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Optical focusing through scattering media is of great significance yet challenging in lots of scenarios, including
biomedical imaging, optical communication, cybersecurity, three-dimensional displays, etc. Wavefront shaping is
a promising approach to solve this problem, but most implementations thus far have only dealt with static media,
which, however, deviates from realistic applications. Herein, we put forward a deep learning-empowered adaptive
framework, which is specifically implemented by a proposed Timely-Focusing-Optical-Transformation-Net
(TFOTNet), and it effectively tackles the grand challenge of real-time light focusing and refocusing through
time-variant media without complicated computation. The introduction of recursive fine-tuning allows timely
focusing recovery, and the adaptive adjustment of hyperparameters of TFOTNet on the basis of medium changing
speed efficiently handles the spatiotemporal non-stationarity of the medium. Simulation and experimental results
demonstrate that the adaptive recursive algorithm with the proposed network significantly improves light focus-
ing and tracking performance over traditional methods, permitting rapid recovery of an optical focus from deg-
radation. It is believed that the proposed deep learning-empowered framework delivers a promising platform
towards smart optical focusing implementations requiring dynamic wavefront control. © 2021 Chinese Laser

Press

https://doi.org/10.1364/PRJ.415590

1. INTRODUCTION

Light entering a disordered medium that is thicker than a
few scattering mean free paths l (∼0.1 mm for human skin)
undergoes multiple scattering due to the mismatch of the refrac-
tive index [1], leading to pervasive obstacles in communication,
astronomy, and high-resolution optical delivery and imaging
through or within thick scattering media, such as biological tis-
sues. If light is coherent, scattered light along different optical
paths interferes randomly, forming optical speckles, whose in-
tensity distribution can be recorded outside the medium using
cameras. Although visually random, the way that light is scat-
tered is actually deterministic within a certain timewindow (usu-
ally referred to as speckle correlation time) [2]. Built upon this
property, various approaches have been inspired, such as time
reversal [3–6], pre-compensated wavefront shaping [2,7–13],
and memory effect [1,14–16], to obtain optical focusing and
imaging through scattering media. Time reversal methods, such
as time-reversed ultrasonically encoded (TRUE) method [17]

and time reversal of variance encoded light (TROVE) [18],
take advantage of guide stars (e.g., focused ultrasonic modula-
tion) to encode diffused light; then, only the encoded light is
time-reversed and focused inside the scattering medium. Pre-
compensatedwavefront shaping techniquesmodulate the phases
of light incident into the scattering medium based on the mea-
surement of the transmission matrix [8,10,11,19–21] or the
maximization of feedback provided by the optical [7,22–25] or
photoacoustic signal strength [2], with a goal to pre-compensate
for the scattering-induced phase distortions. As for the memory
effect, image information is encoded in the autocorrelation of
the measured speckles as long as the imaging area is within the
memory effect regime, and thus images can be reconstructed from
speckles with iterative phase retrieval algorithms [1,26–29].

Each of the aforementioned approaches has its own advan-
tages and limitations. For instance, pre-compensated wavefront
shaping methods are attractive due to their plain working prin-
ciple and experimental setup, but most reported approaches are
inherently time consuming, as many iterations are required
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regardless of the optimization algorithms [30,31], restricting
most implementations reported thus far to static scenarios such
as in fixed diffusers, which, however, scarcely exist in reality.
Under the circumstance that scattering media are randomly
changing or suffering from environmental disturbance that is
inevitable, a focus will degrade or even vanish. To refocus light
through/within time-variant media, the wavefront shaping iter-
ations have to be repeated from the beginning each time the
scattering medium changes, which is again a tedious and inef-
fective process [32]. This problem impedes the implementation
of pre-compensated wavefront shaping from more general and
realistic applications. Although imaging through non-static
media has been explored with methods such as binary phase
retrieval with optical phase conjugation [27,28,33,34], ghost
imaging [35], shower-curtain effect [36], bispectrum analysis
[37], advanced equipment [38], and memory effect [39], each
has its limitations, such as the requirement for an ultrasound
guide star, slow optimization, complex setup, and narrow effec-
tive regime.

Deep learning, which is a data-driven approach, has recently
demonstrated wide uses to solve inverse problems like denois-
ing [40], image reconstruction [41–46], and super-
resolution imaging [47,48], owing to their superior ability in
revealing complex relationships through transforming represen-
tations at one level to a higher and more abstract level [49]. The
idea has also been exploited to focus light [50–52] and recon-
struct images [53–55] through static scattering media. For ex-
ample, Turpin et al. introduced neural networks for binary
amplitude modulation and focused light through a single dif-
fuser [50]; Li et al. trained U-Net with speckles generated by
various objects with four diffusers [53]. The pre-trained net-
work can be generalized to “unseen” objects or diffusers. All
of these diffusers, however, are with the same macroscopic
parameters. Sun et al. [56] trained five neural networks to
model five different scattering conditions, and then blurred im-
ages are first classified to one of the five situations and then are
fed into the pre-trained model for reconstruction. Note that,
however, considering the computation time and memory
budget, it is impractical to train hundreds of neural network
models to cover all kinds of scattering conditions; considering
only five conditions probably only get a rough classification and
reconstruction.

