
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 1

Efficient Algorithms for Kernel Aggregation
Queries

Tsz Nam Chan, Leong Hou U, Member, IEEE, Reynold Cheng, Member, IEEE, Man Lung Yiu and
Shivansh Mittal

Abstract—Kernel functions support a broad range of applications that require tasks like density estimation, classification, regression or
outlier detection. For these tasks, a common online operation is to compute the weighted aggregation of kernel function values with
respect to a set of points. However, scalable aggregation methods are still unknown for typical kernel functions (e.g., Gaussian kernel,
polynomial kernel, sigmoid kernel and additive kernels) and weighting schemes. In this paper, we propose a novel and effective
bounding technique, by leveraging index structures, to speed up the computation of kernel aggregation. In addition, we extend our
technique to additive kernel functions, including χ2, intersection, JS and Hellinger kernels, which are widely used in different
communities, e.g., computer vision, medical science, Geoscience etc. To handle the additive kernel functions, we further develop the
novel and effective bound functions to efficiently evaluate the kernel aggregation. Experimental studies on many real datasets reveal
that our proposed solution KARL achieves at least one order of magnitude speedup over the state-of-the-art for different types of kernel
functions.

Index Terms—KARL, Kernel functions, lower and upper bounds

F

1 INTRODUCTION

Kernel functions are widely used in different machine learning
models, including kernel density estimation (for statistical analy-
sis), kernel regression (for prediction and forecasting) and kernel
classification (for data mining). These types of models are actively
used in many applications, which are summarized in Table 1.
For density-estimation-based application, astronomical scientists
[19] utilize kernel density estimation for quantifying the galaxy
density. For regression-based application, environmental scientists
[45], [55], [42] utilize support vector regression to forecast the
wind speed which helps in predicting the generated energy by
wind power. For classification-based application, network security
systems [7], [6] utilize kernel SVM to detect suspicious packets.
Due to its wide range of applications, many types of open-source
libraries, e.g., LibSVM [12] and Scikit-learn [40], also support
above machine learning models, which can combine with different
kernel functions.

In the above applications, a common online operation is to
compute the following function:

FP (q) =
∑
pi∈P

wi · K(q,pi) (1)

where q is a query point, P is a dataset of points, wi is scalar, and
K(q,pi) denotes the kernel function between q and pi. Table 2
summarizes all kernel functions which are widely used in existing

• T. N. Chan, R. Cheng and S. Mittal are with the Department of Computer
Science, The University of Hong Kong, Hong Kong.
E-mail: {tnchan, ckcheng}@cs.hku.hk and shivansh@connect.hku.hk

• L. H. U is with the State Key Laboratory of Internet of Things for Smart
City and the Department of Computer and Information Science, University
of Macau, Macau.
E-mail: ryanlhu@umac.mo

• M. L. Yiu is with the Department of Computing, Hong Kong Polytechnic
Univertiy, Hong Kong.
E-mail: csmlyiu@comp.polyu.edu.hk

TABLE 1: Applications of kernel-based machine learning models

Model Application
Kernel density estimation/ Galaxy density quantification [19]
classification (KDE/KDC) Particle Searching [15]

[21], [20]
Support vector regression Wind speed forecasting [45], [55], [42]

(SVR) [47] Ecological modeling [54]
Time series prediction [43], [46]

Image detection [26]
1-class support vector Suspicious packet detection [7], [6]

machine (OCSVM) [37] Time series anomaly detection [25], [33]
2-class support vector Suspicious packet detection [7], [6]

machine (2CSVM) [47] Cancer detection [14], [30]
Image classification [36], [13], [16]

Pedestrian detection [5], [3], [4]

work [12], [40], [36], [4]. Both γ, β and deg are constants and
dist(q,p) denotes the Euclidean distance between q and p. In
addition, we also denote q` and p` as the `th dimensional values
of vectors q and p respectively and d is the dimensionality of the
vector.

TABLE 2: Kernel functions

Kernel name Function K(q,p)
Gaussian exp(−γ · dist(q,p)2)

Polynomial (γq · p+ β)deg

Sigmoid tanh(γq · p+ β)

χ2 ∑d
`=1

2q`p`
q`+p`

Intersection
∑d
`=1 min(q`, p`)

JS
∑d
`=1

1
2
q` log2(

q`+p`
q`

) + 1
2
p` log2(

q`+p`
p`

)

Hellinger
∑d
`=1

√
q`p`

Two types of online prediction queries, namely εKAQ and
τKAQ, are adopted in different machine learning models. Figure

The following publication T. N. Chan, L. H. U, R. Cheng, M. L. Yiu and S. Mittal, "Efficient Algorithms for Kernel Aggregation Queries," in IEEE Transactions on Knowledge and Data Engineering, vol.
34, no. 6, pp. 2726-2739, 1 June 2022 is available at https://dx.doi.org/10.1109/TKDE.2020.3018376.

This is the Pre-Published Version.

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 2

1 shows the visualization of εKAQ and τKAQ queries in one at-
tribute (5th dimension) of shuttle sensor dataset [2] with Gaussian
kernel function.

Approximate kernel aggregation query (εKAQ): In the regression/
density-estimation-based models, for example: KDE and SVR, the
relative error, ε, is used, such that for every query q, the returned
approximate value Fapprox is within 1± ε of FP (q), i.e.,

(1− ε)FP (q) ≤ Fapprox ≤ (1 + ε)FP (q) (2)

Thresholded kernel aggregation query (τKAQ): In the
classification-based models, for example: KDC, OCSVM and
2CSVM, the threshold, τ , is adopted, such that for every query
q, the returned result is either 1 or -1 which indicates whether
FP (q) ≥ τ .

The above queries are expensive as it takes O(nd) time
to compute FP (q) online, where d is the dimensionality of
data points and n is the cardinality of the dataset P . In the
machine learning community, many recent literatures [29], [24],
[27] also complain about the inefficiency issues for computing
kernel aggregation, which are quoted as follows:

• “Despite their successes, what makes kernel methods
difficult to use in many large scale problems is the fact
that computing the decision function is typically expensive,
especially at prediction time.” [29]

• “However, computing the decision function for the new
test samples is typically expensive which limits the ap-
plicability of kernel methods to real-world applications.”
[24]

• “..., it has the disadvantage of requiring relatively large
computations in the testing phase.” [27]

To address the above inefficiency issues, existing solutions
are divided into two camps (cf. Table 3). The machine learning
community tends to improve the response time by using heuris-
tics [27], [24], [29], [32] (e.g., sampling points in P), which
may affect the quality of the model (e.g., classification/prediction
accuracy). The other camp, which we are interested in, aims to
enhance the efficiency while preserving the quality of the model.
The pioneering solutions in this category are [21], [20], albeit they
are only applicable to queries with type I weighting (see Table 3).
Their idea [21], [20] is to build an index structure on the point
set P offline, and then exploit index nodes to derive lower/upper
bounds and attempt pruning for online queries.

TABLE 3: Types of weighting in FP (q)

Type of weighting Used in model Techniques
Type I: identical, positive wi KDE/KDC Quality-preserving

(most specific) solutions [21], [20]
Type II: positive wi OCSVM Heuristics
(subsuming Type I) [32]

Type III: no restriction on wi SVR, Heuristics
(subsuming Types I, II) 2CSVM [27], [24], [29]

In our preliminary work [10], we propose Kernel Aggregation
Rapid Library (KARL)1, which provides a fast solution to support
Gaussian, polynomial and sigmoid kernels (cf. Table 2) with
different types of weighting (cf. Table 3). We also compare with

1. https://github.com/edisonchan2013928/KARL-Fast-Kernel-Aggregation-
Queries

two widely-used libraries, namely LibSVM [12] and Scikit-learn
[40]. Implementation-wise, LibSVM is based on the sequential
scan method, and Scikit-learn is based on the algorithm in [21]
for query type I. We compare them with our proposal (KARL) in
Table 4. As a remark, since Scikit-learn supports query types II
and III via the wrapper of LibSVM [40], we remove those two
query types from the row of Scikit-learn in Table 4. The features
of KARL are: (i) it supports all three types of weightings as well
as both εKAQ and τKAQ queries, (ii) it supports index structures,
(iii) it yields much lower response time than existing libraries.

TABLE 4: Comparisons of libraries

Library Supported Supported Support Response
queries weightings indexing time

LibSVM [12] τKAQ Types II, III no high
Scikit-learn [40] εKAQ Type I yes high

KARL (this paper) εKAQ, τKAQ Types I, II, III yes low

However, existing libraries, including LibSVM [12], Scikit-
learn [40] and KARL (our preliminary work) [10] only focus on
Gaussian, polynomial and sigmoid kernels. Except for these three
famous kernels, another class of kernel functions, called additive
kernels, including χ2, intersection, JS and Hellinger kernels, has
attracted more attention in many application domains recently,
e.g., machine learning [39], [41], [56] and computer vision [53],
[36], [49]. In this work, we extend KARL to support all additive
kernels.

Compared to our preliminary work [10], there are three new
contributions in this work. First, we develop the new lower and
upper bound functions, which are based on the monotonicity
property of additive kernel functions. We further show that these
two bound functions can be computed in O(d) time, if each q`
is within the given range [q

(min)
` , q

(max)
`]. This range can be

specified during the offline stage. Second, we extend the linear
bound functions in our preliminary work [10] to support those q`,
which are not within this range [q(min)` , q

(max)
`]. Third, we further

conduct new experiments for (1) additive kernels, (2) regression
models, which are not supported in our preliminary work [10].
Our experimental results show that our method can achieve at
least one order of magnitude speedup compared with the state-of-
the-art methods.

We first discuss the related work in Section 2. Later, we present
the state-of-the-art method for evaluating εKAQ and τKAQ, using
Gaussian kernel, in Section 3. Then, we discuss our solution
KARL for Gaussian kernel in Section 4. Next, we extend our
method KARL to handle additive kernel functions in Section 5.
After that, we present our experiments in Section 6. Lastly, we
conclude the paper with future research directions in Section 7.

