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the scale parameter by solving an estimated equation. As a result, the only
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1 Introduction

Kernel density estimation which adopts a nonparametric way to estimate
the probability density function of a random variable is a fundamental topic
in statistics. Let X1, · · · , Xn be univariate independent and identically dis-
tributed samples drawn from some distribution with an unknown density f(x).
The traditional kernel density estimator of f(x) for a given bandwidth h is
defined as:

f̂h(x) =
1

nh

n∑
i=1

K

(
Xi − x
h

)
, (1)

where K(u) is a kernel function, and h is a bandwidth parameter that controls
the smoothness of the estimator. Based on a Taylor series approximation and
some smoothness assumptions, we can show that the bias of this classical
kernel density estimator is of order O(h2). The optimal bandwidth can be
correspondingly determined by minimizing the Mean Squared Error (MSE).
The application of the classical kernel density estimator in equation (1) and
related theories are extensive and more recent applications can be found in the
context of bias-reduced local linear regression (Yao, 2012), dynamic networks
(Kolar et al., 2010), dynamic graphical model (Chen and Leng, 2016), and
Bayes’ classifier (Jiang et al., 2020), among others.

Various approaches have been proposed to improve the classical KDE de-
fined in equation (1). One of the classical methods is to use a variable band-

width, which improves f̂h(x) by introducing a varying bandwidth instead of
treating the bandwidth as a global and static parameter. As pointed out in
Terrell and Scott (1992), there are two existing approaches for using a variable
bandwidth. One of the approaches is to formulate the bandwidth h as h(Xi) in
equation (1) (i.e., the bandwidth is set to be dependent on the samples only),

and the resulting estimator is of the form: 1
n

∑n
i=1

1
h(Xi)

K
(
Xi−x
h(Xi)

)
. Breiman

et al. (1977) and Silverman (1986) proposed to set h(Xi) = hdi, where di
depends on the distance between Xi and its kth nearest neighbors. Abramson
(1982) found that the bias can be reduced to O(h4) by taking h(Xi) propor-
tional to f(Xi)

−1/2. Hall (1990) presented an easy-to-use variable bandwidth
estimator based on a non-variable bandwidth chosen by cross-validation, to
eliminate algebraic difficulties. Jones et al. (1995) considered a bias reduction
two-stage multiplicative method. The other approach is the so called “balloon
estimator” (Loftsgaarden et al., 1965) which formulates h to be dynamic in x.
Specifically, the balloon estimator is given as

f̂1(x) =
1

nh(x)

n∑
i=1

K

(
Xi − x
h(x)

)
. (2)

As suggested by the studies of Mack and Rosenblatt (1979), Tukey and Tukey
(1981), and Terrell and Scott (1992), estimators in the form of equation (2)



Tuning selection for two-scale kernel density estimators 3

have the advantage of having a straightforward asymptotic analysis and im-
prove the fixed kernel in some cases.

In this paper, we shall focus on the bias-reduced kernel estimator obtained
using the higher-order kernel proposed by Schucany and Sommers (1977).
Compared with the variable bandwidths methods, the bias-reduced kernel es-
timator has a simpler form and the introduction of an additional scale param-
eter brings an extra layer of flexibility in estimation. Specifically, Schucany
and Sommers (1977) suggested the use of the following kernel function:

K∗a,h(x) =
K1,h(x)−RK2,ah(x)

1−R
,

which reduces the estimation bias to O(h4) by choosing R = a−2. Here K1 and
K2 are two kernel functions and Ki,h(·) = 1

hKi(·/h), i = 1, 2. When K1 and
K2 are set to be the same, i.e., K1 = K2 = K, the resulting kernel estimator
is given as

f̂a,h(x) =
f̂h(x)− a−2f̂ah(x)

