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Abstract. Turing-type reaction-diffusion systems on evolving domains arising in biology, chem-
istry and physics are considered in this paper. The evolving domain is transformed into a reference
domain, on which we use a second order semi-implicit backward difference formula (SBDF2) for time
integration and a meshless collocation method for space discretization. A global refinement strategy
is proposed to reduce the computational cost. Numerical experiments are carried out for different
evolving domains. The convergence behavior of the proposed algorithm and the effectiveness of the
refinement strategy are verified numerically.
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1. Introduction. In this paper, we consider Turing-type reaction-diffusion sys-
tem (RDS) on evolving domain{

ut +5 · (cu) = Du4u+ γf(u, v)

vt +5 · (cv) = Dv4v + γg(u, v)
on Ωt, (1.1)

where Ωt is a time-dependent domain, u and v denote concentrations of two chemicals,
Du and Dv are diffusion constants, c = (xt, yt) is the domain motion velocity field,
f(u, v) and g(u, v) represent reaction functions of two chemicals. The RDS model
(1.1) governs pattern formation phenomenon in biology. It involves different aspects of
embryonic growth and its influence on the actual pattern processing [26], for examples,
the skin patterns of angelfish and spatial patters of teeth primordia on alligators. The
domain size of these applications usually changes as time increases. In the paper, by
assuming the domain growth function ρ(t) spatially linear and isotropic, we have

x(t) = ρ(t)ξ, y(t) = ρ(t)η, (1.2)

with ρ(0) = 1 and (ξ, η) on reference domain. Theoretically, the reference domain
can be chosen arbitrarily. In our paper, since the coordination relation between the
evolving domain Ωt and the initial domain Ω0 is known as Eq. (1.2), we suppose
that the reference domain is same with the initial domain for convenience in simu-
lations. For the case that the initial domain is different with the reference domain,
the computation can still be conducted by using the coordination transformation be-
tween the evolving domain and the reference domain. With different forms of reaction
functions, various models have been proposed in the literature, such as Schnakenberg
model [30], Gierer and Meinhardt model [5] and Gray-Scott model [10]. Different
with Turing systems on fixed domains, for both chemicals, the evolving domain Ωt
introduces two additional terms: the advection terms c · Ou, c · Ov and the dilution
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terms. The advection terms come from the moving of elements by the local domain
growth and the dilution terms represent the local volume change [5]. Turing-type
models on evolving domains have a wide range of applications, for example the skin
of angelfish [16,17], the teeth primordia in the alligator and the pigmentation pattern
formation on snakes [26], etc.

The stability analysis and cross-diffusion-driven instability conditions of (1.1)
were considered in [24]. The global existence of (1.1) was proved in [31]. Since in
general the classical solution of (1.1) cannot be found analytically, numerically study
of pattern formations becomes necessary. There have been many works on numerical
simulations of Turing-type models on both evolving and fixed domains. A hybrid
method which utilizes the merits of a second order implicit integration factor method
and the second-order implicit exponential time differencing method were proposed
in [28] for stiff reaction-diffusion equations. In [20], a local kernel based meshless
method was proposed for both linear and nonlinear reaction diffusion equations. An
implicit-explicit time-stepping procedure with finite element spatial approximation
was introduced in [18,31] for solving (1.1). In [18], the authors also proved the stabil-
ity and convergence of the proposed scheme. The method of line coupled with Gear’s
method were applied to resolve Turing patterns with uniformly domain growth func-
tions in [5] and non-uniformly domain growth functions in [6]. The implicit backward
Euler and moving grid finite element method were used to simulate the doubling
splitting behavior of the patterns on evolving domains in [23]. The alternating direc-
tion implicit (ADI) method based on an orthogonal spline collocation (OSC) scheme
was proposed in [9] to study Turing patterns with different domain growth functions.
The same method was also applied to solve two dimensional Riesz space fractional
diffusion equations in [32]. In [12, 27], a moving mesh finite element method with a
Runge-Kutta time integration was used to solve Turing-type models on fixed domains,
where computational costs are significant reduced with a mesh redistribution strategy.
For reaction-diffusion equations coupled with moving boundaries, the Krylov implicit
integration factor was proved to be a effective time discretization method in [22] by
comparing with other methods. Another strategy for parabolic and RDS on the evolv-
ing domain is the finite element methods with time dependent meshes [3, 8]. Some
theoretical results about these methods were proved in [2,15]. Although they are not
required to map the evolving domain to the reference domain, the mesh generation
of these methods leads to additional costs.