2 RELATED WORK

The term “kernel aggregation query” abstracts a common oper-
ation in several statistical and learning problems such as kernel
density estimation [21], [20], 1-class SVM [37], 2-class SVM [47]
and support vector regression [47].

Kernel density estimation is a non-parametric statistical
method for density estimation. To speedup kernel density esti-
mation, existing work would either compute approximate density
values with accuracy guarantee [38] or test whether density values
are above a given threshold [20]. Zheng et al. [58] focus on fast
kernel density estimation on low-dimensional data (e.g., 1d, 2d)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 3

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 10 20 30

F P
(q
)

q

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 10 20 30

Ap
pr

ox
im

at
e

F P
(q

)

q

Low

High

 0 10 20 30

Cl
as

si
fy

 F
P(

q)

q

(a) Exact KAQ (b) εKAQ with ε = 0.2 (c) τKAQ with τ = 0.01

Fig. 1: KAQ of the query region [0,30] in shuttle sensor dataset [2] (using the 5th dimension)

and propose sampling-based solutions with theoretical guarantees
on both efficiency and quality. On the other hand, [38], [20]
assume that the point set P is indexed by a k-d tree, and apply
filter-and-refinement techniques for kernel density estimation. The
library Scikit-learn [40] adopts the implementation in [38]. Our
proposal, KARL, adapts the algorithm in [38], [20] to evaluate
kernel aggregation queries. The key difference between KARL
and [38], [20] lies in the bound functions. As explained in our
preliminary work [10], our proposed linear bound functions are
tighter than existing bound functions used in [38], [20]. Further-
more, we extend our linear bound functions to deal with different
types of weighting and kernel functions [10], which have not been
considered in [38], [20].

SVM is proposed by the machine learning community to clas-
sify data objects or detect outliers. SVM has been applied in differ-
ent application domains, such as document classification [37], net-
work fault detection [57], [7], [6], anomaly/outlier detection [11],
[31], novelty detection [25], [33], [48], cancer detection [14], [30],
image classification [13], [53], [36], time series classification [28],
and pedestrian detection [4]. The typical process is divided into
two phases. In the offline phase, training/learning algorithms are
used to obtain the point set P , the weighting, and parameters.
Then, in the online phase, thresholded kernel aggregation query
(τKAQ) can be used to support classification or outlier detection.
Two approaches have been studied to accelerate the online phase.
The library LibSVM [12] assumes sparse data format and applies
inverted index to speedup exact computation. The machine learn-
ing community has proposed heuristics [27], [24], [29], [32] to
reduce the size of the point set P in the offline phase, in order
to speedup the online phase. However, these heuristics may affect
the prediction quality of SVM. Our proposed bound functions have
not been studied in the above work.

Most of the existing work, e.g., [47], [10], only focus on three
kernel functions, including Gaussian, polynomial and sigmoid
kernel functions. Recently, additive kernels (e.g., χ2, intersection,
JS, Hellinger kernels in Table 2) with SVM are extensively used
for different applications, e.g., image classification [53], [36]
in computer vision, detection of spatial properties of object in
Geoscience [16], colorectal cancer detection in medical science
[30], pedestrian detection system in transportation [4]. However,
it is still time-consuming (still in O(nd) time) to evaluate εKAQ
and τKAQ, using additive kernels. To boost the efficiency per-
formance, many approximation methods have been developed in
existing work, which can be divided into two camps.

In the first camp, researchers [34], [50], [49], [53] aim to learn
the finite D-dimensional feature representation of each vector,
e.g., φ(q) for q and φ(p) for p, such thatK(q,p) ≈ φ(q)Tφ(p)
in which it can reduce the time complexity for evaluating kernel

aggregation function from O(nd) to O(D) time in the online
phase. However, this type of work only provides the approxima-
tion results for both εKAQ and τKAQ without any theoretical
guarantee. In the second camp, researchers [23], [35], [36] dis-
cover that the kernel aggregation function can be evaluated exactly
and efficiently with some additive kernels. For example: Maji et
al. [35], [36] show that the kernel aggregation function can be
computed in O(d log n) time using intersection kernel. However,
not all additive kernels (e.g., χ2, JS and Hellinger) exhibit this
property. To speedup the evaluation of kernel aggregation function
for other kernels, some work [36], [5], [4] further prestore the
kernel aggregation values into the lookup table, which can be
used to evaluate the kernel aggregation function effectively and
approximately. Even though this type of methods is similar with
our proposal, it does not provide any theoretical guarantee. In
our work, we further support these kernel functions for evaluating
εKAQ and τKAQ, which guarantee our returned result within the
relative error ε and correctly classify the value with the threshold
τ , respectively.

3 STATE-OF-THE-ART (SOTA) FOR GAUSSIAN
KERNEL

In this section, we introduce the state-of-the-art [21], [20] (SOTA),
albeit it is only applicable to queries with type I weighting (see
Table 3) and Gaussian kernel function. In this case, we denote the
common weight by w and K(q,pi) = exp(−γ · dist(q,pi)

2) in
Equation 1.

FP (q) =
∑
pi∈P

w · exp(−γ · dist(q,pi)
2) (3)

Bounding functions.
We introduce the concept of bounding rectangle [44] below.

Definition 1. Let R be the bounding rectangle for a point set P .
We denote its interval in the j-th dimension as [R[j].l, R[j].u],
where R[j].l = minp∈P p[j] and R[j].u = maxp∈P p[j].

Given a query point q, we can compute the minimum dis-
tance mindist(q, R) from q to R, and the maximum distance
maxdist(q, R) from q to R, i.e., the following inequality holds
for every point p inside R.

mindist(q, R) ≤ dist(q,p) ≤ maxdist(q, R)

With the above notations, the lower bound LBR(q) and the
upper bound UBR(q) for FP (q) (Equation 3) are defined as:

LBR(q) = w ·R.count · exp(−γ ·maxdist(q, R)2)
UBR(q) = w ·R.count · exp(−γ ·mindist(q, R)2)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 4

where R.count denotes the number of points (from P) in R,
and w denotes the common weight (for type I weighting). It takes
O(d) time to compute the above bounds online.

Refinement of bounds.
The state-of-the-art [21], [20] employs a hierarchical index

structure (e.g., k-d tree) to index the point set P . Consider the
example index in Figure 2. Each non-leaf entry (e.g., R5, 9) stores
the bounding rectangle of its subtree (e.g., R5) and the number of
points in its subtree (e.g., 9).

R1,5 | R2,4

p1 p2 … p5

R3,4 | R4,5

R5,9 | R6,9

p6 p7 … p9

node N5

root node: Nroot

node N1

node N6

p10 p11 … p13 p14 p15 … p18

node N3node N2 node N4

Fig. 2: Hierarchical index structure

We illustrate the running steps of the state-of-the-art on the
above example index in Table 5. For conciseness, the notations
LBR(q), UBR(q),FP (q) are abbreviated as lbR, ubR,FP re-
spectively. The state-of-the-art maintains a lower bound l̂b and
upper bound ûb for FP (q). Initially, the bounding rectangle of
the root node (say, Rroot) is used to compute l̂b and ûb. It uses
a priority queue to manage the index entries that contribute to the
computation of those bounds; the priority of an index entry Ri
is defined as the difference ubRi

− lbRi
. In each iteration, the

algorithm pops an entry Ri from the priority queue, processes
the child entries of Ri, then refines the bounds incrementally and
updates the priority queue. For example, in step 2, the algorithm
pops the entry R5 from the priority queue, inserts its child
entries R1, R2 into the priority queue, and refines the bounds
incrementally. Similar technique can be also found in similarity
search community (e.g., [8], [9]).

TABLE 5: Running steps for state-of-the-art

Step Priority queue Maintenance of lower bound l̂b
and upper bound ûb

1 Rroot l̂b = lbRroot ,
ûb = ubRroot

2 R5, R6 l̂b = lbR5 + lbR6 ,
ûb = ubR5 + ubR6

3 R6, R1, R2 l̂b = lbR6 + lbR1 + lbR2 ,
ûb = ubR6 + ubR1 + ubR2

4 R1, R2, R3, R4 l̂b = lbR1 + lbR2 + lbR3 + lbR4 ,
ûb = ubR1 + ubR2 + ubR3 + ubR4

5 R2, R3, R4 l̂b = Fp1···p5 + lbR2 + lbR3 + lbR4 ,
ûb = Fp1···p5 + ubR2 + ubR3 + ubR4

The state-of-the-art terminates upon reaching a termination
condition. For τKAQ, the termination condition is: l̂b ≥ τ or
ûb < τ . For εKAQ, the termination condition is: ûb < (1 + ε)l̂b.

4 KARL FOR GAUSSIAN KERNEL

Our proposed solution, KARL, adopts the state-of-the-art (SOTA)
for query processing, except that existing bound functions (e.g.,

LBR(q) and UBR(q)) are replaced by our bound functions.
Our key contribution is to develop tighter bound functions for

FP (q) (cf. Equation 3). In Section 4.1, we propose a novel idea
to bound the function exp(−x) and discuss how to compute such
bound functions quickly. In Section 4.2, we devise tighter bound
functions and show that they are always tighter than existing bound
functions.

In this section, we only focus on the Gaussian kernel in the
function FP (q). As a remark, our preliminary work [10] proposes
some advanced techniques, e.g., auto-tuning, to further boost the
efficiency performance. In addition, we also propose a method
to support both polynomial and sigmoid kernels in [10]. To save
space, we omit these parts. Interested readers can refer to [10].

4.1 Fast Linear Bound Functions

We wish to design bound functions such that (i) they are tighter
than existing bound functions (cf. Section 3), and (ii) they are
efficient to compute, i.e., taking only O(d) computation time.