1− a−2
, (3)

where f̂h(x) and f̂ah(x) are defined as in equation (1) with bandwidths h and
ah, respectively. As we can see in the proof of Proposition 1, the lower order
bias of f̂h(x) is equal to a−2 times of the bias of f̂ah(x). The reduction of bias
for the estimator (3) is essentially achieved by cancelling the lower order bias

of the two estimators f̂h(x) and f̂ah(x), i.e., KDE estimators evaluated at two
different scale of bandwidths (i.e., h and ah). Through this paper, we shall call

f̂a,h(x) the two-scale estimator with scale parameter a and bandwidth h.
Schucany (1989) propose to choose a by minimizing a

∫
(K∗a,h(x))2dx which

is proportional to the Mean Integrated Squared Error (MISE). Following this
method, when K1 = K2 is the standard normal density function, Wand and
Schucany (1990) showed that the minimum of MISE can be obtained as a→ 1.
Jones and Foster (1993) greatly expanded the work of Schucany and Sommers
(1977) to more generalized jackknifing methods. In all these previous works,
the scale parameter a is treated as a static parameter (i.e., independent of the
data point), and is estimated based on the kernel functions and the bandwidth.

While a is generally treated as a global parameter in the literature, as can
be seen from Section 2.2, the MSE evaluated at different data points x is a
function of x. Intuitively, similar to the “balloon“ type estimators (Loftsgaar-
den et al., 1965), the MISE can be further reduced if we set the scale parameter
a to be dependent on x. Specifically, in this paper, instead of adopting a global
scale a that minimizes the MISE, we shall use different scales for different data
points. To emphasize such a dependence, we shall use ax to denote the scale
parameter hereafter, and equation (3) can be rewritten as

f̂ax,h(x) =
f̂h(x)− a−2x f̂axh(x)

1− a−2x
. (4)
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Given a data point x and the bandwidth h, we then seek for the optimal ax
such that the MSE evaluated at x is minimized. In this paper, we shall assume
that ax > 1 since for any 0 < ax < 1, the two bandwidths (h, axh) can be
rewritten as (a−1x h∗, h∗) with h∗ := axh.

The rest of this paper is organized as follows. In Section 2, we discuss how
to determine (a, h) and (ax, h) defined in equations (3) and (4). In particular,

we derive the point-wise MSE of f̂ax,h(x) and obtain an approximate equation
for the optimal ax by minimizing the MSE, and further propose to estimate ax
via an estimated equation. In Section 3, we conduct some simulation studies
to further illustrate our proposed estimators, with comparison to other clas-
sical approaches. Further discussions are provided in Section 4, and all the
theoretical proofs are given in the Appendix.

2 Two-scale kernel density estimator: tuning selection

We shall use Hölder classes to capture the smoothness of the density func-
tion f(x). Following Tsybakov (2008), the Hölder class Σ(β, L) defined on a
support T is the set of l := bβc times differentiable functions such that:

|f (l)(x)− f (l)(x′)| ≤ L|x− x′|β−l, ∀x, x′ ∈ T.

Here l := bβc denotes the greatest integer strictly less than the real number
β. To ensure the validity of the Taylor expansions in this subsection, we shall
assume that f(x) ∈ Σ(5, L) for some constant L > 0. For the kernel function,
we make the following assumptions throughout this paper:

(A1) The kernel function is bounded and symmetric in that K(u) = K(−u),
and

∫
K(u)uidu <∞ for i = 1, 2, 3, 4.

(A2)
∫
K(4)(u)2du <∞.

2.1 Classical method to choose (a, h) in equation (3)

When ax is x-invariant, the two-scale estimator f̂ax,h(x) defined by equa-

tion (4) reduces to f̂a,h(x) in equation (3). Although it is parametrized by

(a, h), the estimator f̂a,h(x) is basically constructed based on the classical ker-
nel density estimator with two different bandwidths: h and ah. Intuitively,
the two-scale estimator improves the classical KDE with the extra degree of
freedom introduced by the scale parameter a. In particular, when a→∞, the
two-scale estimator reduces to the classical KDE.