In this paper, we will apply the meshless collocation method to solve Turing-
type RDS on evolving domains. The Kansa method, proposed by E. J. Kansa in
1990 [13,14], was a typical meshless method by imposing strong form collocation con-
ditions on partial differential equations. To overcome the solvability problem of the
Kansa method [11], the overdetermined Kansa method was applied to solve PDEs
in [21]. Convergence results of the overdetermined Kansa method were proved in [4].
The weighted least-squares collocation methods with mixed boundary conditions were
developed in [19]. In this work, after reformulating the RDS on the reference domain
as [9, 18, 31], we will use the meshless collocation method based on radial basis func-
tions and a second order semi implicit backward difference formula (SBDF2) [29] for
spatial and temproral discretization respectively. The meshless method only needs
discrete points in the domain [7] and allows us to solve the RDS on domains with
more general shapes. Furthermore, considering the domain evolving property of the
RDS (1.1) and the simplicity of redistributing discrete sets in meshless method, to
save the computation cost, we will propose a global refinement strategy which in-
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creases/reduces collocation points as domain evolving. The rest of the paper is or-
ganized as follows. In Section 2, the numerical scheme and the global refinement
strategy are introduced. Numerical examples to show the effectiveness of the pro-
posed algorithm under different growing functions and domain shapes are contained
in Section 3. The paper ends with some conclusions in Section 4.

2. The meshless method for RDS on evolving domains and the global
refinement strategy. In this section, we will introduce the numerical scheme to solve
Turing-type RDS (1.1), which contains three parts: Firstly, by coordinate transforma-
tion, (1.1) can be converted to a RDS on a reference domain; Secondly, using SBDF2
for time discretization and the meshless collocation method for space discretization,
we solve the RDS on the reference domain; Finally, we compute the numerical solu-
tions on the reference domain and then transform back to the physical domain. What
is more, to save the computation time, we introduce a global refinement strategy in
which the discrete set changes along with the volume of the domain.

2.1. The RDS on the reference domain. When solve the RDS on the evolv-
ing domain, one strategy is to transform the RDS on the evolving domain Ωt to a
reference domain Ωc. This strategy has been successfully used to solve Turing-type
RDS, see, e.g., [9,18,31]. We employ this strategy in our algorithm. To complete this
article, we give a brief introduction of this transformation method in the following.
The formulations for u(x, y, t) is shown only since the same method can be applied to
v(x, y, t).

Let (ξ, η) be any point in the reference domain Ωc and (x, y) be any point in the
evolving domain Ωt. They have the relation

x := x(ξ, η, t), y := y(ξ, η, t). (2.1)

From (2.1), each point (x, y) can be transformed to a fixed position (ξ, η) in Ωc and
we have u(x, y, t) := ũ(ξ, η, t). We convert the equation for u(x, y, t) in (1.1) to an
equation for ũ(ξ, η, t). First of all, the left hand side of the equation for u(x, y, t) can
be written as

ut + O · (cu) = ũt + ũO · c, (2.2)

by applying the representation for ũt

ũt = ut + uxxt + uyyt = ut + c · Ou.

Next, the Laplacian of u(x, y, t) can be represented in the (ξ, η) coordinate system as

4u = uxx + uyy

= ũξξ(ξ
2
x + ξ2

y) + ũηη(η2
x + η2

y) + ũξ(ξxx + ξyy) + ũη(ηxx + ηyy)

+ 2ũξη(ξxηx + ξyηy).

(2.3)

Finally, in order to obtain the relation O · c in (2.2) with the growth function, we
suppose that the initial domain coincides with the reference domain Ωc

x(0) = x(ξ, η, 0) = ξ, y(0) = y(ξ, η, 0) = η.

By (1.2), the divergence of the flow velocity field c can be computed as

O · c = xtx + yty =
2ρt(t)

ρ(t)
, (2.4)
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by using the transformation in (1.2) and

xt(t) = ρt(t)ξ =
ρt(t)

ρ(t)
x(t), yt(t) = ρt(t)η =

ρt(t)

ρ(t)
y(t).

By substituting results in (2.2), (2.3) and (2.4) to (1.1), we obtain the equivalent RDS
on the reference domain Ωc as

ũt =
Du

ρ(t)2
4 ũ+ f̃(ũ, ṽ)

ṽt =
Dv

ρ(t)2
4 ṽ + g̃(ũ, ṽ)

on Ωc, (2.5)

with

f̃(ũ, ṽ) = −2ρt(t)

ρ(t)
ũ+ γf(ũ, ṽ), g̃(ũ, ṽ) = −2ρt(t)

ρ(t)
ṽ + γg(ũ, ṽ).

When solve the RDS numerically, boundary conditions and initial conditions are
needed. In this paper, we study the RDS (1.1) subject to homogenous Neumann
boundary conditions as

∂u

∂n
=
∂v

∂n
= 0 on ∂Ωt,

which implies that the RDS is self-organized with no external input. We transform
boundary conditions on ∂Ωt to the reference domain ∂Ωc as

∂u

∂n
= nx

∂u

∂x
+ ny

∂u

∂y

= nξ

(
∂ũ

∂ξ

∂ξ

∂x
+
∂ũ

∂η

∂η

∂x

)
+ nη

(
∂ũ

∂ξ

∂ξ

∂y
+
∂ũ

∂η

∂η

∂y

)
.