In this section, we assume type I weighting and denote the
common weight by w. Consider an example on the dataset P =
{p1,p2,p3}. Let xi be the value γ · dist(q,pi)

2. With this
notation, the value FP (q) (cf. Equation 3) can be simplified to:

w
(
exp(−x1) + exp(−x2) + exp(−x3)

)
.

In Figure 3, we plot the function value exp(−x) for x1, x2, x3 as
points.

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0

xmin=
γ mindist(q,p)2

x axis

function value

x1 x2 x3

function

exp(–x)

xmax=
γ maxdist(q,p)2

Fig. 3: Linear bounds

We first sketch our idea for bounding FP (q). First, we com-
pute the bounding interval of xi, i.e., the interval [xmin, xmax],
where xmin = γ·mindist(q, R)2, xmax = γ·maxdist(q, R)2,
and R is the bounding rectangle of P . Within that interval, we
employ two functions EL(x) and EU (x) as lower and upper
bound functions for exp(−x), respectively (cf. Definition 2). We
illustrate these two functions by a red line and a blue line in
Figure 3.

Definition 2 (Constrained bound functions). Given a query point
q and a point set P , we call two functions EL(x) and EU (x) to
be lower and upper bound functions for exp(−x), respectively, if

EL(x) ≤ exp(−x) ≤ EU (x)

holds for any x ∈ [γ · mindist(q, R)2, γ · maxdist(q, R)2],
where R is the bounding rectangle of P .

In this paper, we model bound functions EL(x) and EU (x)
by using two linear functions Linml,cl(x) = mlx + cl and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 5

Linmu,cu(x) = mux + cu, respectively. Then, we define the
aggregation of a linear function Linm,c(x) as:

FLP (q, Linm,c) =
∑
pi∈P

w
(
m(γ · dist(q,pi)

2) + c
)

(4)

With this concept, the functions FLP (q, Linml,cl) and
FLP (q, Linmu,cu) serve as a lower and an upper bound function
for FP (q) respectively, subject to the condition stated in Lemma
1.

Lemma 1. Suppose that Linml,cl(x) and Linmu,cu(x) are
lower and upper bound functions for exp(−x), respectively, for
the query point q and point set P . It holds that:

FLP (q, Linml,cl) ≤ FP (q) ≤ FLP (q, Linmu,cu) (5)

Observe that the bound functions in Figure 3 are not tight. We
will devise tighter bound functions in the next subsection.

Fast computation of bounds.
The following lemma allows FLP (q, Linm,c) to be effi-

ciently computed in O(d) time.

Lemma 2. Given two values m and c, FLP (q, Linm,c) (Equa-
tion 4) can be computed in O(d) time and it holds that:

FLP (q, Linm,c) = wmγ
(
|P | · ||q||2−2q ·aP+ bP

)
+wc|P |

where aP =
∑

pi∈P pi and bP =
∑

pi∈P ||pi||2.

Proof.

FLP (q, Linm,c) =
∑
pi∈P

w
(
m(γ · dist(q,pi)

2) + c
)

= wmγ
∑
pi∈P

(
||q||2 − 2q · pi + ||pi||2

)
+ wc|P |

= wmγ
(
|P | · ||q||2 − 2q · aP + bP

)
+ wc|P |

Observe that both terms aP and bP are independent of the
query point q. Therefore, with the pre-computed values of aP and
bP , FLP (q, Linm,c) can be computed in O(d) time.

4.2 Tighter Bound Functions
We proceed to devise tighter bound functions by using
Linml,cl(x) and Linmu,cu(x).

Linear function Linmu,cu(x) for modeling EU (x).
Observe from Figure 4, the chord-based linear bound

function Linmu,cu(x), which passes through two points
(xmin, exp(−xmin)) and (xmax, exp(−xmax)), can act as the
proper upper bound function of exp(−x), given each xi is in the
interval [xmin, xmax].

It turns out that Linmu,cu(x) can also lead to a tighter upper
bound than the existing bound exp(−xmin) (see Section 3), as
shown in Figure 4 (green dashed line in Figure 4), which is stated
in Lemma 3.

Lemma 3. There exists a linear function Linmu,cu(x) = mux+
cu with:

mu =
exp(−xmax)− exp(−xmin)

xmax − xmin
(6)

cu =
xmax exp(−xmin)− xmin exp(−xmax)

xmax − xmin
(7)

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0

x axis

function value

function

exp(–x)

xmin

x1

x2

x3

xmax

the chord:

EU(x)=mu x + cu

existing bound:

exp(-xmin)

Fig. 4: Chord-based upper bound function

such that FLP (q, Linmu,cu) ≤ UBR(q), where UBR(q) is the
upper bound function used in the state-of-the-art (see Section 3).

Linear function Linml,cl(x) for modeling EL(x).
To achieve the (1) correct and (2) tight lower bound for

exp(−x), we utilize the tangent line, which passes through
the tangent point, as the correct lower bound of exp(−x)
(cf. Figure 5), due to the convexity property of this function.
Observe from Figure 5a, once we choose the tangent point
(xmax, exp(−xmax)), the lower bound is already tighter than
the existing bound exp(−xmax) (green dashed line in Figure 5a),
as stated in Lemma 4.

Lemma 4. There exists a linear function Linml,cl(x) such that
FLP (q, Linml,cl) ≥ LBR(q), where LBR(q) is the lower
bound function used in the state-of-the-art (see Section 3).

Interestingly, it is possible to devise a tighter bound than the
above. Figure 5b depicts the tangent line at point (t, exp(−t)).
This tangent line offers a much tighter bound than the one in
Figure 5a.

In the following, we demonstrate how to find the optimal
tangent line (i.e., leading to the tightest bound). Suppose that the
linear function of lower bound Linml,cl(x) is the tangent line at
point (t, exp(−t)). Then, we derive the slopeml and the intercept
cl as:

ml =
d exp(−x)

dx

∣∣∣
x=t

= − exp(−t)

cl = exp(−t)−mlt = (1 + t) exp(−t)

Theorem 1 establishes the optimal value topt that leads to the
tightest bound.

Theorem 1. Consider the function FLP (q, Linml,cl) as a func-
tion of t, where ml = − exp(−t) and cl = (1+ t) exp(−t). This
function yields the maximum value at:

topt =
γ

|P |
·
∑
pi∈P

dist(q,pi)
2 (8)

Proof. Let H(t) = FLP (q, Linml,cl) be a function of t. For
the sake of clarity, we define the following two constants that are
independent of t:

z1 = wγ ·
∑
pi∈P

dist(q,pi)
2 and z2 = w|P |

Together with the given ml and cl, we can rewrite H(t) as:

H(t) = −z1 exp(−t) + z2(1 + t) exp(−t)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 6

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0

x axis

function value

function

exp(–x)

the tangent line (at xmax):

EL(x) = ml x + cl

xmin

x1

x2

x3 xmax

existing bound:

exp(-xmax)

0

0.2

0.4

0.6

0.8

1

0.0 0.5 1.0 1.5 2.0

x axis

function value

function

exp(–x)

xmin

x1

x2

x3 xmax

optimized tangent line (at t):

EL(x)=ml x + cl

(a) tangent line at xmax (b) optimized tangent line at t

Fig. 5: Tangent-based lower bound function

The remaining proof is to find the maximum value of H(t).
We first compute the first derivative of H(t) (in terms of t):

H ′(t) = z1 exp(−t) + z2 exp(−t)− z2(1 + t) exp(−t)
= (z1 + z2 − z2 − z2t) exp(−t)
= (z1 − z2t) exp(−t)

Next, we compute the value topt such that H ′(topt) = 0.
Since exp(−topt) 6= 0, we get:

z1 − z2topt = 0

topt =
z1
z2

=
γ

|P |
·
∑
pi∈P

dist(q,pi)
2

Then we further test whether topt indeed yields the maximum
value. We consider two cases for H ′(t). Note that both z1 and z2
are positive constants.

1) For the case t < topt, we get H ′(t) > 0, implying that
H(t) is an increasing function.

2) For the case t > topt, we get H ′(t) < 0, implying that
H(t) is a decreasing function.

Thus, we conclude that the function H(t) yields the maximum
value at t = topt.

The optimal value topt involves the term
∑

pi∈P dist(q,pi)
2.

This term can be computed efficiently in O(d) time by the trick in
Lemma 2. By applying Lemma 2 and substituting w = m = γ =
1 and c = 0, we can express

∑
pi∈P dist(q,pi)

2 in the form of
FLP (q, Linm,c), which can be computed in O(d) time.

Case study.
We conduct the following case study on the augmented k-d

tree, in order to demonstrate the performance of KARL and the
tightness of our bound functions compared to existing bound func-
tions. First, we pick a random query point from the home dataset
[2] (see Section 6.1 for details). Then, we plot the lower/upper
bound values of SOTA and KARL versus the number of iterations.
Observe that our bounds are much tighter than existing bounds,
and thus KARL terminates sooner than SOTA.

4.3 Other Types of Weighting
The state-of-the-art solution [21], [20] only considers type-I
weighting. However, as stated in Table 3, different types of
weighting are adopted in different statistical/ machine learning
models. In this section, we extend our bounding techniques for
the following function under other types of weighting:

FP (q) =
∑
pi∈P

wi · exp(−γ · dist(q,pi)
2)

0*100

2*105

4*105

6*105

8*105

0 10 20 30 40 50 60 70 80

Bo
un

d
Va

lu
e

Iteration (x102)

Threshold τ

KARL stops SOTA stops

LBSOTA UBSOTA LBKARL UBKARL

Fig. 6: Bound values of SOTA and KARL vs. the number of
iterations; for type I-τ query on the home dataset

4.3.1 Type II Weighting
For type II weighting, each wi takes a positive value. Note that
different wi may take different values.

