34 

operation.  35 

 36 

An efficient terminal traffic flow solution can improve both the airlines’ and airports’ performances (García-Heredia, 37 

Alonso-Ayuso, & Molina, 2019; Samà, D’Ariano, D’Ariano, et al., 2017). Even for flights that enter a TMA, the total 38 

approaching time may be affected by weather conditions and route traffic situations. Furthermore, inaccurate information 39 

regarding the approaching time and approaching route may leads to infeasibility of the planned schedule and, sometimes, 40 
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leads to re-scheduling efforts by the ATC (K. K. H. Ng et al., 2017; Zheng et al., 2019). Moreover, terminal traffic flow 1 

capacity deficiencies may cause delay propagation in the subsequent runway activities (Campanelli et al., 2016; Churchill, 2 

Lovell, & Ball, 2010; Kafle & Zou, 2016; Pyrgiotis et al., 2013). Therefore, the effect of aggregate delays should not be 3 

underestimated. Instead of developing a reassignment method and recovery approach (Vink, Santos, Verhagen, Medeiros, 4 

& Filho, 2020) to partially absorb the effect of the disrupted schedule, a robust schedule design for TTFP can optimise a 5 

pre-tactical schedule for TTFP (30-minutes to 1-hour scheduling decision in advanced before the actual operations). The 6 

pre-tactical schedule decision can help ATCOs to determine a solution that is vulnerable to disruption. Air traffic 7 

synchronisation and continuous descent operations (CDO) can maximise the air traffic movement and regain efficiency by 8 

modelling the flight trajectory and descending profile (Sáez et al., 2021; Sáez, Prats, Polishchuk, & Polishchuk, 2020). The 9 

study on vertical and flight speed profile can further support the arrival manager (AMAN) model to achieve better 10 

separation standard and air traffic movement with respect to various meteorological conditions. Although the uncertain 11 

events only existed when the impact of uncertain parameters is revealed, we can expect that the robust schedule for TTFP 12 

is well protected against the uncertain arrival time on entry waypoints. In this regard, when in actual operations, the robust 13 

solution for TTFP is much more stability and low possibility of being interrupted and required re-scheduling effort in real 14 

time. The computations on worst case analysis in robust optimisation can be time consuming, which leads to a lower level 15 

of practical usage in real-world scenarios. Therefore, a robust schedule design for TTFP is proposed to mitigate the effect 16 

of delay propagation by introducing uncertain variable(s) in the robust TTFP schedule (Marla, Vaze, & Barnhart, 2018) 17 

and offers a quick solution for feasible cruise speed planning in hedging air traffic delays via scenario analysis. 18 

 19 

 20 

1.3. Contribution of the research 21 

Insufficient research is available on simplified and analytical mathematical models to formulate sophisticated interactions 22 

between the approaching path decision and cruise speed adjustment for a robust schedule design that satisfies the needs of 23 

solution quality and computation time. The proposed methods in K. K. H. Ng, Chen, and Lee (2020)’s and K. K. H. Ng, 24 

Lee, et al. (2020b)’s work attempt to enumerated all the worst-case scenarios in all possible alternative path for determining 25 

the solution for robust TTFP at strategic flight approach path decision. Their methods are only applicable in optimising the 26 

pre-assigned path decision. In pre-tactical decision, the flight approach paths are usually fixed and ATCOs can make 27 

adjustment based on a pre-assigned path decision. The latest ATC condition and the manoeuvring preferences of the ATCOs 28 

may limit the possible scenarios. To model the characteristics in ATC pre-tactical decision, we first considered a 29 

microscopic view of cruise speed adjustment on deterministic schedule based on the prior work on robust TTFP (K. K. H. 30 

Ng, Chen, et al., 2020; K. K. H. Ng, Lee, et al., 2020b; K. K. H. Ng et al., 2017). The alternative path model in the first-31 

stage optimisation problem was built using Directed Acyclic Graph (DAG) (Kam K. H. Ng, Chen, & Lee, 2021; K. K. H. 32 

Ng, Lee, et al., 2020b) and the second-stage optimisation problem was used to determine the robustness cost via Monte 33 

Carlo simulation. For the detail of the directed acyclic graph in terminal traffic flow modelling, readers may refer to K. K. 34 

H. Ng, C. K. Lee, F. T. Chan, C.-H. Chen, and Y. Qin (2020a)’s and Kam K. H. Ng et al. (2021)’s works for the details of 35 

alternative path modelling. Second, the SAA approach for stochastic discrete optimisation offered more robust decisions 36 

and computational feasibility to estimate the predicted robustness cost of robust TTFP. The algorithm can progressively 37 

estimate the true optimal value and provide good analytical solutions for evaluation on numerical studies. Third, ATCOs 38 

can determine the desired additional slack time for longitudinal separation minima of approaching flights on the terminal 39 

air route, tolerance the level of efficiency loss from the deterministic schedule and balance the delay time and cruise speed 40 
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adjustment. These three performance measurements will analyse and assist ATCOs to determine a possible combination of 1 

the parameters and ensure a certain acceptance level of solution robustness.  2 

 3 

1.4. Organisation of the paper 4 

After the introduction of the state-of-the-art ASSP and TTFP from the literature in Section 1, Section 2 explains the 5 

microscopic two-stage optimisation framework of robust schedule design for deterministic schedule. The formulation of a 6 

nominal model of TTFP and the robust schedule design for TTFP with approaching speed adjustment are presented in this 7 

section. Section 3 illustrates the performance measurement approach for the proposed method. Before presenting the 8 

numerical results of the proposed model, Section 4 provides a small-scale, real-world instance of model explanation to the 9 

readers. The case studies and numerical studies are explained in Section 5. Finally, Section 6 presents the concluding 10 

remarks and future research direction of the research problem. 11 

 12 

2. Robust schedule design for terminal traffic flow problem 13 

Several assumptions should necessarily be made before the construction of the mathematical model for TTFP. First, the set 14 

of approach paths have to be fixed within the decision horizon in the model. Some airports may change their approach 15 

routes to ensure successive landings due to a change in runway direction relative to the headwind direction. Second, any 16 

abnormal operations, such as unappropriated TMA manoeuvring, human error, etc.1 , are omitted. Third, emergency 17 

operations, such as precautionary landings, bird strikes and engine failure, are ignored in the model. Fourth, imprecise 18 

arrival time on entry waypoints is expected to fall into a stochastic case due to extreme weather conditions, turbulence and 19 

the resilience level of systemic and scheduling performance by the ATCOs. We can then build an empirical probabilistic 20 

distribution on the uncertain parameter. Fifth, mono-aeronautical holding is considered in this model, by which flights hold 21 

in a racetrack pattern with a maximum number of one turn per holding segment. This assumption is practical as very few 22 

situations in an airport require several aeronautical holdings in actual operations of the case airport, unless emergency 23 

landing, high level of windshear, sea breeze or turbulence on the runway or extreme weather. The meteorological factors 24 

on terminal traffic flow model may need to consider the hazard avoidance strategy and will study in the future work. 25 

 26 

2.1. Two-stage framework of robust schedule design for terminal traffic flow schedule 27 

We developed a robust schedule design method using a microscopic two-stage optimisation framework for the stochastic 28 

optimisation problem of the terminal traffic flow model. The primary aim of this research is to find the estimated outcome 29 

of robustness cost with regard to the total flight delay cost and cruise speed adjustment cost on a deterministic schedule. 30 

The case airport is adopting enhanced wake turbulence separation (e-WTS) procedures and longitudinal separation minima 31 

following by distance-based measurement. Readers may notice that different airports and ATC may adopt time-based flow 32 

management and trajectory-based modelling, in which the proposed model may not be applicable to their application 33 

scenarios. The general framework of robust schedule design strategy is illustrated in Fig. 1. There is a little concern on the 34 

schedule adjustment of deterministic schedule in TTFP. We considered a microscopic two-stage optimisation framework 35 

suggested by Högdahl, Bohlin, and Fröidh (2019) and Youkyung Hong et al. (2018). In our approach, we considered two 36 

types of input parameters for the schedule adjustment, including the realisation of uncertain arrival time at the entry 37 

                                                           

1 Inappropriate TMA manoeuvring, human error and operations include collision with obstacles during take-off and landing (CTOL), runway incursions 

(RI), loss of separation/midair collisions (MAC) and abnormal runway contact. See ICAO – aviation occurrence categories for further information. 

https://www.icao.int/APAC/Meetings/2012_APRAST/OccurrenceCategoryDefinitions.pdf 

https://www.icao.int/APAC/Meetings/2012_APRAST/OccurrenceCategoryDefinitions.pdf
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waypoints from historical data and a set of user-specific parameters. The first-stage optimisation problem for TTFP 𝐹(𝜑) 1 

aims to produce an optimal schedule 𝜑  and is regarded as a deterministic schedule in the second-stage optimisation 2 

problem 𝐺(𝜑). Solving the 𝐺(𝜑) can be done fastly as the model aims to estimate the outcome of predicted average 3 

robustness cost based on a deterministic schedule (predetermined in the first-stage optimisation problem). 4 

 5 

 6 

Fig. 1. Robust schedule design for TTFP 7 

 8 

The robust schedule design for TTFP 𝑓(𝜙), namely RSD-TTFP, includes the first-stage D-TTFP and second-stage Robust-9 

TTFP model. Let 𝜙 be the feasible solution, 𝜙 be the optimal solution in the first-stage optimisation problem, namely 10 

D-TTFP, and denoted as 𝐹(𝜙) and 𝑇𝑛 be the realisation of the random vector of arrival time at the entry waypoints under 11 

the empirical distribution function from historical data. The second-stage optimisation problem with a given deterministic 12 

optimal schedule, namely Robust-TTFP, is denoted as 𝐺(𝜙). The microscopic two-stage optimisation problem can be 13 

formulated as model (1) and (2). 14 

 15 

𝑚𝑖𝑛 𝑓(𝜙) = 𝐹(𝜙) + 𝐺(𝜙) (1) 

     𝑠. 𝑡.  𝑋 ∈ 𝜙(𝜑) (2) 

 16 

𝐻(𝜙) is defined as the robustness cost and the expected robustness cost is denoted as 𝔼 [(𝐻(𝜙))]. The second-stage 17 

optimisation problem 𝐺(𝜙) is an estimation on robustness cost using an expected function as stated in model (3). We can 18 

estimate the expected outcome using the SAA method via Monte-Carlo scenario by enumerating a sufficiently large sample 19 
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size 𝑁 on the uncertain parameter in model (4), e.g., the realisation of uncertain arrival time on entry waypoints 𝑇𝑛 in 1 

our model. In this regard, we can estimate the predicted robustness cost on a terminal traffic flow schedule. 2 

 3 

𝐺(𝜙) = 𝔼 [(𝐻(𝜙))] (3) 

𝐺(𝜙) =
1

𝑁
∑ 𝐻(𝜙, 𝑇𝑛)

𝑛∈𝑁

 (4) 

 4 

ATC has the authority to assign approach routes and request aeronautical holdings to ensure a sufficient longitudinal 5 

separation on air routes when controlled flights are under the area control jurisdiction. In standard terminal arrival routes 6 

(STARs), approaching flights enter or come close to the TMA (or more specifically, arrive at the terminal airspace sector 7 

boundary) by the entry waypoint of the terminal transition routes (TTR), where the entry waypoint is defined as the 8 

geographical coordinates on the terminal sector boundary between the air traffic service (ATS) route and navigation route. 9 