(2.6)

By applying (1.2) to (2.6), we conclude that the zero flux boundary conditions also
holds for ũ and ṽ as

∂ũ

∂n
= ρ(t)

∂u

∂n
= 0,

∂ṽ

∂n
= ρ(t)

∂v

∂n
= 0 on ∂Ωc. (2.7)

For initial conditions, we have

ũ(ξ, η, 0) = u(x, y, 0), ṽ(ξ, η, 0) = v(x, y, 0) on Ωc ∪ ∂Ωc. (2.8)

In this paper, we will focus on solving the RDS (2.5) by meshless methods with
boundary conditions in (2.7) and initial conditions in (2.8). There are two advantages
of applying meshless methods to RDS on evolving domain. Firstly, for complicated
domain shapes, meshless methods can solve the problems by discrete points instead
of meshes by grid-based methods. Secondly, although the RDS on a fixed reference
domain Ωc solves Eq. (2.5) in the paper, the coefficients and reaction functions of
RDS on Ωc are related to time t. Furthermore, numerical solutions are also needed
to be mapped back to evolving domain Ωt. Thus, the discrete points should also
be suitable to the evolving domain Ωt as time t increases. For grid-based methods,
more computation cost is required for mesh generation than redistribution of discrete
points by meshless methods.
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2.2. Discretization formulations. For the time discretization of (2.5), a SBDF2
formula [29] is employed. The diffusion terms are treated implicitly and reaction terms
are treated explicitly. Let {tn}In=1 be a division of [0, T ] such that tn = n∆t with
∆t = T/I. The semi-discretized formula of (2.5) can be written as

3ũn+1 − 4ũn + ũn−1

2∆t
=

Du

ρ(t)2
4ũn+1 + 2f(ũn, ṽn)− f(ũn−1, ṽn−1)

3ṽn+1 − 4ṽn + ṽn−1

2∆t
=

Dv

ρ(t)2
4ṽn+1 + 2g(ũn, ṽn)− g(ũn−1, ṽn−1)

on Ωc,

where ũn and ṽn are concentrations of ũ and ṽ at time tn. After simplification, we
obtain

3

2
ũn+1 − ∆tDu

ρ(t)2
4ũn+1 = 2∆tf̃(ũn, ṽn)−∆tf̃(ũn−1, ṽn−1) + 2ũn − 1

2
ũn−1

3

2
ṽn+1 − ∆tDv

ρ(t)2
4ṽn+1 = 2∆tg̃(ũn, ṽn)−∆tg̃(ũn−1, ṽn−1) + 2ṽn − 1

2
ṽn−1

on Ωc.

(2.9)
From (2.9), concentrations of ũ and ṽ at time tn+1 can be evaluated by using their
values at time tn and tn−1.

We then apply the meshless collocation method introduced in [4, 19] for space
discretization (2.9) in space. Let Z = {z1, . . . ,zN} be discrete trial centers in the
domain Ωc and Φ(·, ·) be a radial basis function whose reproducing kernel Hilbert
space is norm equivalent to Hm(Ωc). Since collocation points may be different with
the trial centers, collocation points in the domain Ωc and on the boundary ∂Ωc are
denoted as X = {x1, . . . ,xM} and Y = {y1, . . . ,yK}. The fill distance of any discrete
set S is

hS := sup
x∈Ω

min
χi∈S

‖x− χi‖`2(Rd). (2.10)

For any u ∈ C(Ω), we define a discrete norm of u on collocation sets Υ = {X, Y } as

‖u‖Υ =

(∑
εi∈Υ

u(εi)
2

)1/2

. (2.11)

Applying formulations as in [19] for the Neumann boundary to system (2.9), the
least-squares solution Un+1 ∈ Hm(Ωc), Ωc ∈ R2 in the finite dimensional trial space

UZ,Φm := span{Φ(., zi), zi ∈ Z},

is defined as

Un+1 := arg inf
w∈UZ,Φm

∥∥∥∥(3

2
I − ∆tDu

ρ(t)2
∆

)
w − h(tn+1)

∥∥∥∥2

X

+
v(∂Ωc)

v(Ωc)1/2
m−5h−2

X

∥∥∥∥∂w∂n
∥∥∥∥2

Y

,

(2.12)

where v(∂Ωc), v(Ωc) are the size of the domain and boundary of the reference domain
Ωc, respectively, discrete norms on X, Y are defined as in (2.11), and h(x, tn+1) is
given by

h(x, tn+1) = 2∆tf̃(ũn(x), ṽn(x))−∆tf̃(ũn−1(x), ṽn−1(x)) + 2ũn(x)− 1

2
ũn−1(x).
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The concentration function Un+1 ∈ UZ,Φm
can be approximated as