For the classical KDE f̂h(x) defined by equation (1), the bandwidth h
is usually determined using based on an unbiased least-squares estimate from
leave-one-out cross-validation (UCV) (Rudemo, 1982; Bowman, 1984). Similar

to how h is practically determined for f̂h(x), we can choose (a, h) via UCV
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too. Specifically, we look for (a, h) such that the following cross-validation
estimator of the risk function (up to a constant) is minimized:

UCV (a, h) =

∫
f̂2a,h(x)dx− 2

n

n∑
i=1

f̂
(−i)
a,h (xi).

Here f̂
(−i)
a,h (x) is the density estimator obtained after removing the ith sample.

2.2 Optimal ax for a given h in equation (4)

In this section, we derive the point-wise optimal choice of ax for a given h.
The bandwidth h for estimator (1) is usually determined by minimizing the
MSE. Specifically, we have

bias
(
f̂h(x)

)
= E

[
f̂h(x)

]
− f(x) = h2

f (2)(x)

2!
C0 + o

(
h2
)
,

where C0 =
∫
K(w)w2dw, and

Var
(
f̂h(x)

)
=

1

nh2
E

{
K

(
Xi − x
h

)}2

+O

(
1

n

)
=
f(x)

∫
K(w)2dw

nh
+O

(
1

n

)
.

The optimal h is then the minimizer of the dominating terms in the MSE:

MSE(f̂h(x)) = bias2
(
f̂h(x)

)
+ Var

(
f̂h(x)

)
' h4

(
f (2)(x)

2!

)2

+
1

nh
,

where a ' b means there exist constants c1 and c2 s.t. c1 <
a
b < c2. Adopting

the same idea, we first obtain the MSE of the two scale estimator:

Proposition 1. Suppose assumption (A1) hold and assume that f(x) ∈ Σ(5,
L). We have

MSE(f̂ax,h(x))

= a4xh
8C2

1 +O
(
h9
)

+
(
1− a−2x

)−2(C2

nh
+

C2

na5xh
+O

(
1

na3x

)
+O

(
1

n

))
,

where C1 = f(4)(x)
4!

∫
K(w)w4dw and C2 = f(x)

∫
K(w)2dw.

From Proposition 1 we can obtain the optimal ax by minimizing the dom-
inating terms:

M̃SE(f̂ax,h(x)) := a4xh
8C2

1 +
(
1− a−2x

)−2(C2

nh
+

C2

na5xh

)
.

In particular, we have:
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Theorem 1. For a given h, M̃SE(f̂ax,h(x)) is strictly convex in ax > 1, and
the unique minimizer a∗x can be obtained by the root that is larger than 1 of
the following equation:

4a5x + 5a2x − 1

(a2x − 1)3a5x
=

4h9nC2
1

C2
. (5)

Remark 1: Equation (5) is obtained by setting the first order derivative

of M̃SE(f̂ax,h(x)) to be zero. Note that when ax → 1, the left hand side of
equation (5) tends to infinity, and when ax →∞, the left hand side of equation
(5) tends to zero. By continuity, for any given n, h,C1, C2 > 0, there will always
exist a solution a∗x > 1 such that equation (5) is satisfied. The uniqueness of

a∗x follows directly from the fact that M̃SE(f̂ax,h(x)) is strictly convex.
Notice that C1 and C2 are unknown. However, we can replace C1 and C2

by their estimators:

Ĉ1 =
f̂
(4)
h1

(x)

4!

∫
K(w)w4dw and Ĉ2 = f̂h2

(x)

∫
K(w)2dw.

Here f̂
(4)
h1

(x) =
(

1
nh

∑n
i=1K

(
Xi−x
h1

))(4)
, i.e., the 4-th derivative of f̂h1

(x),

which can be explicitly computed for a given kernel function K(·). Subse-
quently for any given h, the optimal ax can be estimated by finding the root
which is bigger than 1 of the following equation

4a5x + 5a2x − 1

(a2x − 1)3a5x
=

4h9nĈ2
1

Ĉ2

. (6)

To solve equation (6), it is equivalent to solve the following polynomial

4Ĉ2a
5
x + 5Ĉ2a

2
x − Ĉ2 − 4h9nĈ2

1 (a2x − 1)3a5x = 0. (7)

There are various root-finding algorithms for high order polynomials. In this
paper, we use the classical Jenkins-Traub algorithm (Jenkins and Traub, 1972),
which can be implemented using the R package “polyroot”, to solve equation
(7). The real root which is bigger than 1 is outputted as the targeted solution.