The purpose of air traffic flow control is to maintain a balance between the airport surface and air route traffic (K. K. H. 10 

Ng et al., 2018). The management of air traffic flow control is the key contributor to the overall operational efficiency. 11 

Airport surface control, air route segments, aeronautical holding segments and runway resources are the main constraining 12 

resources in airport management (K. K. H. Ng et al., 2017). Aeronautical holding requires extra care in terms of the ATC 13 

system capacity, foreseen air traffic and anticipated weather disruption near the TMA. Thus, we proposed a terminal traffic 14 

flow model to improve the operational efficiency and flexibility of ATC. The number of alternative paths is defined based 15 

on the fixed structure of STARs in TMA. Given a fixed structure of STARs and, therefore, all feasible paths can be 16 

enumerated as a set of alternative paths. For more details about the alternative paths model, please refer to a recent article 17 

(K. K. H. Ng, Lee, et al., 2020b). 18 

 19 

The proposed model considers a path planning for each approaching flight within the decision horizon in the TMA as a 20 

directed graph 𝐺 = (𝑉, 𝐸) with a set of nodes 𝑉 and a set of arcs 𝐸. Let 𝐼 be the set of approaching flights. Each flight 21 

𝑖 has a set of available approaching paths 𝑃𝑖  from its entry waypoints to the runway, which is usually predetermined and 22 

regulated by ATC rules. For each flight 𝑖 ∈ 𝐼, path 𝑝𝑖 = (𝑢𝑖
𝑠, … , 𝑢𝑖

𝑒) describes the path from the entry waypoint to the 23 

runways. The entry waypoint is subject to the air route of the departure airport. The origin/destination pair (𝑢𝑖
𝑠, 𝑢𝑖

𝑒) 24 

represents the start (the corresponding entry waypoint) and end (runway) positions. For the sake of simplicity, edge 25 

(𝑢, 𝑣) ∈ 𝐸 indicates the connected nodes. The set of nodes 𝑉𝑖
𝑝𝑖 ⊂ 𝑉 indicates the collection of the valid waypoints in path 26 

𝑝𝑖 , while the set of arc 𝐸𝑖
𝑝𝑖 ⊂ 𝐸 presents the approach track for flight 𝑖 to reach the destination using path 𝑝𝑖 . Each flight 27 

𝑖  is assigned a valid path 𝑝𝑖   from a set of alternative paths 𝑃𝑖  . The set of nodes in the alternative paths model 𝑉𝑖 =28 

∪𝑝∈𝑃𝑖
𝑉𝑖

𝑝𝑖  is the union of a collection of 𝑉𝑖
𝑝𝑖 for flight 𝑖, while the set of arcs in the alternative paths model 𝐸𝑖 =∪𝑝∈𝑃𝑖

𝐸𝑖
𝑝𝑖  29 

is the union of a collection of 𝐸𝑖
𝑝𝑖  for flight 𝑖. In this connection, we have 𝑉𝑗 , 𝑉𝑖 ∈ 𝑉, 𝐸𝑗 , 𝐸𝑖 ∈ 𝐸 in digraph 𝐺. Table 1 30 

presents the notations and decision variables of the model. 31 

 32 

Table 1 33 

Notations and decision variables of the nominal model. 34 

D-TTFP 

Sets with indices Explanation 

𝐼 A set of approaching flights in the decision horizon (indexed by 𝑖, 𝑗) 
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𝑃𝑖  A set of alternative paths (indexed by 𝑝𝑖) 

𝑉 A vertex set of waypoints in the TMA (indexed by 𝑢𝑖
𝑠, 𝑢, 𝑣, 𝑢𝑖

𝑒) 

𝐸 An edge set of air route in TMA 

𝐺 A directed graph consisting of a nonempty vertex set of waypoints 𝑉 and an edge set of air route 

𝐸 in TMA 

Parameters Explanation 

𝑖, 𝑗 Flight ID 𝑖, 𝑗 ∈ 𝐼 

𝑢, 𝑣 Transit node 𝑢, 𝑣 ∈ 𝑉 

  

𝑢𝑖
𝑠 The entry waypoint for flight 𝑖, 𝑢𝑖

𝑠 ∈ 𝑉 

𝑢𝑖
𝑒 The approaching runway for flight 𝑖, 𝑢𝑖

𝑒 ∈ 𝑉 

𝑝𝑖  A directed path with a set of waypoints from entry waypoints 𝑢𝑖
𝑠 to runway 𝑢𝑖

𝑒 for flight 𝑖 ∈ 𝐼, 

𝑝𝑖 ∈ 𝑃𝑖  

𝑇𝑖  Estimated time of arrival in the terminal control area for flight 𝑖 ∈ 𝐼 

𝜔̂𝑖 The upper bound of ground speed on air route in approach phase for flight 𝑖 ∈ 𝐼 

𝜔̌𝑖 The lower bound of ground speed on air route in approach phase for flight 𝑖 ∈ 𝐼 

𝜔𝑖 Average ground speed on air route in approach phase for flight 𝑖 ∈ 𝐼 

𝜃𝑗𝑖 Longitudinal separation minima on air route between flights 𝑗 and 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖  

𝑆𝑗𝑖  Separation time on runway between flights 𝑗 and 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖  

𝑀 Large artificial variable 

Decision variables Explanation 

𝑋 A solution 𝑋 is constructed by 𝜑𝑖
𝑝𝑖 and 𝑧𝑗𝑖𝑢 

𝜑𝑖
𝑝𝑖 1, if flight 𝑖 ∈ 𝐼 is assigned to the path 𝑝𝑖 ∈ 𝑃𝑖; 0, otherwise 

𝑧𝑗𝑖𝑢 1, if flight 𝑗 ∈ 𝐼 is before flight 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖 on node 𝑢 (not necessary immediately); 0, otherwise 

𝜏𝑖𝑢
𝑝𝑖 The arrival time on waypoint 𝑢 ∈ 𝑉 using path 𝑝𝑖 ∈ 𝑃𝑖  for flight 𝑖, 𝜏𝑖𝑢

𝑝𝑖 ≥ 0 
𝑡𝑖(𝑢,𝑣) The flight time from waypoints 𝑢 to 𝑣 for flight 𝑖 ∈ 𝐼, 𝑡𝑖(𝑢,𝑣) ≥ 0 

𝑃𝑇𝐴𝑖  The preferred time of arrival on runway for flight 𝑖 ∈ 𝐼, 𝑃𝑇𝐴𝑖 ≥ 0 

Robust-TTFP 

Sets with indices Explanation 

𝑁 The sample size (indexed by 𝑛) 

Parameters Explanation 

𝑛 Scenario 

𝑇𝑖
𝑛 The realised time of arrival in the terminal control area for flight 𝑖 ∈ 𝐼 in scenario 𝑛 ∈ 𝑁 

𝜔𝑖 The minimum speed on air route in approach phase for flight 𝑖 ∈ 𝐼 

𝜔𝑖 The maximum speed on air route in approach phase for flight 𝑖 ∈ 𝐼 

𝛿 Additional buffer distance for longitudinal separation 

𝜑
𝑖

𝑝𝑖  The deterministic schedule from nominal model 

𝐹∗ The optimal value of the nominal model 

𝛾 The maximum tolerance of efficiency loss 

𝜆 A user-specific parameter of weighted ratio associate with the total delay cost 𝐷𝑖
𝑛  and total 

penalty cost of cruise speed adjustment 𝑃𝑖
𝑛 

Decision variables Explanation 

𝑧𝑗𝑖𝑢
𝑛  1, if flight 𝑗 ∈ 𝐼  is before flight 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖  on node 𝑢 ∈ 𝑉  (not necessary immediately) in 

scenario 𝑛 ∈ 𝑁; 0, otherwise 

𝜏𝑖𝑢
𝑛  The realised arrival time on waypoint 𝑢 ∈ 𝑉 using path 𝑝𝑖 ∈ 𝑃𝑖  for flight 𝑖 ∈ 𝐼 in scenario 𝑛 ∈

𝑁, 𝜏𝑖𝑢
𝑝𝑖 ≥ 0 

𝑡𝑖(𝑢,𝑣)
𝑛  The realised flight time from waypoints 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉, 𝑢 < 𝑣 for flight 𝑖 ∈ 𝐼 in scenario 𝑛 ∈

𝑁, 𝑡𝑖(𝑢,𝑣) ≥ 0  

𝐸𝑇𝐴𝑖
𝑛 The estimated time of arrival on runway for flight 𝑖 ∈ 𝐼 in scenario 𝑛 ∈ 𝑁, 𝐸𝑇𝐴𝑖

𝜎 ≥ 0 

𝛼𝑖(𝑢,𝑣)
𝑛  The acceleration time from waypoints 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉, 𝑢 < 𝑣 for flight 𝑖 ∈ 𝐼 in scenario 𝑛 ∈

𝑁, 𝛼𝑖(𝑢,𝑣)
𝜎 ≥ 0 

𝛽𝑖(𝑢,𝑣)
𝑛  The deceleration time from waypoints 𝑢 ∈ 𝑉 to 𝑣 ∈ 𝑉, 𝑢 < 𝑣 for flight 𝑖 ∈ 𝐼 in scenario n∈ 𝑁, 

𝛽𝑖(𝑢,𝑣)
𝜎 ≥ 0 

𝐷𝑖
𝑛 The delay time of flight 𝑖 ∈ 𝐼 in scenario n∈ 𝑁, 𝐷𝑖

𝑛 ≥ 0 

𝑃𝑖
𝑛 The penalty cost of cruise speed acceleration/deceleration of flight 𝑖 ∈ 𝐼 in scenario n∈ 𝑁, 𝑃𝑖

𝑛 ≥
0 

 1 
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 1 

We introduced a path selection decision variable 𝜑𝑖
𝑝𝑖 that determines the approaching path 𝑝𝑖  from a set of alternative 2 

paths 𝑃𝑖 . 𝑇𝑖  represents the arrival time at the entry waypoints of flight 𝑖. 𝜏𝑖𝑢 is a continuous variable to indicate the time 3 

instant at which flight 𝑖 arrives at node 𝑢. 𝑡𝑖(𝑢,𝑣) is determined by the actual flight time between two entry waypoints 4 

𝑑(𝑢,𝑣) and the nominal cruise speed 𝜔𝑖 of flight 𝑖, where the nominal cruise speed is a flight-class-dependent variable. For 5 

the same type of aircraft (jumbo, heavy, medium or small size types), the average cruise speed of flights is usually a value 6 

between 𝜔̌𝑖  and 𝜔̂𝑖 . Therefore, the nominal cruise approaching speed without the consideration of acceleration or 7 

deceleration is  𝜔𝑖  in [𝜔̌𝑖 , 𝜔̂𝑖]. We can calculate the 𝜏𝑖𝑢
𝑝𝑖 at each waypoint by considering the travel time 𝑡𝑖(𝑢,𝑣) from nodes 8 

𝑢  to 𝑣  with the set of predetermined waypoints in the approaching path 𝑝𝑖  . In this connection, the waypoint arrival 9 

sequence on each node 𝑧𝑗𝑖𝑢, which is a binary variable, and the preferred time of arrival 𝑃𝑇𝐴𝑖 , which is a continuous 10 

variable, can be determined. 𝑧𝑗𝑖𝑢 is a binary variable to illustrate the arrival sequences on waypoint 𝑢 for any pair of 11 

flights 𝑗 and 𝑖. If flight 𝑗 is before flight 𝑖 on waypoint 𝑢 (not necessary immediately), 𝑧𝑗𝑖𝑢 = 1; otherwise, 𝑧𝑗𝑖𝑢 = 0. 12 