In this paper, we aim to solve the problem comprehensively.
We introduce a deep learning-empowered adaptive framework
to tackle the challenge of optical focusing and refocusing
through nonstationary scattering media by using wavefront
shaping, which circumvents the dependency on classification
or pre-trained models. A nonstationary process can be regarded
as consisting of multiple piece-wise stationary stochastic proc-
esses, while the statistical properties of each stationary stochas-
tic are analyzed to guide fine-tuning. The adaptive adjustment
of hyperparameters of the proposed Timely-Focusing-Optical-
Transformation-Net (TFOTNet), which is implemented by a
multi-input-single-output deep convolutional long short-term
memory (ConvLSTM) network, effectively circumvents the
drawbacks of traditional long short-term memory (LSTM) that
tends to remember only stationary variations [57]. The adap-
tive adjustment mechanism is non-trivial and depends on the

statistical properties of a specific stationary stochastic process,
which equivalently modifies the memory units in TFOTNet.
Thus, modeling the spatiotemporal non-stationarity becomes
possible. Another essential of the proposed framework is the
recursive fine-tuning. It makes the best leverage of the corre-
lation between medium statuses before and after the change,
which is indicated by the speckle correlation [26,58–60].
Therefore, only a small amount of newly available samples are
required to fine-tune the previous network, permitting fast re-
covery of the focusing performance. Note that during all of the
phases, the medium is generally nonstationary; it keeps chang-
ing. Although recursive fine-tuning has already allowed timely
focusing recovery, adaptive recursive estimation takes it one
step further, efficiently balancing the trade-off between time
cost and refocusing performance, allowing controllable light de-
livery through the time-variant scattering medium. It is worth
highlighting here that the proposed adaptive framework be-
comes more attractive in circumstances with fast medium mo-
tion, considerable sudden disturbance, or low signal-to-noise
ratio (SNR) regarding the light refocusing performance and
time consuming in fine-tuning over traditional methods.

2. THEORETICAL ANALYSIS OF DEEP
LEARNING FRAMEWORK FOR LIGHT
FOCUSING AND REFOCUSING THROUGH
NONSTATIONARY SCATTERING MEDIA

The scenario is that a monochromatic optical wave field prop-
agates from the source to a randomly changing scattering layer
at time t , and the transmitted scattered light is collected by a
camera. Regular cameras only record the light intensity distri-
bution of the speckle patterns on the receiving plane rc (e.g.,
the camera plane in Fig. 1), and thus

I c�t� � jEout
c �t�j2 �

�����
XN
a

tca�t�E in
a �t�

�����
2

, (1)

where E in
a �t� and Eout

c �t� are the optical fields at ra and rc at
time t, respectively [61], and ra is the source plane [e.g., the
spatial light modulator (SLM) plane in Fig. 1]. tca�t� is a com-
plex transmission coefficient describing light propagation from
the source plane ra to the receiving plane rc at time t. The
effects of absorption are neglected. To precisely compute the
required incident complex optical field E in�t� with which light
is focused to the position rc through the current scattering
medium, the inverse scattering model at time t has to be ob-
tained based on the recorded transmitted light intensity distri-
bution I c�t�. As seen, the inverse scattering problem is
nonlinear and ill-posed, which prohibits the adoption of direct
inversion methods; iterative optimization with regularization is
necessary [62] to resolve this problem. The objective is to find a
desired reconstruction E in�t� � W �t�p�t� that minimizes the
cost function formulated as

arg min
E in�t�

kI c�t� − jH �t�E in�t�j2k2 � α�t�T �p�t��, (2)

where H �t� is the forward scattering model at time t , relating
the transmitted light intensity I c�t� and the incident electrical
field E in�t�, α�t�T �p�t�� is the regulation, α�t� is the regulation
coefficient, W �t� is a convolutional transformation, and p�t� is
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Fig. 1. Illustration of the proposed deep learning-empowered adaptive framework for wavefront shaping in nonstationary media. (a) General
working principle of the proposed framework. In Step 1, samples are collected to train the TFOTNet. The structure of the proposed TFOTNet
includes three inputs and one output. Input 1 is the speckle pattern, while the corresponding SLM pattern is noted as Input 2. Input 3 is the speckle
pattern desired to be seen by the camera after light passes through the scattering medium in the experiment or simulation. TFOTNet output is the
SLM pattern needed to get Input 3 through the present scattering medium. In Step 2, the well-trained TFOTNet can be applied to unseen speckles
and output an SLM pattern that can obtain the target through the current medium. Inevitable environmental disturbance (disturbance) or non-
stationary change in the medium (fading) results in degradation or even loss of the focal point. In Step 3, the pre-trained TFOTNet is fine-tuned
with samples from the changing medium. Hyperparameters and fine-tuning sample amount are all adaptively chosen based on the medium status.
After tuning, TFOTNet can adapt to the concurrent medium state and recover the optical focusing performance. (b) Flow chart of the proposed
adaptive recursive algorithm for light focusing and refocusing in nonstationary media.
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the transformation coefficients at time t . E in�t� consists of N
input optical modes, E in�t� � �E in

1 �t�E in
2 �t� � � � E in

N �t��.
So far, a lot of iterative algorithms have been reported to

solve the inverse problems in static situations, such as the dis-
torted Born iterative method [63], subspace optimization
method (SOM) [64], and iterative shrinkage and thresholding
algorithm (ISTA) [65]. Most of them rely on a building block
model [66], whereas, for dynamic media, medium statuses at
time t and t − 1 are correlated, indicating that H �t� is not only
determined by the current status but is also influenced by their
previous values:

H �t� � g �βt−11 H �t − 1� � βt2x�t��, (3)

where βt−11 and βt2 are time-dependent parameters, g�·� is a non-
linear function, H �t − 1� is the scattering model at time t − 1,
and x�t� represents the information from the current scattering
medium. Hence, in dynamic situations, Eq. (2) can still be
solved using an iterative algorithm based on the building block
model, but with temporal information included in it, and p�t�
at the �m� 1�th iteration is given as
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(4)

where L�t� is the Lipschitz constant at time t,
L�t� ≤ eig�W �t� 	H �t� 	H �t�W �t��. From Eq. (4), the iter-
ative optimization process can be regarded as a sequence of linear
filtering by kernel I − �1∕L�t��W �t� 	H �t� 	H �t�W �t� and
bias �1∕L�t��W �t� 	H �t� 	 I c�t�, followed by a point-wise
nonlinear operation Aθ by value θ, and I is the identity matrix.
Meanwhile, information from previous medium statuses is
transmitted over time and imposes influence on the inverse
scattering model at time t. Equations (2)–(4) suggest that
TFOTNet, which is a multi-input-single-output ConvLSTM
network, is suitable for solving the inverse scattering problems
in dynamic situations. The inverse scattering problem is formu-
lated as a regression task, while the learning process is evaluated
by the mean integrated squared error [67,68]:

MISE � E
�Z

T

0

ZZ
Sa
�yt�ra� − ŷt�ra��

2

d2radt
�
, (5)

where yt�ra� and ŷt�ra�, respectively, denote the model predic-
tion and true values at time t, ra is a segment on the SLM plane
Sa, andE denotes the expected value. To resolve wavefront shap-
ing problems, yt�ra� and ŷt�ra� are the predicted and true phase
values of the incident optical mode E in

a �t�, respectively.
The speckle correlation theory in random media suggests

that, when the configurations of the scatterers are changed

randomly, the scattering media before and after moderate
change are correlated [69]. For dynamic media whose proper-
ties are time-variant, both spatial and temporal speckle corre-
lations exist, and thus the speckle correlation is shown as [70]

C�t − t 0, r − r 0� � hI�t, r�I�t 0, r 0�i − hI�t, r�ihI�t 0, r 0�i
hI�t, r�ihI�t 0, r 0�i

� C1�t − t 0, r − r 0� � C2�t − t 0, r − r 0�
� C3�t − t 0, r − r 0�: (6)

According to the results reported by Feng et al. [69], the
intensity correlation function C�t − t 0, r − r 0� can be regarded
as consisting of three contributions C1�t − t 0, r − r 0�,
C2�t − t 0, r − r 0�, and C3�t − t 0, r − r 0�, governing the short-
range correlation, long-range correlation, and infinite-range
correlation, respectively [71]. For most scattering media, the
magnitude of C1�t − t 0, r − r 0�, C2�t − t 0, r − r 0�, and
C3�t − t 0, r − r 0� decreases in sequence, but also decays more
slowly with the increase of gap between t and t 0 or r and r 0

[70]. The proposed framework encodes the correlation between
medium statuses, propagating the information over time; as a
consequence, an accurate inverse model can be constructed.

3. RESULTS

A. Working Principle
The structure of the proposed TFOTNet is shown in Fig. 1(a).
TFOTNet has three inputs and one output. Inputs 1 and 2 are
paired, while Input 3 and the output are paired. Referring to
Fig. 1(a), light is firstly reflected by the SLM, and its phase
pattern is adjusted by the SLM; thus the optical phase patterns
are represented by the SLM patterns. After the SLM, light will
go through the diffuser and be scattered, forming speckles. The
intensity distribution of the training speckle patterns will be
recorded outside the diffuser by the camera, which is Input
1. The corresponding SLM pattern is Input 2. This forms a
mapping from the training speckle pattern (Inputs 1) to
the trained SLM pattern (Inputs 2), and it acts as a regulari-
zation term. Incorporating this regularization input into the
TFOTNet, the targeted relationship from Input 3 to the out-
put is obtained, and it is used to resolve the inverse scattering
problems in real time based on the regularized cost function
Eq. (2). Input 3 is the speckle pattern desired to be seen by
the camera after light passes through the scattering medium
in the experiment or simulation. The output of TFOTNet will
be the corresponding SLM pattern that can lead to Input 3.

Inverse scattering problems are ill-posed, which may lead to
difficulties in neural network training [72]. Offering prior in-
formation to regularize the inverse problem can mitigate the
burden in training, which plays a significant role in successfully
resolving inverse problems [73,74]. Besides setting analytic pri-
ors manually, it has also been reported that prior terms can be
directly learned during the training of neural networks, which is
tailored to the statistics of the training images, indicating a
stronger regularization [75,76]. Chang et al. adopted an
adversarial method to jointly train two networks, where one
offers prior information, while the other one conducts inverse
projection [76]. Inspired by these, the proposed TFOTNet
consists of two parts: prior knowledge about scattering provided
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by Inputs 1 and 2, and inverse mapping from Input 3 to the
output. Through training, the network learns to extract suitable
priors from Inputs 1 and 2, and they are passed to facilitate the
resolving of the inverse problem represented by Input 3 and the
output, alleviating the training burden and improving the mod-
eling accuracy when compared with methods that directly learn
the inverse mapping without any other knowledge.