Un+1 =

N∑
i=1

λn+1
U,i Φ(·, zi), (2.13)

with unknown coefficients Λn+1
U = [λn+1

U,1 , . . . , λ
n+1
U,N ]T . It had been shown in [19] that

the numerical solution by (2.12) is convergent with respect to hZ at the rate of m−2.
To solve the (2.12), strong form collocation conditions are imposed as

N∑
i=1

λn+1
U,i

(
3

2

M∑
j=1

Φ(xj , zi)−
∆tDu

ρ(t)2

M∑
j=1

4Φ(xj , zi)

)
= h(xj , t

n+1) for xj ∈ X,zi ∈ Z.

On the boundary, zero flux boundary conditions are imposed at set Y as

∂Un+1

∂n
=

N∑
i=1

λn+1
U,i

Nb∑
j=1

∂Φ(yj , zi)

∂n
= 0 for yj ∈ Y, zi ∈ Z.

From these nX + nY collocation conditions, we can find numerical solutions at tn+1

from (2.12) after computing unknown coefficients Λn+1
U for Un+1 by solving following

equation system
3

2
Φ(X,Z)− ∆tDu

ρ(t)2
4Φ(X,Z)

v(∂Ωc)

v(Ωc)1/2
m−5h−2

X

∂Φ(Y,Z)

∂n

Λn+1
U =

[
h(X, tn+1)

0

]
. (2.14)

The concentration value Un+1 is given as (2.13) by using Λn+1
U . Then we can transform

the solution to domain Ωt by using un+1(x, y, t) = Un+1(ξ, η, t) and coordination
relations in (1.2). It should be noted that the method becomes original Kansa method
when collocation set satisfies X ∪ Y = Z. Since the collocation method in (2.14) for
the spatially discretization is meshless, it can be applied to more general domains and
we will show this property in the simulation part.

2.3. The technique for global refinement strategy. Since we study the
reaction-diffusion problems on the evolving domains, it is reasonable to change the
number of discrete points along with the domain sizes. For mesh based methods,
such as the finite element method [23], the change of data points also leads to the
generation of new meshes which may cause additional computation time. For the
meshless collocation methods, it is easier to redistribute the discrete points as the
volume change of the physical domains. When the volume of the domain is small, we
use fewer discrete points, and increase the number of data points as domain grows.
The indicator function should depend on the underlying solutions, the domain growing
functions and the properties of the domains such as the areas of the domains.

With definition in (2.10), we use hZ0 to denote the fill distance of trial set of
the domain at t = 0. A formula to decide fill distance hZt at time t depends on the
domain growth function ρ(t) and initial fill distance hZ0

is considered. To avoid the
ill-conditioning problem encontered at small fill distance, we also give a lower bound
hL. Therefore, the fill distance for time t is computed as

hZt
= max

{
min

{
hZ0

,
νhZ0

ρ(t)

}
, hL

}
, (2.15)
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with ν being a positive integer to control the change speed of the fill distance. With
fill distance in (2.15), the number of discrete points Nt can be computed as

Nt =

(⌊
v(Ωc)

1/d

ht

⌋)d
, (2.16)

with d and v(Ωc) being the dimension and volume of the problem domain. In this
paper, two kinds of growth functions are considered as

ρ(t) = exp(d1t) t ∈ [0, T ], (2.17)

ρ(t) = 1 + d2 sin
(πt
d3

)
t ∈ [0, d3], (2.18)

in which d1, d2, d3 are constants. For exponentially growth function in (2.17), the
fill distance hNt

firstly decreases as time increases and then fixes to a lower bound
hL. When use the trigonometric growth function in (2.18), the fill distance decreases
to the lower bound hL for t ≤ d3/2. And it increases to the initial hN0 when t
continuously increases to final time d3. We will show this behavior numerically in the
Section 3. The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 The meshless collocation method with a global refinement strategy for
RDSs
Input:

1: The parameters γ,Du, Dv , functions f(u, v), g(u, v), time step ∆t and final time
T ;

2: Initial discrete sets with fill distance hZ0 on domain Ωc and the lower bound hL;
Iteration process:

3: Initialization: Generate initial value U0, V 0; compute coefficient vectors
Λ1
U , Λ1

V for U1, V 1 by one step forward Euler; Compute Λ2
U , Λ2

V for U2, V 2

by scheme in Section 2.2; And save coefficient vector Λ1
U , Λ1

V ∈ RNt1 and
Λ2
U , Λ2

V ∈ RNt2 ;
4: For n = 3, · · · , I,
5: Compute hZtn

by (2.15) and Ntn by (2.16);
6: if hZtn

= hZtn−1 ,
7: Apply scheme in Section 2.2 to get ΛnU , ΛnV and Un, V n; Save coefficients vector