𝑃𝑇𝐴𝑖  is a continuous variable in the objective function to calculate the ideal arrival time on runway. Two ATC rules were 13 

considered in the model. The longitudinal separation minima 𝜃𝑗𝑖 regulate the safe approaching distances on the waypoints 14 

between a pair of flights 𝑗, 𝑖 ∈ 𝐼, while the final approaching separation time requirement 𝑆𝑗𝑖  is a buffer time for a pair of 15 

flights 𝑗, 𝑖 ∈ 𝐼  to accommodate the adverse effect of wake vortex on the runway. A nominal schedule is designed by 16 

considering the operational constraints, including path assignment, ideal landing time estimation, cruise speed constraint, 17 

arrival sequence, longitude separation constraint (minimum distance separation) and runway separation constraint 18 

(minimum time separation). 19 

 20 

2.2. Mathematical formulation of D-TTFP 21 

The following explains the constraints and objective function in the D-TTFP: 22 

 23 

Alternative paths constraints 24 

∑ 𝜑𝑖
𝑝𝑖 = 1

𝑝𝑖∈𝑃𝑖

, ∀𝑖 ∈ 𝐼 (5) 

𝑧𝑗𝑖𝑢 + 𝑧𝑖𝑗𝑢 ≤ 1, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 (6) 

𝜑𝑖
𝑝𝑖 + 𝜑

𝑗

𝑝𝑗
≤ 𝑧𝑗𝑖𝑢 + 𝑧𝑖𝑗𝑢 + 1, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 , ∀𝑝𝑖 ∈ 𝑃𝑖 , ∀𝑝𝑗 ∈ 𝑃𝑗 (7) 

𝜑𝑖
𝑝𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 (8) 

𝑧𝑗𝑖𝑢 ∈ {0,1}, ∀𝑗, 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 (9) 

 25 

The decision variable 𝜑𝑖
𝑝𝑖 is used to determine the selection of an approach path 𝑝𝑖 ∈ 𝑃𝑖  for each flight 𝑖 ∈ 𝐼, while 𝑧𝑗𝑖𝑢 26 

denotes the sequential relationship of flights 𝑗 and 𝑖 on waypoint 𝑢 if both flights pass through the same waypoint. The 27 

arrival time at each node 𝑢 is represented by a continuous decision variable 𝜏𝑖𝑢
𝑝𝑖, which is associated with selected path 𝑝𝑖  28 

and its corresponding transit waypoint 𝑢 ∈ 𝑉𝑖
𝑝𝑖. Constraint set (5) enforces that each flight can only select one path from 29 

a set of alternate paths. Constraint set (6) computes the sequence at node 𝑢 using the binary variable 𝑧𝑗𝑖𝑢 . Constraint set 30 

(7) confirms the sequential relationship of flights 𝑗 and 𝑖 at node 𝑢, where node 𝑢 must be a complementary element of 31 

𝑉𝑗 and 𝑉𝑖. Constraints (8) and (9) illustrate that 𝜑𝑖
𝑝𝑖 and 𝑧𝑗𝑖𝑢 are binary variables. 32 
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 1 

Arrival time at entry waypoints and preferred time of arrival on runway 2 

𝜏𝑖𝑢𝑖
𝑠 ≥ 𝑇𝑖𝜑𝑖

𝑝𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖  (10) 

𝑃𝑇𝐴𝑖 = 𝜏𝑖𝑢𝑒 , ∀𝑖 ∈ 𝐼 (11) 

𝜏𝑖𝑢 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑢 ∈ 𝑃𝑖  (12) 

𝑃𝑇𝐴𝑖 ≥ 0, ∀𝑖 ∈ 𝐼 (13) 

 3 

The arrival time of flight at the entry waypoint is equal to the time 𝑇𝑖  when flight 𝑖 first appears in TMA is illustrated by 4 

Constraint (10). Constraint (11) explained that the ideal time of arrival 𝑃𝑇𝐴𝑖 of flight 𝑖 on the runway equals the arrival 5 

time on destination node 𝜏𝑖𝑢𝑒 in the digraph. 𝜏𝑖𝑢 and 𝑃𝑇𝐴𝑖  are denoted as positive continuous variables by Constraint 6 

(12) and (13). 7 

 8 

Approaching time from entry waypoint to the runway 9 

𝜏𝑖𝑣 − 𝜏𝑖𝑢 ≥ 𝑡𝑖(𝑢,𝑣) − 𝑀(1 − 𝜑𝑖
𝑝𝑖), ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 , ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣 (14) 

𝑑(𝑢,𝑣)

𝜔̂𝑖

≤ 𝑡𝑖(𝑢,𝑣) ≤
𝑑(𝑢,𝑣)

𝜔̌𝑖

, ∀𝑖 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣 (15) 

𝑡𝑖(𝑢,𝑣) ≥ 0, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 (16) 

 10 

The first arrival time at entry waypoint 𝜏𝑖𝑢𝑖
𝑠  indicates the start time of approaching. Constraint set (14) calculates the 11 

arrival time on the subsequent waypoints, where the waypoints of a path are dependent on the path assignment 𝜑𝑖
𝑝𝑖 . 12 

Therefore, we can compute the time instant on the waypoints in path 𝑝𝑖 = (𝑢𝑖
𝑠, … , 𝑢𝑖

𝑒) if ATCOs assigns an approaching 13 

path 𝑝𝑖  to flight 𝑖. We imposed lower and upper bounds of economic cruise speed 𝜔𝑖 = [𝜔̌𝑖 , 𝜔̂𝑖] to determine the travel 14 

time on actual distance between waypoints 𝑑(𝑢,𝑣). Constraint (15) illustrates that each flight takes 𝑡𝑖(𝑢,𝑣) to travel from 15 

precedent waypoint 𝑢 to subsequent waypoint 𝑣. Constraint (16) explains that the travel time from waypoints 𝑢 to 𝑣 16 

for flight 𝑖 is a positive continuous variable.  17 

 18 

Arrival sequences on waypoints 19 

𝜏𝑖𝑢 − 𝜏𝑗𝑢 ≤ 𝑀𝑧𝑗𝑖𝑢 , ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 (17) 

𝜏𝑗𝑢 − 𝜏𝑖𝑢 ≤ 𝑀𝑧𝑖𝑗𝑢 , ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 (18) 

𝑧𝑖𝑗𝑣 − 𝑧𝑖𝑗𝑢 ≥ ∑ 𝜑𝑖
𝑝𝑖

𝑝𝑖∈𝑃𝑖

+ ∑ 𝜑
𝑗

𝑝𝑗

𝑝𝑗∈𝑃𝑗

− 2, ∀𝑗, 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖, ∀(𝑢, 𝑣) ∈ 𝐸𝑗 ∩ 𝐸𝑖 (19) 

 20 

Regarding the arrival time on each waypoint using path 𝑝𝑖 , constraints (17) and (18) explain the bypassing sequence on 21 

node 𝑢 for flight 𝑗 and 𝑖. Constraint (19) describes the overtaking constraints of any pair of flights 𝑗 and 𝑖. 22 

 23 

Longitudinal separation constraints (minimum distance separation) 24 

𝜏𝑖𝑢 − 𝜏𝑗𝑢 ≥
𝜃𝑗𝑖

𝜔𝑖

− 𝑀(1 − 𝑧𝑗𝑖𝑢), ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 (20) 

 25 
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After determining the bypassing sequence on node 𝑢, hard constraint on air route longitudinal separation requirement is 1 

modelled by Constraint (20). The arrival time on the node must satisfy the minimum distance separation 𝛿𝑗𝑖 for any pair 2 

of flights 𝑗 and 𝑖 to ensure a safe approaching operation. In order to resolve overtaking constraint of trailing flight, the 3 

longitudinal separation time is computed by 
𝜃𝑗𝑖

𝜔𝑖
, where 𝜔𝑖 is the average approaching speed of the trailing flight. Fig. 2 4 

illustrates the differences between longitudinal separation minima and realised longitudinal separation distance. 5 

 6 

 7 

Fig. 2. Illustration of longitudinal separation minima and realised longitudinal separation distance 8 

 9 

Final approaching separation constraints (minimum time separation) 10 

𝑃𝑇𝐴𝑖 − 𝑃𝑇𝐴𝑗 ≥ 𝑆𝑗𝑖 − 𝑀 (1 − 𝑧𝑗𝑖𝑢𝑖
𝑒) , ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢𝑖

𝑒 ∈ 𝑉𝑗 ∩ 𝑉𝑖 (21) 

 11 

Constraint (21) imposes a minimum separation time to include a sufficient buffer between ideal arrival time 𝑃𝑇𝐴𝑖 on a 12 

runway for any pair of flights 𝑗 and 𝑖. Fig. 3 describes the differences between runway separation minima and realised 13 

runway separation time. 14 

 15 

 16 

Fig. 3. Schematic diagram of runway separation minima and realised runway separation time 17 

 18 

 19 

We are interested in determining the ideal arrival time on a runway in the deterministic schedule and capture the flight 20 

performance in actual operations. In general, the minimisation of the sum of the preferred times of arrival for all flights, as 21 

described in Equation (22) provides a nominal schedule that satisfies the ATC operational requirement in the planning stage. 22 

By solving a medium level of instances, the decision from the nominal model can provide a nominal solution to determine 23 

the number of aeronautical holdings for particular flights and estimate the preferred time of arrival on runway. 24 

 25 
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𝐹(𝜑) = 𝑚𝑖𝑛 ∑ 𝑃𝑇𝐴𝑖

𝑖∈𝐼

 (22) 

     𝑠. 𝑡. Constraints (5) – (21)  

 1 

2.3. Mathematical modelling of Robust-TTFP 2 

In previous section, we discuss the mathematical modelling for D-TTFP. The optimal schedule 𝜙 will pass to the second-3 

stage optimisation problem Robust-TTFP to optimise with the presence of uncertain parameters. For instance, Fig. 4 4 

illustrates three flights in a system in pre-determined solution in D-TTFP. In actual operations, the arrival time may deviate 5 

from the nominal value and subject to uncertain factors. In this regard, it may lead to an infeasible solution of violating 6 

longitudinal separation minima, as described as in Fig. 5. We will illustrate the manoeuvre procedure of Robust-TTFP in 7 

resolving the potential conflict issue in a pre-tactical stage. 8 

 9 

Fig. 4. Pre-determined solution in D-TTFP 10 

 11 

 12 

 13 

Fig. 5. Infeasible solution in actual operations 14 

 15 

In this section, Robust-TTFP was considered as a minor perturbation of arrival time following a probability density function 16 

(PDF) at the entry waypoints and approaching speed control. Given a deterministic optimal schedule, a robust schedule 17 

design on a microscopic level was introduced to reduce the vulnerability to schedule disruption and impose cruise speed 18 

assignment to absorb the delay in ATC. The Robust-TTFP attempted to undertake the consideration of arrival time on entry 19 

waypoints uncertainty, while at the same time, controlling the delay propagation and compensating with efficiency loss by 20 

cruise speed control. 21 

 22 

 23 

Compared to the traditional robust optimisation approach, the proposed robust schedule design method is slightly different. 24 