First, we redefine the aggregation of a linear function
Linm,c(x) as:

FLP (q, Linm,c) =
∑
pi∈P

wi
(
m(γ · dist(q,pi)

2) + c
)

(9)

This function can also be computed efficiently (i.e., in O(d) time),
as shown in Lemma 5.

Lemma 5. Under type II weighting, FLP (q, Linm,c) (Equation
9) can be computed in O(d) time, given two values of m and c.

Proof.

FLP (q, Linm,c)

=
∑
pi∈P

wi
(
m(γ · dist(q,pi)

2) + c
)

=
∑
pi∈P

wi
(
mγ
(
||q||2 − 2q · pi + ||pi||2

))
+ c

∑
pi∈P

wi

= mγ
(
wP · ||q||2 − 2q · aP + bP

)
+ cwP

where aP =
∑

pi∈P wipi, bP =
∑

pi∈P wi||pi||2 and wP =∑
pi∈P wi.
The terms aP, bP , wP are independent of q. With their pre-

computed values, FLP (q, Linm,c) can be computed in O(d)
time.

It remains to discuss how to find tight bound functions. For the
upper bound function, we adopt the same technique in Figure 4.
For the lower bound function, we use the idea in Figure 5b, except

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 7

that the optimal value topt should also depend on the weighting
(cf. Theorem 2).

Theorem 2. Consider the function FLP (q, Linml,cl) as a func-
tion of t, where ml = − exp(−t) and cl = (1+ t) exp(−t). This
function yields the maximum value at:

topt =
γ

wP
·
∑
pi∈P

wi · dist(q,pi)
2 (10)

where wP =
∑

pi∈P wi.

Proof. Following the proof of Theorem 1, we let H(t) =
FLP (q, Linml,cl) be a function of t and we define the following
two constants.

z1 = γ ·
∑
pi∈P

wi · dist(q,pi)
2 and z2 = wP

Then, we follow exactly the same steps of Theorem 1 to derive
the optimal topt (Equation 10).

Again, the value topt can also be computed efficiently (i.e., in
O(d) time).

4.3.2 Type III Weighting
For type III weighting, there is no restriction on wi. Each wi takes
either a positive value or a negative value.

Our idea is to convert the problem into two subproblems that
use type II weighting. First, we partition the point set P into two
sets P+ and P− such that: (i) all points in P+ are associated
with positive weights, and (ii) all points in P− are associated with
negative weights. Then we introduce the following notation:

FP−(q) =
∑

pi∈P−

|wi| · exp(−γ · dist(q,pi)
2) = −FP−(q)

This enables us to rewrite the function FP (q) as:

FP (q) =
∑

pi∈P+∪P−

wi · exp(−γ · dist(q,pi)
2)

= FP+(q) + FP−(q)

= FP+(q)−FP−(q)

Since the weights in both FP+(q) and FP−(q) are positive,
the terms FP+(q) and FP−(q) can be bounded by using the
techniques for type II weighting.

The upper bound of FP (q) can be computed as the upper
bound of FP+(q) minus the lower bound of FP−(q).

The lower bound of FP (q) can be computed as the lower
bound of FP+(q) minus the upper bound of FP−(q).

5 KARL FOR ADDITIVE KERNELS

In previous sections, we mainly focus on Gaussian kernel function.
However, as discussed in Introduction (cf. Section 1), additive
kernel functions (e.g., χ2, intersection, JS and Hellinger kernels
in Table 2) have recently attracted the attention in both machine
learning [56], [17], [41], [39] and computer vision [35], [49],
[36], [53] communities, which are actively used in the following
applications. Some pedestrian detection systems [5], [3], [4],
utilize additive kernels to detect human. Medical scientists [30]
utilize additive kernels to detect colorectal cancer. Geoscientists
[16] utilize additive kernels to characterize spatial properties of
objects in a scene. However, the same as Gaussian kernel, eval-
uating kernel aggregation function FP (q) with additive kernels

also takes O(nd) time, which is slow in the prediction phase of
machine learning models. Therefore, we extend KARL to support
this class of kernel functions.

Additive kernel functions exhibit the following additive prop-
erty (cf. Definition 3).

Definition 3. (Additive property [36]) We denote K(q,p) as the
additive kernel, if we can express this function as the sum of d
one-dimensional kernel functions (denoted as K`(q`, p`), where
1 ≤ ` ≤ d), which correspond to different dimensions, where:

K(q,p) =
d∑
`=1

K`(q`, p`) (11)

As a remark, additive kernels are mainly used for histograms.
Therefore, we also follow existing work [53], [36], [49] and regard
q and p as histograms, i.e., q` and p` are both positive in this
section. Table 6 summarizes the most representative K`(q`, p`)
[49], [53] for different additive kernels.

TABLE 6: K`(q`, p`) for different additive kernel functions

Kernel K`(q`, p`)

χ2 2q`p`
q`+p`

Intersection min(q`, p`)

JS 1
2
q` log2(

q`+p`
q`

) + 1
2
p` log2(

q`+p`
p`

)

Hellinger
√
q`p`

Observe from Equation 11, additive kernel function K(q,p)
consists of different one-dimensional kernel functions K`(q`, p`).
Therefore, we can convert the kernel aggregation function (cf.
Equation 1) to the composition of one-dimensional kernel ag-
gregation functions FP`

(q`) [36] (cf. Lemma 6), where P` de-
notes the set of data points in P with the `th dimension, i.e.,
P` = {p1`, p2`, ..., pn`}, and FP`

(q`) is:

FP`
(q`) =

∑
pi`∈P`

wi ·K`(q`, pi`) (12)

Lemma 6. Given the additive kernel K(q,p), the kernel aggre-
gation function FP (q) (cf. Equation 1) is the addition of d one-
dimensional kernel aggregation functions FP`

(q`), i.e.,

FP (q) =
d∑
`=1

FP`
(q`) (13)

Proof.

FP (q) =
∑
pi∈P

wi · K(q,pi) =
∑
pi∈P

wi ·
(d∑
`=1

K`(q`, pi`)
)

=

d∑
`=1

(∑
pi`∈P`

wi ·K`(q`, pi`)
)
=

d∑
`=1

FP`(q`)

The above lemma implies that we can focus on developing
the lower and upper bound functions of one-dimensional kernel
aggregation function FP`

(q`), and then add them to obtain the
bounds of FP (q).

In the following, we will present two bounding techniques for
FP`

(q`), which are the monotonicity-based bounds (cf. Section
5.1) and the linear bounds (cf. Section 5.2). Then, we further pro-
pose a two-step method to integrate these two bounding techniques
for solving εKAQ and τKAQ in Section 5.3.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 8

5.1 Monotonicity-based Lower and Upper Bounds for
FP`

(q`) (KARLmono)

In this section, we develop the new lower and upper bound
functions for FP`

(q`), which are based on the monotonicity
property. To simplify the discussion, we mainly focus on the χ2

kernel function (cf. Table 6) and type-II weighting (i.e., wi ≥ 0).
However, these bound functions can be extended to other additive
kernel functions and other weighting (using the similar technique
in Section 4.3.2).

Observe from Figure 7, the larger the q`, the larger the function
value 2q`x

q`+x
. Therefore, once we let x = pi` and we have computed

these two values FP`
(q`) and FP`

(q̂`), where q` ≤ q` ≤ q̂`. We
can conclude FP`

(q`) ≤ FP`
(q`) ≤ FP`

(q̂`), i.e., these two
values act as the lower and upper bounds of FP`

(q`) (cf. Lemma
7).

function value

x axis0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

𝑞ℓ =0.5

𝑞ℓ =0.4

𝑞ℓ =0.6

Fig. 7: Lower and upper bounds for 2q`x
q`+x

Lemma 7. If q` ≤ q` ≤ q̂`, we have FP`
(q`) ≤ FP`

(q`) ≤
FP`

(q̂`), where the kernel functions are from Table 6.

Proof. In this proof, we only focus on the χ2 kernel function.
However, we can extend this proof to other kernel functions in
Table 6 using the similar idea.

Given q` ≤ q̂`, we have:

FP`
(q̂`)−FP`

(q`)

=
∑
pi`∈P`

wi
(2q̂`pi`
q̂` + pi`

)
−

∑
pi`∈P`

wi
(2q`pi`
q` + pi`

)
=

∑
pi`∈P`

wi
(2(q̂` − q`)p2i`
(q` + pi`)(q̂` + pi`)

)
≥ 0

Therefore, we have FP`
(q`) ≤ FP`

(q̂`). Similarly, we can also
conclude FP`

(q`) ≤ FP`
(q`).

Even though the bound functions FP`
(q`) and FP`

(q̂`) can
correctly act as the lower and upper bounds for FP`

(q`) respec-
tively, it is not feasible to compute these two bounds on-the-
fly, since the response time is the same as the exact evaluation
of FP`

(q`). To avoid exact evaluation in the online phase, we
precompute several FP`

(q) for different q in advance, as shown in
Figure 8. In the online phase, we can directly use the precomputed
values, FP`

(q`) and FP`
(q̂`) as the lower and upper bounds of

FP`
(q`) respectively, once q` ≤ q` ≤ q̂`.
Observe from Figure 8, there is a trade-off between the

bound values and the precomputation cost (space and time).
Here, we demonstrate how to sample the q-axis uniformly with
interval size δ (cf. Figure 8) in offline phase, such that we

ℱ𝑃ℓ(𝑞ℓ)

𝑞ℓ
𝑞ℓ

𝑞ℓ

ℱ𝑃ℓ(𝑞ℓ)

𝑞

𝛿

𝑞ℓ
(min)

𝑞ℓ
(max)

Fig. 8: Precomputation of FP`
(q) in the `th dimension (four

FP`
(q) are precomputed in this example)

can find the precomputed value to achieve the tolerance ε be-
tween the lower bound FP`

(q`) and upper bound FP`
(q̂`), i.e.,

FP`
(q̂`) ≤ (1 + ε)FP`

(q`), which guarantees these two bounds
are not far away from each other (cf. Lemma 8).