Λn−1
U , Λn−1

V ∈ RNtn−1 and ΛnU , ΛnV ∈ RNtn ;
8: else Firstly, use Λn−2

U , Λn−2
V ∈ RNtn−2 and Λn−1

U , Λn−1
V ∈ RNtn−1 to interpolate

the updated Un−2, V n−2 ∈ RNtn and Un−1, V n−1 ∈ RNtn . Then apply the scheme
introduced in Section 2.2 to get ΛnU , ΛnV and Un, V n; Save coefficient vectors
Λn−1
U , Λn−1

V ∈ RNtn−1 and ΛnU , ΛnV ∈ RNtn .
9: endif

10: endfor

3. Numerical simulations. In this section, we will numerically show the be-
havior of our proposed method. The functions f(u, v) and g(u, v) in RDS (1.1) have
different representations in different models. In our numerical tests, we consider the
Schnakenberg mode (SH model) with{

f(u, v) = a− u+ u2v,

g(u, v) = b− u2v.
(3.1)
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For all numerical tests, the Whittle-Matérn-Sobolev kernel is used

Φm(x) := ‖εx‖m−d/22 Km−d/2(‖εx‖2) for x ∈ Rd,

where Kν is the Bessel functions of the second kind. We will use unscaled kernel with
ε = 1 unless specificed otherwise.

3.1. Example 1. The reference domain sets as Ωc = [0, 1]2. The exponetially
growth function in (2.17) is applied with d1 = 0.001, i.e. ρ(t) = exp(0.001t). We use
the parameters Du = 0.01, Dv = 1, a = 0.1, b = 0.9, γ = 1 which is same with in [9].
To show the accuracy and effectiveness of our method, same setting with [9, EX1] is
used with the exact solutions on Ωt

u∗(x, y, t) = cos(t) cos

(
2πx

ρ(t)

)
cos

(
πy

ρ(t)

)
, v∗(x, y, t) = cos(t) cos

(
πx

ρ(t)

)
cos

(
2πy

ρ(t)

)
.

(3.2)
The initial conditions are generated from the exact solutions as

u∗(x, y, 0) = cos

(
2πx

ρ(t)

)
cos

(
πy

ρ(t)

)
, v∗(x, y, 0) = cos

(
πx

ρ(t)

)
cos

(
2πy

ρ(t)

)
. (3.3)

From the transformation relation (1.2), the exact solutions in the reference domain
Ωc are

ũ∗(ξ, η, t) = cos(t) cos(2πξ) cos(πη), ṽ∗(ξ, η, t) = cos(t) cos(πξ) cos(2πη). (3.4)

In order to ensure the exact solutions (3.4) for RDS, instead of the original reaction
functions f̃(ũ, ṽ) and g̃(ũ, ṽ), we construct the new reaction functions F (ũ, ṽ), G(ũ, ṽ)
as

F (ũ, ṽ) = f(ξ, η, t) + f̃(ũ, ṽ), G(ũ, ṽ) = g(ξ, η, t) + g̃(ũ, ṽ),

with

f(ξ, η, t) =
∂ũ∗(ξ, η, t)

∂t
− Du

ρ(t)2
4ũ∗(ξ, η, t)− f̃(ũ∗, ṽ∗),

g(ξ, η, t) =
∂ṽ∗(ξ, η, t)

∂t
− Dv

ρ(t)2
4ṽ∗(ξ, η, t)− g̃(ũ∗, ṽ∗).

We compute the L2(Ω) error for numerical solutions as

eh =
√
e2
h,u + e2

h,v

with

eh,u = ‖un − u∗‖L2(Ω) ≈
1

nE

√√√√ nE∑
n=1

(uni − u∗i )2, eh,v ≈
1

nE

√√√√ nE∑
n=1

(vni − v∗i )2.

with nE being the number of evaluation points in the domain.
We firstly consider the convergence behavior of the method. By m = 4 and time

step ∆t = 0.01, T = 10, Figure 3.1 (a) shows the convergence of the solutions to
uniformly distributed discrete set nZ = [102, 152, 202, 252, 302] under different collo-
cation sets nX + nY = knZ , k ∈ {1, 2, 3}. It can be seen that similar accuracy and
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convergence behaviors are shown for both Kansa method and different overdetermined
settings. The singularity which may appear in original Kansa method does not appear
in our cases. Figure 3.1 (b) shows the L2(Ω) error under different kernel smoothness
by k = 1. It can be seen that higher kernel smoothness leads to higher accuracy solu-
tions. However, the more computation cost is needed for higher m. The ill-condition
problem may also appear when high kernel smoothness and small fill distance are
used. Considering these factors, in our simulations, if not specified, we will use k = 1
and m = 4.