Generally, in transfer learning, only the last few layers, rather
than whole neural networks, are fine-tuned [77,78], as the last
layers are task specific, while the earlier ones are modality spe-
cific [79]. Information learned by earlier layers can be shared
among all inverse scattering problems, while the last few layers
are customized for adapting to specialized changing conditions.
Therefore, when the TFOTNet needs to be fine-tuned in the
experiment, only the last layer in the TFOTNet is adjusted,
while all other layers are frozen. By doing so, both time and
computational resources can be saved without significant sac-
rifice of accuracy. The two ConvLSTM layers, ConvLSTM1
and ConvLSTM2, extract and abstract image features from
Input 1; meanwhile, they pass the useful features from previous
statuses throughout the network. Then, these features are flat-
tened to concatenate with Input 2, which has also been flat-
tened. The combination serves as the input to the first LSTM
layer, followed by a dropout layer. The outputs of the LSTM
layer concatenate with the features gathered from Input 3. The
final TimeDistributed dense layer predicts the SLM pattern
needed for Input 3 in the current situation. ConvLSTM1
and ConvLSTM2 consist of 16 and 32 filters, respectively,
and the filter size of each layer is 7 × 7 and 5 × 5 with the stride
setting as 3 × 3 and 2 × 2, respectively. ConvLSTM1 and
ConvLSTM3, ConvLSTM2 and ConvLSTM4 share the same
structure and weights, respectively. The number of neurons in
the LSTM layer is 256 with a dropout rate set to 0.3. The num-
ber of neurons in the output layer is the same as the size of the
SLM patterns. Kernel initializers of all layers are set as glorot
normal. Mean squared error is employed as the loss function.
Adam is used as the optimizer with alpha, beta1, beta2, and
epsilon set as 0.0005, 0,9, 0.99, and 0.0001, respectively. It
is worth noting that the proposed TFOTNet is a
general network that can be applied to deal with speckle images
and SLM patterns of arbitrary size. Herein, we just introduce a
specific implementation for our typical setup as a proof-of-
concept. The output size of TFOTNet is determined by the
size of the SLM patterns, which is user defined. Kernel size
is adjusted in the light of the relative size of speckle grains
and recorded speckle images. In general, with smaller speckle
grains, both the kernel size and stride have to be reduced ac-
cordingly. For larger speckle images or SLM patterns, naturally,
more training and fine-tuning samples are required; mean-
while, the number of neurons will be increased, and the drop-
out rate is enlarged as well to avoid overfitting. The activation
function of all layers is tanh, except for the last output
layer whose activation function is sigmoid. The recurrent
activation function of all ConvLSTM layers is set as hard sig-
moid. The TensorFlow Keras library is used to construct
the model.

It is worth noting here that the lynchpin of the proposed
framework is the adaptive recursive fine-tuning system, rather

than any other specific implementations. Despite this,
TFOTNet includes information from Inputs 1 and 2 to facili-
tate the ill-posed inverse mapping from Input 3 to the output;
thus, it not only allows for more efficient modeling over con-
ventional single-input-single-output ConvLSTM network or
convolutional neural network (CNN) (both simulation and ex-
perimental comparisons are shown in the following content),
but is also a general network whose structure is scalable to ac-
commodate various applications. Considering that SLMs are
widely used to modulate incident optical wavefronts, as shown
in Fig. 1(a), in this article, we employ SLM patterns to re-
present the incident optical phase patterns.

The working flow of the proposed adaptive deep learning
framework for light focusing and refocusing in nonstationary
media is illustrated in Fig. 1(a). First, samples are collected
for TFOTNet training and initialization. After that, the
well-trained TFOTNet is able to establish an inverse scattering
model statistically that can accurately map the intensity distri-
bution of speckles to their corresponding SLM patterns. Then,
the desired speckle (a preset focused speckle pattern is used
here) is sent to the TFOTNet through Input 3, and the
TFOTNet outputs the SLM pattern that is required to restore
the desired pattern for the current scattering system.
Considering that the scattering media are nonstationary, and
environmental perturbations with time are inevitable, an opti-
cal focus can be faded or even lost. To cope with it, ad hoc
samples from the real-time medium are offered to recursively
fine-tune the TFOTNet that is obtained previously.
Meanwhile, hyperparameters are all adaptively chosen accord-
ing to the instant status of the medium. During the fine-tuning
phase, only the weights of the last layer in the TFOTNet are
adjusted while all other layers are frozen. After the directed ad-
justment, the fine-tuned TFOTNet will be able to produce an
SLM pattern to recover the focusing performance in a short
period of time.

Figure 1(b) elaborates the proposed adaptive recursive algo-
rithm to handle the spatiotemporal non-stationarity. In the
whole article, light focusing performance is quantitatively
evaluated by the peak-to-background-ratio (PBR), which is de-
fined as the ratio between the intensity of the focal point and
the mean intensity of the background [80]. Medium changing
speed is characterized by speckle decorrelation time (SDT),
which is defined as the time duration that the intensity auto-
correlation function decreases from 1 to 1∕e of its initial value
[81]. Smaller SDT corresponds to faster medium altering
speed. At time t , the SDT of the current medium state is com-
puted, and the PBR target, Targett , is determined based on the
SDT (the method to calculate the PBR target is elaborated in
Section 4). The PBR target indicates the pre-defined PBR that
targets to be attained after light refocusing. The adaptive PBR
target is employed to balance the trade-off between the fine-
tuning cost and the focusing recovery performance. More sam-
ples are needed to enhance the PBR to a pre-defined level when
the scattering medium changes faster, suggesting that longer
time is required; thus focusing tracking performance will be
affected. With an adaptive PBR target, a faster SDT accommo-
dates to a relatively lower PBR target, which needs fewer fine-
tuning samples, shortening the fine-tuning time. Instant PBR is
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compared with Targett , and fine-tuning will not be initialized
until the instant PBR is lower than Targett . Pairs of the SLM
pattern and the corresponding speckle pattern are collected
during the changing process of the scattering medium for
fine-tuning, and the required fine-tuning sample amount
and hyperparameters of the network are all chosen based on
the SDT. The influence of hyperparameters on fine-tuning
time is discussed in Section 4. The recursive algorithm indicates
that the fine-tuning is based on the network obtained at time
t − 1, which can make the best use of the speckle correlation;
thus, time cost in fine-tuning can be significantly reduced when
compared with traditional iterative algorithms. Once the in-
stant PBR after fine-tuning is higher than Targett , fine-tuning
will be ceased. With iterations of such an adaptive recursive
fine-tuning process, optical focus can be recovered from
deterioration in time, allowing for maintenance of a focal point
with acceptable performance. Proof-of-concept simulation and
experimental results with a typical setup are shown below as a
verification. It should be highlighted here that all results dem-
onstrated in the article, such as the PBR target and the amount
of fine-tuning samples, are valid in all conditions with proper
scaling in the light of specific implementations, not just limited
to the setup used here. The methods of scaling will be discussed
in the experiments part.