Denote the estimator obtained by solving equation (6) as âx, we have:

Theorem 2. Suppose assumptions (A1) and (A2) hold, and assume that
f(x) ∈ Σ(7, L). For any given finite x, we have,

|âx − a∗x| = Op

(√
1

nh91
+ h21 +

√
1

nh2
+ h22

)
. (8)

Further, by choosing h ' O(n−1/9), h1 ' O(n−1/13) and h2 ' O(n−1/5),
wehave |âx − a∗x| = Op

(
n−2/13

)
.
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The term
√

1
nh9

1
+h21 in the error bound (8) comes from the estimation error

of Ĉ1, and the term
√

1
nh2

+ h22 comes from the estimation error of Ĉ2. Note

that Theorem 1 implies that for a given bandwidth h, the optimal ax can be
explicitly obtained by solving equation (5), and Theorem 2 indicates that the
optimal ax can be estimated by solving equation (6). Consequently, the choice
of (ax, h) can now be obtained via cross-validation over h. Specifically, for a
given h we estimate ax by solving equation (6) and choose h by minimizing

UCV (h) =

∫
f̂2âx,h(x)dx− 2

n

n∑
i=1

f̂
(−i)
âxi

,h(xi).

We remark that the computation complexity is the same as that for the clas-
sical kernel density estimation using cross validation. We shall denote the
two-scale estimator obtained via this approach as f̂â,h(x).

3 Simulation

In this section, we conducted some numerical simulations to study the
performance of the two scale estimators based on our proposed tuning selection
procedures. Specifically we consider:

Method I f̂a,h: Cross-validation for both h and a using UCV. We allow a = 1

and set f̂1,h = f̂h.

Method II f̂â,h: Estimator of h is given by UCV and estimator of ax is given
following the method (3) above based on h as well as x. Specifically we fit the
data with the classical estimator (1) first and use it to obtain Ĉ1, Ĉ2.

Method III f̂√2,h: Motivated by the formation of bias-corrected Bootstrap

estimator (Hall, 2013), we also consider simply setting a =
√

2. As a result we
obtain the following estimator:

f̂√2,h(x) = 2f̂h(x)− f̂√2h(x).

The bandwidth h can then be determined via UCV.

Method IV f̂h: the classical kernel density estimator (1) where h is determined
by cross-validation.

Throughout this study, we have used the Gaussian kernel for computing
all the estimators. To better understand the numerical behaviour of the esti-
mators, we consider five different density functions with different shapes: (i)
Unimodal: N(0, 1); (ii) Bimodal: 0.5N(−1, 1)+0.5N(1, 1); (iii) Unimodal with
heavier tail: t-distribution with degree of freedom 10; (iv) Beta(2, 2): bounded
and relatively flat; (v) U [−5, 5]: uniform distribution with constant density
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f(x) = 0.1 for x ∈ [−5, 5]: discrete distribution. We generate n = 200, 400, 800
and 1600 samples for training and compute the MSE and bias on 1000 testing
points. All the results are summarized in Table 1. To understand how different
choices of a and h affect the MSE, we also plot the MSE obtained by com-
paring with the true density, versus different bandwidths. The results with
different sample sizes 100, 200, 500 are provided in Figures 1-3, and the cor-
responding minimum of the MSE values under different settings are reported
in Table 2. Some conclusions are summarized as fellows: Some conclusions are
summarized as fellows:

(i) The two scale estimators (i.e., f̂a,h, f̂â,h and f̂√2,h) generally outperform

the traditional KDE f̂h. In particular, compared with the traditional KDE
f̂h, the estimation accuracy can be improved with a simple choice of a =√

2.
(ii) From table 1, we can see that f̂a,h and f̂â,h have smaller MSE values under

the simulated cases. Compared with the estimator f̂a,h, which conducts

cross validation for both a and h, the computation of f̂â,h is much efficient
as it only requires the tuning of h. When n increases, the proposed two
scale estimator with adaptive scales f̂â,h provides increasingly improvement
on MSE ratio. From the different performance under different models, we
can observe that the proposed estimator f̂â,h with adaptive scales performs
better when the targeted density function is relatively far away from zero
(such at the beta case). Intuitively, the estimation of the scale parameter
ax relies on the number of observations near the data point x, and hence
when f(x) is not too small, we would expect to have smaller estimation
error.