In Algorithm 1, for the initialization, we compute U1, V 1 with initial data U0, V 0

by one step forward Euler method. To show the influence of first step approximation,
we test the convergence of the solutions with respect to t by both the first order
forward Euler method and second order explicit Runge-Kutta (RK2) method. For
RDS 

ũt =
Du

ρ(t)2
4 ũ+ f̃(ũ, ṽ) := R1(ũ, ṽ, t)

ṽt =
Dv

ρ(t)2
4 ṽ + g̃(ũ, ṽ) := R2(ũ, ṽ, t)

on Ωc,

the one-step forward Euler method to compute ũ1, ṽ1 can be written as{
ũ1 = ũ0 + ∆tR1(u0, v0, 0),

ṽ1 = ṽ0 + ∆tR2(u0, v0, 0),
(3.5)

and RK2 method for the u1, v1 can be obtained by solving
ũ1 = ũ0 +

∆t

2

(
R1(ũ0, ṽ0, 0) +R1

(
ũ0 + ∆tR1(ũ0, ṽ0), ṽ0 + ∆tR2(ũ0, ṽ0),∆t

))
,

ṽ1 = ṽ0 +
∆t

2

(
R2(ũ0, ṽ0, 0) +R2

(
ũ0 + ∆tR1(ũ0, ṽ0), ṽ0 + ∆tR2(ũ0, ṽ0),∆t

))
.

(3.6)
Figure 3.1 (c) shows the numerical results by parameters ∆t = [5E − 1, 1E − 1, 5E −
2, 2E−2], m = 4, T = 1, nZ = 552, k = 1, nX = nZ . It can be seen that second-order
accuracy in time is obtained by both methods. We will use the forward Euler method
for first step approximation in other simulations.

We test the performance of our global refinement strategy in this part. When
using m = 4 and time step ∆t = 0.005, Figure 3.2 shows results under fixed discrete
set NZ = 252 and different global refinement strategies with N0 = 152, ν ∈ {1, 2, 3}
in (2.15) and (2.16). Figure 3.2 (a) shows the L2(Ω) error of the solutions as time
increases. Figure 3.2 (b) and (c) plot discrete sets Nt as time step nt increases and
CPU time as time t increases. The L2(Ω) error keeps at the same order under all four
cases. However, since the initial set N0 = 152 increases to the discrete set NT = 252

under different ν, the CPU time by global refinement strategies is obviously smaller
than the case by the fixed set NZ = 252. It is noted that CPU time for ν = 3 is about
half of that used by fixed point set.

The same example was also considered in [9, Example 1]. The ADI extrapolated
Crank-Nicolson orthogonal spline collocation method was used in [9]. Under the same
settings, Table 3.1 shows the L2(Ω) error and convergence rate of the solution under
ε = 5, k = 1, ∆t = 0.01, T = 750, m = 6. The ε = 5 is used to avoid the ill
conditioning problem caused by high kernel smoothness m = 6. The convergence rate
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Fig. 3.1. For the SH model with the unit square domain as reference domain, the L2(Ω) error
(a) under different overdetermined setting nX = knZ with ∆t = 0.01, T = 10; (b) under different
kernel smoothness with k = 1, ∆t = 0.01, T = 10 ; (c) comparison between forward Euler method
and RK2 with parameters ∆t = [5E − 1, 1E − 1, 5E − 2, 2E − 2], m = 4, T = 1, nZ = 552, k = 1,
nX = nZ .

(a)

L
2
(Ω

)
e
rr

o
r

t

√
N

t

(b)

nt

C
P

U
ti

m
e

t

(c)

Fig. 3.2. For the SH model with the unit square domain as reference domain, when m = 4,
time step ∆t = 0.005, T = 2001, the results under fixed discrete sets nZ = 252 and different global
refinement strategies with ν = 1, 2, 3 in (2.15), N0 = 152 in (2.16): (a) the L2(Ω) error; (b) the
discrete sets Nt; (c) CPU time.

is computed as

Rate =
log(eh1/eh2)

log(h1/h2)
.

In [9, Example 1], we can see that the order of convergence rate to discrete sets is
O(hr+1) in L2(Ω) error with r being the degree of polynomial. From Table 3.1, the
accuracy order of our method at m = 6 is the same with that in [9, Example 1] at
r = 3 and similar convergence rates are also obtained by two methods.