In the robust optimisation approach, the decision variables can be an unlimited stretch of the timetable or schedule to 25 

accommodate the uncertain parameters. However, in the approaching procedure in ATC, the non-stop process in the TMA 26 

is one of the characteristics of TTFP and the adjustment of cruise speed is limited. A zero-efficiency loss of schedule may 27 
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not be feasible, and the delay cannot be totally absorbed by cruise speed acceleration. The trade-off between cost of cruise 1 

speed acceleration/deceleration and efficiency loss to accommodate the air traffic delay is the primary investigation in the 2 

model. 3 

 4 

The notations and decision variables of Robust-TTFP are listed in Table 1Error! Reference source not found.. The 5 

mathematical formulation of the model is presented as follows: 6 

 7 

We assumed that the delay response of the RSD-TTFP was limited to an optimal deterministic schedule 𝜑
𝑖

𝑝𝑖  that was 8 

obtained from the D-TTFP and unable to handle major disruptions, such as unstable weather in the TMA, flight cancellation 9 

or landing at a neighbouring airport due to heavy congestion at the destination airport. Roughly speaking, the robust 10 

schedule design is a solution that is robust against the en-route traffic delay and controls the cruise speed 11 

acceleration/deceleration in the upcoming medium-size level schedule for TTFP. We formulated the robust schedule design 12 

as follows: 13 

 14 

Uncertain arrival time following a PDF from historical data on entry waypoints 15 

𝜏𝑖𝑢𝑖
𝑠

𝑛 ≥ 𝑇𝑖
𝑛𝜑

𝑖

𝑝𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑛 ∈ 𝑁 (23) 

 16 

The uncertain arrival time on entry waypoints 𝑇̃𝑖  is considered to be a possible realisation of scenarios, which is a common 17 

method of solving stochastic optimisation problems using Monte Carlo simulation. This delay in flight time due to en-route 18 

traffic will increase the complexity of the prefect estimation on the arrival time at entry waypoints. Constraint (24) 19 

illustrated that the arrival time on entry waypoints 𝜏𝑖𝑢𝑖
𝑠

𝑛  is greater than or equal to the estimated time of arrival at the entry 20 

waypoints of each flight 𝑇𝑖
𝑛 in each scenario 𝑛. 21 

 22 

Approaching sequences on waypoints 23 

𝑧𝑗𝑖𝑢
𝑛 + 𝑧𝑖𝑗𝑢

𝑛 ≤ 1, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 , ∀𝑛 ∈ 𝑁 (24) 

𝑧𝑗𝑖𝑢
𝑛 + 𝑧𝑖𝑗𝑢

𝑛 + 1 ≥ 𝜑
𝑖

𝑝𝑖 + 𝜑
𝑗

𝑝𝑗
, ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖, ∀𝑛 ∈ 𝑁 (25) 

 24 

Given a planned schedule in the nominal problem, the path assignment and aeronautical holding decision are computed as 25 

a planned schedule. Constraint set (24) computes the sequence at node 𝑢 in scenario 𝑛 using the binary variable 𝑧𝑗𝑖𝑢
𝑛 . 26 

Constraint (25) illustrates the path assignment and decision variable of bypassing sequence 𝑧𝑗𝑖𝑢
𝑛   on node 𝑢  in each 27 

scenario 𝑛. 28 

 29 

Arrival sequences on waypoints 30 

𝜏𝑖𝑢
𝑛 − 𝜏𝑗𝑢

𝑛 ≤ 𝑀𝑧𝑗𝑖𝑢
𝑛 , ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 , ∀𝑛 ∈ 𝑁 (26) 

𝜏𝑗𝑢
𝑛 − 𝜏𝑖𝑢

𝑛 ≤ 𝑀𝑧𝑖𝑗𝑢
𝑛 , ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 , ∀𝑛 ∈ 𝑁 (27) 

𝑧𝑖𝑗𝑣
𝑛 − 𝑧𝑖𝑗𝑢

𝑛 ≥ ∑ 𝜑
𝑖

𝑝𝑖

𝑝𝑖∈𝑃𝑖

+ ∑ 𝜑
𝑗

𝑝𝑗

𝑝𝑗∈𝑃𝑗

− 2, ∀𝑗, 𝑖 ∈ 𝐼, 𝑗 ≠ 𝑖, ∀(𝑢, 𝑣) ∈ 𝐸𝑗 ∩ 𝐸𝑖 , ∀𝑛 ∈ 𝑁 
(28) 

 31 

 32 



16 

 

Longitudinal separation constraints (separation distance minima) 1 

𝜏𝑖𝑢
𝑛 − 𝜏𝑗𝑢

𝑛 ≥
𝜃𝑗𝑖 + 𝛿

𝜔𝑖

− 𝑀(1 − 𝑧𝑗𝑖𝑢
𝑛 ), ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑢 ∈ 𝑉𝑗 ∩ 𝑉𝑖 , ∀𝑛 ∈ 𝑁 (29) 

 2 

The arrival sequences on waypoints and longitudinal separation constraints are explained in Constraints (26–29), which 3 

were modified on considering the realisation of scenario 𝜎 of Constraints (17–20). In particular, the additional buffer 𝛿 4 

is a user-specific slack buffer to enhance the solution robustness. In our proposed approach, the realised longitudinal 5 

separation distance must equal to or larger than the flight time considering the longitudinal separation minima  𝜃𝑗𝑖 and 6 

ATC-specified buffer 𝛿. As shown in Fig. 6, the additional buffer can serve as a delay absorption manoeuvre approach to 7 

avoid violation of longitudinal separation minima and the possibility of rescheduling. 8 

 9 

 10 

Fig. 6. Schematic diagram of ATCOs-specified buffer on longitudinal separation minima (change to manoeuvre) 11 

 12 

Cruise speed acceleration/deceleration 13 

𝜏𝑖𝑣
𝑛 − 𝜏𝑖𝑢

𝑛 ≥ 𝑡𝑖(𝑢,𝑣)
𝑛 − 𝑀(1 − 𝜑

𝑖

𝑝𝑖), ∀𝑖 ∈ 𝐼, ∀𝑝𝑖 ∈ 𝑃𝑖 , ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣, ∀𝑛 ∈ 𝑁 (30) 

𝑑(𝑢,𝑣)

𝜔𝑖

≤ 𝑡𝑖(𝑢,𝑣)
𝑛 ≤

𝑑(𝑢,𝑣)

𝜔𝑖

, ∀𝑖 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣, ∀𝑛 ∈ 𝑁 (31) 

𝜏𝑖𝑢
𝑛 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑢 ∈ 𝑃𝑖 , ∀𝑛 ∈ 𝑁 (32) 

 14 

The idea of cruise speed acceleration and deceleration is simple. The travel time between waypoints 𝑡𝑖(𝑢,𝑣)
𝑛  in scenario 𝑛 15 

is computed considering the actual distance between waypoints 𝑑(𝑢,𝑣)  and the cruise speed. In Constraint (15), we 16 

explained that the cruise speed of flight 𝑖 falls in the range of the average cruise speed 𝜔𝑖 = [𝜔̌𝑖 , 𝜔̂𝑖]. We further extended 17 

the range of the cruise speed by considering its minimal 𝜔𝑖 and maximum cruise speed 𝜔𝑖, so that 𝜔𝑖 = [𝜔𝑖 , 𝜔𝑖] in 18 

Constraints (30) and (31). Constraint (32) indicates that 𝜏𝑖𝑢
𝑛  is a positive continuous variable.  19 

 20 

Estimated time of arrival on runway under uncertainty 21 
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𝐸𝑇𝐴𝑖
𝑛 = 𝜏𝑖𝑢𝑖

𝑒
𝑛 , ∀𝑖 ∈ 𝐼, ∀𝑛 ∈ 𝑁 (33) 

𝐸𝑇𝐴𝑖
𝑛 − 𝐸𝑇𝐴𝑗

𝑛 ≥ 𝑆𝑗𝑖 − 𝑀 (1 − 𝑧𝑗𝑖𝑢𝑖
𝑒

𝑛 ) , ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, ∀𝑛 ∈ 𝑁 (34) 

 1 

The estimated time of arrival on runway 𝐸𝑇𝐴𝑖
𝑛 equals the time on the destination node in scenario 𝑛 in a digraph by 2 

Constraint (33). Constraint (34) enforces that the estimated time of arrival on runway must satisfy the runway separation 3 

time regulation 𝑆𝑗𝑖 . 4 

 5 

Efficiency loss 6 

∑(𝐸𝑇𝐴𝑖
𝑛

𝑖∈𝐼

) ≤ (1 + 𝛾)𝐹∗, ∀𝑛 ∈ 𝑁 (35) 

 7 

Let 𝛾 be the maximum tolerance of efficiency loss from the nominal schedule and 𝐹∗ be the optimal value of the nominal 8 

problem. One may note that the 𝐹∗  equals the sum of preferred time of arrival 𝑃𝑇𝐴𝑖   in the optimal D-TTFP. The 9 

maximum tolerance of efficiency loss is a user-input parameter 𝛾. It is important to understand that it is not necessary to 10 

enforce 𝐸𝑇𝐴𝑖
𝑛 ≥ 𝑃𝑇𝐴𝑖 , ∀𝑛 ∈ 𝑁, as the approaching and landing sequences need not be the same as the nominal solution 11 

(but this requirement can be included based on user preferences) after considering the cruise speed acceleration and 12 

deceleration. The acceleration and deceleration of approaching may change the sequence of the final approach as flights 13 

may enter the joint segments at a different time. The efficiency loss is explained in Equation (35). 14 

 15 

Cost of robustness 16 

𝛼𝑖(𝑢,𝑣)
𝑛 ≥

𝑑(𝑢,𝑣)

𝜔̂𝑖

− 𝑡𝑖(𝑢,𝑣)
𝑛 , ∀𝑖 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣, ∀𝑛 ∈ 𝑁 (36) 

𝛽𝑖(𝑢,𝑣)
𝑛 ≥ 𝑡𝑖(𝑢,𝑣)

𝑛 −
𝑑(𝑢,𝑣)

𝜔̌𝑖

, ∀𝑖 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣, ∀𝑛 ∈ 𝑁 (37) 

𝛼𝑖(𝑢,𝑣)
𝑛 ≥ 0, ∀𝑖 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣, ∀𝑛 ∈ 𝑁 (38) 

𝛽𝑖(𝑢,𝑣)
𝑛 ≥ 0, ∀𝑖 ∈ 𝐼, ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣, ∀𝑛 ∈ 𝑁 (39) 

𝐷𝑖
𝑛 ≥ 0, ∀𝑖 ∈ 𝐼, ∀𝑛 ∈ 𝑁 (40) 

𝐷𝑖
𝑛 ≥ 𝐸𝑇𝐴𝑖

𝑛 − 𝑃𝑇𝐴𝑖 , ∀𝑖 ∈ 𝐼, ∀𝑛 ∈ 𝑁 (41) 

𝑃𝑖
𝑛 ≥ ∑ (𝛼𝑖(𝑢,𝑣)

𝑛 + 𝛽𝑖(𝑢,𝑣)
𝑛 )

(𝑢,𝑣)∈𝐸𝑖{𝑜,𝑑}

, ∀(𝑢, 𝑣) ∈ 𝐸𝑖 , 𝑢 < 𝑣 (42) 

 17 

The realised travel time between waypoints 𝑡𝑖(𝑢,𝑣)
𝑛  is a continuous variable. We measure the acceleration and deceleration 18 

of cruise speed in a unit of time. 𝛼𝑖(𝑢,𝑣)
𝑛   and 𝛽𝑖(𝑢,𝑣)