(iii) From Figures 1 to 3, we can see that the red line, representing the MSE of

f̂â,h is generally under the curves of other estimators. This to some degree
indicates that for a given bandwidth h, the adaptive scale approach does
reduce the MSE, comparing with the other estimators. In particular, if a
bad choice of bandwidth is chosen, f̂â,h could be a better choice than the
other three estimators. In addition, from Table 2, we can also observe that
the minimums of the MSE of the two scale methods (i.e., Methods I, II
and III) are comparably smaller than those of Method IV when the density
function is smooth.

4 Discussions

In this paper, we propose a point-wise estimator for scale parameter a in the
two-scale estimator (3) by solving an estimated equation. Unlike other studies
in the literature review which treat a as static and estimate a by minimizing
the MISE, our method allows the scale parameter to change adaptively in
different data points. A simple estimator has been provided with theoretical
results about justifications.
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Fig. 1 MSE when sample size is 100 under six different densities.

Our idea of treating a as a function of the data point x is very similar to the
balloon estimator in Terrell and Scott (1992). As reported in Terrell and Scott
(1992), the balloon-type estimator could potentially outperform other estima-
tors when estimating multivariate density. It would be interesting to explore
the extension of the two-scale estimator with adaptive scale parameters to the
multivariate case in our future work. Moreover, extensions of our current work
to generalized jackknifing methods (Jones and Foster, 1993), asymmetric ker-
nel estimators such as (Igarashi and Kakizawa, 2015), and Nadaraya-Watson
type estimators would also be interesting topics for future study.

5 Appendix: Technical Lemmas and Proofs

Proof of Proposition 1

Proof. By Taylor expansion,

E
[
f̂h(x)− f(x)

]



10 Xinyang Yu 1 et al.

0.2 0.4 0.6 0.8 1.0

0.001

0.002

0.003

0.004

Normal

Bandwidth

M
S

E

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.001

0.002

0.003

0.004

0.005

Bimodal

Bandwidth

M
S

E

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

t−distribution

Bandwidth

M
S

E

0.10 0.15 0.20 0.25 0.30

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Beta

Bandwidth

M
S

E

0 1 2 3 4 5 6

0.0005

0.0010

0.0015

0.0020

0.0025

Uniform

Bandwidth

M
S

E

0.1 0.2 0.3 0.4 0.5 0.6

0.00

0.02

0.04

0.06

0.08
Binomial

Bandwidth

M
S

E

f̂ a,h

f̂ â,h
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Fig. 2 MSE when sample size is 200 under six different densities.

=

∫
K(w)f(wh+ x)dw − f(x)

=

∫
K(w)f (1)(x)whdw +

∫
K(w)

f (2)(x)

2!
w2h2dw

+

∫
K(w)

f (3)(x)

3!
w3h3dw +

∫
K(w)

f (4)(x)

4!
w4h4dw + o

(
h4
)

= h2
∫
K(w)

f (2)(x)

2!
w2dw + h4

∫
K(w)

f (4)(x)

4!
w4dw + o

(
h4
)
.

Similarly, we have

E
[
f̂ah(x)− f(x)

]
= a2h2

∫
K(w)

f (2)(x)

2!
w2dw + a4h4

∫
K(w)

f (4)(x)

4!
w4dw + o

(
a4h4

)
.

Consequently, we have

bias(f̂ax,h(x)) = E

[
f̂h(x)− a−2f̂ah(x)

1− a−2

]
− f(x)
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Fig. 3 MSE when sample size is 500 under six different densities.

