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Abstract 36 

Leaf thermoregulation and consequent leaf-to-air temperature difference (ΔT) are tightly 37 

linked to plant metabolic rates and health. Current knowledge mainly focus on the regulation 38 

of environmental conditions on ΔT, while an accurate assessment of biotic regulations with 39 

field data remains lacking. Here, we used a trait-based model that integrates a coupled 40 

photosynthesis-stomatal conductance model with a leaf energy balance model to explore how 41 

six leaf traits (i.e. leaf width, emissivity, visible and near-infrared light absorptance, 42 

photosynthetic capacity—Vc,max25, and stomatal slope—g1) regulate ΔT variability across the 43 

diel timescale. We evaluated the model with field observations collected from temperate to 44 

tropical forests. Our results show that: (1) leaf traits mediate large ΔT variability, with the 45 

noon-time trait-mediated ΔT variability reaching c. 15.0 °C; (2) leaf width, Vc,max25, and g1 are 46 

the three most important traits and their relative importance in ΔT regulation varies strongly 47 

across the diel timescale; and (3) model-derived trait-ΔT relationships match field 48 

observations that were collected close to either midday or midnight. These findings advance 49 

our understanding of biotic controls of leaf-level ΔT variability, highlighting a trait-based 50 

representation of leaf energy balance that can improve simulations of diverse leaf 51 

thermoregulation strategies across species and physiological responses to climate change. 52 

  53 

Keywords: leaf-to-air temperature difference, plant functional traits, leaf energy balance, 54 

coupled photosynthesis-stomatal conductance model, trait-based modeling, global sensitivity 55 

analysis   56 



1. Introduction 57 

Leaf temperature is tightly connected with vegetative functioning at all spatial scales, from 58 

individual plants to forest ecosystems. At the individual level, leaf temperature regulates 59 

plant ecophysiology through both direct controls on photosynthetic metabolism (Farquhar et 60 

al., 1980; Bernacchi et al., 2013) and indirect controls via temperature-associated leaf-to-air 61 

vapour pressure deficit (VPDleaf) that down-regulates stomatal conductance (Lloyd & 62 

Farquhar, 2008). At the ecosystem level, leaf temperature is a key state variable of terrestrial 63 

biosphere models (TBMs), influencing large-scale biogeochemical cycles and vegetation-64 

climate interactions (Best et al., 2011; Bonan et al., 2014; Smith et al., 2020). Despite its 65 

importance, leaf temperature has long been approximated using air temperature (Helliker & 66 

Richter, 2008; Huang et al., 2019). However, increasing field-based evidence challenges this 67 

approximation by showing that leaf-to-air temperature difference (ΔT) is considerable and 68 

has a highly dynamic nature (Leuzinger & Körner, 2007; Aubrecht et al., 2016; Still et al., 69 

2019). Such temperature differences reflect that plants can thermoregulate to decouple their 70 

tissue temperature from the ambient air temperature, which suggests that approximating leaf 71 

temperature with air temperature could result in large uncertainties in TBMs for simulating 72 

terrestrial ecosystem response to climate change (Michaletz et al., 2015; Dong et al., 2017). 73 

Therefore, an improved understanding of leaf temperature and associated mechanistic 74 

controls of ΔT variations remains a central issue in many ecology-related disciplines, with 75 

increasing urgency under recent climate change. 76 

 77 

Two approaches have been used to study leaf temperature and ΔT. One is based on a leaf 78 

energy balance model (Gates, 1968; Campbell & Norman, 2012). Since this approach has a 79 

strong theoretical basis, it has been widely implemented in TBMs to infer leaf temperature 80 

and simulate terrestrial ecosystem physiological response to climate variability (Bonan et al., 81 



2014; Lawrence et al., 2018). Despite successful implementation in TBMs, there remain 82 

some important but understudied parameters in this modeling framework that correspond to 83 

key leaf traits. Energy balance equations usually contain multiple trait parameters, most of 84 

which are time-consuming to measure at a level and resolution associated with each leaf of 85 

interest (Jones, 2013; Michaletz et al., 2016). For example, the measurements of stomatal 86 

slope and leaf absorptance, require specialised equipment and often take relatively long times 87 

to complete for a single tree, even when coordinated by a team (Wu et al., 2019, 2020). For 88 

simplicity’s sake, they are often assigned with fixed values for each plant functional type in 89 

TBMs, without considering the potential large trait variability within and across vegetation 90 

biomes (e.g. Lin et al., 2015; Wright et al., 2017; Ivanova et al., 2018). Consequently, this 91 

coarse characterization of leaf traits has caused inaccurate predictions for leaf temperature 92 

(Dong et al., 2017) and vegetation response to climate change (Rogers et al., 2017; Bonan & 93 

Doney, 2018). 94 

 95 

The other commonly-used approach is statistically examining the relationships of ΔT with 96 

leaf traits. For example, leaf width has been shown to have a tight negative correlation with 97 

ΔT (Lusk et al., 2018). The relationships between ΔT and several other leaf traits and 98 

processes have also been explored, including but not limited to leaf thickness (Leigh et al., 99 

2012), margin complexity (Leigh et al., 2017), stomatal conductance (Leuzinger & Körner, 100 

2007), and boundary layer resistance (Majcher, 2018). Compared with the leaf energy 101 

balance modeling approach, the statistical approach is advantageous in exploring the 102 

relationships of ΔT with specific traits in regulating ΔT dynamics at the finer scale (Jones, 103 

1999; Økland, 2007). However, it has been criticized for being semi-empirical and lack of 104 

rigorous theoretical basis. 105 

 106 



As the known trait-ΔT relationships remain limited to the easier-to-measure leaf traits listed 107 

above, other important but relatively difficult-to-measure traits remain underexplored. Take 108 

leaf maximum carboxylation capacity scaled to 25°C (Vc,max25) and Medlyn-type stomatal 109 

slope (g1) as examples. They are two traits tightly connected with stomatal behaviors, and 110 

thus importantly regulate plant photosynthesis and transpiration rates (Medlyn et al., 2011; 111 

Wu et al., 2017, 2020). Despite this, how they affect ΔT is still not fully understood. 112 

Additionally, most relevant studies were conducted for a single time of the day, such as noon-113 

time (Yu et al., 2015) or midnight (Lusk et al., 2018), though we expect these ‘static’ traits, 114 

like Vc,max25 and g1, to have variable roles on their control of leaf temperature on a diel 115 

timescale. This is because although these traits remain constant throughout the day, the 116 

energy fluxes regulated by these traits, like latent heat and sensible heat, change (Jones, 2013; 117 

Still et al., 2019), and may ultimately lead to a diel dynamic effect on ΔT. As such, we can 118 

infer that the trait-ΔT relationships derived from a single time may be misleading when 119 

applied to other periods of a day. All these limitations result in an incomplete understanding 120 

of how biotic factors, particularly multiple associated leaf traits, regulate ΔT variability 121 

(Dong et al., 2017; Still et al., 2019).  122 

 123 

Integrating the leaf energy balance model with the plant physiology model may offer a 124 

solution to mechanistically assess how key leaf traits regulate ΔT variability via fundamental 125 

pathways (Fig. 1). This integration has been previously used in TBMs to explore and predict 126 

vegetation-atmosphere interactions (e.g. community land model—CLM 4.5 and 5.0; Oleson 127 

et al., 2010; Lawrence et al., 2018), but they are rarely evaluated with comprehensive field 128 

data (Dong et al., 2017; Rogers et al., 2017). This is because evaluation requires 129 

simultaneous measurements of environmental conditions and leaf physiological traits, which 130 

are labor-intensive and challenging to measure, especially for tall canopy trees (Wu et al., 131 



2019, 2020). Additionally, difficulties in trait measurements can hinder the accurate 132 

parameterization of TBMs (Rogers et al., 2017). A better strategy for model evaluation might 133 

be spending effort on the key leaf traits that are more important in leaf temperature regulation, 134 

while setting less-important traits as constants or approximations, simplifying the model 135 

constraints while ensuring model accuracy. Therefore, it is important to understand which 136 

traits dominate leaf temperature regulation. 137 

 138 

This study aims to develop an improved understanding of biotic controls on ΔT variability. 139 

Specifically, we address three questions: (i) To what extent can leaf traits affect ΔT? (ii) 140 

What are the most important traits that regulate ΔT variability, and how do their relative roles 141 

vary at the diel timescale? (iii) Do trait-ΔT relationships based on our coupled model that 142 

integrates the leaf energy balance model with the plant physiology model agree with field 143 

observations? To address these questions, we used a trait-based leaf energy balance model, 144 

consistent with those implemented in TBMs, and a dataset with traits and ΔT collected from 145 

three distinct types of forests, including a temperate forest, tropical rainforest, and tropical 146 

dry forest. With this integrated model and field dataset, we hope to improve the mechanistic 147 

understanding of trait-ΔT relationships across both temporal (i.e. diel) and spatial (i.e. leaf 148 

samples within and across forest sites) scales. 149 

 150 

2. Materials and methods 151 

We divided this section into four parts. In the first part, we described a comprehensive dataset 152 

including the field observations of environmental conditions, leaf traits, and ΔT (made close 153 

to midday or midnight). In the second part, we built a trait-based leaf energy balance model 154 

and assessed the model’s performance with field observations from the above dataset. In the 155 

third part, we performed a model sensitivity analysis to quantify to what extent leaf traits 156 



mediate ΔT variability, and explore trait-ΔT relationships at the diel timescale. In the last part, 157 

we evaluated the model-derived trait-ΔT relationships by comparing them with field 158 

observations. 159 

 160 

2.1 Data collection 161 

2.1.1 Data collection close to midday 162 

2.1.1.1 Study sites 163 

We conducted field measurements at three forest sites: (1) a temperate mixed forest at the Mt. 164 