𝑛   are the realised penalty cost (per time unit) of acceleration and 19 

deceleration from waypoint 𝑢 to waypoint 𝑣 for flight 𝑖 in scenario 𝑛. The sum of the penalty cost of acceleration and 20 

deceleration is defined as the cost of robustness. Constraints (36) and (37) compute the penalty cost, while Constraints (38) 21 

and (39) indicate that 𝛼𝑖(𝑢,𝑣)
𝑛  and 𝛽𝑖(𝑢,𝑣)

𝑛  are positive continuous variables. Constraints (40) and (41) compute the delay 22 

time from 𝑃𝑇𝐴𝑖  in scenario 𝑛. Given the scenario as shown in Fig. 5, ATC can communicate with pilots and execute 23 

speed acceleration or deceleration, as shown in Fig. 7 and Fig. 8, respectively, to avoid the violation of longitudinal 24 

separation minima.   25 
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 1 

 2 

Fig. 7. Feasible alternative with ATCOs’ speed instruction of acceleration 3 

 4 

 5 

Fig. 8. Feasible alternative with ATCOs’ speed instruction of deceleration 6 

 7 

Constraint (42) indicates the penalty cost of cruise speed acceleration/deceleration from the entry waypoints to the runway. 8 

Fig. 9 presents the induced additional flight time penalty in one alternative under the impact of empirical arrival delay on 9 

entry waypoint. 10 

 11 

Fig. 9. Schematic diagram of penalty cost of increase in flight time in one of the alternatives 12 

 13 

 14 

 15 

The complete formulation of the Robust-TTFP is shown as follow: 16 

 17 

𝑚𝑖𝑛 𝐺(𝜑) =
1

𝑁
∑ 𝐻(𝜑, 𝑇𝑛)

𝑛∈𝑁

=  
1

𝑁
[∑ ∑(𝜆𝐷𝑖

𝑛 + (1 − 𝜆)𝑃𝑖
𝑛)

𝑛∈𝑁𝑖∈𝐼

] (43) 

     𝑠. 𝑡. Constraints (23) – (41)  

 18 
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The objective function of robust-TTFP is to minimise the weighted function of total delay cost and total penalty cost, 1 

namely the cost of robustness, in Equation (43), where the total delay cost is the sum of the delay time 𝐷𝑖
𝑛 of each scenario 2 

𝑛  and the total penalty cost of cruise speed acceleration/deceleration is the sum of time of cruise speed 3 

acceleration/deceleration of each scenario 𝑛. The ratio of 𝜆 is a user-specific parameter that indicates the weight ratio 4 

between the total delay cost and total penalty cost of cruise speed acceleration/deceleration, where 𝜆 = [0.0,1.0]. Fig. 10 5 

illustrates the possible impact of realised delay on estimated time of arrival 𝐸𝑇𝐴𝑖
𝑛 and predicted time of arrival on runway 6 

𝑃𝑇𝐴𝑖  in one of the alternatives. 7 

 8 

 9 

Fig. 10. Schematic diagram of arrival delay on runway and the cost of delay time in one of the alternatives 10 

 11 

3. Performance measurements 12 

In the robust schedule design for TTFP with cruise speed adjustment, we considered several performance measurements to 13 

indicate the performance trade-off in hedging exogenous uncertainty on arrival time at entry waypoints. The arrival time 14 

on entry waypoints 𝑇̃𝑖  follows a PDF from historical data. It is unlikely that the estimated arrival time at the entry 15 

waypoints is equal to the actual one as the en-route uncertainty is subject to en-route traffic, flight time from origin and 16 

destination airports and weather. Given the uncertain nature of the arrival time at the entry waypoints, a robust schedule 17 

design favours delay compensation. Fig. 11 presents the empirical distribution function of arrival lateness at entry 18 

waypoints. Lateness is defined as a positive or negative deviation from the nominal arrival time at entry waypoint, while 19 

delay is defined as zero or positive deviation from the nominal arrival time at entry waypoint. The data was obtained by a 20 

licensed Application Programming Interface (API) from FlightGlobal, and a total of 14668 arrival records were obtained 21 

in April 2018. It is worth noting that Monday and Sunday are having more air traffic movements, and instances with high 22 

traffic scenarios shall be separately trained as a second model. The research method for normal and high traffic scenarios 23 

are more or less the same. Therefore, the analysis of the high traffic scenarios is omitted in this work. By filtering flight on 24 

Monday and Sunday only and the flight is located in hours with 11 air traffic movements or above, only 3889 flight records 25 

are valid. The uncertain arrival time at the entry waypoint is a time value that a reference arrival time on entry waypoint 26 

provided by the pilot for ATCOs to the prior schedule and the actual one. Note that, in our preliminary analysis, the 27 

differences of PDF between waypoints were minimal. The average lateness at entry waypoints was -3.99 minutes and the 28 

average delay at entry waypoints was 13.98 minutes. 29 

 30 
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 1 
Fig. 11. Empirical distribution function of arrival lateness at entry waypoints. 2 

(For interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 3 

 4 

3.1. Performance bound and estimated optimality gap on sample average approximation 5 

As mentioned in Constraint (23) and Objective function (43) of the Robust-TTFP, the arrival time at entry waypoint for 6 

each flight in each scenario is denoted as 𝑇𝑖
𝑛, where 𝑇𝑖

𝑛 is the value after adding a value generated from empirical PDF 7 

from Fig. 11. It is worth noting that the computation time with a very large sample size 𝑁 will increase exponential for 8 

NP-hard problem (K. K. H. Ng, Lee, et al., 2020b; K. K. H. Ng et al., 2018; K. K. H. Ng et al., 2017). The true optimal 9 

value can be obtained when 𝑁 → ∞ . Intuitively, solving such stochastic optimisation problem is computationally 10 

intractable. SAA offers high quality solutions with the consideration of statistical performance bound and can yield a 11 

solution that satisfies the computational needs of the practitioners (Kleywegt, Shapiro, & Homem-de-Mello, 2002). Various 12 

engineering applications, including robust liner shipping services, supply chain networks with disruption and stochastic 13 

personnel assignment, have adopted SAA or variances of SAA to solve the stochastic optimisation problem (Xiaojun Chen, 14 

Shapiro, & Sun, 2019; Li & Zhang, 2018; Pour, Naji-Azimi, & Salari, 2017; Singham, 2019; Wang & Meng, 2012). SAA 15 

is still a promising research area for solving the stochastic optimisation problem with Monte Carlo simulation (Högdahl et 16 

al., 2019). The pseudo code of the SAA approach is stated in Algorithm 1. 17 

 18 
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Algorithm 1.  1 

A sample average approximation method to solve the proposed model 2 

1 Set the number of replications 𝑀, sample size 𝑁, a set of additional longitudinal separation minima Ω, a set of 

maximum tolerance of efficiency loss Γ, a set of trade-off parameters Λ. 

2 Solve the first-stage optimisation problem and obtain the optimal deterministic schedule 𝜑 

3 Foreach 𝜆 in Λ 

4      Foreach 𝛾 in Γ 

5           Foreach δ in Δ 

6           Set 𝑚 = 0 

7           While 𝑚 ≤ 𝑀 do 

8   Simulate the optimal deterministic schedule 𝜑 and generate a set of uncertain arrival time on entry  

 waypoints for all flights (N scenarios) based on the empirical probabilistic distribution from historical  

 data 

9   Solve the 𝑚th second-stage optimisation problem with N sample size in Equation (47) 

10   Record the objective value of the 𝑚th second-stage optimisation problem with N sample size as 𝓋𝑁
𝑚 

11   𝑚 = 𝑚 + 1 

12   If all the replications of second-stage optimisation problem are optimal or feasible 

13   Then compute the estimated average robustness cost 𝓋𝑁
𝑀

 in Equation (46) 

14           End 

15      End 

16 End 

17 Map the solutions 

 3 

Monte Carlo simulation solves stochastic optimisation by generating a sufficiently large sample size 𝑁′ to estimate the 4 

outcome of an expected value of an objective function 𝐺𝑁′(𝜑), as stated in Equation (44). 𝐺𝑁′(𝜑) is an unbiased estimator 5 

of 𝐺(𝜑) based on a sample size 𝑁′. It includes a set of arrival time on entry waypoint for all the flights in each scenario 6 

by realising the random vector 𝑻, i.e. 𝑇1, 𝑇2, … , 𝑇𝑁′, which is an independently and identically distributed (IID) random 7 

sample with the size of 𝑁′. Let 𝓋∗ be the true optimal value; the optimality gap can be estimated by Equation (45).  8 

 9 

𝐺𝑁′(𝜑): =
1

𝑁′
∑ 𝐻(𝜑, 𝑇𝑛)

𝑛∈𝑁′

 (44) 

𝜃 = 𝐺𝑁′(𝜑) − 𝓋∗ (45) 

 10 

The idea behind using SAA algorithm is to perform replication on 𝐺(𝜑) and approximately estimate the objective value 11 

with enough information about the solution. Let 𝓋𝑁
𝑚 be the optimal objective value of 𝑚th SAA replication. One can 12 

estimate 𝓋∗ by 𝑀 replication of SAA method 𝓋𝑁
𝑚 using Equation (46). Note that the 𝔼[𝓋𝑁

𝑀
] is an unbiased estimator of 13 

𝔼[𝓋𝑁]. Given that 𝑁 < 𝑁′, solving the 𝐺𝑁(𝜑) is faster with the realisation of random vector 𝑻, i.e. 𝑇1, 𝑇2, … , 𝑇𝑁 of 𝑁 14 

IID sample by Equation (47).  15 

 16 

𝓋𝑁
𝑀

≔
1

𝑀
∑ 𝓋𝑁

𝑚

𝑚∈𝑀

 (46) 

𝓋𝑁
𝑚 =

1

𝑁
∑ 𝐻(𝜑, 𝑇𝑛)

𝑛∈𝑁

 (47) 

 17 

The optimality gap of 𝐺(𝜑) − 𝓋∗ can be estimated by the expected value of 𝐺𝑁′(𝜑) −  𝓋𝑁
𝑀

 to their counterparts from 18 

the original problem as explained in Equation (48). One can increase the sample size 𝑁 or reduce 𝑁′ to achieve a high 19 
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degree of convergence rate. Furthermore, the decision of sample size 𝑁  is also associated with the computational 1 

requirement from users. Regarding the proof and the algorithm structure could be found in Kleywegt et al. (2002).  2 

 3 

𝔼[𝐺𝑁′(𝜑) − 𝓋𝑁
𝑀

] =  𝐺(𝜑) − 𝔼[𝓋𝑁] ≥ 𝐺(𝜑) −  𝓋∗ (48) 

 4 

3.2. Compensation of solution robustness and operational efficiency 5 

Since the RSD-TTFP model includes several limitations of resource constraints, the model does not have the property of 6 

unlimited stretch of the approaching schedule to recover from delays. The proposed model attempts to evaluate the 7 

performance of absorbing disturbance by delaying the flight arrival time or adjusting the cruise speed. One may note that 8 

this model has not attempted to tackle any major disruption but minor delays as stated in Fig. 11. The idea of RSD-TTFP 9 

is similar to the idea of light robustness approach, which attempts to maximise the level of protection from the uncertainty 10 

outcome and consider the flexible threshold of optimal solution from the D-TTFP schedule (Fischetti, Salvagnin, & Zanette, 11 

2009; Lusby, Larsen, & Bull, 2018; Wee et al., 2018). Therefore, minor delay is the main focus of this model. 12 