=

∫
K(w) f

(4)(x)
4! w4h4dw − a−2

∫
K(w) f

(4)(x)
4! w4(ah)4dw

1− a−2
+O

(
h5
)

= −a2h4C1 +O
(
h5
)
,

where C1 = f(4)(x)
4!

∫
K(w)w4dw. Similarly, for the variance, we have

Var(f̂ax,h(x))

=
(
1− a−2

)−2 (
Var(f̂h(x)) + a−4Var(f̂ah(x))− 2a−2Cov

(
f̂h(x), f̂ah(x)

))
=
(
1− a−2

)−2(f(x)
∫
K(w)2dw

nh
+
f(x)

∫
K(w)2dw

na5h

+ 2a−2
n∑
i=1

n∑
j=1

1

n2
Cov

(
1

h
K

(
Xi − x
h

)
,

1

ah
K

(
Xj − x
ah

))
+O

(
1

n

) .
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Method Normal
n=200 n=400 n=800 n=1600

MSE ratio Bias MSE ratio Bias MSE ratio Bias MSE ratio Bias

f̂a,h 0.925 0.025 0.921 0.018 0.869 0.014 0.793 0.010

f̂â,h 0.904 0.025 0.889 0.018 0.759 0.013 0.715 0.010

f̂√2,h 0.868 0.024 0.897 0.018 0.722 0.014 0.871 0.011

f̂h 1 0.026 1 0.019 1 0.016 1 0.011
Method Bimodal

n=200 n=400 n=800 n=1600
MSE ratio Bias MSE ratio Bias MSE ratio Bias MSE ratio Bias

f̂a,h 0.918 0.016 0.854 0.013 0.875 0.013 0.696 0.009

f̂â,h 0.946 0.016 0.829 0.013 0.917 0.014 0.717 0.010

f̂√2,h 0.921 0.016 0.807 0.013 0.840 0.013 0.771 0.010

f̂h 1 0.017 1 0.014 1 0.014 1 0.011
Method Student-t distribution(10 degrees of freedom)

n=200 n=400 n=800 n=1600
MSE ratio Bias MSE ratio Bias MSE ratio Bias MSE ratio Bias

f̂a,h 0.924 0.025 0.971 0.018 0.939 0.014 0.844 0.006

f̂â,h 0.903 0.025 0.912 0.018 0.871 0.013 0.653 0.005

f̂√2,h 0.907 0.025 0.914 0.018 0.902 0.013 0.722 0.005

f̂h 1 0.027 1 0.019 1 0.014 1 0.006
Method Beta(2,2)

n=200 n=400 n=800 n=1600
MSE ratio Bias MSE ratio Bias MSE ratio Bias MSE ratio Bias

f̂a,h 0.874 0.095 0.789 0.070 0.827 0.067 0.844 0.042

f̂â,h 0.845 0.094 0.787 0.071 0.831 0.067 0.808 0.042

f̂√2,h 0.856 0.094 0.780 0.070 0.818 0.067 0.857 0.043

f̂h 1 0.103 1 0.081 1 0.075 1 0.049
Method Uniform

n=200 n=400 n=800 n=1600
MSE ratio Bias MSE ratio Bias MSE ratio Bias MSE ratio Bias

f̂a,h 1.065 0.014 1.060 0.012 1.052 0.010 0.835 0.008

f̂â,h 1.070 0.014 1.073 0.012 1.044 0.010 0.839 0.007

f̂√2,h 1.062 0.014 1.039 0.012 1.050 0.010 0.874 0.008

f̂h 1 0.014 1 0.012 1 0.010 1 0.008

Table 1 The MSE ratio and bias of different methods under different settings.

Notice that

2a−2
n∑
i=1

n∑
j=1

1

n2
Cov

(
1

h
K

(
Xi − x
h

)
,

1

ah
K

(
Xj − x
ah

))

= 2a−2
1

n
E

[
Cov

(
1

h
K

(
Xi − x
h

)
,

1

ah
K

(
Xj − x
ah

))]
.