Changbai (CB, location: 42°24′N, 128°06′E) with a mean annual temperature (MAT) of 165 

2.8oC and mean annual precipitation (MAP) of 691 mm  (He et al., 2019); (2) a tropical 166 

broadleaved evergreen forest at the Xishuangbanna site (XSBN, location: 21°47′N, 101°03′E) 167 

with a MAT of 21.8oC and MAP of 1493 mm (Shen et al., 2018); and (3) a Caatinga 168 

woodland forest near Petrolina (PE, location: 9°03′S, 40°19′W), with a MAT of 26.2oC and 169 

MAP of 510 mm (de Souza et al., 2018). 170 

 171 

We selected these three sites for two reasons. First, we could access the sunlit leaves of 172 

representative canopy tree species of each site, which minimized other factors (e.g. 173 

illumination conditions) that also caused ΔT variability. Specifically, a canopy crane facility 174 

is available at each of the CB and XSBN sites that enabled easy access to canopy trees within 175 

a one-hectare area surrounding the canopy crane tower. At the PE site, we accessed sunlit 176 

canopy leaves using a horticultural ladder due to the relatively lower height of the trees 177 

(Majcher, 2018). Second, there was a vast diversity of biotic and abiotic conditions across 178 

these sites, including tree species, temperature, precipitation, and soil types (Cao et al., 2006; 179 

Wu et al., 2006), which allowed for a broader-scale evaluation of our model. 180 

 181 



2.1.1.2 Field measurements of environmental variables, leaf traits, and ΔT  182 

At the CB and XSBN sites, field measurements were conducted during the peak growing 183 

season (July-August) of 2019, and all the leaves surveyed were fully expanded leaves to 184 

minimize the effects of leaf age. Environmental variables including photosynthetically active 185 

radiation (PAR), air temperature (Tair), relative humidity (RH), and wind speed (u) were 186 

logged by a weather station (WatchDog 2550) at half-hour intervals. Four leaf traits: Vc,max25  187 

(measured by portable gas exchange systems—LI-6400XT); visible and near-infrared light 188 

absorptance (αPAR and αNIR; measured by a spectrometer—Spectra Vista Corporation, SVC, 189 

HR-1024i); leaf width derived via the scanned images and ImageJ software (version 1.53); 190 

and Tleaf close to solar noon (measured by a thermal camera between 10:30 am and 1:30 pm, 191 

FLIR-T650sc AB, Band range: 7.5-13.0 μm) were measured for sunlit leaves from 19 canopy 192 

trees across 7 abundant tree species in CB and 26 canopy trees across 15 abundant tree 193 

species in XSBN (Table S1), following the protocols used in previous studies (Majcher, 194 

2018; Wu et al., 2019; Yan et al., 2021).  195 

 196 

At the PE site, field measurements were conducted during the middle-to-end of the growing 197 

season (February-May) of 2018 and all the leaves surveyed have been strictly controlled on 198 

the fully expanded leaves to minimize the effects of leaf age. The environmental variables 199 

collected (consistent with CB and XSBN sites) were derived from a local flux tower 200 

belonging to Embrapa Semi-Árido, Brazil. Leaf width, Tleaf, and ΔT close to solar noon were 201 

measured for sunlit leaves from 27 canopy trees across 13 most abundant Caatinga tree 202 

species (Table S1). It is worth noting that there were no measurements of leaf emissivity 203 

(εleaf) and g1 in our three sites (Table 1).  204 

 205 

2.1.2 Data collection close to midnight 206 



At the CB, XSBN, and PE sites, we lacked night-time Tleaf and paired environmental 207 

observations to derive and validate the trait-ΔT relationship because the relevant facilities 208 

could not be used at night due to safety concerns. Thus, we turned to the datasets assembled 209 

from previous publications to retrieve environmental data, leaf traits, and ΔT. For this, in 210 

September 2021, we searched the Web of Science Core Collection database using the 211 

combined keywords of ‘leaf temperature’ and ‘leaf traits’ and ‘night’ as the search terms, 212 

returning a total of 204 peer-reviewed papers. We thoroughly reviewed these articles and 213 

checked whether they included paired night-time measurements of any of the six leaf traits in 214 

our model and all of the necessary environmental data to model Tleaf. Based on the above 215 

criteria, two papers, Lusk & Clearwater (2015) and Lusk et al. (2018), were found to include 216 

90 leaves with paired measurements from 21 tree species of two temperate forest sites in New 217 

Zealand close to midnight.  218 

 219 

From these papers, environmental variables, including air temperature, humidity, wind speed, 220 

and PAR (that was by default set zero at night), were recorded by meteorological sensors 221 

with data loggers. Leaf temperature was measured by a thermocouple. Only one trait, leaf 222 

width, was measured, and the other five traits in our model were not observed in any previous 223 

study.  224 

 225 

2.2 Trait-based leaf energy balance model and model assessments 226 

2.2.1 A trait-based leaf energy balance model 227 

To represent trait-ΔT relationships in a mechanistic way, we built a trait-based model, in 228 

which leaf traits were used as model parameters. Our trait-based model integrated a plant 229 

physiology model (Wu et al., 2017) with a steady-state leaf energy balance model (Equations 230 

1-2; Campbell & Norman, 2012), where leaf temperature (Tleaf; 
oC) or ΔT is derived based on 231 



the balance between the net radiation flux (Rn; W m-2), latent heat flux (λE; W m-2), and 232 

sensible heat flux (H; W m-2).  233 

𝐻 = 𝑅𝑛 − 𝜆𝐸                                                             (1) 234 

Δ𝑇 = 𝑇leaf   − 𝑇air  = 𝐻/ (𝑐𝑝 × 𝑔𝐻)  = (𝑅𝑛 − 𝜆𝐸) / (𝑐𝑝 × 𝑔𝐻)                (2) 235 

𝜆𝐸 = 𝜆 ×
𝑔𝑠×𝑔𝑏

𝑔𝑠+𝑔𝑏
× VPD𝑙𝑒𝑎𝑓 ×

1

𝑃𝑎
                                            (3) 236 

where cp refers to the specific heat capacity of air; gs and gb are stomatal conductance and 237 

boundary layer conductance for water vapour, respectively; Pa is the atmospheric pressure; gH 238 

is boundary layer conductance and can be described as a function of leaf width (d) and wind 239 

speed (u) (see Table S2 for details). λE in Equation 3 is determined by the leaf-to-air VPD 240 

and diffusivity conductance (the function of gs and gb), where gs can be described using a 241 

stomatal conductance model (Medlyn et al., 2011). The Medlyn-type stomatal conductance 242 

model was used because it is a mechanistic model based on the optimality theory and has 243 

been shown to model gs with high accuracy (e.g. Duursma, 2015; Wu et al., 2020).  244 

 245 

Because net assimilation rate (An), often characterized by the Farquhar-von Caemmerer-Berry 246 

photosynthesis model (FvCB; Farquhar et al., 1980), is an essential input for the Medlyn-type 247 

gs model, the coupling of the two models (FvCB-Medlyn model) would allow for direct 248 

modeling of gs. The FvCB-Medlyn modeled gs, together with leaf traits and environmental 249 

variables, is then used to derive the energy fluxes (e.g. λE) in the energy balance model 250 

(Janka et al., 2016). Specifically, the integration of these models (i.e. leaf energy balance 251 

model and FvCB-Medlyn model) consists of three steps. First, the initial values of Tleaf (set as 252 

Tair) and Ci (set as 0.7×Ca, Ca=400 ppm), together with other relevant variables and 253 

parameters (e.g. Vc,max, PAR, and so on, see Table S4), were input into the FvCB model to 254 

obtain net photosynthesis rate (An) (indicated by the yellow box of Fig. S1). Second, after 255 

obtaining the An value, stomatal conductance (gs) was then calculated using the Medlyn-type 256 



model, followed with an update value on Ci based on the Equation of Ci = Ca-1.6*An/gs 257 

(Warren & Adams, 2006). We kept looping these two steps until the convergence of Ci and gs 258 

(indicated by the green box in Fig. S1). Third, we input the gs into the leaf energy balance 259 

equation to calculate the three energy fluxes (i.e. Rn, λE, and H) for deriving Tleaf, and kept 260 

looping all the above three steps until these energy fluxes being balanced (i.e. Rn -H- λE=0). 261 

As a result, the final modeled Tleaf was derived. 262 

 263 

There are three types of model inputs in our trait-based leaf energy balance model. The first 264 

type includes six leaf traits (Fig. 1), namely, εleaf, αPAR, αNIR, d, Vc,max25, and g1. We here did 265 

not include leaf mass per area (LMA, a key leaf trait in TBMs), since it is not directly linked 266 

to the leaf-level energy balance equation (see Fig. 1 and Equations in Table S2). The second 267 

type is environmental variables, including Tair (oC), PAR (μmol m-2 s-1), atmospheric CO2 268 

concentration (Ca; ppm), RH (%), and u (m s-1). The third type is model constants, such as the 269 

specific heat capacity of air (cp= 29.3 J mol-1 K-1) and latent heat of vaporization of water (λ= 270 

44000 J mol-1). The details of these inputs are shown in Table S4. 271 

 272 

Due to some higher-order nonlinear energy terms associated with Tleaf in the energy balance 273 

equations (e.g. Equations 4 & 18 of Table S2), there is no analytical solution for Tleaf. Instead, 274 

two alternative approaches are often proposed, namely, the linear approximation approach 275 