3.2. Example 2. We consider the same example as in [9, Example 2] and [1] in
this example. The reference domain Ωc sets as the initial domain Ω0 = [0, 1]2. The
domain growth function is ρ(t) = exp(0.001t), t ∈ (0, 1950]. Same with [1], we fix the
parameters Du = 1, Dv = 10, a = 0.1, b = 0.9, γ = 10. Same with [9, Example 2],
the initial conditions are set as a small perturbation on steady state (u∞, v∞) of SH
model without considering domain evolving

u(x, y, 0) = u∞ + 10−3
10∑
l=1

cos(2πlx)/l, v(x, y, 0) = v∞ + 10−3
10∑
l=1

cos(2πlx)/l.
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Table 3.1
When ∆t = 0.005, T = 750 and m = 6, ε = 5 in SH model, L2(Ω) errors and convergence

rates comparison between our scheme and [9, Example 1]

N eh error Rate eh (r = 3 in [9, Example 1] ) Rate

102 0.807 ∗ 10−3 0.171 ∗ 10−3

202 0.489 ∗ 10−4 4.042 0.106 ∗ 10−4 4.001
302 0.807 ∗ 10−5 4.443 0.209 ∗ 10−5 4.002

And (u∞, v∞) obtained by solving f(u∞, v∞) = 0 and g(u∞, v∞) = 0 with f, g in
(3.1) is given as

u∞ = a+ b and v∞ =
b

(a+ b)2
. (3.7)

By using ∆t = 0.01,m = 4, Figures 3.3 and 3.4 show patterns at t ∈ {750, 950,
1050, 1100, 1700, 1950} by uniformly distributed point nZ = 302 and by global
refinement as shown in Figure 3.8 (a) respectively. It can be seen that the stable
changing patterns about strips and spots are observed under both cases. In the global
refinement setting, the parameter ν = 1 in (2.15) and the discrete set increases from
Nt = 182 to Nt = 352 in (2.16). In Figure 3.3, the one vertical stripe pattern first
forms at t = 750. After semi-circular patterns at t = 950, 1050, a circlular pattern
forms at t = 1100. One and half strips generates at t = 1700. The two horizon strips
are formed at final time t = 1950. In Figure 3.4, the patterns by global refinement
strategy are same with those by fixed points in Figure 3.3 except the location of strips
at t = 1700, which again shows the effectiveness of our refinement strategy. Compared
with results in [9, Figure 1b] and [1, Figure 2], exact same patterns are formed at time
t = 1100 and final time t = 1950. At other times, similar patterns are also generated
with different directions and locations. This might be caused by the difference of the
discrete points in the domain.

t = 750 t = 950 t = 1050

t = 1100 t = 1700 t = 1950

Fig. 3.3. In Example 2, when use domain growth function ρ(t) = exp(0.001t) and parameters
Du = 1, Dv = 10, a = 0.1, b = 0.9, γ = 10, m = 4, ∆t = 0.01, the patterns at different time t of
SH model under fixed discrete points nZ = 302.
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t = 750 t = 950 t = 1050

t = 1100 t = 1700 t = 1950

Fig. 3.4. In Example 2, under same setting with Figure 3.3, the patterns at different time t of
SH model under global refinement with the parameter ν = 1 in (2.15) and the discrete set increasing
from nZ = 182 to nZ = 352 in (2.16) as show in Figure 3.8 (a).

3.3. Example 3. In this example, we consider the domain growth function
(2.18) by using d2 = 9, d3 = 1000 as

ρ(t) = 1 + 9 sin
( πt

1000

)
, t ∈ [0, 1000].

The reference domain set as Ω0 = Ωc = [−0.25, 0.25]2. From the growth function,
we can see that the initial domain Ω0 grows to the Ω500 = [−2.5, 2.5]2 and then
decreases back to the initial domain at final time T = 1000. We use parameters’
values in the RDS (1.1) as Du = 0.01, Dv = 1, a = 0.1, b = 0.9, γ = 1, m = 4
and ∆t = 0.005. Same initial conditions with Example 2 are used. By observ-
ing patterns from global refinement strategy with different ν and considering the
computation time, we find that ν = 5 in (2.15) and Nt from 202 to 352 in (2.16)
can result similar patterns in [31]. Figure 3.5 shows numerical simulations at time
t ∈ {0, 80, 120, 150, 220, 380, 500, 740, 820, 910, 960, 1000}. The stable changing
patterns, which contain different number of spots, are generated. As domain grows,
we can observe the spot mode doubling behavoir at time t ∈ {150, 220, 380} which
are consistence with results in [9,31]. When domain reaches its largest size at t = 500,
the number of spots pattern is 10 which is same as in [31]. When the domain size
decreases for t > 500, same with [9, 31], we can observe the mode merging behavior.
The pattern merges to a single spot when the domain is close to the initial size as
in [31].