 13 

3.2.1. Maximum tolerance of efficiency loss from the nominal schedule 14 

The efficiency loss from the nominal schedule is explained in Constraint (35). The preferred time of arrival on runway 15 

𝑃𝑇𝐴𝑖  is calculated by the nominal model. The optimal value from the nominal model is denoted as 𝐹∗. The maximum 16 

tolerance of efficiency loss 𝛾  equals or is larger than one. 𝛾  is included in the model to provide a restriction on the 17 

tolerance of efficiency loss from the optimal value of nominal schedule (Cacchiani & Toth, 2012). When 𝛾 is equal to 1, 18 

the sum of estimated time of arrival on runway 𝐸𝑇𝐴𝑖
𝑛 in each scenario is strictly equal to 𝐹∗. When 𝛾 is close to 1, the 19 

solution tends to have more flights speed up to accommodate the effect of delay. The solution will have a higher level of 20 

tolerance for landing delay with larger 𝛾  value. The trade-off parameter (namely, efficiency loss) 𝛾  is an input of a 21 

maximum allowance of percentage increase of 𝐹∗. Greater value of (1 + 𝛾)𝐹∗ implies a lower penalty cost of cruise 22 

speed adjustment but with a larger sum of estimated time of arrival on runway. Cruise speed acceleration may reduce the 23 

estimated time of arrival on runway but the speed up cost contributes to the penalty cost. This trade-off parameter is a user-24 

specific parameter regarding their tolerance of efficiency loss by 𝛾. In our analysis, we evaluate 𝛾 in a different value by 25 

an incremental increase of 0.1%. We could then map the efficiency loss and penalty cost of cruise speed 26 

acceleration/deceleration. 27 

 28 

3.2.2. Trade-off between total delay cost and total penalty cost of cruise speed adjustment 29 

The trade-off between the total delay cost 𝐷𝑖
𝑛 and total penalty cost of cruise speed adjustment 𝑃𝑖

𝑛 is formulated by a 30 

convex combination using 𝜆, where 𝜆 = [0,1]. The model is sensitive to delay landing time when 𝜆 = 1 or vice versa.  31 

 32 

3.2.3. Robust schedule design with operational safety 33 

We considered an additional buffer for longitudinal separation δ (in nautical miles) by ATCOs in Constraint (29), which 34 

is a user-specific value. An additional buffer for longitudinal separation minima can add a certain level of solution 35 

robustness with the presence of slack time δ. We could also evaluate the maximum permitted slack time of feasible region 36 

of robust schedule design for TTFP as a reference to ATCOs.  37 

 38 
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4. Small-scale real-world instance demonstration 1 

For the purpose of model explanation, we solved a small-scale, real-world instance on 22nd April 2018 and presented the 2 

numerical results graphically. We considered a set of flights with |𝐼| = 5 that arrived on the waypoints from 00:00am to 3 

01:00am. The entry waypoints of the flights were different except for flights 4 and 5. All the flights joined at a merge point 4 

at GUAVA or LIMES waypoints as shown in Fig. 12 (detailed waypoints connection is shown in Fig. 15). The optimal 5 

solution for approaching the waypoints of each flight was obtained by solving the first-stage optimisation problem 𝐹(𝜑), 6 

and the graphical timetable of the D-TTFP schedule is presented in Fig. 13.  7 

 8 

We generated four scenarios by realising the random vector 𝑻, i.e., 𝑇1, 𝑇2, … , 𝑇4 with regard to the empirical PDF, as 9 

stated in Fig. 11, and passed the deterministic schedule to the second-stage optimisation problem 𝐺(𝜑). The trade-off 10 

parameter 𝜆, maximum tolerance of efficiency loss 𝛾 and the slack time on longitudinal separation minima δ are set to 11 

be 0.5, 3.0 and 0.0, respectively. The optimal result of robust TTFP with cruise speed adjustment is presented in Table 2. 12 

𝐻(𝜑, 𝑇𝑛)  indicates the optimal value in scenario 𝑠 . The optimal value 𝐻(𝜑, 𝑇𝑛)  in scenario 2 equals to zero, the 13 

weighted total delay cost 𝐷𝐼
2 and total penalty cost 𝑃𝐼

2 are zero and no extra delay cost or ground speed adjustment 14 

existed. In other words, the uncertain arrival time on entry waypoints in scenario 2 does not affect the overall solution. The 15 

set of total delay cost 𝐷𝐼
𝑛 and total penalty cost 𝑃𝐼

𝑛 indicates that associated cost to each flight in this instance. Given a 16 

sample size of 4 in this small-scale real-world instance, the expected robustness cost 𝐺(𝜑) equals to 921.14. We can 17 

estimate the possible outcomes of uncertain arrival time on entry waypoints via SAA algorithms and help ATCOs to 18 

determine the possible manoeuvring approach to the pilot when the uncertain arrival time on entry waypoints for flights is 19 

realised. Readers can refer to one of the optimal timetable schedule scenarios in Fig. 14. Difference in slope from the 20 

deterministic schedule indicates the acceleration of flights. Each time unit was accumulated as cost of speed adjustment 21 

𝑃𝑖
𝑛 when the acceleration speed existed or was below the range of ground speed, as stated in Constraints (36) and (37). 22 

The delay cost was calculated by the difference of estimated time of arrival 𝐸𝑇𝐴𝑖
𝑛 from the preferred time of arrival 𝑃𝑇𝐴𝑖 , 23 

as stated in Constraint (41). The robustness cost 𝐻(𝜑, 𝑇𝑛) was a convex combination of 𝐷𝑖
𝑛 and 𝑃𝑖

𝑛 with a trade-off 24 

parameter 𝜆. The optimal value 𝐺(𝜑) was an average value of 𝐻(𝜑, 𝑇𝑛) with sample size 𝑁. 25 

 26 

Table 2 27 

Optimal results of robust TTFP with approaching speed control solving a small-scale real-world instance  28 

𝐺(𝜑) 𝑛 𝐻(𝜑, 𝑇𝑛) 𝐷𝐼
𝑛 𝑃𝐼

𝑛 

921.14 1 796.09 {0,339.65,788.78,0,0,0} {13.34,133.56,316.86,0,0,0} 

 2 0 {0,0,0,0,0,0} {0,0,0,0,0,0} 

 3 1499.24 {0,339.65,0,1443.55,925.38,0} {0,133.56,0,102.29,54.06,0} 

 4 1389.22 {0,39.65,0,963.55,0,1211.48} {13.34,133.56,0,102.29,0,314.57} 

𝜆 = 0.5, 𝛾 = 3.0, δ = 0 29 

 30 

 31 



24 

 

 1 

Fig. 12. Optimal path assignment of nominal model solving small scale real-world instance at the timestamp of 01:10:53 2 

powered by Google Earth 3 

(For interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 4 

 5 
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 1 

Fig. 13. Graphical timetable representation of optimal solution for nominal TTFP. 2 

(For interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 3 

 4 

 5 
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 1 

Fig. 14. Optimal solution of cruise speed adjustment under uncertain arrival time on entry waypoint (one of the 2 

scenarios) 3 

(For interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 4 

 5 

5. Computational results 6 

5.1. Description of the case airport 7 

One set of real-world instances was considered for the robust schedule design for TTFP. We aimed at investigating the 8 

performance of solution robustness and the efficiency loss using real-life scenarios. Therefore, we obtained several 9 

medium-sized instances from real-world scenarios on 22nd April 2018 at The Hong Kong International Airport (HKIA). 10 

Fig. 15 presents the STARs and geographical positions of the holding circles with actual distances between waypoints in 11 
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the area control of HKIA. As the length of the holding pattern was sufficient to tackle the conflict situation of the air route 1 

setting at the HKIA, we assumed that a mono-aeronautical holding pattern was imposed (Artiouchine et al., 2008). In 2 

accordance with the assumption and the instance of the environmental setting, 10 entry waypoints and 26 alternative paths 3 

were constructed in our model. Reader may refer to the STARs map in K. K. H. Ng, Lee, et al. (2020b). 4 

 5 

A total of 5 instances were extracted from real life scenarios in the evaluation of the model. We considered a medium size 6 

of instances as we were concerned about the impact of delay in ATC on the subsequent ATC schedule and the near real-7 

time control of cruise speed of the approaching flights. We first separated the real data on 22nd April 2018 at half-hour 8 

intervals and extracted those instances with the number of flights that were more than 10. For each case with the same 9 

number of flights, we randomly picked four instances at most for evaluation to avoid lengthy computational analysis. The 10 

instance ID was represented by two digits (the value of the hour) and one alphabet (First half an hour by “F” or second by 11 

“S”). The longitudinal separation minima (in nautical miles) and runway separation time matrix are referred to the data in 12 

(K. K. H. Ng, Lee, et al., 2020b) and (Balakrishnan & Chandran, 2010), respectively. The minimum and maximum of 13 

approaching speed for small-size, medium-size and large-size flights are [240,320], [230, 320] and [210, 320], respectively. 14 

The range of economic approach speed for small-size, medium-size and large-size flights can be found in K. K. H. Ng, 15 

Lee, et al. (2020b). Table 3 provides a short summary of the real-life instances. The computation was performed with 16 

Intel® NUC 10 the configuration of Intel Core i9-10900KTi @ 3.70GHz 3.70GHz CPU and 128.0GB RAM under Windows 17 

10 Enterprise 64-bit operating system. The algorithm was coded using C# .NET framework with Microsoft Visual Studio 18 

2017 and IBM ILOG CPLEX optimisation Studio 12.8.0.  19 

 20 

 21 

Fig. 15. The schematic graph of the air route network in the terminal manoeuvring area of the case airport. 22 

 23 
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Table 3 1 

The description of the test instances of flight data on 22nd Apr 2018 2 

ID |𝐼| Distribution of 

flight sizes {SSF, 

MSF, LSF} 

Distribution of arrival 

flights from ten entry 

waypoints 

𝑇𝑖  

08-S 11 {4, 6, 1} {0, 0, 3, 6, 0, 0, 0, 0, 1, 1} {7:30, 7:30, 7:41, 7:40, 7:45, 7:51, 7:59, 7:56, 7:52, 

7:56, 8:31} 

12-F 13 {7, 3, 3} {1, 1, 6, 1, 0, 0, 1, 0, 2, 1} {11:10, 11:05, 11:08, 11:29, 11:26, 11:14, 11:20, 

11:23, 11:21, 11:59, 11:02, 11:26, 11:33} 

12-S 13 {5, 3, 5} {0, 0, 10, 0, 0, 1, 0, 0, 0, 2} {11:35, 11:00, 12:08, 11:34, 11:36, 11:45, 12:18, 

11:43, 11:50, 11:59, 11:56, 11:57, 11:59} 

10-S 15 {9, 3, 3} {2, 1, 2, 1, 0, 0, 0, 0, 1, 8} {10:06, 10:08, 9:39, 9:36, 9:35, 10:12, 10:16, 9:57, 

9:43, 10:05, 10:06, 10:23, 10:25, 10:30, 10:30} 

15-S 16 {9, 4, 3} {2, 3, 6, 0, 0, 1, 0, 0, 0, 4} {14:36, 14:37, 15:07, 15:09, 14:38, 14:58, 14:46, 

14:49, 14:47, 15:02, 15:28, 14:58, 14:24, 15:30, 15:03} 

𝑆𝑆𝐹: Small size flight; 𝑀𝑆𝐹: Medium size flight; 𝐿𝑆𝐹: Large size flight. Ten entry waypoints: {DOTMI, LELIM, ELATO, 3 