(Paw, 1987) and numerical solution (Gutschick, 2016). The linear approximation approach 276 

uses a linearized first/second-order Taylor approximation for the nonlinear terms, but its 277 

accuracy decreases with an increase in ΔT (Tracy et al., 1984). In the second approach, the 278 

iteration process starts with assigning an initial value of Tleaf (e.g. Tleaf=Tair), followed by 279 

calculated intermediate variables and associated updated value of Tleaf, and then repeats the 280 

above process until the whole set of energy equations are balanced. In our study, we used the 281 



second approach to solve Tleaf since it is more accurate (Gutschick, 2016). Our trait-based leaf 282 

energy balance model was coded in MATLAB (R2019a; MathWorks Inc., Natick, 283 

Massachusetts), following the framework and equations shown in Fig. S1 and Table S2-S3. 284 

Our code and all the data used in this study are available on this GitHub page:  285 

https://github.com/guozhengfei/trait-based-leaf-energy-balance-model. 286 

 287 

2.2.2 Model assessments 288 

To assess model accuracy, we compared modeled Tleaf and ΔT with corresponding field 289 

observations. Specifically, leaf traits and associated in-situ measurements of environmental 290 

variables at the CB and XSBN sites were used to drive the trait-based model (the details are 291 

shown in Table 1). As we didn’t measure g1 in our field records, we used a global synthesis 292 

study (Lin et al., 2015) and assigned PFT (plant functional type)-specific g1 values for CB 293 

(g1=4.64) and XSBN (g1=3.77), respectively. Our analysis shows strong agreements between 294 

both model-derived Tleaf and ΔT with field observations (Fig. S2; R2=0.93 for Tleaf and 295 

R2=0.71 for ΔT), consistent within and across the two forest sites. 296 

 297 

2.3 Model sensitivity analysis 298 

After model evaluation, we carried out a global sensitivity analysis on the trait-based model 299 

to address two questions: (1) To what extent do leaf traits regulate ΔT variability? (2) What 300 

are the most important traits that regulate ΔT variability, and how do their relative roles vary 301 

at the diel timescale? To address these two questions, we used a set of in-situ measurements 302 

of environmental variables as the model input while allowing the trait variability to cover the 303 

full range of values reported by the literature (Table 2).  304 

 305 



There are four steps in the model sensitivity analysis. Step 1 is the set-up of environmental 306 

variables (Table 2). We used the in-situ diel measurements of all environmental variables 307 

(Fig. S3) except wind speed. The wind speed values were set as constants for daily averages 308 

following the similar protocol of Wright et al. (2017) to control the ΔT variability caused by 309 

the irregular disturbance of wind speed (Fig. S3d) while emphasizing the ΔT variability 310 

resulting strictly from the biotic controls. To further validate this approach, we conducted a 311 

series of model simulations, and demonstrated that despite the wind speed having a strong 312 

influence on the magnitude of ΔT (Fig. S4), the model-derived trait-ΔT relationships 313 

remained comparable across various wind speed scenarios (Fig. S5).   314 

 315 

Step 2 is the set-up of leaf traits. We built up a one-time random sampling for each of all six 316 

leaf traits using Sobol’ quasi-random sequences (Sobol’ et al., 2011), each of which has a 317 

uniform distribution following a predefined trait range from the literature (Table 2). The 318 

uniform random sampling approach was used here based on an assumption that these six 319 

traits are independent of each other. To ensure this assumption is reasonable, we analyzed the 320 

correlations among four measured leaf traits (i.e. leaf size, PAR absorptance, NIR 321 

absorptance, and Vc,max25) and the result confirms no covariance among them (Fig. S6). We 322 

then performed an additional analysis with the sample size varying from 100 to 10000 and 323 

found that the explored trait-ΔT relationships stabilized when the sample size was above 2000 324 

(Fig. S7). We thus used a sample size of 2000 for the construction of our random trait 325 

combinations.  326 

 327 

Step 3 is model simulations using our trait-based leaf energy balance model. With the 328 

ensemble of trait combinations (n=2000) generated in step 2, together with the prescribed diel 329 

environmental variables (in half-an-hour intervals) in step 1, we ran the trait-based leaf 330 



energy balance model to infer Tleaf/ΔT, from which we further calculated the variability range 331 

of the modeled Tleaf and ΔT for each time step over the full diel timescale, addressing our 332 

question 1. 333 

 334 

Step 4 is variance partitioning. For each time step (with constant environmental conditions) 335 

throughout the diel timescale, we employed a widely used global variance-based sensitivity 336 

analysis algorithm (EFAST, Saltelli et al., 2010), which captures both the direct and indirect 337 

effects of model parameters on model output. Using this method, we partitioned the variance 338 

of modeled Tleaf and ΔT to the variability of each leaf trait, addressing our question 2.  339 

 340 

We also output several intermediate model state variables, including Rn, λE, and gH, to help 341 

explain the mechanism underlying traits’ role in regulating ΔT variability at the diel timescale. 342 

 343 

2.4 Trait-ΔT relationships evaluation with field observations 344 

To address our question 3 (Do modeled trait-ΔT relationships agree with field observations?), 345 

we evaluated model-derived trait-ΔT relationships against field observations made close to 346 

midday or midnight (Table 3). Here, traits’ relative importance on ΔT could be represented 347 

by the R2 of trait-ΔT, the higher the corresponding R2, the greater the relative importance,(Fig. 348 

S8). For the midday evaluation, we used field measurements made close to local solar noon 349 

(10:30 am-1:30 pm) under clear-sky days at our three forest sites, and analysed the 350 

relationships of ΔT with Vc,max25, αPAR, αNIR, and leaf width. For the midnight evaluation, we 351 

used field observations (made close to midnight around between 0:00 am and 2:00 am) 352 

assembled from previous publications (i.e. Lusk & Clearwater, 2015; Lusk et al., 2018), 353 

including leaf width, ΔT, and relevant environmental data, to derive and evaluate the leaf 354 

trait-ΔT relationship. Regardless of the trait-ΔT relationships derived from models and 355 



observations, we used ordinary least-squares regressions to examine these relationships. It is 356 

also important to note that the trait-based energy balance model was driven by the same set of 357 

environmental variables corresponding to field-based paired measurements of traits and ΔT 358 

for each site (Table 3). 359 

 360 

3. Results 361 

3.1 Diel variations in model-derived Tleaf and ΔT  362 

The diel patterns were assessed with two metrics, the mean and range of Tleaf and ΔT, both of 363 

which showed large but consistent diel patterns across all the three forest sites (Fig. 2). 364 

Specifically, for each site, we observed that both environmental variables and leaf traits drove 365 

the diel variations in Tleaf and ΔT, with the diel changes in mean Tleaf and ΔT primarily driven 366 

by the diel environmental variability since the same set of leaf traits were used throughout the 367 

day. However, as the environmental conditions were set constant for each half-hour time 368 

point, the range of Tleaf and ΔT (i.e. the error bars in Fig. 2) was caused solely by leaf traits. 369 

 370 

The diurnal variation in ΔT could further be divided into the following three phases: 1) from 371 

early morning to middle afternoon (e.g. 6 am to 4 pm in Fig. 2a-ii), ΔT was positive with an 372 

initial increase in its mean and range until peak (c. 15.0°C in ΔT range) at noon, followed 373 

with slight declines afterwards; 2) from mid-afternoon to sunset (e.g. 4 pm to 8 pm in Fig. 2a-374 

ii), ΔT was all negative with continuous decreases in its mean and range; and 3) during the 375 

night-time (e.g. before 6 am or after 8 pm in Fig. 2a-ii), ΔT was all negative and nearly 376 

constant for both its mean (c. -2.0°C ) and range (c. 3.0°C ). 377 

 378 

To explore the drivers of the diel ΔT variation, we assessed the diel dynamics of Rn, λE, and 379 

gH that determined ΔT. We observed nearly constant mean and range values of gH across the 380 



full diel timescale (Fig. 2a,b,c-iii), suggesting that gH was not the state variable responsible 381 

for the model-derived ΔT variability. In contrast, Rn and λE demonstrated significant diurnal 382 

variations, and the difference between these two variables (Rn-λE) precisely tracked the 383 

diurnal pattern in ΔT in terms of both sign and range of its variability, with positive Rn-λE 384 

leading to positive ΔT and vice versa (Fig. 2a,b,c-iv). For night-time, since λE=0, the ΔT 385 

variability was primarily determined by the ratio of Rn/gH, where Rn and gH were both nearly 386 

constant in their means and ranges (Fig. 2a,b,c-iii and Fig. 2a,b,c-iv), resulting in relatively 387 

stable ΔT during the night-time (Fig. 2a,b,c-ii). 388 

 389 

3.2 Relative importance of leaf traits in regulating ΔT variability at the diel timescale 390 

Our results identified leaf width, Vc,max25, and g1 as the three most important traits that 391 

cumulatively explained over 90% of ΔT variability. Their relative importance was not static, 392 

showing strong variations across the full diel timescale (Fig. 3). During night-time, leaf width 393 

explained over 90% of the model-derived ΔT variability, with leaf emissivity accounting for 394 

the remaining part. During day-time, g1 and Vc,max25 had increased relative importance, and 395 

together with leaf width explained around 90% of the ΔT variability (Figs. 3 and S10). 396 

Specifically, the relative importance of these three traits was observed to follow a W-shaped 397 

pattern during day-time, and the timing when Tleaf equals Tair because Rn = λE determined the 398 

critical transition points of the W-shape, during which the relative role of leaf width was 399 

diminished while showing a higher value before and afterwards. In contrast, the relative 400 

importance of g1 and Vc,max25 showed complementary and inversed trends to that of leaf width. 401 

Finally, we demonstrated a varying response of each state variable (i.e. Rn, gH, and λE) to 402 

specific leaf traits as the main reason for why traits displayed varied importance in regulating 403 

ΔT (Fig. 4). 404 

 405 



3.3 Evaluations of the model-derived trait-ΔT relationships with field observations 406 

For midnight, only one trait, leaf width, was found to have been reported in the literature 407 

matching our search criteria. Regardless, both field observations and model results 408 

demonstrated that leaf width explained most of the night-time ΔT variability, with ΔT 409 

decreasing exponentially with leaf width (R2=0.89 for observations and R2=0.97 for model; 410 