B. Simulation and Experimental Results
1. Simulation Results
Proof-of-concept continuous nonstationary processes are simu-
lated to clearly manifest the effect of the adaptive recursive
fine-tuning algorithm in dealing with spatiotemporal non-
stationarity. One nonstationary course can be regarded as
consisting of multiple piece-wise stationary stochastic sub-
processes characterized by different SDT. Meanwhile, the time
duration of each stationary sub-process also varies. To simulate
the scattering process, a transmission matrix TX�t� is used to
describe a disordered medium at time t , following a circularly
symmetric Gaussian distribution [23]. For a medium that is not
static, the medium status at time t � Δt is represented by
TX�t� � ΔTX�Δt�, and ΔTX�Δt� also follows a circularly
symmetric Gaussian distribution.ΔTX�Δt� of different varian-
ces is employed to model media of various altering speeds. The
size of the SLM patterns is set as 32 × 32, while the size of the
speckle patterns is 64 × 64. First, in Step 1, a total of 10,000
samples are created for TFOTNet initialization and training.
Sample collection time is estimated using the maximal frame
rate of a commercial liquid crystal on silicon (LCoS) SLM,
which is generally 60 Hz, and the SDT of the medium is as
long as 10 min, resulting in correlation between medium sta-
tuses when the training sample collection initiates and ends
reaching 0.8. After training, a desired speckle pattern [as shown
in Fig. 1(a)] is sent to the well-trained TFOTNet, and a focused
speckle can be obtained with the predicted SLM pattern. The
PBR of the focused speckle obtained with the original trained
model is 41.5. Since the proposed network is scalable, with the

SLM pattern or speckle image size becoming larger, it can be
expected that PBR will also increase. It is worth noting that the
sample collection speed can be expedited nearly 400 times if
faster modulators such as a digital micromirror device (DMD)
are applied to conduct wavefront modulation whose frame rate
can reach 23 kHz [82].

However, the PBR is decreasing, and the focal point is fad-
ing over time, as the scattering medium is altering over time,
calling for the necessity of fine-tuning after a certain period of
time. Herein, 10 nonstationary processes are randomly gener-
ated. Three fine-tuning algorithms, i.e., the adaptive recursive
algorithm, nonadaptive recursive algorithm, and traditional al-
gorithm, demonstrate significant differences in the PBR recov-
ering performance, which is discussed separately in the
following. Simulated focusing recovery results with three algo-
rithms using TFOTNet in 10 nonstationary processes are
shown in Figs. 2(a)–2(j), where the same legends are used.
For each steadily altering sub-process, its PBR target (the ideal
case) is indicated by the yellow dashed line. Six SDT intervals
are used, and their corresponding PBR target is given in
Table 1, serving as a criterion to evaluate the focusing recovery
performance (details about the calculation of an adaptive PBR
target are elucidated in Section 4). Although different setups
result in different initial focused speckles, the ratio between
the PBR target and PBR of the initial focused pattern remains
unchanged as long as the SDT is the same. By doing so, the
presented results can be safely scaled to any other implemen-
tation. With the adaptive recursive algorithm, the hyperpara-
meters are selected on the basis of statistical properties of
each stationary variation; with the nonadaptive recursive algo-
rithm, the hyperparameters remain as the default values (shown
in Fig. 2) all the time, regardless of the SDT changes. For a fair
comparison, each time adaptive fine-tuning is conducted the
same samples are offered to the nonadaptive recursive algorithm
to do one fine-tuning as well. As for the traditional algorithm, it
is not a recursive one; instead, traditional wisdoms only con-
duct fine-tuning once in the last sub-process from the original
trained model due to the lack of engines of sensing intermediate
processes, the hyperparameters remain as the default values,
and total sample amount is the same as those in the recursive
methods. It can be seen from Figs. 2(a)–2(j) that, qualitatively,
PBR achieved by the adaptive recursive approach (gray line) is
always the highest, while the traditional fine-tuning algorithm
(blue line) demonstrates the worst performance. In view
of the structure of TFOTNet, which consists of multiple
ConvLSTM cells, adjusting those hyperparameters equivalently
modifies the memory units in effect. By analyzing the statistical
properties (including mean value and autocovariance)
of diverse stationary variations, hyperparameters can be ad-
justed adaptively, compensating for the limitations of the
conventional ConvLSTM network that it lacks the capability
to encode high-order nonstationary spatiotemporal varia-
tions [57].

Table 1. SDT-Dependent PBR Target

SDT/s SDT ≥ 7.4 7.4 > SDT ≥ 4.4 4.4 > SDT ≥ 2 2 > SDT ≥ 1.6 1.6 > SDT ≥ 1.4 1.4 > SDT

PBR target 38.75 37.5 35 33.75 30 27.5
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Quantitatively, one nonstationary process is characterized by
the sum of the product of SDT of each sub-process and its time
duration:

SUMM �
XM
j�1

SDT�j� ×Duration�j�, (7)

where M represents the total number of stationary stochastic
sub-processes contained in a nonstationary course. Lower
SUMM values suggest smaller SDT, shorter time duration,
or both. To quantitatively evaluate the overall light focusing
maintenance performance, the mean value of PBR over the
whole nonstationary process is adopted:

GFP �global focusing performance� �
XN
i�1

PBR�i�∕N : (8)