Since

Cov

(
1

h
K

(
Xi − x
h

)
,

1

ah
K

(
Xj − x
ah

))
=

1

a

∫
K(w)K

(w
a

)
f(wh+ x)dw +O(1),
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Method Distribution
n=100 Normal Bimodal t-distribution Beta Uniform Binomial

f̂a,h 0.002299 0.001487 0.000737 0.006049 0.000349 0.000529

f̂â,h 0.002321 0.001501 0.000748 0.007290 0.000346 0.000728

f̂√2,h 0.002277 0.001485 0.000733 0.005935 0.000350 0.000783

f̂h 0.003459 0.001660 0.001132 0.012716 0.000351 0.000536
n=200 Normal Bimodal t-distribution Beta Uniform Binomial

f̂a,h 0.000527 0.000876 0.000328 0.004390 0.000215 0.000476

f̂â,h. 0.000548 0.000891 0.000352 0.004551 0.000215 0.000687

f̂√2,h 0.000526 0.000873 0.000326 0.004325 0.000222 0.000715

f̂h 0.000691 0.001037 0.000452 0.008209 0.000218 0.000479
n=500 Normal Bimodal t-distribution Beta Uniform Binomial

f̂a,h 0.000142 0.000340 0.000121 0.003243 0.000172 0.000112

f̂â,h 0.000141 0.000338 0.000129 0.003299 0.000175 0.000204

f̂√2,h 0.000143 0.000340 0.000120 0.003262 0.000180 0.000198

f̂h 0.000181 0.000346 0.000209 0.004286 0.000172 0.000112

Table 2 Minimums of MSE for different methods under different settings in Figures 1-3.

and K(u) is bounded, we have∫
K(w)K

(w
a

)
f(wh+ x)dw = O

(∫
K(w)f(wh+ x)dw

)
= O(1).

With C2 = f(x)
∫
K(w)2dw, the variance of f̂(x) can be simplified as:

Var(f̂(x)) =
(
1− a−2

)−2(C2

nh
+

C2

na5h
+O

(
1

na3

)
+O

(
1

n

))
.

Consequently,

MSE(f̂(x))

= bias2(f̂(x)) + Var(f̂(x))

= a4h8C2
1 +O(h9) +

(
1− a−2

)−2(C2

nh
+

C2

na5h
+O

(
1

na3

)
+O

(
1

n

))
.

Proof of Theorem 1

Proof. For simplicity, we take C3 = C2

nh . It suffices to show that

log

{(
1− a−2

)−2(
C3 +

C3

a5

)}
,

is strictly convex in a > 1. Note that

d

da
log

{(
1− a−2

)−2(
C3 +

C3

a5

)}
=

d

da

{
log
(
1− a−2

)−2
+ log

{
C3 +

C3

a5

}}
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and for any a > 1,

d2

da2
log
{(

1− a−2
)−2}

=
12a2 − 4

a2(a2 − 1)2
> 0,

d2

da2

{
C3 +

C3

a5

}
> 0.

We thus conclude that M̃SE(f̂ax,h(x)) is a convex function of a for a > 1.

By setting d
da

(
MSE(f̂(x))

)
= 0, we obtain the implicit format of the global

minimizer:

4h9nC2
1

C2
=

4a5 + 5a2 − 1

(a2 − 1)3a5
.

Proof of Theorem 2

Proof. For any given x, note the fact that a∗x is the root of

4a5x + 5a2x − 1

(a2x − 1)3a5x
=

4h9nC2
1

C2
,

while h ' O
(
n−1/9

)
, we have a∗x − 1 > c0 for some constant c0. By Hansen

(2009),

bias
(
f̂
(4)
h1

(x)
)

=
f (6)(x)h21

∫
K(u)u2du

2
+ o

(
h21
)
,

Var
(
f̂
(4)
h1

(x)
)

=
f(x)

∫
K(4)(u)2du

nh91
+O

(
1

n

)
,

bias
(
f̂h2

(x)
)

=
f (2)(x)h22

∫
K(u)u2du

2
+ o

(
h22
)
,

Var
(
f̂h2

(x)
)

=
f(x)

∫
K(u)2du

nh2
+O

(
1

n

)
.