Fig. 5), agreeing with other studies (Wright et al., 2017; Lusk et al., 2018). During midday, 411 

among the four traits analysed (Vc,max25, leaf width, αPAR, and αNIR), the trait-ΔT relationships 412 

derived from field observations and model were very comparable (Fig. 6). Specifically, both 413 

observations and model demonstrated a negative exponential relationship between Vc,max25 414 

and ΔT (R2=0.17-0.33 for observations and R2=0.22 for model; Fig. 6a), a positive 415 

exponential relationship between leaf width and ΔT (Fig. 6b), and weak relationships 416 

between ΔT with αPAR and αNIR (Fig. 6c-d). 417 

 418 

4. Discussion 419 

4.1 Important biotic regulations of ΔT variability 420 

For long, plant species have been suggested to be characterized by a set of plant traits 421 

(Wright et al., 2004; Weng et al., 2017; Franklin et al., 2020). Here, we used a trait-based 422 

leaf energy balance model to investigate the dominant biotic controls on ΔT. Our results 423 

demonstrate that the range of ΔT variability is strongly mediated by a combination of leaf 424 

traits (Fig. 2a,b,c-ii) across the diel timescale. The observed large variability in trait-mediated 425 

ΔT, including the range of ΔT variability peak at noon (from -2.9  to 11.9℃) and minimum at 426 

midnight (from -3.5 to -0.1℃), is consistent with several previous field-based studies. For 427 

example, researchers found that the ΔT variation at the interspecific level varied from 0.3 to 428 

4.8℃ in a mixed temperate deciduous forest in Switzerland (Leuzinger & Körner, 2007), and 429 

-2.8 to 7.5℃ in a tropical evergreen forest in Southeast China (Dong et al., 2016). Meanwhile, 430 



consistently negative night-time ΔT across species ranging from -3.2 to -0.8℃  in a temperate 431 

deciduous forest in New Zealand (Lusk et al., 2018) and from -3.0 to -0.5℃ in a desert plant 432 

community in Egypt (Hegazy & El Amry, 1998) were also observed. Our results, together 433 

with these previous studies, highlight the importance of leaf traits in regulating ΔT variability. 434 

 435 

Our finding of large trait-associated ΔT variability also calls for caution on using ΔT for plant 436 

health monitoring (Gerhards et al., 2016; Jin et al., 2017). Recently, the monitoring of Tleaf or 437 

ΔT has been increasingly advocated as an integral component for plant health monitoring, 438 

since under similar environmental conditions, a higher Tleaf or ΔT is more likely associated 439 

with reduced plant transpiration and water stress statuses (Isoda, 2010; Gerhards et al., 2016; 440 

Niu & Xiang, 2018). This approach might work well when tracking the same plant species 441 

across local-space and limited-time scales (Jones & Leinonen, 2003; Sagan et al., 2019). 442 

However, it is risky when monitoring species-rich vegetative communities where trait-443 

induced ΔT variability can be large, as a higher ΔT may be caused exclusively by leaf traits 444 

rather than stress status (e.g. Fig. 2). Consequently, we recommend considering these 445 

intrinsic biotic regulations of ΔT when using thermal remote sensing techniques to monitor 446 

plant health statuses. 447 

 448 

4.2 Dynamic relative importance of leaf traits in regulating ΔT variability at the diel 449 

timescale 450 

Our study demonstrated that leaf width, Vc,max25, and g1 are the three dominant traits 451 

regulating ΔT, followed by αNIR, αPAR, and emissivity (Fig. 3). Although leaf width regulating 452 

ΔT through altering leaves’ boundary larger conductance has been well known (Jones, 2013; 453 

Aubrecht et al., 2016), the dominant role of g1 and Vc,max25 on ΔT regulation has rarely been 454 

reported previously. g1 and Vc,max25 regulate Tleaf and ΔT primarily because they control the 455 



stomatal behaviours, and thus cooling air temperature through leaf transpiration. Specifically, 456 

as shown in Equation 4 (Medlyn et al., 2011), under a given environmental condition, gs 457 

scales linearly with stomatal slope (g1) and net assimilation rate (An), which is positively 458 

correlated with Vc,max25 (Farquhar et al., 1980).  459 

𝑔𝑠 = 1.6 × (1 +
𝑔1

√𝑉𝑃𝐷
) ×

𝐴𝑛

𝐶𝑎
,

   
 𝐴𝑛

∝ 𝑉𝑐,𝑚𝑎𝑥25                             (4) 460 

 461 

Additionally, the relative importance of leaf traits in regulating ΔT is not static, instead, they 462 

show strong diel variation (Fig. 3). To our knowledge, this is the first study uncovering a 463 

novel insight into diel changes in the proportionate importance of leaf traits in regulating ΔT 464 

dynamics. Meanwhile, the dynamic traits-ΔT relationship derived by our trait-based model 465 

during night-time and day-time is further confirmed with field observations (Figs. 4 and 5). 466 

These dynamic trait-ΔT relationships further suggest that previous empirical explorations of 467 

trait-ΔT relationships that focus on either some traits with no direct links with leaf energy 468 

balance (e.g. leaf circularity; Majcher, 2018) or certain fixed time point of measurements (e.g. 469 

Leuzinger & Körner, 2007; Leigh et al., 2012) are limited. A recent study has also pointed 470 

out that traits that are common but not directly linked to energy balance (e.g. nitrogen 471 

fraction and δ13C) are not very useful in predicting Tleaf or ΔT (Blonder et al., 2020). 472 

 473 

The reason for the change in the relative importance of leaf traits in regulating ΔT is that Rn, 474 

H, and λE jointly determine ΔT, while each of them is jointly determined by both 475 

environmental variables (change throughout the day) and associated leaf traits (Fig. 1). For 476 

example, as shown in Fig. 2, Rn displays a clear diel trend following a similar shape as the 477 

diel pattern of PAR. Diurnal variation in λE is tightly related to diurnal variation in leaf 478 

ecophysiology (i.e. stomatal conductance tied to Vc,max25 and g1) and VPD (Figs 2 and S4). 479 

Since the diurnal patterns in Rn and λE are different, it further suggests that the relative roles 480 



of Rn and λE in determining ΔT (proportional to Rn-λE) can be different across the diel time 481 

scale. Together with the different roles of each trait on mediating Rn and λE (Fig. 4), these 482 

ultimately lead to the dynamic relative role of each trait in regulating ΔT.  483 

 484 

With these findings, our work generates two implications. Firstly, our observed diel variation 485 

in leaf width-ΔT relationships helps explain the macro patterns of leaf width distribution 486 

across large environmental gradients. Consistent with several previous field-based studies 487 

(Lusk et al., 2018; Majcher, 2018), our results demonstrate a tight and negative leaf width-ΔT 488 

relationship during night-time (Fig. 5) and a positive leaf width-ΔT relationship during day-489 

time (Fig. 6b). The observed negative leaf width-ΔT relationship at night may imply that 490 

plants living in cold regions tend to maintain smaller leaf width to avoid night-time over-491 

cooling. The observed positive leaf width-ΔT relationship during day-time may imply that 492 

plants living in hot and dry environments tend to maintain smaller leaf width to avoid day-493 

time overheating. Both of them are consistent with many empirical observations that have 494 

been conducted across large temperature (Peppe et al., 2011; Wright et al., 2017; Lusk et al., 495 

2018) or rainfall (McDonald et al., 2003; Li et al., 2020) gradients. These together suggest 496 

that trait-mediated plant thermoregulation can be an important strategy to help interpret 497 

macroecological patterns of climate-trait relationships, and our trait-based leaf energy 498 

balance model could be a potential tool for this exploration. In addition to leaf 499 

thermoregulation as a candidate strategy, it is also worth noting that many other factors (e.g. 500 

plant height, water, light, and nutrient availability) can operate as alternative mechanisms in 501 

structuring the biogeography of leaf width (Wright et al., 2017; Lusk et al., 2018). 502 

 503 

Secondly, both our modeled and field-derived trait-ΔT relationships highlight that there are 504 

key leaf traits regulating ΔT and should be accurately represented in modeling. Since the 505 



overall framework of our trait-based modeling approach is similar to that module in TBMs, 506 

our findings have direct implications for TBMs as well. The leaf energy balance model has 507 

long been a critical component for simulating plant ecophysiological responses in TBMs 508 

(Oleson et al., 2010; Lawrence et al., 2018), but their trait parameterization remains 509 

oversimplified, e.g. assigning fixed trait values for each plant functional type, resulting in the 510 

large modeling uncertainty (Rogers et al., 2017; Fisher et al., 2018). Our finding of large 511 

modeled trait-mediated ΔT variability, as well as the dynamics of traits’ relative roles 512 

throughout the diel timescale, suggests the importance of incorporating multiple traits, 513 

particularly leaf width, Vc,max25, and g1, and associated trait variability in TBMs. 514 

  515 

4.3 Caveats and future directions  516 

Our work also has two important caveats that need to be improved in the future. First, our 517 

demonstration of biotic regulations of ΔT relied on a specific abiotic condition (i.e. clear-sky 518 

days and without environmental stress). This simplification was essential to help understand 519 

the dominant biotic controls, but is not complete as ΔT is jointly determined by leaf traits and 520 

environmental conditions (see our trait-based leaf energy balance model and also Michaletz 521 

et al., 2015; Gutschick, 2016). Especially when plants are under environmental stress, e.g. 522 

extreme heat/drought environment, leaves may have a thermal response that differs from 523 

normal conditions, because atmospheric water demand (VPD) increases but soil water supply 524 