With the three algorithms, PBRs at the time when each fine-
tuning starts and ends are recorded, and then all of the recorded
PBR values are averaged, serving as the global focusing

performance (GFP). Therefore, N is not a fixed value; instead,
it is determined by how many times fine-tuning has been con-
ducted in a nonstationary course. It is obvious that the higher
the GFP, the better the focusing across time. The GFP of the
three algorithms in these 10 nonstationary processes is illus-
trated in Fig. 2(k). Figures 2(k) and 2(l) use the same legend.
In all cases, the adaptive recursive algorithm demonstrates the
highest GFP, ranging from 34 to 38, while the traditional fine-
tuning algorithm shows the worst results with GFP fluctuating
between 9 and 19. The GFP enhancement percentage achieved
by the adaptive and nonadaptive recursive algorithms over
the traditional one is 82%–264% and 39%–132%, respec-
tively, which is calculated by GFP enhancement percentage ��
GFPwith adaptive or nonadaptive recursive algorithm

GFPwith traditional algorithm − 1
�
× 100%. These

results manifest the merits of the adoption of the recursive ap-
proach, where they can make the best use of both temporal and
spatial correlations of the medium for fine-tuning, allowing
much better focusing recovery. Meanwhile, the adaptive

Fig. 2. Fine-tuning results with ten random nonstationary processes using three different algorithms. The 10 nonstationary processes can be
regarded as consisting of multiple piece-wise stochastically stationary sub-processes, while the SDT and time duration of each sub-process are
different. (a)–(j) Fine-tuning results with the adaptive recursive algorithm (gray line), nonadaptive recursive algorithm (red line), and traditional
fine-tuning algorithm (blue line) in the 10 nonstationary processes. Each process is characterized by SUMM, which is the sum of the product of SDT
of each sub-process and its time duration. Figures (a)–(j) use the same legend. (k) Global focusing performance of three fine-tuning algorithms in the
ten random nonstationary processes. (l) Global tracking error of three fine-tuning algorithms in the ten random nonstationary processes. Figures
(k) and (l) use the same legend. The inserted table lists the default values of these hyperparameters used in simulation. Specific hyperparameters and
fine-tuning sample amounts used in the simulation are available in Ref. [83].
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algorithm realizes 12%–57% GFP enhancement over the non-
adaptive recursive algorithm, confirming that through the
adaptive adjustments of hyperparameters, spatiotemporal
non-stationarity can be better learned by neural networks.
As for the traditional algorithm, medium status at the time
when fine-tuning is conducted has little correlation with the
status at the time when the initial model is obtained
(t � 0), which will definitely lead to poor fine-tuning per-
formance.

In addition, the root mean squared error with respect to the
adaptive PBR target is employed to measure the tracking
performance of an algorithm over the whole nonstationary
processes:

GTE �global tracking error�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i�1 �PBR�i� − PBR target�i��2
N

r
: (9)

Small global tracking error (GTE) means that over
the whole process, the PBR fluctuates mildly around the target,
indicating an accurate and timely tracking of the optical
focusing. The GTE of the three algorithms in these 10 non-
stationary processes is illustrated in Fig. 2(l). As seen, the
adaptive recursive algorithm shows the lowest values (1.8–
7.1), while the traditional algorithm shows the largest values
(17–29), as fine-tuning is conducted without considering
process variations. The reduction percentage in GTE
achieved by the two recursive algorithms over the tradi-
tional one is computed by GTE reduction percentage ��
1 − GTE with adaptive or nonadaptive recursive algorithm

GTE with traditional algorithm

�
× 100%. As seen,

the adaptive and nonadaptive recursive methods reduce the
GTE over the traditional algorithm by 76%–91% and
37%–73%, respectively, suggesting that recursive algorithms
demonstrate much better focusing tracking performance.
Meanwhile, the adaptive recursive algorithm realizes 31%–
81% reduction in GTE over nonadaptive recursive results.
Due to the influence from environmental disturbance, PBR
may drop sharply [as seen in Figs. 2(d)–2(j)], indicating that
more time is required to recover the PBR. Therefore, the in-
crease of GTE in these circumstances is inevitable, as shown in
Fig. 2(l). In situations without perturbations [as shown in
Figs. 2(a)–2(c)], PBR can be well maintained to be around
the target with the proposed adaptive recursive algorithm,
and the GTE is as low as 1.8–2.6. It should be noted that
the conclusions deduced above are effective for all implemen-
tations of the proposed deep learning-empowered adaptive
framework, not just limited to the setup and random nonsta-
tionary processes demonstrated in the article. For all realiza-
tions, similar performance improvements can be obtained.

It is worth noting that the fine-tuning time can be signifi-
cantly reduced, and the SDT can be much smaller than values
shown here if faster modulators and/or more powerful compu-
tation engines are adopted. As a proof-of-concept, in the sim-
ulation, the sample collection speed is estimated based on the
maximal frame rate of commercially available LCoS-SLM,
which is 60 Hz. As for computation, the TensorFlow Keras
library is adopted, and the computing unit is an Acer
Predator G9-792, 16 Gb RAM, and a GTX 980M graphics

processing unit (GPU). However, if a DMD is applied to con-
duct wavefront modulation, whose frame rate can reach 23 kHz
[82], together with onboard data acquisition, sample collection
can be expedited by nearly 400 times. Furthermore, if a more
powerful GPU or workstation such as the Nvidia Tesla series is
employed, the computation speed will be improved by at least
three times. Thus, the fine-tuning process can be speeded up by
nearly 1000 times, indicating that the proposed framework be-
comes likely to achieve wavefront shaping in dynamic situa-
tions, such as in vivo tissues that decorrelate as fast as
several milliseconds [84].