NOMAN, SABNO, ASOBA, DOSUT, IKELA, SIKOU, SIERA} 4 

 5 

5.2. Numerical study on performance bound, estimated optimality gap and computation time 6 

In this section, we attempted to evaluate the best combination of sample size 𝑁 and replication 𝑀 using SAA framework. 7 

We randomly picked two relatively large size instances, 12-F and 15-S instances, to study the combination of sample size 8 

and replication regarding the quality of performance bound, estimated optimality gap and computation time. The initial 9 

setting of the SAA algorithm was 𝜆 = 0.5 , 𝛾 = 3.0 , δ = 0 . Each instance was a 30-minute arrival interval at entry 10 

waypoints and the computation time of RSD-TTFP was suggested to be less than 30 minutes. Intuitively, SAA aims to 11 

estimate a solution for a stochastic discrete optimisation problem using Monte Carlo simulation. The quality of estimation 12 

of the true optimal value is associated with the variation of the optimal values with a sufficient sample size 𝑁  and 13 

replication 𝑀. A larger sample size 𝑁 implies a better estimation of true optimal value 𝓋𝑁
𝑀

 but which is computationally 14 

expensive for NP-hard problem, while an increase in replication 𝑀  provides more data point to map the average 15 

performance of 𝓋𝑁
𝑚 with a linear increase in computational time. Less variation of 𝓋𝑁

𝑚 indicates a better estimation with 16 

sample size 𝑁, while replication 𝑀 is determined by sufficient estimation on 𝓋𝑁
𝑚. In this connection, the determination 17 

of sample size 𝑁 is a problem specified parameter and replication 𝑀 can be a referenced or user-specified parameter. 18 

Therefore, we followed the suggestion from the method by Long, Lee, and Chew (2012) to evaluate the replication 𝑀 19 

with 10, 20 and 30 and determine the sample size 𝑁 by solving the proposed stochastic optimisation problem.  20 

 21 

 22 
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 1 

Fig. 16. Computational study on the effect of sample size N with replication M={10,20,30} using SAA 2 

 3 

 4 

The computational study on the change of sample size 𝑁 with M replication 𝑀 = {10,20,30} using SSA approach to 5 

solve 12-F and 15-S instances are presented in Fig. 16. The value 𝓋𝑁
𝑚 with sample size 𝑁 are mapped and reveals that 6 

the degree of dispersion of the optimal value 𝓋𝑁
𝑚  tends to decrease when the sample size 𝑁  is larger than 70 in the 7 

numerical study. Fig. 17 presents the computational time with an increase of sample size 𝑁  and replication 𝑀 . The 8 

computational time of all the solutions for solving the instance 12-F is satisfied with the computational limit. The 9 

computational time is over 30 minutes for solving the instance 15-S with sample size 𝑁 = 100 and replication 𝑀 = 30, 10 

but replication 𝑀 = 20  satisfied a computational requirement. The sample size 𝑁 = {70,80,90,100}  and replication 11 

𝑀 = {10,20} are the possible parameter settings for SAA according to the results of test instances. 12 

 13 
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 1 

Fig. 17. Computation time on the effect of sample size N by M replication (M=10,20,30) using SAA 2 

 3 

In Table 4, we solved the instances with 𝑁′ = 1500 to obtain an estimated objective value and compare the estimated 4 

optimality gap 𝜃 . We observed that some of the estimated optimality gap with replication 𝑀 = 10  for 𝑁 =5 

{70,80,90,100} was over 2%. Therefore, we disregarded the consideration of choosing 𝑀 = 10. The same issue could be 6 

found with replication 𝑀 = 20 and sample size 𝑁 = {70,80}. The performance of replication 𝑀 = 10 and sample size 7 

𝑁 = {90,100} for the setting of SAA algorithm is similar and the optimality gap is satisfied with less than or round 1%. 8 

Therefore, we concluded that the we adopted sample size 𝑁 = 90 and replication 𝑀 = 20 of the parameters setting of 9 

SAA algorithm for following the numerical analysis on real-world instances. 10 

Table 4  11 

Numerical results of the SAA method with 𝑁′ = 1500, 𝑀 = {10,20}, 𝑁 = {70,80,90,100} 12 

Instance 12-F  𝑀 = 10 𝑀 = 20 

Estimated objective value 

𝐺𝑁′(𝜑), where 𝑁′ = 1500 

𝑁 Statistical lower 

bound 𝓋𝑁
𝑀

 

Estimated 

optimality gap 𝜃 

Statistical lower 

bound 𝓋𝑁
𝑀

 

Estimated 

optimality gap 𝜃 

2440.936 

70 2526.32 3.38% 2493.135 2.09% 

80 2489.223 1.94% 2498.059 2.29% 

90 2500.36 2.38% 2443.874 0.12% 

100 2491.132 2.01% 2448.327 0.30% 

Instance 15-S  𝑀 = 10 𝑀 = 20 

Estimated objective value 

𝐺𝑁′(𝜑), where 𝑁′ = 1500 

𝑁 Statistical lower 

bound 𝓋𝑁
𝑀

 

Estimated 

optimality gap 𝜃 

Statistical lower 

bound 𝓋𝑁
𝑀

 

Estimated 

optimality gap 𝜃 

2944.584 

70 2965.528 0.71% 2971.413 0.90% 

80 2964.226 0.66% 2996.366 1.73% 

90 2994.504 1.67% 2967.142 0.76% 

100 3027.35 2.73% 2974.894 1.02% 

𝜆 = 0.5, 𝛾 = 3.0, δ = 0 13 

 14 

5.3. Trade-off between efficiency loss and cruise speed acceleration/deceleration 15 

The number of flights in the decision horizon ranges from 11 to 16 in the instances. According to the empirical distribution 16 

function of arrival lateness at entry waypoints in Fig. 11, the average lateness and average delay at entry waypoints are -17 
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3.99 minutes and 13.98 minutes. In our numerical analysis, all instances achieved global optimum within computation time 1 

limit.  2 

 3 

In the following analysis, we are interested in the effect of global optimum with different combination of efficiency loss 𝛾 4 

and trade-off parameter 𝜆 . We fixed the additional buffer 𝛿  of longitudinal separation distance as zero. The set of 5 

efficiency loss is set to be 𝛾 ∈ {0.1, 0.12, 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28, 0.30} , while the set of trade-off 6 

parameter is denoted as 𝜆 ∈ {0.2, 0.4, 0.5, 0.6, 0.8}. 7 

 8 

The results of average robustness cost, average delay cost and average penalty cost are shown in Fig. 18Error! Reference 9 

source not found., Fig. 19Error! Reference source not found. and Fig. 20Error! Reference source not found., 10 

respectively. In the computational analysis of SAA approach with 20th replications and 90 sample size in each replication, 11 

the efficiency loss 𝛾 ∈ {0.1, 0.12, 0.14} yields infeasible solutions for all instances. Given a scenario with zero additional 12 

buffer on longitudinal separation distance δ = 0 and the same 𝜆 value, the robustness cost, average delay cost and average 13 

penalty cost are almost unchanged with respect to the change of 𝛾  where 𝛾 ∈14 

{0.16, 0.18, 0.20, 0.22, 0.24, 0.26, 0.28, 0.30}. As expected, the change of efficiency loss 𝛾 only limits the feasible region 15 

and restrict the model with limited scratch of total delay cost and total penalty cost. In this regard, we can conclude that at 16 

least 14% runway efficiency from optimal value 𝐹∗ is required to satisfy the impact of uncertain arrival time on entry 17 

waypoints. 18 

 19 

The robustness cost is the convex combination of total delay cost and total penalty cost. In the objective function (43), 𝜆 =20 

0.2 implies that the total delay cost has a lower weighting, or vice versa. As shown in Error! Reference source not found., 21 

Error! Reference source not found., and Error! Reference source not found., given the feasible solutions with the same 22 

𝛾, the average robustness cost, average delay cost and 𝜆 are positive correlated. One may notice that, in Error! Reference 23 

source not found., the 𝜆 = {0.2, 0.4} yielded a low value, while the average penalty cost for with the 𝜆 = {0.6, 0.8} is 24 

slightly lower than the one with 𝜆 = 0.5. The penalty cost of cruise speed acceleration or deceleration is much more 25 

effective when solving the model with 𝜆 = 0.5. Given a higher value of 𝜆, the results were not performed as expected. 26 

The total penalty cost may reach the capacity of longitudinal separation minima and it can only seize a portion of TMA 27 

capacity. Once it further seizes the TMA capacity, extra delay may induce to all subsequence’s flights as “chain effect”. In 28 

this regard, increase in landing time is much more effective.  29 

 30 

In Fig. 21, Fig. 22 and Fig. 23, we summarise the percentile (Q0: minimum, Q1: 25th quartile, Q2: 50th quartile, Q3: 75th 31 

quartile and Q4: maximum) of the robustness cost, delay cost and penalty cost with 20th replications and 90 sample size 32 

(1800 results in total). We fixed the parameters with 𝜆 = 0.5, 𝛾 = 1 and evaluate the solutions and their objective values 33 

with δ ∈ {0, 1, 2, 3, 5, 10} nautical miles. The longitudinal separation distance matrix, ranging from 3 to 7 nautical miles, 34 

is presented in (K. K. H. Ng, Lee, et al., 2020a) and is subject to the flight class of leading and following flights. All 35 

instances retrieved similar objective values with δ ∈ {0, 1, 2, 3} and we can expect that the solution with δ ∈ {0, 1, 2, 3} 36 

can increase the separation distance between flights and ensure a higher level of safety factor, meanwhile, the overall 37 

robustness cost would not change much. We may regard these solutions are robust and vulnerable to uncertain factors in 38 

TMA. For the solutions with δ ∈ {5, 10}, the average robustness cost, delay cost and penalty cost may increase or decrease 39 

compared to the solutions with δ ∈ {0, 1, 2, 3}. The results implied that a higher value of additional buffer may not increase 40 
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or decrease the robustness cost, but subject to the scenarios, which depend on the TMA capacity, distance between flights 1 

and the traffic of each STAR. 2 

5.4. Discussion 3 

The proposed robust terminal traffic flow problem considering cruise speed adjustment and compensation of solution 4 

robustness and efficiency loss aims to improve vulnerability to air traffic disruption on arrival manager. ATC can firstly 5 

determine a robust arrival schedule in pre-tactical phase and then adjust the arrival schedule with respect to real-time 6 

variables from time to time. The near time decision in cruise speed adjustment can enjoy certain level of flexibility in the 7 

second-stage optimisation model. The lower and upper bounds of the cruise speed is formulated as a box interval and the 8 

decision makers can pre-adjust with respect to the dwell wind intensity and directions based on the historical meteorological 9 

data. Such adjustment will affect the value of the cruise speed limit and the levels of model flexibility.  10 

 11 

 12 

 13 
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 1 

 2 

Fig. 18. Computational results of average robustness cost with the value changes of 𝜆 and 𝛾 and δ = 0. 3 

 4 
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 2 
 3 

 4 
Fig. 19. Computational results of average delay cost with the value changes of 𝜆 and 𝛾 and δ = 0. 5 
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 2 

 3 

Fig. 20. Computational results of average penalty cost with the value changes of 𝜆 and 𝛾 and δ = 0. 4 
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 1 

Fig. 21. Percentile of robustness cost with value changes of δ and 𝜆 = 0.5, 𝛾 = 1 2 