(e.g. soil moisture) decreases, affecting the plant water use efficiency (reflected by the change 525 

in leaf water potential, g1 and Vc,max25; e.g. Zhou et al., 2014; Anderregg et al., 2017), 526 

transpiration, and thus Tleaf. Additionally, we only collected paired measurements of ΔT and 527 

leaf traits at the peak growing season of limited sites close to midday or midnight to validate 528 

our results, with a lack of observations at other time points throughout the diel timescale or 529 

other seasons of the year. Therefore, a comprehensive understanding and model evaluation of 530 



the ΔT variability across more representative field sites over various environmental 531 

conditions (e.g. across the full growing season or under environmental stress) and the full diel 532 

timescale is still needed. 533 

 534 

Second, to minimize additional sources of uncertainty, we focused this study on the leaf level 535 

and did not consider night-time transpiration. However, night-time transpiration for some 536 

plants cannot be ignored (Caird et al., 2007; Sadok & Jagadish, 2020), and should be 537 

considered in future studies.  Meanwhile, the understanding of dominant biotic regulations of 538 

ΔT at the canopy or ecosystem level is even more important, but is more challenging as well 539 

(Gutschick, 2016; Zellweger et al., 2019). Larger scales representing entire plants or forest 540 

ecosystems as a whole responding to the ambient environment can be evaluated with 541 

measurements of sap flow, eddy covariance, and proximate and satellite remote sensing 542 

(Doughty et al., 2008; Newman et al., 2019). With the validation of the trait-based energy 543 

balance model in this study, the next important step is to extend the current modeling work 544 

from leaf to canopy and ecosystem levels, which ultimately allows us to quantitatively assess 545 

the roles of canopy structure, leaf traits, and microclimate (Jucker et al., 2018; Zellweger et 546 

al., 2019) in regulating ΔT variability from individual plants to forest ecosystems. The global 547 

plant traits dataset (e.g. TRY; Kattge et al., 2020) and the technique using vegetation 548 

spectroscopy to infer leaf traits (Serbin et al., 2015; Wu et al., 2019) would offer important 549 

datasets for such scaling exploration, and these efforts are still greatly needed in the future. 550 

 551 

5. Conclusions 552 

In this study, we developed a coupled trait-based leaf energy balance model to explore the 553 

role of different leaf traits in mediating leaf thermoregulation (approximated by ΔT). Our 554 

results show that leaf traits were important regulators of ΔT variability across the full diel 555 



timescale (Fig. 2), highlighting the importance of considering biotic controls when predicting 556 

leaf temperature. Among the six leaf traits included in the model, leaf width, Vc,max25, and g1 557 

were the most important, and their relative importance in regulating ΔT varied considerably 558 

throughout the day (Fig. 3), agreeing with field observations (Figs. 5 and 6). This suggests 559 

these three are the key leaf traits that need to be accurately parameterized when modeling leaf 560 

temperature and associated physiological processes, as well as in TBMs aiming to study the 561 

large-scale pattern of vegetation and atmosphere interactions. Collectively, our study 562 

improves the process understanding of biotic regulations of ΔT, offering a trait-based 563 

mechanistic approach to improve our understanding of leaf thermoregulation strategies across 564 

plant individuals and associated modeling of plant physiological response to climate 565 

variability. 566 
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 833 



Table 1. The source of environmental and trait data (grey zone) used for driving and evaluating a trait-based leaf energy balance model in 834 

simulating Tleaf and ΔT at the Changbai (CB) and Xishuangbanna (XSBN) canopy crane sites. 835 

Symbol Description Unit Source Equipment/software 

Tair Air temperature ℃ CB & XSBN sites Weather station 

u Wind speed m s-1 CB & XSBN sites Weather station 

PAR Photosynthetically active radiation μmol m-2 s-1 CB & XSBN sites Weather station 

RH Relative humidity -- CB & XSBN sites Weather station 

d Leaf width m CB & XSBN sites Image J 

αPAR Absorptance of PAR band  -- CB & XSBN sites SVC and PROSPECT 

αNIR Absorptance of NIR band  -- CB & XSBN sites SVC and PROSPECT 

𝜀leaf Leaf emissivity -- set as 0.95 -- 

Vc,max 25 Maximum carboxylation rate at 25℃ μmol m-2 s-1 CB & XSBN sites LI-COR 6400 

g1 Stomatal slope  -- PFT-specific [1] -- 

Tleaf Leaf temperature ℃ CB & XSBN sites Thermal camera 

[1] Lin et al. (2015). 836 

  837 



Table 2. The source of environmental and trait data (grey zone) used to drive a trait-based leaf energy balance model 838 

through model sensitivity analysis respectively conducted at each forest site level. 839 

Model input Unit Global range Source 

Tair ℃ -- CB, XSBN, PE sites 

u m s-1 -- CB, XSBN, PE sites 

PAR μmol m-2 s-1 -- CB, XSBN, PE sites 

RH -- -- CB, XSBN, PE sites 

d m 0.004-0.4 Wright et al. (2017) 

αPAR m 0.73-0.96 Féret et al. (2017) 

αNIR -- 0.24-0.64 Féret et al. (2017) 

𝜀leaf -- 0.95-0.995 Chen et al. (2015) 

Vc,max 25 μmol m-2 s-1 13-163 Rogers (2014) 

g1 -- 0.27-8.28 Lin et al. (2015) 

 840 

Table 3. The source of environmental and trait data (grey zone) respectively used to derive modeled and field-observed trait-ΔT relationships. 841 

Trait- ΔT relationship Time 
Model simulation validation 

Environment source Global trait range Environment source Filed-measured trait and ΔT 

Leaf size-ΔT Midday CB, XSBN, PE 0.004-0.4 m CB, XSBN, PE CB, XSBN, PE  

PAR absorptance-ΔT Midday CB, XSBN 0.73-0.96 CB, XSBN CB, XSBN 

NIR absorptance-ΔT Midday CB, XSBN 0.24-0.64 CB, XSBN CB, XSBN 

Vc,max 25-ΔT Midday CB, XSBN 13-163 μmol m-2 s-1 CB, XSBN CB, XSBN 

Leaf size-ΔT Midnight Literature [1] (New Zealand) 0.004-0.4 m Literature [1] (New Zealand) Literature [1] (New Zealand) 

[1] Lusk & Clearwater (2015); Lusk et al. (2018). 842 



Main Figures  843 

 844 

Figure 1. Theoretical pathways connecting leaf traits and associated process variables within 845 

the leaf energy balance equation that infers leaf-to-air temperature difference (∆T). ∆T is 846 

determined by three energy fluxes (i.e. net radiation, sensible heat, and latent heat), which are 847 

further connected with the six leaf traits, including absorptance of PAR (αPAR, 400-700nm), 848 

absorptance of NIR (700-2500nm), emissivity, leaf width, Medlyn-type stomatal slope (g1) 849 

(Medlyn et al., 2012), and maximum carboxylation capacity (Vc,max25).   850 



 851 

Figure 2. Diel variations in leaf temperature, air temperature, ∆T, and the associated three 852 

state variables (i.e. gH, Rn, and λE) were derived based on our trait-based leaf energy balance 853 

model. Error bars indicate the ranges of maximum and minimum values of modeling results 854 

associated with leaf traits at each given time of the day. The results are shown for three sites: 855 

(a) CB, (b) XSBN, and (c) PE. The panels (i-iv) represent (i) modeled leaf temperature and 856 

field-observed air temperature, (ii) modeled ∆T (modeled leaf temperature minus field-857 

observed air temperature), (iii) modeled heat boundary layer conductance of leaf (gH), and (iv) 858 

modeled net radiation flux (Rn), latent heat flux (λE) , and sensible heat flux (Rn - λE).  Night-859 



time is defined as the period when PAR is less than 10 μmol m-2 s-1. The grey zones in this 860 

figure indicate the time period when leaf temperature is higher than air temperature; the two 861 

red dash lines correspond to the time points when Rn = λE (also Tleaf =Tair).   862 



 863 

Figure 3. Diel variation in traits’ relative contribution on regulating the ΔT variability. Night-864 

time is defined as the period when PAR is less than 10 μmol m-2 s-1. The dashed lines in this 865 

figure indicate the time points when net radiation flux (Rn) is equal to latent heat flux (λE) 866 

(also see Fig. 2iv), during which leaf temperature is equal to air temperature and there is no 867 

sensible heat exchange. The pattern is consistent for the three forest sites: (a) CB, (b) XSBN, 868 

and (c) PE.   869 



 870 

Figure 4. Diel variation in traits’ relative contribution in regulating the three state variables 871 

(i.e. Rn, gH, and λE) that directly determine ΔT. The environmental variables from the CB site 872 

(the same as that used in Fig. 3a) are used here to drive the trait-based leaf energy balance 873 

model. The state variables of interest include (a) Rn, (b) gH, (c) Rn/gH, (d) λE, (e) λE/gH, and 874 

(h) (Rn-λE)/gH. Night-time is defined as the period when PAR is less than 10 μmol m-2 s-875 

1.  Notably, the displayed relative contribution of leaf traits on (Rn-λE)/gH is identical to traits’ 876 

relative roles on ΔT shown in Fig. 3a.   877 



 878 

Figure 5. Modeled and field-based (derived from previous literature; solid purple circles) 879 

relationship between leaf width and ΔT during night-time. The grey dots indicate the model-880 

derived leaf width-ΔT relationship under each random trait combination. The solid black line 881 

marks the best fitted negative exponential relationship of leaf width-ΔT based on all the trait 882 

combinations (n=2000). R2 indicates the determination of coefficients, and *** indicates the 883 

significance level of p<0.001 for the explored relationships. 884 

  885 



 886 

Figure 6. Modeled and field-based relationships between four leaf traits and ΔT during the 887 

noon-time (10:30 am-1:30 pm). Four leaf traits include (a) leaf maximum carboxylation rate 888 

scaled to 25℃ (Vc,max25), (b) leaf width, (c) the absorptance of PAR (αPAR), and (d) the 889 

absorptance of NIR (αNIR). The modeled results (grey dots for the simulation result under 890 

each random trait combination, and solid black lines/dashed color lines for corresponding 891 

best fitted relationships) are derived based on our trait-based leaf energy balance model. R2 892 

indicates the determination of coefficients, and two significant levels are used to indicate 893 

each relationship, including *** for p<0.001, and * for p<0.05.  894 
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Figure S1 The flowchart of deriving leaf temperature (Tleaf) using a trait-based leaf energy 898 
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 917 