3.4. Example 4. In this part, we consider the initial domain being a hexagon
with vertexes as[

(1, 0);
(1

2
,

√
3

2

)
;
(
− 1

2
,

√
3

2

)
; (−1, 0);

(
− 1

2
,−
√

3

2

)
;
(1

2
,−
√

3

2

)
; (1, 0);

]
We use the domain growth function as ρ(t) = exp(0.001t) and parameters in RDS (1.1)
as Du = 1, Dv = 10, a = 0.1, b = 0.9, γ = 114 which are same as in [25, Sec. 4.1.4].
Initial conditions are same with Example 2. The uniformly distributed boundary
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t = 0 t = 80 t = 120

t = 150 t = 220 t = 380

t = 500 t = 740 t = 820

t = 910 t = 960 t = 1000

Fig. 3.5. In Example 3, when use global refinement strategy with discrete sets in the domain as
in Figure 3.8 (b) and the domain growth function as ρ(t) = 1 + 9 sin(πt/1000), patterns generated
by Du = 1, Dv = 10, a = 0.1, b = 0.9, γ = 10, m = 4 and ∆t = 0.005.

discrete set with Nb = 60 is used. When the global refinement strategy with discrete
set from N0 = 240 to NT = 801 and ν = 1 in (2.15) as Figure 3.8 (c) , Figure (3.6)
plots numerical sresults at time t ∈ {20, 200, 400, 470, 600, 860, 880, 950, 1000}
with ∆t = 0.005. The numerical example is also considered in [25]. As domain grows,
we can observe the stable changing patterns, which switch between the strips and
spots. And the number of spots and strips increase as domain grows. We see the
similar patterns by our methods at t ∈ {20, 200, 470, 880, 1000} also appear in [25].
However, we observe spot patterns at t = {860, 950} which are not shown in [25].
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t = 20 t = 200 t = 400

t = 470 t = 600
t = 860

t = 880 t = 950
t = 1000

Fig. 3.6. In Example 4, in the hexagon domain, when use global refinement strategy with dis-
crete sets in the domain as in Figure 3.8 (c) and the domain growth function as ρ(t) = exp(0.001t),
patterns generated by Du = 1, Dv = 10, a = 0.1, b = 0.9, γ = 114, m = 4 and ∆t = 0.005.

3.5. Example 5. In this example, we solve the RDS on a star-shape domain.
The initial domain denotes in polar coordinate system (θ, r) as

r(θ) =

(
cos(4θ) +

√
18

5
− sin2(4θ)

) 1
3

, θ ∈ [0, 2π].

The domain grows exponentially as ρ(t) = exp(0.001t). We use parameters in the
RDS (1.1) as Du = 1, Dv = 10, a = 0.1, b = 0.9, γ = 10, ∆t = 0.005. Same initial
conditions with Example 2 are used. By global refinement strategy with ν = 2 and
uniformly distributed set from N0 = 154 to Nt = 665 as in Figure 3.8 (d), Figure 3.7
shows numerical simulations at time t ∈ {100, 1000, 1300, 1500, 1700, 2000}. Similar
with results in the hexagon domain, we can observe that the stable changing patterns
switch between strips and spots again. The number of strips and spots also increases
as the domain grows.

4. Conclusion. We applied the meshless collocation method to the Turing-type
RDS on evolving domains. Since only the discrete points are needed, a simple global
refinement strategy is proposed in which the trial centers are increased as domain
evolving. The refinement strategy can save the CPU time compared with the results by
fixed trial set. We consider both regular and irregular domain shapes. We can observe
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t = 100 t = 1000 t = 1300

t = 1500 t = 1700 t = 2000

Fig. 3.7. In Example 5, in the star-shape domain, when use global refinement strategy with dis-
crete sets in the domain as in Figure 3.8 (d) and the domain growth function as ρ(t) = exp(0.001t),
patterns generated by Du = 1, Dv = 10, a = 0.1, b = 0.9, γ = 10, m = 4 and ∆t = 0.005.

(a)

√
N

t

nT

(b)

nT

N
t

nT

(c)

nT

(d)

Fig. 3.8. For the SH model , the change of trial centers Nt or
√
Nt as number of time steps

nT increases under different global refinement settings for different examples: (a) for EX2, in the
square domain the ν = 1 in (2.15); (b) for EX3, in the square domain, ν = 5 in (2.15); (c) for EX4,
in the hexagon domain, ν = 1 in (2.15); ( d) for EX5, in the star-shape domain, ν = 2 in (2.15)
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the mode merging and splitting behavior as domain sizes decrease and increase. This
phenomenon is consistent with patterns appear in nature, like patterns on fishes.
Different isotropic growth functions are considered in the paper. For growth functions
which are not isotropic and spatially linear, in the equivalent RDS on the reference
domain (Eq. (2.5)), besides the Laplacian ∆ũ , the mixed partial derivative term
ũξη and first order derivative terms ũξ, ũη will also appear. These terms can also be
approximated by our meshless method. We will consider these problems in our future
work. Further work will also apply the method to problems in chemotaxis systems.
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