Let

l(ax, C1, C2) = 4(1 + a5x)C2 + 5(a2x − 1)C2 − 4(a2x − 1)3a5xnh
9C2

1 ,

then

∂l(ax, C1, C2)

∂ax
= 20a4xC2 + 10axC2 − 4

(
11a2x − 5

)
a4x
(
a2x − 1

)2
nh9C2

1 ,

∂l(ax, C1, C2)

∂C1
= −8

(
a2x − 1

)3
a5xnh

9C1,

∂l(ax, C1, C2)

∂C2
= 4a5x + 5a2x − 1.
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Under the assumptions of this theorem, there exist positive constants c1 and
c2 s.t.

∫
K(u)u2du,

∫
K(u)u4du,

∫
K(4)(u)2du and

∫
K(u)2du are all smaller

or equal than c1, and max{ f (6)(x), f (2)(x), f(x)} < c2. Then we have

bias(Ĉ1) ' h21 + o
(
h21
)
, Var(Ĉ1) ≤ c31c2

nh91
+O

(
1

n

)
,

bias(Ĉ2) ' h22 + o
(
h22
)
, Var(Ĉ2) ≤ c31c2

nh2
+O

(
1

nh2

)
.

As n→∞, we have∣∣∣Ĉ1 − E(Ĉ1)
∣∣∣ = Op

(√
1

nh91

)
,
∣∣∣Ĉ2 − E(Ĉ2)

∣∣∣ = Op

(√
1

nh2

)
,

thus, with h1 ' O(n−1/13) and h2 ' O(n−1/5), we have that∣∣∣Ĉ1 − C1

∣∣∣ ≤ ∣∣∣Ĉ1 − E(Ĉ1)
∣∣∣+
∣∣∣E(Ĉ1)− C1

∣∣∣ = Op

(√
1

nh91
+ h21

)
,

∣∣∣Ĉ2 − C2

∣∣∣ ≤ ∣∣∣Ĉ2 − E(Ĉ2)
∣∣∣+
∣∣∣E(Ĉ2)− C2

∣∣∣ = Op

(√
1

nh2
+ h22

)
.

Consequently, as n → ∞, for any given x, Ĉ1 and Ĉ2 are in the same order
with C1 and C2 in probability. Similar to ax, we can get that âx − 1 > c3 for
some constant c3.

By Taylor expansion, there exist (aξ, C1,ξ, C2,ξ) s.t.

l(âx, Ĉ1, Ĉ2)− l(a∗x, C1, C2)

=
(
Ĉ1 − C1

) ∂l(aξ, C1,ξ, C2,ξ)

∂C1
+
(
Ĉ2 − C2

) ∂l(aξ, C1,ξ, C2,ξ)

∂C2

+ (âx − a∗x)
∂l(aξ, C1,ξ, C2,ξ)

∂aξ

= 0. (9)

Note that aξ = O(1), C1,ξ = O(1) and C2,ξ = O(1), together with equation
(9), we have

|âx − a∗x| =

∣∣∣∣∣∣∣
(4a5ξ + 5a2ξ − 1)

(
Ĉ2 − C2

)
− 8

(
a2ξ − 1

)3
a5ξnh

9C1,ξ

(
Ĉ1 − C1

)
20a4ξC2,ξ + 10aξC2,ξ − 4

(
11a2ξ − 5

)
a4ξ

(
a2ξ − 1

)2
nh9C2

1,ξ

∣∣∣∣∣∣∣
= O


∣∣∣Ĉ2 − C2

∣∣∣
(aξ − 1)

2
nh9

+O
(

(aξ − 1)
∣∣∣Ĉ1 − C1

∣∣∣)

= OP

(
h22

(aξ − 1)
2
nh9

)
+OP

(
(aξ − 1)h21

)



16 Xinyang Yu 1 et al.

= Op

(√
1

nh91
+ h21 +

√
1

nh2
+ h22

)
.
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