Lemma 8. Given δ as the interval size of consecutive samples,
i.e., δ = q̂` − q`, and ε as the tolerance, if δ fulfills the condition
in Table 7, we conclude FP`

(q̂`) ≤ (1 + ε)FP`
(q`).

Proof. In this proof, we focus on the χ2 kernel function.

FP`
(q̂`) =

∑
pi`∈P`

wi
(2q̂`pi`
q̂` + pi`

)
=

∑
pi`∈P`

wi
(2(q` + δ)pi`

q` + δ + pi`

)
≤

∑
pi`∈P`

wi
(2(q` + δ)pi`

q` + pi`

)
= FP`

(q`) + δ
∑
pi`∈P`

wi
(2pi`
q` + pi`

)
Therefore, we have the following relative error:

FP`
(q̂`)−FP`

(q`)

FP`
(q`)

≤ δ

q`
≤ δ

q
(min)
`

To ensure the tolerance is within ε, we set:

δ

q
(min)
`

≤ ε =⇒ δ ≤ ε× q(min)`

Hence, we prove the above claim.

In the proof of Lemma 8, we only focus on the χ2 kernel.
For other kernel functions in Table 6, we also have similar
results, but with different conditions for δ, which are sum-
marized in Table 7. We denote p

(min)
` = minpi`∈P`

pi` and
p
(max)
` = maxpi`∈P`

pi`. the detailed proofs for other kernel
functions (intersection, JS and Hellinger) are shown in Appendix
(cf. Section 8).

TABLE 7: Different conditions for interval size δ

Kernel Condition for δ

χ2 δ ≤ ε× q(min)`

Intersection δ ≤ ε×min(q
(min)
` , p

(min)
`)

JS δ ≤ ε×min
(
q
(min)
` , p

(min)
` × log2

(
q
(min)
`

p
(max)
`

+ 1
))

Hellinger δ ≤ ε2 × q(min)`

If q` is in the range [q
(min)
` , q

(max)
`], for every ` = 1, 2..., d,

we can obtain the lower and upper bounds, denoted as F and
F̂ respectively, for FP (q) in O(d) time based on the lookup
operations, where:

F =
d∑
`=1

FP`
(q`) and F̂ =

d∑
`=1

FP`
(q̂`)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 9

Moreover, these two bound values are also within the tolerance
ε.

Theorem 3. If q` is in the range of [q
(min)
` , q

(max)
`] and the

interval size δ fulfills the condition in Table 7, with ε as the
tolerance, for every ` = 1, 2..., d, we have F̂ ≤ (1 + ε)F .
Proof. If each q` is in the range of [q(min)` , q

(max)
`], q` lies on

one interval [q`, q̂`]. Using the result in Lemma 8, FP`
(q̂`) ≤

(1 + ε)FP`
(q`), for every q` ∈ [q

(min)
` , q

(max)
`]. Therefore, we

have:

F̂ =
d∑
`=1

FP`
(q̂`) ≤ (1 + ε)

d∑
`=1

FP`
(q`) = (1 + ε)F

In both Lemma 8 and Theorem 3, there is one assumption
that we need to know the range for q`, i.e., [q

(min)
` , q

(max)
`],

in advance for each dimension. In practice, we can utilize the
interval of each dimension in P to estimate [q

(min)
` , q

(max)
`], i.e.,

we estimate q(min)` = p
(min)
` and q(max)` = p

(max)
` . Normally,

[p
(min)
` , p

(max)
`] is not large, as we need to normalize each

dimension of the dataset to be within [0, 1] before training the
regression and classification models, e.g., SVM [12]. Note that
the interval size δ depends on the value q(min)` (cf. Lemma 8). We
cannot set it to a very small value, e.g., 0, as it incurs very large
precomputation cost, including space and time. As an example, if
q
(min)
` = 0.00001 and q(max)` = 1 and ε = 0.01, then, for χ2

kernel, δ = 10−7 and the corresponding precomputation space
(or the number of intervals) for each dimension is (1−0.00001)

10−7 ,
which is near 10 million. To avoid the huge precomputation cost,
we restrict the smallest estimated value of q(min)` to be 0.01, even
though it is possible that p(min)` < 0.01.

5.2 Linear Bounds for Out-of-Range q` (KARLlinear)
As discussed in Section 5.1, we only utilize the interval of
each dimension in P to estimate [q

(min)
` , q

(max)
`]. However, it

is possible for q` to be out-of-range in the online phase. To handle
this situation, we extend our linear bounds (cf. Sections 4.1 and
4.2) for this case. As an example, we focus on the χ2 kernel
in Equation 12 (i.e., Equation 14) in this section. However, our
method can be also easily applied for other kernel functions.

FP`
(q`) =

∑
pi`∈P`

wi
(2q`pi`
q` + pi`

)
(14)

In order to extend our linear bounds to Equation 14, we let
xi = pi` and define the following aggregation of linear function,
where Linm,c(x) = mx+ c.

FLP`
(q`, Linm,c) =

∑
pi`∈P`

wi · Linm,c(pi`)

Based on the similar concepts of Definition 2 and Lemma 1,
our goal is to find two linear functions Linml,cl(x) = mlx + cl
and Linmu,cu(x) = mux+cu such that Linml,cl(x) ≤

2q`x
q`+x

≤
Linmu,cu(x). Once we obtain these two linear functions, we have
FLP`

(q`, Linml,cl) ≤ FP`
(q`) ≤ FLP`

(q`, Linmu,cu) (cf.
Lemma 9).

Lemma 9. Given Linml,cl(x) ≤
2q`x
q`+x

≤ Linmu,cu(x), we
have: FLP`

(q`, Linml,cl) ≤ FP`
(q`) ≤ FLP`

(q`, Linmu,cu).

Observe from Figure 9, since 2q`x
q`+x

is the concave function,
we can simply use the chord and tangent lines as Linml,cl(x)

and Linmu,cu(x) respectively. To find ml, cl, mu and cu, we can
utilize the similar concepts in Section 4.2, which are omitted here.
The concave property can be also found for other additive kernel
functions (cf. Table 6). Therefore, we can simply extend Lemma
9 for other additive kernel functions.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

function
2𝑞ℓ𝑥

𝑞ℓ+𝑥

xmin xmax

function value

x axis

x1

x2

x3

Fig. 9: Linear lower and upper bound functions for function 2q`x
q`+x

After we find the suitable Linm,c(x), we can obtain theO(1)-
time bound functionFLP`

(q`, Linm,c) forFP`
(q`) (cf. Equation

14), as stated in Lemma 10.

Lemma 10. Given two values m and c, we can evaluate
FLP`

(q`, Linm,c) in O(1) time.

Proof.

FLP`
(q`, Linm,c) =

∑
pi`∈P`

wi · Linm,c(pi`)

=
∑
pi`∈P`

wi · (mpi` + c) = maP`
+ cbP

where aP`
=
∑
pi`∈P`

wipi` and bP =
∑
pi`∈P`

wi can be
precomputed.

To efficiently support the lower and upper bound functions
for each dimension, we need to prebuild multiple index structures
(e.g., multiple binary trees). Once q` is out-of-range, we can use
the tree for `th dimension to find the approximate value F̂` which
is within FP`

(q`) and (1 + ε)FP`
(q`).

5.3 Integration of Our Bounds to Solve εKAQ and τKAQ
(KARL)
In this section, we discuss how to integrate our bound functions
(cf. Sections 5.1 and 5.2) to solve εKAQ and τKAQ.

Recall from Section 3, the termination conditions for τKAQ
and εKAQ are l̂b ≥ τ or ûb ≤ τ and ûb ≤ (1+ ε)l̂b respectively.
To solve εKAQ and τKAQ with additive kernels, we adopt the
following 2-step method to maintain the bounds l̂b and ûb.

1) We either obtain the monotonicity-based lower and upper
bound functions, i.e., FP`

(q`) and FP`
(q̂`) respectively,

(cf. Section 5.1) or compute the linear bounds once q` is
out-of-range (cf. Section 5.2), using kd-tree/ ball-tree for
`th dimensional points in P (with the similar concept of
Section 3). We denote the lower and upper bounds for `th

dimension as l` and u` respectively. Then, we update l̂b
and ûb.

2) If l̂b and ûb does not fulfill the termination condition, we
incrementally perform sequential scan (SCAN) for each

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 10

dimension (with the higher priority for larger value of
u` − l`), i.e., compute FP`

(q`), to refine the bounds, l̂b
and ûb, until the termination condition is fulfilled.

6 EXPERIMENTAL EVALUATION

We introduce the experimental setting in Section 6.1. Next, we
demonstrate the performance of different methods with Gaussian
kernel function in Section 6.2. Lastly, we demonstrate the perfor-
mance of different methods with χ2 kernel function in Sections
6.3 and 6.4.

6.1 Experimental Setting
6.1.1 Datasets
For type-I, type-II, type-III weighting, we take the application
models as kernel density estimation, 1-class SVM, and 2-class
SVM/SVR, respectively. We use a wide variety of real datasets for
these models, as shown in Table 8. The value nraw denotes the
number of points in the raw dataset, and the value d denotes the
data dimensionality. These datasets are all from data repository
websites [2], [12]. Some datasets have been also used in existing
work, e.g., [20], [41].

For type-I weighting, we follow [20] and use the Scott’s rule
to obtain the parameter γ. Type-II and type-III datasets require a
training phase. We consider two kernel functions: Gaussian and χ2

kernels. We denote the number of remaining points in the dataset
after training as ngaussmodel and nχ

2

model, for the Gaussian kernel and
χ2 kernel respectively.

The LIBSVM software [12] is used in the training phase. The
training parameters are configured as follows. For each type-II
dataset, we apply 1-class SVM training, with the default kernel
parameter γ = 1

d [12]. Then we vary the training model parameter
ν from 0.01 to 0.3 and choose the model which provides the
highest accuracy. For each type-III dataset, we apply 2-class
SVM/SVR training with the automatic script in [12] to determine
the suitable values for training parameters.