Figure S1. The flowchart of deriving leaf temperature (Tleaf) using a trait-based leaf energy 918 

balance model that integrates a leaf energy balance model with a coupling of the FvCB-type 919 

photosynthesis model (Farquhar et al., 1980) and the Medlyn-type stomatal conductance 920 

model (Medlyn et al., 2011). 921 



 922 

Figure S2. Evaluation of our modeling results with field observations, including (a) leaf 923 

temperature (Tleaf) and (b) leaf-to-air temperature difference (ΔT). The model is driven by 924 

field-derived leaf traits and in-situ measurements of environmental variables at the CB and 925 

XSBN sites. The g1 was set as constant (i.e. 4.64 for CB and 3.77 for XSBN) following Lin et 926 

al. (2015).  The solid line shows the 1:1 line. The R2 and n represent the coefficient of 927 

determination and total field observation size, respectively. 928 
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 930 

Figure S3.  Diel patterns of key environmental variables at three forest sites, including (a) 931 

photosynthetically active radiation (PAR), (b) air temperature, (c) vapour pressure deficit of 932 

air (VPDair), and (d) wind speed. These three forest sites include a high latitude temperate 933 

forest at Mt. Changbai (CB) in Northern China, a tropical rainforest in Xishuangbanna 934 

(XSBN) of Southern China, and a tropical dry forest in Pernambuco (PE) of Brazil. 935 
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 937 

Figure S4. Assessing the impacts of wind speed on model-derived ΔT variability at both (a) 938 

noon-time (12 pm) and (b) midnight (0 am). The modeling results are based on an integration 939 

of the trait-based leaf energy balance model with field-measured environmental variables 940 

(except wind speed) under a clear-sky day of 2019-07-08 at the CB site, including the noon-941 

time PAR=2115.0 μmol m-2 s-1, Tair=25.5 ℃, and RH=35.7% and the night-time PAR=0.0 942 

μmol m-2 s-1, Tair=13.7 ℃, and RH=73.9%. The wind speed examined here ranges from 0.5 m 943 

s-1 to 7 m s-1 with an interval 0.5 m s-1. Error bars indicate the ranges of maximum and 944 

minimum values of modeled ΔT associated with leaf traits at each given wind speed. 945 

  946 



  947 

Figure S5. Assessing the impacts of different wind speed scenarios on model-derived traits’ 948 

relative contributions to the ΔT variability. Two types of wind speed settings are examined 949 

here. First, wind speed is set as a constant value across the diel timescale, including (a) 0.5 m 950 

s-1, (b) 1.2 m s-1 (daily average), (c) 2.0 m s-1, (d) 4.0 m s-1, and (e) 6.0 m s-1, respectively. 951 

Second, wind speed is set as (f) in-situ measurements throughout the entire diel timescale 952 

(also see Fig. S3d). The modeling results are based on an integration of the trait-based leaf 953 

energy balance model with field-measured environmental variables (except wind speed) 954 

under a clear-sky day of 2019-07-08 at the CB site, and the result shown in panel b is the 955 

same as that shown in Fig. 3a. 956 

 957 

  958 



 959 

Figure S6. Heat map showing R2 among four measured leaf traits (i.e. leaf size, PAR 960 

absorptance, NIR absorptance, and Vc,max25) at CB and XSBN sites. 961 

962 



 963 

Figure S7. Diel patterns of traits’ relative contribution on (a) ΔT and (b) trait-ΔT relationship. 964 

The larger contribution of one trait on ΔT in panel (a), the larger R2 between the trait and ΔT 965 

in panel (b), which means a higher explanation of this trait on ΔT variation. 966 

 967 

  968 



 969 

Figure S8. Changes in the standard deviation (SD) of total sensitivity index (STi) with the 970 

sample size (n). STi quantifies the proportion of model output variation explained by n and a 971 

larger STi indicates higher sensitivity. It is calculated using the Jansen estimator (Jansen., 972 

1999). The black dashed line indicates a 5‰ of the SD of STi, below which the model 973 

sensitivity is stable. 974 
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 976 

Figure S9. Example demonstration of deriving leaf temperature of canopy sunlit leaves from 977 

the thermal camera measurement. The in-situ thermal measurement of species Fraxinus ornus 978 

at the CB site on date 2019-07-03 is shown here for demonstration, and there are three steps 979 

for deriving leaf temperature. First, (a) a regular RGB photo, together with (b) a raw thermal 980 

photo, were simultaneously acquired using a thermal camera FLIR-T650sc (FLIR Systems 981 

AB, Taby, Sweden). Second, (c) the calibrated thermal photo is generated by calibrating the 982 

raw thermal photo with a R package of “ThermStats”. Third, (d) the classified image is 983 

derived that differentiates sunlit leaves from the shaded leaves and branches in the calibrated 984 

thermal image using a supervised image classification. The yellow ellipse circles indicate the 985 

region of interest, and all the sunlit leaves pixels in the yellow ellipse of the calibrated 986 

thermal photo (i.e. panel c) are finally used to estimate leaf temperature of the target tree 987 

species. 988 
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 990 

Figure S10. Leaf temperature variability and its drivers based on our model simulation. (a) 991 

Diel variations in leaf temperature, with error bars indicating the ranges of maximum and 992 

minimum values of modeling results associated with leaf traits at each given time of the day. 993 

(b) The drivers and their relative contributions to the leaf temperature variability at five given 994 

time points (corresponding to the orange lines in panel a). 995 

 996 
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Table S1. Summary of species and leaf traits of representative canopy trees across the three forest sites (i.e. CB, XSBN, and PE). The leaf traits 998 

include leaf width, PAR absorption, NIR absorption, and the maximum carboxylation rate of Rubisco standardized to 25℃ (Vc, max25). For each 999 

trait of a given species, data were used to calculate the mean trait value and the trait standard deviation (mean ± s.d.). The climatic conditions, 1000 

approximated by mean annual temperature (MAT) and mean annual precipitation (MAP), are shown below for each site. 1001 

Site description Specie name Leaf width 

(cm) 

PAR absorptance 

(unitless) 

NIR absorptance 

(unitless) 

Vc,max25 

(μmol m-2 s-1) 

# of  

trees 

# of 

 leaves 

Site_name: CB 

 

location:  

42°24′N, 128°06′E 

 

MAT: 2.8oC 

MAP: 691 mm  

Tilia amurensis 5.40 ± 0.07 0.90 ± 0.01 0.41 ± 0.01 66.3 ± 6.1 4 13 

Quercus mongolica 6.48 ± 0.05 0.93 ± 0.02 0.46 ± 0.01 50.2 ± 10.4 2 6 

Tilia mandshurica 8.72 ± 0.08 0.94 ± 0.01 0.48 ± 0.01 74.5 ± 10.8 4 11 

Fraxinus mandschurica 4.09 ± 0.04 0.93 ± 0.01 0.49 ± 0.01 68.1 ± 13.0 2 5 

Acer pictum subsp. mono 7.62 ± 0.04 0.93 ± 0.01 0.52 ± 0.01 25.3 ± 2.6 1 3 

Phellodendron 4.57 ± 0.05 0.94 ± 0.01 0.45 ± 0.01 35.6 ± 3.0 3 9 

Ulmus davidiana 4.00 ± 0.05 0.92 ± 0.01 0.48 ± 0.01 59.6 ± 5.8 3 9 

Site_name: XSBN 

 

Location: 

21°47′N, 101°03′E 

 

MAT: 21.8oC 

MAP: 1493 mm 

Parashorea chinensis 4.84 ± 0.00 0.89 ± 0.01 0.44 ± 0.01 31.3 ± 4.7 4 12 

Alseodaphne petiolaris 10.20 ± 0.10 0.94 ± 0.01 0.48 ± 0.02 35.9 ± 4.4 3 9 

Sapium baccatum 9.30 ± 0.15 0.95 ± 0.01 0.55 ± 0.02 54.0 ± 7.8 2 6 

Colona thorelii 6.00 ± 0.02 0.92 ± 0.02 0.40 ± 0.01 53.6 ± 12.0 2 6 

Castanopsis indica 6.40 ± 0.05 0.94 ± 0.01 0.49 ± 0.01 71.8 ± 14.0 2 6 

Schefflera bodinieri 5.50 ± 0.06 0.92 ± 0.01 0.53 ± 0.01 49.1 ± 14.0 1 3 

Sloanea tomentosa 5.00 ± 0.04 0.92 ± 0.01 0.48 ± 0.01 13.2 ± 2.8 1 3 

Pometia pinnata 6.75 ± 0.04 0.93 ± 0.01 0.53 ± 0.01 28.2 ± 4.2 2 5 

Litsea dilleniifolia 13.00 ± 0.08 0.92 ± 0.01 0.40 ± 0.01 23.8 ± 4.2 1 3 

Duabanga grandiflora 8.57 ± 0.06 0.93 ± 0.01 0.56 ± 0.01 53.2 ± 6.3 1 3 

Ficus langkokensis 4.43 ± 0.04 0.93 ± 0.01 0.41 ± 0.01 53.2 ± 6.3 2 6 

Lithocarpus grandifolius 6.40 ± 0.08 0.94 ± 0.01 0.49 ± 0.01 41.3 ± 9.7 1 2 

Lithocarpus craibianus 6.00 ± 0.15 0.92 ± 0.01 0.53 ± 0.01 45.4 ± 6.2 1 2 

Diospyros atrotricha 8.50 ± 0.07 0.95 ± 0.01 0.53 ± 0.01 42.3 ± 7.9 2 5 

 