In Fig. 2(i), due to the sharp PBR drop at the beginning
(from 41.5 to 26.7) and fast medium change (SDT =
4.4 s), even though recursive fine-tuning is conducted, the
target PBR cannot be reached. Nevertheless, one attractive
property of the adaptive method is that once a slower changing
sub-process is detected, it is capable of making up the earlier
PBR loss. As seen, with the fourth sub-process whose SDT has
increased to 21.8 s, PBR is enhanced to meet the target, reach-
ing 38.9. In contrast, the refocusing ability of nonadaptive
algorithms is exacerbated, and they never meet the PBR target.
Nonadaptive algorithms lack the ability to sense the current
situation and make adjustments accordingly. Instead, it applies
the same fine-tuning system to all processes regardless of their
SDTs, which will definitely result in modeling deficiency.

2. Experimental Results
After the verification with simulations, experiments are con-
ducted. The experimental setup is illustrated in Fig. 3. Light
emitting from a He–Ne CW laser (633 nm, Melles Griot)
is expanded by a telescope by 4.3 times. Then, a half-wave plate
and a polarizer are followed to adjust the polarization of the
incident light to be parallel to the long axis of an SLM
(X13138-01, Hamamatsu). The light wavefront is modulated
by the SLM, after which light passes through two successive
lenses and is focused onto the surface of a diffuser (ground glass
of 120 Grit, Edmund) by an objective lens (TU Plan Fluor

Fig. 3. Schematic of the experimental setup. Light is expanded by
two lenses (L1 and L2), and then a half-waveplate (HW) and a polar-
izer (P) adjust the polarization state of the light incident onto the spa-
tial light modulator (SLM). Light is modulated and reflected by the
SLM, then passes through two lenses (L3 and L4), and is focused onto
a diffuser (D) surface by an objective lens (OB1). Scattered light is
collected by another objective lens (OB2) and recorded by a camera.
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50×/0.80, Nikon). The light undergoes multiple scattering
from the diffuser, and then the scattered light is collected by
another objective lens (TU Plan Fluor 20×/0.45, Nikon) placed
behind the diffuser. Finally, the speckles are recorded via a cam-
era (Zyla s4.2, Andor). The resolution of the SLM screen is
1280 × 1024, and it is divided to 32 × 32 macropixels to dis-
play the SLM patterns, i.e., one macropixel contains 40 × 32
pixels. The dimensions of the speckle patterns recorded by
the camera are 64 × 64 pixels. In experiment, we use 32 gray
steps in the SLM to represent phase values from 0 to 2π. Due to
the limitation of precision from the rotating stage (Motorized
Precision Rotation Stage PRM1/MZ8, Thorlabs), the diffuser
is rotated once as 100 samples are collected, and the equivalent
rotating speed varies from 2.5 to 10 mdeg/s. Note that the
nominal frame rate of the SLM is 60 Hz. However, due to
the existence of the rising/falling transition time of the SLM,
as well as limitations posed by the camera exposure time and
the transmission speed between the laptop and the system, the
frame rate achieved in operation is only ∼6 Hz. This has re-
stricted the medium change speed demonstrated in the current
phase of the experiment. The diffuser is rotating at different
speeds to create various SDTs. As the frame rate is 10 times
slower than that used in simulation estimation, SDT in simu-
lation has to be enlarged 10 times accordingly to be consistent
with the experimental conditions. For instance, in the experi-
ment, the ratio between the PBR target and the initial PBR in a
stationary stochastic process whose SDT is 200 s should be the
same as that in the stationary variation whose SDT is 20 s in
simulation. However, it is worth noting that there is no fun-
damental limitation on the speed and performance of the
proposed framework if faster modulators such as DMD can
be applied, and hence the results demonstrated here are
scalable.

Three experiments with and without environmental dis-
turbance are conducted, respectively, and, in each experiment,
the adaptive recursive algorithm and traditional algorithm are
investigated for comparisons. The proposed framework consists
of two parts: recursive fine-tuning and adaptive adjustments of
hyperparameters. It has been proved by simulation that hybrid-
izing these two systems will demonstrate better performance in
handling non-stationarity rather than only employing recursive
fine-tuning; thus the nonadaptive recursive algorithm is not
applied to experiments. For a fair comparison, the total fine-
tuning samples of the adaptive recursive algorithm and tradi-
tional algorithm during a nonstationary process are the same,
and both algorithms are implemented with TFOTNet.
Experimental results are shown in Figs. 4 and 5. Results with-
out environmental perturbations are shown in Figs. 5(a)–5(c),
while results with disturbance are given in Figs. 5(d)–5(f ). The
same legend is used in these figures. Figures 4(a) and 4(b) in-
dicate the GFP and the GTE of the six experiments, respec-
tively. The SDT of each sub-process is shown in the figures,
while the PBR target (the ideal case) is indicated by the yellow
dashed line. In all experiments, the first step is TFOTNet ini-
tialization and training using 10,000 samples to obtain a fo-
cused speckle, and the initial PBR is displayed in the figures
at t � 0. As stated, the PBR target is determined by the
SDT as well as the PBR of the initial focused speckle. For media
of the same SDT, the ratio between the PBR target and the
initial PBR always remains the same. Thus, the PBR target
can be deduced from the typical simulation results demon-
strated above.