TABLE 8: Details of datasets

Model Raw dataset nraw ngaussmodel n
χ2

model d

Type I: miniboone [2] 119596 n/a n/a 50
kernel home [2] 918991 n/a n/a 10
density susy [2] 4990000 n/a n/a 18
Type II: nsl-kdd [1] 67343 17510 n/a 41
1-class kdd99 [2] 972780 19461 n/a 41
SVM covtype [12] 581012 25486 n/a 54

Type III: cadata [2] 10640 1643 1179 8
2-class wave [2] 62000 3454 2331 48
SVR 3D-road [2] 424874 177585 176847 3

Type III: skin [2] 235057 14628 28124 3
2-class cod-rna [12] 478565 114765 62368 8
SVM home [2] 918991 411461 297560 10

6.1.2 Methods for Comparisons
In our experimental study, we compare different state-of-the-art
methods with our solution. SCAN is the sequential scan method
which computes FP (q) without any pruning. SOTA is the state-
of-the-art method which was developed by [20] for handling the
kernel density classification problem, i.e., I-τ query. We modify
and extend their framework to handle other types of queries.
LIBSVM [12] is the famous library for handling both support
vector machine-based regression and classification models, i.e.,
query types II-τ , III-ε and III-τ . In our preliminary version
[10], we develop KARL for Gaussian kernel function, which
follows the framework of [20], combining with our linear bound

functions, LBKARL and UBKARL. In this extension, we extend
KARL to support additive kernels, we denote KARLmono as the
method of monotonicity-based bound functions (cf. Section 5.1)
and KARLlinear as the method of linear bound functions (cf.
Section 5.2) with the combination of multiple binary-trees (for
each dimension). We further integrate both methods KARLmono

and KARLlinear (which handles out-of-range case of q`) to an
unified one (cf. Section 5.3), i.e., KARL, to support the χ2 kernel
function for both query types III-ε and III-τ .

6.2 Efficiency Evaluation for Different Query Types
with Gaussian kernel
We test the performance of different methods for five types of
queries which are I-ε, I-τ , II-τ , III-ε and III-τ . The parameters of
these queries are set as follows.

Types I-ε and III-ε. We set the relative error ε = 0.2 for each
dataset.

Type I-τ . We fix the mean value µ of FP (q) from the set Q,
i.e., µ =

∑
q∈Q FP (q)/|Q| as the threshold τ for each dataset in

Table 9.

Types II-τ and III-τ . The threshold τ can be obtained during the
training phase.

TABLE 9: Throughput (queries/sec) of all methods for different
types of queries with Gaussian kernel

Type Datasets SCAN LIBSVM Scikit SOTA KARL
miniboone 36.1 n/a 36 16.5 301

I-ε home 15.2 n/a 11.9 36.2 187
susy 2.02 n/a 1.17 0.77 13.2

miniboone 36.1 n/a n/a 102 510
I-τ home 15.2 n/a n/a 93.2 258

susy 2.02 n/a n/a 3.58 83.4
nsl-kdd 283 481 n/a 748 20668

II-τ kdd99 260 520 n/a 1269 11324
covtype 158 462 n/a 448 6022
cadata 1951 2001 n/a 1756 13539

III-ε wave 940 1205 n/a 442 33482
3D-road 41 62 n/a 28 27334

skin 495 504 n/a 248 4104
III-τ cod-rna 55.4 68.2 n/a 27.6 854

home 14.7 18.3 n/a 8.6 231

Table 9 shows the throughput of different methods for all
types of queries. In the result of query type I-ε, SCAN is com-
parable to Scikit and SOTA since the bounds computed by the
basic bound functions are not tight enough. The performance of
Scikit and SOTA is affected by the overhead of the loose bound
computations. KARL uses our new bound functions which are
shown to provide tighter bounds. These bounds lead to significant
speedup in all evaluated datasets, e.g., KARL is at least 5.16
times faster than other methods. For query type III-ε, our method
KARL can further improve the efficiency performance by 7x to
28x, compared with other methods.

For query type I-τ , our method KARL improves the through-
put by 2.76x to 21.2x when comparing to the runner-up method
SOTA. The improvement becomes more obvious for type II-τ and
type III-τ queries. The improvement of KARL can be up to 31x as
compared to SOTA. KARL achieves significant performance gain
for all these queries due to its tighter bound value compared with
SOTA.

Sensitivity of τ . In order to test the sensitivity of threshold τ in
different methods, we select five thresholds from the range µ −

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 11

σ to µ + 3σ, where σ =
√∑

q∈Q(FP (q)− µ)2/|Q| is the
standard deviation. Figure 10 shows the results on the two largest
datasets (home and susy). Due to the superior performance of our
bound functions, KARL outperforms SOTA by nearly one order
of magnitude in most of the datasets regardless of the chosen
threshold.

Sensitivity of ε. In Scikit-learn library [40], we can select different
relative error ε in the approximate KDE. To test the sensitivity, we
vary the relative error ε for the two largest datasets (home and
susy) with query type I-ε. If the value of ε is very small, the room
for the bound estimations is very limited so that neither KARL nor
SOTA perform well in very small ε setting (e.g., 0.05). For other
general ε settings, our method KARL consistently outperforms
other methods by a visible margin (cf. Figure 11).

Sensitivity of dataset size. In the following experiment, we test
how the size of the dataset affects the evaluation performance of
different methods for both query types I-ε and I-τ . We choose the
largest dataset (susy) and vary the size via sampling. The trend in
Figure 12 meets our expectation; a smaller size implies a higher
throughput. Our KARL in general outperforms other methods by
one order of magnitude in a wide range of data sizes.

6.3 Efficiency Evaluation for Different Query Types
with χ2 kernel

In this section, we test the efficiency performance for χ2 kernel
(cf. Table 10). However, our techniques can be extended to other
additive kernel functions. Since additive kernels are mainly used
in regression (query type III-ε) and classification (query type III-
τ) models, we only conduct the experiments in query type III.
By default, we fix the relative error ε = 0.2 for εKAQ. In
addition, we also fix the tolerance parameter ε = 0.05 for the
KARLmono method. Since we fix q

(min)
` = 0.01 (cf. Section

5.1), we can choose the interval size δ = ε × q(min)` = 0.0005
(χ2 kernel in Table 7). As such, the number of precomputed q`
is 1−0.01

0.0005 = 1980. Observe from Table 10, both our method
KARLmono and our method KARL can be significantly better
than the existing methods (e.g., SCAN, LibSVM and SOTA)
by at least one order of magnitude. On the other hand, since
the monotonicity-based bound functions are tighter than linear
bound functions, KARLmono can also achieve significant speedup
compared with our method KARLlinear [10].

TABLE 10: Throughput (queries/sec) of all methods for different
types of queries with χ2 kernel

TypeDatasetsSCANLIBSVMSOTAKARLlinearKARLmonoKARL
cadata 941 1102 366 1438 13243 15684

III-ε wave 87 104 26.8 149 2863 3216
3D-road 18.1 26.3 3.7 45 183 201

skin 115 180 303 6741 23273 31232
III-τ cod-rna 24.3 32.5 52.5 701 10187 14875

home 4.25 7.73 6.92 824 1919 2457

To test the sensitivity of the relative error ε for εKAQ with
χ2 kernel function, we vary the parameter ε from 0.05 to 0.3,
and measure the throughput of each method, using the two largest
datasets wave and 3D-road. Observe from Figure 13, since our
monotonicity-based lower and upper bound functions are effec-
tive, both our method KARLmono and KARL can outperform the
existing methods by at least one order of magnitude.

SCAN© SOTA � KARL 4

100

101

102

103

μ-σ μ μ+σ μ+2σ μ+3σ

Th
ro

ug
hp

ut
 (

Q
ue

rie
s/

se
c)

Threshold τ

100

101

102

103

μ-σ μ μ+σ μ+2σ μ+3σ

Th
ro

ug
hp

ut
 (

Q
ue

rie
s/

se
c)

Threshold τ

(a) home (b) susy

Fig. 10: Query throughput with query type I-τ , varying the
threshold τ

100

101

102

103

0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

Q
ue

rie
s/

se
c)

ε

10-1

100

101

102

0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

Q
ue

rie
s/

se
c)

ε

(a) home (b) susy

Fig. 11: Query throughput with query type I-ε, varying the relative
error ε

100

101

102

103

1 2 3 4 5

Th
ro

ug
hp

ut
 (

Q
ue

rie
s/

se
c)

Size (x106)

10-1

100

101

102

1 2 3 4 5

Th
ro

ug
hp

ut
 (

Q
ue

rie
s/

se
c)

Size (x106)

(a) type I-τ , fixing τ = µ (b) type I-ε, fixing ε = 0.2

Fig. 12: Query throughput on the susy dataset, varying the dataset
size

SCAN© LIBSVM + SOTA �
KARLlinear 4 KARLmono KARL ×

100

101

102

103

104

0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

Q
ue

rie
s/

se
c)

ε

100

101

102

103

0.05 0.1 0.15 0.2 0.25 0.3

Th
ro

ug
hp

ut
 (

Q
ue

rie
s/

se
c)

ε

(a) wave (b) 3D-road

Fig. 13: Query throughput on χ2 kernel, varying the relative error
ε

6.4 Accuracy Evaluation for Different Methods with χ2

kernel
As discussed in Section 2, there are many approximation methods
for supporting fast evaluation of kernel aggregation function using
additive kernels. However, all of these methods do not provide
theoretical guarantee between the returned result and the exact

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 12

solution for both τKAQ and εKAQ. In this section, we compare
the accuracy of three state-of-the-art approximation methods in
both computer vision and machine learning communities, which
are NNmap [53], PPLmap [41] and VLFeatmap [49], and the exact
methods (e.g., SCAN, KARL, etc.) in the classification task (i.e.,
τKAQ). Both NNmap, PPLmap and VLFeatmap create the high-
dimensional feature maps (or feature vectors), which can be
further trained/ predicted by the linear SVM [18] efficiently, to
approximate the additive kernel functions. However, these approx-
imation methods normally sacrifice the accuracy performance,
compared with exact methods (e.g., KARL). Table 11 summarizes
the accuracy result for χ2 kernel function. The accuracy of both
VLFeatmap, PPLmap and NNmap are 8.6%-14.4%, 7.32%-8.53%
and 5.36%-17.1% lower than exact methods respectively.