 

Croton conduplicatus 2.89 ± 0.00 — — — 2 4 

Jathropa mollissima 15.80 ± 0.14 — — — 2 3 



 

Site_name: PE 

 

Location: 

9°03′S, 40°19′W 

 

MAT: 26.2oC 

MAP: 510 mm 

Commiphora leptophloeos 5.42 ± 0.04 — — — 2 3 

Cnidoscolus quercifolius 4.06 ± 0.04 — — — 1 2 

Schinopsis brasiliensis 6.10 ± 0.08 — — — 3 5 

Senegalia piauhiensis 7.44 ± 0.06 — — — 3 5 

Sapium glandulosum 4.05 ± 0.05 — — — 2 4 

Poincianella microphylla 3.30 ± 0.04 — — — 2 4 

Pseudobombax simplicifolium 4.40 ± 0.05 — — — 2 5 

Bauhinia cheilantha 6.46 ± 0.05 — — — 2 3 

Manihot pseudoglaziovii 10.44 ± 0.12 — — — 2 4 

Handroanthus spongiosus 6.82 ± 0.08 — — — 2 4 

Varronia leucocephala 0.22 ± 0.05 — — — 2 3 

 1002 



Table. S2. The equations of leaf energy balance model.  1003 

Equations Definition No. Ref. 

Rn = H + λE Leaf energy balance 

equation (W m-2) 

1 A, B 

Rn = Rabs -Loe Net radiation flux (W m-2) 2 A, B 

 
Absorbed radiation flux of 

leaf (W m-2) 

3 A, B 

 
Emitted radiation flux of 

leaf (W m-2) 

4 A, B 

2 ( )p H leaf airH c g T T    Sensible heat (convection) 

flux (W m-2) 

5 A, B 

 Heat boundary conductance 

(mol m-2 s-1) 

6 A, C 

 

Forced convection conduc-

tance of heat (mol m-2 s-1) 

7 A, C 

 

Free convection conduct-

ance of heat (mol m-2 s-1) 

8 A, C 

 

Reynolds number: Ratio of 

inertial viscous forces 

9 A 

 

Prandtl number: Ratio of 

kinematic viscosity to 

thermal diffusivity 

10 A 

 

Grashof number: Ratio of a 

buoyant force times an 

inertial force to the square 

of a viscous force 

11 A 

 
Latent heat (transpiration) 

flux (mol m-2 s-1) 

12 A 

 

Water vapor conductance 

(mol m-2 s-1) 

13 A 

 
Boundary layer 

conductance of water vapor 

(mol m-2 s-1) 

14 A, C 

 

Forced convection 

conductance of vapor (mol 

m-2 s-1) 

15 A 

 

Free convection 

conductance of vapor (mol 

m-2 s-1) 

16 A 

 

Prandtl number: Ratio of 

kinematic viscosity to mass 

diffusivity 

17 A 

 

Saturated vapor pressure at 

T ℃ (kPa) 

18 A, D 

 
Vapor pressure at T ℃ (kPa) 19 A 

Relevant references: A: Campbell & Norman (2012); B: Jones, (2013); C: Huang et al. 1004 

(2015); and D: Murray (1967). 1005 
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Table S3. The equations of FvCB-type leaf photosynthesis model (Farquhar et al., 1980), and 1006 

the Medlyn-type stomatal conductance model (Medlyn et al., 2011). 1007 

Equations Definition No. Ref. 

 
Leaf level net assimilation rate 

(μmol CO2 m
-2 s-1) 

1 E 

 
Rubisco-limited photosynthesis 

(μmol CO2 m
-2 s-1) 

2 E 

 

Effective Michaelis-Menten 

Constant 

3 E 

 

Electron-transport limited rate of 

photosynthesis (μmol CO2 m
-2 s-

1) 

4 E 

 
The rate of whole electron 

transport (μmol m-2 s-1) 

5 G 

 

The rate of electrons through the 

thylakoid membrane (μmol CO2 

m-2 s-1) 

6 E 

 
Triose phosphate export limited 

rate of photosynthesis (μmol 

CO2 m
-2 s-1) 

7 F 

 

  

Temperature functions for 

parameters that are based on 

Rubisco kinetic properties and 

do not have an optimum within a 

biologically significant 

temperature range (KC, KO,*, 

Rl, and in most cases Vc,max25) 

8 G 

 

Temperature function for 

maximum electron transport 

rate, Jmax 

9 G, H 

 
The coefficient for temperature 

function of Jmax 

10 G, H 

 Linear scaling relationship 

between Jmax25 and Vc,max25 

11 I, J 

 Leaf temperature in Kelvin 12 G 

 Leaf dark respiration at 25℃ 

(μmol CO2 m
-2 s-1) 

13 I 

 

Use the optimal stomatal model 

to estimate internal CO2 

concentration (Ci) from 

atmospheric CO2 concentration 

(Ca) and vapor pressure deficit 

(VPD) 

14 K 

Relevant references: E: Farquhar et al. (1980); F: Ryu et al. (2011); G: Bernacchi et al. 1008 

(2013); H: June et al. (2004); I: Bonan et al. (2014); J: Wu et al. (2017); and K: Medlyn et al. 1009 

(2011).1010 
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Table S4. Variables, parameters, and associated descriptions used in the trait-based leaf 1012 

energy balance model. 1013 

Model Symbols Definition Values Ref. 

L
ea

f 
en

er
g

y
 b

al
an

ce
 m

o
d

el
 

d Leaf width (m) 0.004-0.4 L 

𝜀leaf Leaf emissivity 0.95-0.995 M 

αPAR Leaf absorptance at the visible band (400-

700nm) 

0.73-0.96 N 

αNIR Leaf absorptance at NIR band (700-2500nm) 0.24-0.64 N 

PAR Photosynthetically active radiation observation - 

u Wind speed (m s-1) observation - 

RH Relative humidity (%) observation - 

Tair Air temperature (℃) observation - 

𝜀sur Emissivity of the surrounding underside leaf   

Initial Tleaf Initial Leaf temperature (=Tair) (℃) Same as Tair - 

cp Heat capacity of air (J mol-1 K-1) 29.3 A 

αL Leaf absorptance at long-wave band 

(>3000nm) 

Same as 

𝜀leaf 

M 

ρ The reflectivity of surrounding leaf 0.13 A, B 

�̂�20 Molar density of air at 20 ℃ (mol m-3) 41.6 A, B 

𝜎 Stefan–Boltzmann constant (W m-2 K-4) 5.6703×10-8 A, B 

g Gravitational acceleration (m s-1) 9.8 A, B 

λ Latent heat of vaporization of water (J mol-1) 44000 A, B 

DH,20 Diffusion coefficient of heat in air at 20 ℃ 

(mm2 s-1) 

21.4 A, B 

R Gas constant (J mol-1 K-1) 8.3143 A, B 

Pa Standard atmospheric pressure (kPa) 101.325 A, B 

P
h

o
to

sy
n

th
es

is
 m

o
d

el
 

Ca Ambient CO2 concentration (μmol mol-1) 380 E 

Initial Ci Initial intercellular CO2 concentration 

(=0.7*Ca; μmol mol-1) 

266 E 

O Oxygen concentration (mmol mol-1) 205 E 

𝛽 Fraction of photosystem II to photosystem I 0.5 E, G 

ΦPSII, max Maximum quantum efficiency of PSII 

photochemistry 

0.7 G 

Θ Curvature term 0.7 E, I 

Vcmax,25 Maximal carboxylation rate at 25°C (μmol m-2 

s-1) 

13-163 O 

Topt Optimal leaf temperature for Jmax (°C) 35 P 

S
to

m
at

al
 

co
n

d
u

ct
an

ce
 

m
o

d
el

 

g1 Stomatal conductance slope 0.27-8.28 Q 

VPDleaf leaf-to-air vapour pressure deficit (= es (Tleaf)-

e(Tair); kPa) 

Calculation E, F 

An Net assimilation rate (μmol m-2 s-1) Calculation E 

Ca Ambient CO2 concentration (μmol mol-1) 380 E 

Initial Ci Initial intercellular CO2 concentration 

(=0.7*Ca; μmol mol-1) 

266 E 

Relevant references: L: Wright et al. (2017); M: Chen et al. (2015); N: Féret et al. (2017); O: 1014 

Rogers et al. (2014); P: Lloyd & Farquhar (2008); and Q: Lin et al. (2015).  1015 

 1016 
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Supporting Method S1.  1066 

Field measurements of environmental variables, leaf traits, and ΔT 1067 

 1068 

Environmental variables 1069 

For the sites of CB and XSBN, we measured environmental variables with a mobile weather 1070 

station (WatchDog 2550, Spectrum Technologies Inc., Aurora, IL), which was installed on 1071 

the top of the canopy crane tower on the day 1 of field measurements. The weather station 1072 

recorded environmental variables at half an hour interval continuously for approximately two 1073 

weeks until the end of field campaigns at each site. Environmental measurements include Tair, 1074 

PAR, RH, and u (Fig. S3). VPDair was derived using the formula proposed by Murray (1967) 1075 

(Equation 18 of Table S2) with field-measured Tair and RH as input. Since Tair could be more 1076 

dynamic under the mixed cloudy-sunny days, in order to minimize such impacts, we only 1077 

used environmental measurements from clear-sky days, including environmental 1078 

measurements of 2019-07-08 for CB and of 2019-08-10 for XSBN. Notably, we interpolated 1079 

the Tair from half-hour intervals to 1-minute intervals using spline interpolation method (de 1080 