 3 

 4 

Fig. 22. Percentile of delay cost with value changes of δ and 𝜆 = 0.5, 𝛾 = 1 5 

 6 
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 1 

Fig. 23. Percentile of penalty cost with value changes of δ and 𝜆 = 0.5, 𝛾 = 1 2 

 3 

 4 
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6. Conclusion 1 

This research illustrates a novel alternative path approach for the RSD-TTFP model with the consideration of cruise speed 2 

adjustment. The uncertainty of flight time addressed in this model presents the consequence of an approach route with 3 

unpleasant weather conditions and turbulence in a near TMA. The propagation of airside delay risks at the terminal area 4 

can be resolved by proper robust terminal traffic flow scheduling. With the introduction of uncertainty parameters in robust 5 

optimisation, the vulnerability to disruption could be further increased. Fault-driven re-scheduling efforts and aggregate 6 

delays can be alleviated and partially absorbed using the robust optimisation method in schedule design. Further, a better 7 

estimation of the impact and the consequence of uncertainty assists the ATCOs in developing a robust schedule with less 8 

effect on the change of predefined schedules and passenger unease if a precise decision with a risk-free approach is 9 

impossible to be adopted in actual operations. 10 

 11 

To demonstrate the proposed method and validate the modelling in the numerical study, we adopted real-world data from 12 

the HKIA. The following conclusions regarding the results of the numerical experiments were arrived at. 13 

• By introducing the uncertain arrival time at the entry waypoints for flights, the model identified that the primary 14 

delay at entry points led to an aggregated delay on the arrival time on runway. In our scenario analysis using SAA 15 

approach, the cruise speed adjustment reduced the total delay time on runway. 16 

• The proposed solution procedure of robust schedule design for TTFP can include user-specific parameters and a 17 

decision-maker attitude while designing the solution. ATCOs can determine the additional buffer for longitudinal 18 

separation minima to increase the solution robustness and decide the trade-off between estimated average delay 19 

time and estimated penalty cost on cruise speed adjustment based on their preferences and anticipated traffic 20 

situation. 21 

• In our numerical study, the efficiency loss from D-TTFP schedule was suggested to be 20% of the optimal value 22 

of the first-stage optimisation problem. The possible level of additional buffer of longitudinal separation 23 

requirement for medium-sized and large-sized instances can reach 10NM and 5NM, respectively. The trade-off 24 

parameter 𝜆 = 0.6 provided the best balance between average delay time and average penalty cost of cruise 25 

speed adjustment in our numerical experiments. 26 

 27 

Several interesting research directions can be considered based on the work that has been done in this article. First, this 28 

research attempts to seize the resource utilisation in handling air traffic. We could also extend the consideration of other 29 

air routes and airport resources. With a proper evaluation of runway physical property, runways can be used in switch mode 30 

function. The runway configuration of a multi-runways system can adjust the current runway configuration between 31 

landing and take-off mode and match the arrival and departure demand. Second, in this research, we attempted to provide 32 

a method for achieving better solution robustness and operational efficiency based on minor perturbation of uncertain 33 

arrival time. One may also be interested in the resilience modelling in approaching decisions to handle major disruptions. 34 

Third, more advanced soft computing and optimisation methods, such as meta-heuristics, matheuristics and hyper-35 

heuristics, can be considered for solving a complex model in a timely fashion. Fourth, the determination of empirical 36 

distribution function of arrival lateness at entry waypoints can be modelled as data-driven approach. The traffic demand 37 

correlation sensitive to time horizon and weather pattern can be further improved the prediction and applicability to actual 38 

scenarios. Meanwhile, the quality and quantity of historical traffic and weather data are highly associated with the 39 

prediction power of cost of robustness in TTFP. Forth, the flight descending approaches, e.g. continuous descent approach 40 
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and optimised profile descent (OPD), can further improve the overall traffic volume as well as the fuel consumption. The 1 

integration of TTFP and flight trajectory profile is also an interesting research direction and benefit the ATC operations.  2 
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Appendix A. Computational results in details 1 

Parameters Average robustness cost Average delay cost Average penalty cost 

λ γ 08-S 10-S 12-F 12-S 15-S 08-S 10-S 12-F 12-S 15-S 08-S 10-S 12-F 12-S 15-S 

0.2 

0.16 709.33 982.18 836.00 797.88 1003.06 1418.66 1964.28 1671.95 1595.71 2006.01 0.01 0.08 0.05 0.04 0.11 

0.18 709.35 982.17 836.00 797.89 1003.06 1418.69 1964.27 1671.96 1595.72 2006.00 0.01 0.08 0.05 0.05 0.12 

0.20 709.34 982.18 836.00 797.88 1003.08 1418.68 1964.28 1671.95 1595.72 2006.04 0.01 0.08 0.05 0.04 0.11 

0.22 709.34 982.18 836.01 797.88 1003.06 1418.67 1964.29 1671.97 1595.73 2006.00 0.01 0.08 0.05 0.03 0.11 

0.24 709.35 982.18 836.01 797.88 1003.07 1418.68 1964.26 1671.97 1595.73 2006.01 0.01 0.10 0.05 0.03 0.12 

0.26 709.33 982.18 836.00 797.88 1003.07 1418.66 1964.28 1671.96 1595.70 2006.02 0.01 0.08 0.05 0.06 0.11 

0.28 709.33 982.19 836.00 797.88 1003.07 1418.66 1964.28 1671.96 1595.70 2006.02 0.01 0.09 0.05 0.06 0.11 

0.30 709.35 982.18 836.00 797.88 1003.07 1418.68 1964.29 1671.96 1595.70 2006.02 0.01 0.08 0.05 0.06 0.12 

0.4 

0.16 1415.03 1960.32 1667.17 1591.04 2000.31 2806.11 3900.73 3306.59 3155.58 3970.11 23.94 19.92 27.75 26.50 30.50 

0.18 1415.00 1960.33 1667.17 1591.04 2000.30 2805.84 3900.66 3306.90 3155.40 3970.10 24.17 19.99 27.44 26.68 30.50 

0.20 1415.03 1960.34 1667.19 1591.03 2000.32 2805.98 3900.54 3306.76 3155.31 3970.05 24.08 20.13 27.62 26.74 30.58 

0.22 1415.02 1960.31 1667.16 1591.02 2000.29 2805.94 3900.71 3306.84 3155.22 3970.07 24.09 19.92 27.49 26.83 30.51 

0.24 1415.01 1960.34 1667.17 1591.01 2000.29 2805.81 3900.56 3306.76 3155.30 3970.53 24.20 20.13 27.58 26.73 30.05 

0.26 1415.02 1960.34 1667.18 1591.02 2000.28 2806.00 3900.74 3306.83 3155.40 3970.48 24.03 19.94 27.52 26.64 30.08 

0.28 1415.01 1960.32 1667.17 1591.03 2000.29 2805.92 3900.64 3306.79 3155.20 3970.20 24.10 20.00 27.55 26.87 30.38 

0.30 1415.01 1960.33 1667.18 1591.02 2000.30 2805.72 3900.53 3306.85 3155.35 3970.24 24.29 20.13 27.51 26.68 30.35 

0.5 

0.16 1762.80 2445.29 2076.71 1982.16 2492.22 2709.75 4375.24 3449.99 3324.56 4211.64 815.85 515.33 703.43 639.77 772.80 

0.18 1762.79 2445.29 2076.69 1982.19 2492.23 2702.06 4371.87 3451.50 3308.55 4204.96 823.51 518.70 701.88 655.84 779.51 

0.20 1762.80 2445.34 2076.68 1982.16 2492.23 2696.03 4371.90 3444.63 3341.30 4215.39 829.58 518.78 708.74 623.02 769.06 

0.22 1762.81 2445.29 2076.70 1982.17 2492.22 2702.63 4378.87 3451.58 3328.82 4213.06 822.98 511.71 701.82 635.52 771.38 

0.24 1762.82 2445.32 2076.70 1982.16 2492.25 2696.33 4372.83 3454.07 3334.21 4204.27 829.31 517.81 699.33 630.10 780.23 

0.26 1762.82 2445.31 2076.70 1982.16 2492.23 2722.83 4374.61 3459.15 3329.71 4222.93 802.82 516.01 694.25 634.61 761.53 

0.28 1762.80 2445.28 2076.68 1982.15 2492.23 2698.12 4380.65 3450.30 3327.69 4209.68 827.49 509.90 703.05 636.61 774.79 

0.30 1762.83 2445.31 2076.70 1982.15 2492.25 2700.56 4375.74 3460.29 3326.29 4207.82 825.09 514.88 693.12 638.01 776.69 

0.6 

0.16 1928.01 2819.89 2332.35 2223.43 2810.63 3104.31 5179.02 4022.72 3821.36 4894.72 751.71 460.76 641.97 625.50 726.54 

0.18 1928.02 2819.88 2332.33 2223.44 2810.61 3104.23 5179.02 4022.79 3820.97 4894.51 751.80 460.74 641.87 625.92 726.71 

0.20 1927.99 2819.87 2332.31 2223.44 2810.64 3104.26 5178.84 4022.58 3821.18 4894.83 751.73 460.90 642.05 625.69 726.45 

0.22 1928.00 2819.88 2332.31 2223.44 2810.63 3104.36 5178.80 4022.46 3821.33 4894.79 751.64 460.96 642.15 625.55 726.46 

0.24 1928.00 2819.86 2332.34 2223.40 2810.63 3104.24 5178.90 4022.69 3821.09 4894.84 751.76 460.82 642.00 625.71 726.42 

0.26 1928.00 2819.85 2332.35 2223.43 2810.62 3104.29 5178.85 4022.73 3821.27 4894.70 751.70 460.85 641.97 625.59 726.53 

0.28 1927.98 2819.88 2332.33 2223.43 2810.60 3104.06 5179.08 4022.72 3821.48 4894.68 751.90 460.67 641.94 625.37 726.52 

0.30 1927.99 2819.86 2332.30 2223.41 2810.61 3104.29 5178.75 4022.61 3821.26 4894.62 751.68 460.96 641.98 625.55 726.61 

0.8 

0.16 2254.56 3565.65 2838.96 2699.36 3440.17 4127.60 6896.83 5350.01 5077.25 6507.85 381.51 234.46 327.91 321.47 372.49 

0.18 2254.57 3565.68 2838.98 2699.39 3440.18 4127.60 6896.88 5349.97 5077.25 6507.73 381.54 234.49 327.99 321.53 372.64 

0.20 2254.56 3565.67 2838.96 2699.37 3440.16 4127.58 6896.88 5350.02 5077.29 6507.75 381.54 234.46 327.90 321.45 372.57 

0.22 2254.55 3565.63 2838.96 2699.34 3440.17 4127.60 6896.76 5349.96 5077.26 6507.84 381.49 234.50 327.95 321.42 372.49 

0.24 2254.52 3565.69 2838.94 2699.37 3440.16 4127.60 6896.84 5349.96 5077.26 6507.80 381.44 234.54 327.93 321.49 372.53 

0.26 2254.55 3565.65 2841.68 2699.36 3440.16 4127.60 6896.81 5354.94 5077.26 6507.78 381.49 234.49 328.43 321.47 372.55 

0.28 2254.55 3565.66 2841.68 2699.37 3440.14 4127.60 6896.89 5354.94 5077.26 6507.70 381.50 234.43 328.43 321.49 372.58 

0.30 2254.55 3565.66 2841.69 2699.39 3440.13 4127.61 6896.82 5354.93 5077.26 6507.74 381.49 234.50 328.46 321.52 372.53 

   2 
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