TABLE 11: Accuracy result (in %) for different methods with χ2

kernel

DatasetsExact (e.g., KARL)VLFeatmap [49]PPLmap [41]NNmap [53]
skin 97.57 83.13 90.25 92.21

cod-rna 96.69 86.22 88.35 79.63
home 87.36 78.75 78.83 75.24

7 CONCLUSION
In this paper, we propose the solution, called KARL, to support
the kernel aggregation queries, which are used in different types
of machine learning models, including kernel density estima-
tion/classification [21], [20], 1-class SVM [37], 2-class SVM and
SVR [47].

Our contribution is threefold. First, we extend our work [10] to
support other important kernel functions, called additive kernels,
which are widely used in different communities, e.g., machine
learning, computer vision, Geoscience, etc. Then, we develop the
monotonicity-based bound functions for these kernel functions.
After that, we further integrate both monotonicity-based bound
functions and the linear bound functions to one unified solution
to support these kernel functions. Experimental studies on a wide
variety of datasets show that our solution KARL yields higher
throughput than the state-of-the-art solution by at least one order
of magnitude for kernel aggregation queries with additive kernel
functions.

In the future, we will develop efficient algorithms for the
prediction phase of other machine learning models, e.g., kernel
clustering [52], graph-kernel-based classification [51] and kernel-
ized support tensor machines [22]. On the other hand, we will also
extend our work to the training phase of kernel-based machine
learning models.

ACKNOWLEDGEMENT

This work was supported by the National Key Research and Devel-
opment Plan of China (No.2019YFB2102100). Tsz Nam Chan and
Reynold Cheng were supported by the Research Grants Council
of Hong Kong (RGC Projects HKU 17229116, 106150091, and
17205115), the University of Hong Kong (Projects 104004572,
102009508, and 104004129), and the Innovation and Technol-
ogy Commission of Hong Kong (ITF project MRP/029/18).
Leong Hou U was supported by the Science and Technol-
ogy Development Fund, Macau SAR (File no. 0015/2019/AKP
and SKL-IOTSC-2018-2020) and University of Macau (File no.
MYRG2019-00119-FST). Man Lung Yiu was supported by grant
GRF 152050/19E from the Hong Kong RGC.

REFERENCES

[1] Nsl-kdd dataset. https://github.com/defcom17/.
[2] UCI machine learning repository. http://archive.ics.uci.edu/ml/index.php.
[3] J. Baek, S. Hong, J. Kim, and E. Kim. Efficient pedestrian detection at

nighttime using a thermal camera. Sensors, 17(8):1850, 2017.
[4] J. Baek, J. Hyun, and E. Kim. A pedestrian detection system accelerated

by kernelized proposals. IEEE Transactions on Intelligent Transportation
Systems, pages 1–13, 2019.

[5] J. Baek, J. Kim, and E. Kim. Fast and efficient pedestrian detection via
the cascade implementation of an additive kernel support vector machine.
IEEE Trans. Intelligent Transportation Systems, 18(4):902–916, 2017.

[6] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita. Network anomaly
detection: Methods, systems and tools. IEEE Communications Surveys
and Tutorials, 16(1):303–336, 2014.

[7] A. L. Buczak and E. Guven. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communi-
cations Surveys and Tutorials, 18(2):1153–1176, 2016.

[8] T. N. Chan, M. L. Yiu, and K. A. Hua. A progressive approach for
similarity search on matrix. In SSTD, pages 373–390. Springer, 2015.

[9] T. N. Chan, M. L. Yiu, and K. A. Hua. Efficient sub-window nearest
neighbor search on matrix. IEEE Trans. Knowl. Data Eng., 29(4):784–
797, 2017.

[10] T. N. Chan, M. L. Yiu, and L. H. U. KARL: fast kernel aggregation
queries. In ICDE, pages 542–553, 2019.

[11] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):15:1–15:58, 2009.

[12] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/
∼cjlin/libsvm.

[13] Q. Chen, Z. Song, J. Dong, Z. Huang, Y. Hua, and S. Yan. Contextualiz-
ing object detection and classification. IEEE Trans. Pattern Anal. Mach.
Intell., 37(1):13–27, 2015.

[14] H.-S. Chiu and et al. Pan-Cancer Analysis of lncRNA Regulation
Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell
Reports, 23(1):297–312, Apr. 2018.

[15] K. Cranmer. Kernel estimation in high-energy physics. 136:198–207,
2001.

[16] B. Demir and L. Bruzzone. Histogram-based attribute profiles for classifi-
cation of very high resolution remote sensing images. IEEE Transactions
on Geoscience and Remote Sensing, 54(4):2096–2107, April 2016.

[17] D. K. Duvenaud, H. Nickisch, and C. E. Rasmussen. Additive gaussian
processes. In NIPS, pages 226–234, 2011.

[18] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A library for large linear classification. Journal of Machine
Learning Research, 9:1871–1874, 2008.

[19] B. J. Ferdosi, H. Buddelmeijer, S. C. Trager, M. H. F. Wilkinson, and
J. B. T. M. Roerdink. Comparison of density estimation methods for
astronomical datasets. Astronomy and Astrophysics, 2011.

[20] E. Gan and P. Bailis. Scalable kernel density classification via threshold-
based pruning. In ACM SIGMOD, pages 945–959, 2017.

[21] A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward
computational tractability. In SDM, pages 203–211, 2003.

[22] L. He, C. Lu, G. Ma, S. Wang, L. Shen, P. S. Yu, and A. B. Ragin.
Kernelized support tensor machines. In ICML, pages 1442–1451, 2017.

[23] M. Herbster. Learning additive models online with fast evaluating
kernels. In COLT, pages 444–460, 2001.

[24] C. Hsieh, S. Si, and I. S. Dhillon. Fast prediction for large-scale kernel
machines. In NIPS, pages 3689–3697, 2014.

[25] C. Huang, G. Min, Y. Wu, Y. Ying, K. Pei, and Z. Xiang. Time series
anomaly detection for trustworthy services in cloud computing systems.
IEEE Trans. Big Data, 2017.

[26] P. Isola, J. Xiao, D. Parikh, A. Torralba, and A. Oliva. What makes
a photograph memorable? IEEE Trans. Pattern Anal. Mach. Intell.,
36(7):1469–1482, 2014.

[27] H. G. Jung and G. Kim. Support vector number reduction: Survey
and experimental evaluations. IEEE Trans. Intelligent Transportation
Systems, 15(2):463–476, 2014.

[28] A. Kampouraki, G. Manis, and C. Nikou. Heartbeat time series classifica-
tion with support vector machines. IEEE Trans. Information Technology
in Biomedicine, 13(4):512–518, 2009.

[29] Q. V. Le, T. Sarlós, and A. J. Smola. Fastfood - computing hilbert space
expansions in loglinear time. In ICML, pages 244–252, 2013.

[30] W. Li, M. Coats, J. Zhang, and S. Mckenna. Discriminating dysplasia:
Optical tomographic texture analysis of colorectal polyps. Medical image
analysis, 26:57–69, 09 2015.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 13

[31] B. Liu, Y. Xiao, P. S. Yu, L. Cao, Y. Zhang, and Z. Hao. Uncertain
one-class learning and concept summarization learning on uncertain data
streams. IEEE Trans. Knowl. Data Eng., 26(2):468–484, 2014.

[32] Y. Liu, Y. Liu, and Y. Chen. Fast support vector data descriptions
for novelty detection. IEEE Trans. Neural Networks, 21(8):1296–1313,
2010.

[33] J. Ma and S. Perkins. Time-series novelty detection using one-class
support vector machines. In IJCNN, pages 1741–1745, 2003.

[34] S. Maji and A. C. Berg. Max-margin additive classifiers for detection. In
ICCV, pages 40–47, 2009.

[35] S. Maji, A. C. Berg, and J. Malik. Classification using intersection kernel
support vector machines is efficient. In CVPR, 2008.

[36] S. Maji, A. C. Berg, and J. Malik. Efficient classification for additive
kernel svms. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):66–77, 2013.

[37] L. M. Manevitz and M. Yousef. One-class svms for document classifica-
tion. Journal of Machine Learning Research, 2:139–154, 2001.

[38] A. W. Moore. The anchors hierarchy: Using the triangle inequality to
survive high dimensional data. In UAI, pages 397–405, 2000.

[39] M. Mutny and A. Krause. Efficient high dimensional bayesian optimiza-
tion with additivity and quadrature fourier features. In NeurIPS, pages
9019–9030, 2018.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derPlas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[41] O. Pele, B. Taskar, A. Globerson, and M. Werman. The pairwise
piecewise-linear embedding for efficient non-linear classification. In
ICML, pages 205–213, 2013.

[42] Y. Ren, P. N. Suganthan, and N. Srikanth. A novel empirical mode
decomposition with support vector regression for wind speed forecasting.
IEEE Trans. Neural Netw. Learning Syst., 27(8):1793–1798, 2016.

[43] D. Sahoo, S. C. H. Hoi, and B. Li. Online multiple kernel regression. In
SIGKDD, pages 293–302, 2014.

[44] H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann. 2006.

[45] G. Santamarı́a-Bonfil, A. Reyes-Ballesteros, and C. Gershenson. Wind
speed forecasting for wind farms: A method based on support vector
regression. Renewable Energy, 85(C):790–809, 2016.