Boor., 1978), which allowed us obtain the Tair at the time of Tleaf record to calculate ΔT (see 1081 

section Leaf temperature and ΔT). Additionally, to minimize the impacts of rapid fluctuations 1082 

of wind speed on causing Tleaf variability, we set the wind speed as daily averages for the 1083 

model input, which is 1.2 m s-1 for CB and 1.0 m s-1 for XSBN.  1084 

 1085 

At the PE site, environmental variables were accessed from a local eddy flux tower belonging 1086 

to Embrapa Semiárido, Brazil. The measurements were recorded at half an hour interval, and 1087 

included Tair, PAR, RH, and u (Fig. S3). VPDair was calculated using the same approach 1088 

mentioned above. Environmental measurements of a clear-sky day (2018-04-16), 1089 

representing the central time period of field campaigns at this site, were used to drive our 1090 

trait-based leaf energy balance model. For the same reason, to minimize rapid fluctuating 1091 

wind speed effects, we set the wind speed to the daily average of 0.5 m s-1. 1092 

 1093 

Leaf gas exchange and Vc,max25 1094 

At the CB and XSBN sites, leaf gas exchange was measured using three portable gas 1095 

exchange systems (LI-6400XT; Li-COR Inc., Lincoln, NE, USA). The response of An to the 1096 

intercellular CO2 concentration (Ci), commonly known as A-Ci curves, were measured on the 1097 

sunlit leaves from the detached branches of top canopy trees. These branches were cut in 1098 

water before dawn using the canopy crane to avoid xylem embolism (Wu et al., 2020). And 1099 



then, the branches were stored in individual water buckets, and kept in deep shade until used 1100 

for measurements. For each selected canopy tree, we randomly sampled two branches and 1101 

measured the A-Ci curves of 1-3 leaves per branch, closely following the protocol of Rogers 1102 

et al., (2017). We set the gradient of reference CO2 concentration as follows: 400, 325, 250, 1103 

175, 100, 66, 33, 400, 400, 400, 475, 575, 675, 800, 1000, 1400, 1800, 400 μmol mol-1. The 1104 

leaf was put under 400 μmol CO2 mol-1 for photosynthetic stabilization before the A-Ci curve 1105 

measurements. During the measurements, Tleaf was set to ambient air temperature or 1-2 ℃ 1106 

above the dew point to avoid condensation inside the leaf chamber, and RH was set to 50-1107 

85%. The saturated PAR at CB and XSBN was set to 1700 μmol m-2 s-1 and 2000 μmol m-2 s-1, 1108 

respectively, based on the preliminary light response curves and previous empirical studies in 1109 

these biomes (Croft et al., 2017; Wu et al., 2019). A biochemical photosynthesis model 1110 

(Farquhar et al., 1980) was then used to fit the A-Ci curves, by which we derived the leaf 1111 

maximum carboxylation capacity (Vc,max) using the same code developed in Wu et al. (2019). 1112 

Finally, we standardized Vc,max to a reference temperature of 25℃ (Vc,max25) using the same 1113 

kinetic constants and temperature response functions as Bernacchi et al. (2013). 1114 

 1115 

Leaf absorptance for visible and near-infrared light 1116 

At the CB and XSBN sites, leaf absorptance for visible (400-700 nm; αPAR) and near-infrared 1117 

(700-2500 nm; αNIR) light were derived based on the inversion of leaf reflectance spectra 1118 

using a process-based model (i.e. PROSPECT; Jacquemoud & Baret, 1990; Féret et al., 2017), 1119 

following Wu et al. (2018). It includes two steps. First is the measurements of leaf reflectance 1120 

spectra. Upon finishing the gas exchange measurements, leaves were immediately measured 1121 

for leaf reflectance spectra using a portable spectroradiometer SVC HR-1024i (i.e. Spectra 1122 

Vista Corporation Inc., Poughkeepsie, NY, USA; spectra full-range: 350-2500nm), following 1123 

the standard procedure (Wu et al., 2019). Specifically, the fiber optic probe (SVC LC-RP-Pro) 1124 

with an internal calibrated light source was used together with a black background for leaf 1125 

reflectance measurements. For each leaf, reflectance spectra were measured on 3-6 different 1126 

parts of the leaf adaxial surface, and then averaged to determine the mean reflectance spectra 1127 

across all wavelengths. 1128 

 1129 

Second is the model inversion to derive leaf absorptance. With the measurements of leaf 1130 

reflectance spectra, we next estimated leaf transmittance and subsequent absorptance by 1131 

inverting the PROSPECT model after it was optimized to match field measurements of leaf 1132 

reflectance spectra. We used the PROSPECT model because this model is process-based, and 1133 



the model-inverted leaf absorptance has been shown with high consistency compared with the 1134 

values obtained with an integrating sphere for fresh leaves (Shiklomanov et al., 2016; Wu et 1135 

al., 2018). We here used the same inversion code as Wu et al. (2018) to derive the 1136 

PROSPECT-inverted leaf absorptance, and then combined the spectral response function for 1137 

visible (400-700 nm) and near-infrared (700-2500 nm) light to respectively derive αPAR and 1138 

αNIR. 1139 

 1140 

Leaf temperature and ΔT 1141 

At the CB and XSBN sites, leaf temperature of sunlit upper canopy foliage was measured 1142 

using a thermal camera FLIR-T650sc (FLIR Systems AB, Taby, Sweden; spectral 1143 

wavelength range: 7.5-13.0 μm), which was held about 1-m directly above the treetop 1144 

accessed by the canopy crane facility (see example RGB and thermal photos in Fig. S8a&b). 1145 

These thermal measurements were conducted under clear-sky days between 10:30 am to 1:30 1146 

pm local time of each site. With the FLIR-T650sc thermal camera, two unshaded branches in 1147 

the canopy top and representative of each canopy tree were selected for thermal 1148 

measurements. For each thermal measurement, we generated two images, including one RGB 1149 

image (with a resolution of 2592*1944 pixels; e.g. Fig. S8a) and one raw thermal image (with 1150 

a resolution of 640*480 pixels; e.g. Fig. S8b). In order to obtain the surface temperature of 1151 

leaves, we converted these raw thermal images into the calibrated digital grey image using 1152 

the R package ‘ThermStats’ (Senior et al., 2019), where the digital grey values in the 1153 

calibrated images (leaf emissivity was set to 0.95) indicates the corresponding Tleaf readings. 1154 

Additionally, since our main focus was on sunlit leaves, we developed a supervised 1155 

classification approach to differentiate the sunlit leaves from other backgrounds (i.e. the 1156 

shaded leaves and branches), by which we derived a mean Tleaf value for the sunlit leaves (e.g. 1157 

Fig. S8d). Finally, we calculated ΔT using Tleaf minus Tair of the same time, which was 1158 

generated by interpolating weather station records (see section Environmental variables 1159 

above). Notably, the method of temperature measurements using FLIR-T650sc thermal 1160 

camera have been cross-referenced with thermocouple measurements by multiple previous 1161 

studies (e.g. Page et al., 2018), and is regarded as an accurate method with comparable results 1162 

as thermocouple measurements. 1163 

 1164 

At the PE site, we selected 1-3 unshaded canopy-top leaves from different branches for Tleaf 1165 

measurements. The measurements were taken using a hand-held infrared camera (870-1 1166 

Testo; Lenzkirch in Schwarzwald, Germany) at a 0.5 m distance directly above the leaves. 1167 



Thermal images were taken with a resolution of 640 × 480 pixels. These thermal images were 1168 

acquired under clear-sky days between 10:30 am to 1:30 pm local time. To accurately obtain 1169 

Tleaf, the thermal images and relevant measurement conditions (i.e. target distance and leaf 1170 

emissivity of 0.95) were input to a professional software—Testo AG IRSoft 4.0 (Testo Ag, 1171 

Lenzkirch, Germany) for further processing. The temperature measurements from the Testo 1172 

thermal camera were cross-referenced using infrared point thermometer measurements (572-1173 

2 Fluke; Everett, WA, USA) and found to be consistent (Fig.S1 in Majcher, 2018). Mean Tleaf 1174 

was derived as an average temperature recorded for all the pixels encompassed within the leaf 1175 

margin (see Majcher, 2018).  Finally, we calculated ΔT as a difference between Tleaf and 1176 

same-time Tair, which came from the after-interpolated flux tower records. 1177 

 1178 

Leaf width 1179 

At the CB, XSBN, and PE sites, we used leaf maximum width (cm) for leaf width, as it has 1180 

been shown as a key biotic control of leaf boundary layer conductance (e.g. gH in Equation 3), 1181 

and thus importantly regulates ΔT variability (Campbell & Norman, 2012; Wright et al., 1182 

2017). The leaf maximum width of the canopy-top sunlit leaves was measured following 1183 

Majcher (2018). Specifically, leaves were harvested for leaf width measurements following a 1184 

two-step approach. First is to obtain the images of leaf samples. At CB and XSBN, we used a 1185 

Canon digital scanner (FSU201, Canon, Tokyo, Japan). Specifically, we placed each of 1186 

sampled leaves on the panel of the scanner with known dimensions, flatten it with a white 1187 

board, and scanned it for image records. At the PE site, we put each leave on a scaled board, 1188 

flatten it with a transparent board, and then photographed it using a DSLR Camera (EOS XTi 1189 

Canon, Tokyo, Japan). Second is to estimate the leaf maximum width. We used the 1190 

ShapeFilter plugin (Wagner & Lipinski, 2013) in ImageJ Software (Schneider et al., 2012) to 1191 

extract and measure the maximum width of leaves. 1192 

 1193 
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