[46] N. I. Sapankevych and R. Sankar. Time series prediction using support
vector machines: A survey. IEEE Comp. Int. Mag., 4(2):24–38, 2009.

[47] B. Schölkopf and A. J. Smola. Learning with Kernels: support vector
machines, regularization, optimization, and beyond. Adaptive computa-
tion and machine learning series. MIT Press, 2002.

[48] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt. Support vector method for novelty detection. In NIPS, pages 582–
588, 1999.

[49] A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit
feature maps. IEEE Trans. Pattern Anal. Mach. Intell., 34(3):480–492,
2012.

[50] A. Vedaldi and A. Zisserman. Sparse kernel approximations for efficient
classification and detection. In CVPR, pages 2320–2327, 2012.

[51] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M.
Borgwardt. Graph kernels. J. Mach. Learn. Res., 11:1201–1242, 2010.

[52] S. Wang, A. Gittens, and M. W. Mahoney. Scalable kernel k-means
clustering with nystr\”om approximation: Relative-error bounds. J.
Mach. Learn. Res., 20:12:1–12:49, 2019.

[53] Z. Wang, X. Yuan, Q. Liu, and S. Yan. Additive nearest neighbor feature
maps. In ICCV, pages 2866–2874, 2015.

[54] K. Were, D. T. Bui, Øystein B. Dick, and B. R. Singh. A comparative
assessment of support vector regression, artificial neural networks, and
random forests for predicting and mapping soil organic carbon stocks
across an afromontane landscape. Ecological Indicators, 52:394 – 403,
2015.

[55] B. Wolff, J. Kühnert, E. Lorenz, O. Kramer, and D. Heinemann. Com-
paring support vector regression for pv power forecasting to a physical
modeling approach using measurement, numerical weather prediction,
and cloud motion data. Solar Energy, 135(C):197–208, 2016.

[56] J. Wu, W. Tan, and J. M. Rehg. Efficient and effective visual code-
book generation using additive kernels. Journal of Machine Learning
Research, 12:3097–3118, 2011.

[57] L. Zhang, J. Lin, and R. Karim. Adaptive kernel density-based anomaly
detection for nonlinear systems. Knowledge-Based Systems, 139(Supple-
ment C):50 – 63, 2018.

[58] Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality and efficiency for
kernel density estimates in large data. In SIGMOD, pages 433–444, 2013.

Tsz Nam Chan received the bachelor’s degree
in electronic and information engineering and
the PhD degree in computer science from the
Hong Kong Polytechnic University in 2014 and
2019 respectively. He is currently a research
associate in the University of Hong Kong. His
research interests include multidimensional sim-
ilarity search, pattern matching and kernel meth-
ods for machine learning.

Leong Hou U completed his B.Sc. in Computer
Science and Information Engineering at Taiwan
Chi Nan University, his M.Sc. in E-commerce
at University of Macau, and his Ph.D. in Com-
puter Science at University of Hong Kong. He
is now an Associate Professor in the State
Key Laboratory of Internet of Things for Smart
City and the Department of Computer and In-
formation Science, University of Macau. His
research interests include spatial and spatio-
temporal databases, advanced query process-

ing, crowdsourced query processing, information retrieval, data mining
and optimization problems.

Reynold Cheng is an Associate Professor of the
Department of Computer Science in the Univer-
sity of Hong Kong (HKU). He obtained his PhD
from Department of Computer Science of Pur-
due University in 2005. Dr. Cheng was granted
an Outstanding Young Researcher Award 2011-
12 by HKU.

Man Lung Yiu received the bachelor’s degree
in computer engineering and the PhD degree in
computer science from the University of Hong
Kong in 2002 and 2006, respectively. Prior to
his current post, he worked at Aalborg University
for three years starting in the Fall of 2006. He is
now an associate professor in the Department of
Computing, The Hong Kong Polytechnic Univer-
sity. His research focuses on the management of
complex data, in particular query processing top-
ics on spatiotemporal data and multidimensional

data.

Shivansh Mittal is currently a final year un-
dergraduate student, studying computer science
major and finance minor, at the University of
Hong Kong. His research interests include ker-
nel methods for machine learning and recom-
mender systems.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE) 14

8 APPENDIX

In this appendix, we provide the detailed proofs in Lemma 8 (with
different conditions of δ in Table 7) for other kernel functions,
including both Intersection, JS and Hellinger kernels.

8.1 Proof of Lemma 8 with Intersection kernel

Proof.

FP`
(q̂`)

=
∑
pi`∈P`

wimin(q̂`, pi`) =
∑
pi`∈P`

wimin(q` + δ, pi`)

≤
∑
pi`∈P`

wi(min(q`, pi`) + δ) = FP`
(q`) + δ

∑
pi`∈P`

wi

Therefore, we have the relative error:

FP`
(q̂`)−FP`

(q`)

FP`
(q`)

≤
δ
∑
pi`∈P`

wi∑
pi`∈P`

wimin(q`, pi`)

≤ δ

min(q
(min)
` , p

(min)
`)

Once we set δ ≤ ε × min(q
(min)
` , p

(min)
`), we can achieve the

tolerance ε, i.e., FP`
(q̂`) ≤ (1 + ε)FP`

(q`).

8.2 Proof of Lemma 8 with JS kernel
Proof. To prove this lemma, we separate FP`

(q`) into two parts,
which are F (1)

P`
(q`) and F (2)

P`
(q`).

FP`(q`)

=
∑
pi`∈P`

wi
(1
2
q` log2

(q` + pi`
q`

)
+

1

2
p` log2

(q` + pi`
pi`

))
=
∑
pi`∈P`

wi
(1
2
q` log2

(q` + pi`
q`

))
+
∑
pi`∈P`

wi
(1
2
pi` log2

(q` + pi`
pi`

))
= F (1)

P`
(q`) + F (2)

P`
(q`)

Then, we claim that (1) F (1)
P`

(q̂`) ≤ (1 + ε)F (1)
P`

(q`) and (2)

F (2)
P`

(q̂`) ≤ (1 + ε)F (2)
P`

(q`), once δ fulfills the condition (cf.
Table 7). After we prove the above claims, we can conclude
FP`

(q̂`) ≤ (1 + ε)FP`
(q`), since:

FP`
(q̂`)−FP`

(q`)

FP`
(q`)

=
F (1)
P`

(q̂`) + F (2)
P`

(q̂`)−F (1)
P`

(q`)−F (2)
P`

(q`)

F (1)
P`

(q`) + F (2)
P`

(q`)
≤ ε

Now, we prove the above claims.
Claim (1):

F (1)
P`

(q̂`) =
∑
pi`∈P`

wi
(1
2
q̂` log2

(q̂` + pi`
q̂`

))
=

∑
pi`∈P`

wi
(1
2
(q` + δ) log2

(q` + δ + pi`

q` + δ

))
≤

∑
pi`∈P`

wi
(1
2
(q` + δ) log2

(
1 +

pi`
q`

))
= F (1)

P`
(q`) +

∑
pi`∈P`

wi
(1
2
δ log2

(q` + pi`

q`

))

Therefore, we have:

F (1)
P`

(q̂`)−F (1)
P`

(q`)

F (1)
P`

(q`)
=

∑
pi`∈P`

wi
(
1
2δ log2

(
q`+pi`
q`

))
∑
pi`∈P`

wi
(
1
2q` log2

(
q`+pi`
q`

)) ≤ δ

q
(min)
`

Therefore, once we set δ ≤ ε × q
(min)
` , we can achieve the

tolerance ε for the first part, where F (1)
P`

(q̂`) ≤ (1 + ε)F (1)
P`

(q`).
Claim (2):

F (2)
P`

(q̂`) =
∑
pi`∈P`

wi
(1
2
pi` log2

(q̂` + pi`
pi`

))
=

∑
pi`∈P`

wi
(1
2
pi` log2

(q` + δ + pi`

pi`

))
≤

∑
pi`∈P`

wi
(1
2
pi`
(
log2

(q` + pi`

pi`

)
+

δ

pi`

))
= F (2)

P`
(q`) +

δ

2

∑
pi`∈P`

wi

Therefore, we have:

F (2)
P`

(q̂`)−F (2)
P`

(q`)

F (2)
P`

(q`)
≤

δ
2

∑
pi`∈P`

wi∑
pi`∈P`

wi
(
1
2pi` log2

(
q̂`+pi`
pi`

))
≤ δ

p
(min)
` log

(
q
(min)
`

p
(max)
`

+ 1
)

As such, once we set δ ≤ ε × p
(min)
` log

(
q
(min)
`

p
(max)
`

+ 1
)

,

F (2)
P`

(q̂`) can achieve the tolerance ε compared with F (2)
P`

(q`),

i.e., F (2)
P`

(q̂`) ≤ (1 + ε)F (2)
P`

(q`).
To fulfill both claims of (1) and (2), we select the smallest δ,

i.e., δ = ε×min
(
q
(min)
` , p

(min)
` × log2

(
q
(min)
`

p
(max)
`

+ 1
))

.

8.3 Proof of Lemma 8 with Hellinger kernel
Proof.

FP`
(q̂`) =

∑
pi`∈P`

wi
√
q̂`pi` =

∑
pi`∈P`

wi
√
(q` + δ)pi`

≤
∑
pi`∈P`

wi(
√
q`pi` +

√
δpi`)

= FP`
(q`) +

∑
pi`∈P`

wi
√
δpi`

Therefore, we have the relative error:

FP`
(q̂`)−FP`

(q`)

FP`
(q`)

≤
∑
pi`∈P`

wi
√
δpi`∑

pi`∈P`
wi
√
q`pi`

=

√
δ

q
(min)
`

Therefore, we can achieve the tolerance ε once we set
√

δ

q
(min)
`

≤

ε and thus, δ ≤ ε2 × q(min)` .