As seen from Figs. 5(a)–5(c), under circumstances without
sudden disturbance, the PBR target can always be reached after
fine-tuning using the adaptive recursive algorithm (gray line),
while the traditional algorithm (red line) never reaches the

Fig. 4. Experimental results. (a) Global focusing performance in the six experiments with the adaptive recursive algorithm and traditional algo-
rithm. (b) Global tracking error in the six experiments with adaptive recursive algorithm and traditional algorithm. Figures (a) and (b) use the same
legend. (c) The enhancement percentage in global focusing performance achieved by the adaptive recursive algorithm over the traditional algorithm.
(d) The reduction percentage in global tracking error achieved by the adaptive recursive algorithm over the traditional algorithm.
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target. In these circumstances, the adaptive recursive algorithm
always shows much better GFP (17–25) than traditional
algorithm results (8–17). As seen from Fig. 4(c), with adaptive
recursive algorithms, the enhancement achieved in GFP over
the traditional one is 43%–108%. Considering the influence
from the environment, the enhancement percentage achieved
in experiments not being as high as that in simulation is rea-
sonable, but significant improvements in focusing performance
are demonstrated by both simulation and experiment. The dot-
ted lines in Fig. 4(c) indicate the trend that with the increase of
SUMM , i.e., longer nonstationary processes, the enhancement
percentage realized by the adaptive recursive algorithm keeps
rising, suggesting that the merits of the adaptive recursive
algorithm are becoming notable as the nonstationary processes
are becoming longer. With the traditional fine-tuning

algorithm, when fine-tuning is conducted and when the origi-
nal trained model is obtained (t � 0), the difference between
the medium’s status increases overall with SUMM . The low
statistical correlation between these two statuses induces deg-
radation in the modeling accuracy, increasing the difficulty of
focusing recovery. Moreover, sending all of the samples alto-
gether to fine-tune the original model suggests that the whole
process is regarded as a stationary variation by the network,
which, actually, may be nonstationary and consists of multiple
stationary stochastic sub-processes.

The reduction percentage in the GTE achieved by the
adaptive recursive algorithm over traditional one is shown in
Fig. 4(d), reaching 30%–57%, indicating that the adaptive re-
cursive algorithm is much better than the traditional method in
terms of focusing tracking, which is consistent with the

Fig. 5. (a)–(c) Experimental results of the three trials without environmental disturbance. The SDT of each stationary sub-process is shown in the
figure, and the PBR target (ideal case) is indicated by yellow dashed lines. (d)–(f ) Results of the three experiments with environmental disturbance.
Figures (a)–(f ) use the same legend. (g) Speckle images recorded during a nonstationary process with environmental perturbation using adaptive
recursive and traditional algorithms. In (g), all speckle images use the same colormap and scale and are interpolated to 253 × 253 for a better view.
The color bars indicate the detected light intensity in arbitrary units. The middle image in the bottom row (traditional fine-tuning) is an interpolated
result using recorded speckles. Specific hyperparameters and fine-tuning sample amount used in experiments are available in Ref. [83].
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simulation results. Moreover, as SUMM becomes larger, the fo-
cusing tracking performance of the traditional algorithm keeps
being exacerbated due to the lack of ability in timely recovery.
By contrast, the adaptive recursive algorithm conducts fine-
tuning successively during the whole nonstationary process;
thus, the reduction percentage achieved by the adaptive recur-
sive algorithm increases as SUMM becomes larger, as suggested
by the dotted lines in Fig. 4(d).

In situations where environmental disturbance occurs, the
experimental results are shown in Figs. 5(d)–5(f ). The sudden
perturbation can be regarded as a stationary stochastic sub-pro-
cess, whose SDT is very small, and the time duration is
extremely short. Although the occurrence of perturbations leads
to inevitable increase in the GTE, as observed in both Figs. 4(b)
and 2(l), the adaptive recursive algorithm still demonstrates
much lower GTE in experiments (2–15) than that achieved
by the traditional algorithm (13–25). The reduction percentage
in the GTE realized by the adaptive recursive method over the
traditional one is 38%–93%. As for the GFP, the adaptive re-
cursive algorithm achieves larger values all the time, ranging
from 17 to 27, while values obtained by the traditional method
are much smaller, being from 4 to 13. The enhancement per-
centage of the adaptive recursive algorithm over the traditional
performance is 56%–444%, achieving significant improvement
in the focusing performance, which has also been indicated in
simulation. These results suggest that the advantage of recursive
fine-tuning becomes more outstanding in this situation, as
timely tracking is more and more important in long nonstation-
ary processes. Meanwhile, the merits of adaptive adjustments of
hyperparameters also become more notable since the require-
ment of fewer fine-tuning samples expedites the focusing recov-
ery and leads to better recovery performance as well. In
addition, Fig. 5(e) demonstrates that once a slower changing
sub-process is detected (SDT = 400 s), the adaptive recursive
algorithm is able to make up the PBR loss caused by pertur-
bations, which, again, is consistent with the simulation, as illus-
trated in Fig. 2(i).

Actually, all of the enhancement and reduction results ob-
tained in the six experiments agree well with the simulations. As
seen from Figs. 4(a) and 4(c), with the increase of SUMM , the
GFP of the adaptive recursive method keeps rising; meanwhile,
the enhancement percentage it can achieve over the traditional
performance also enlarges, regardless of the occurrence of dis-
turbance. In all circumstances, the adaptive recursive algorithm
always demonstrates the best results. As for the GTE, the re-
duction percentage over the traditional algorithm also increases
with SUMM , no matter whether perturbations take place or
not. These results suggest that the proposed adaptive frame-
work is robust and even more promisingly attractive when
the nonstationary process lasts longer or significant sudden
PBR degradation occurs.

The speckle images recorded in the nonstationary processes
indicated by Fig. 5(f ) with the adaptive recursive and tradi-
tional algorithms are shown in Fig. 5(g). All speckle images
are interpolated to 253 × 253 for a better view, and the inter-
polation algorithm is based on splines. The diameter of the ini-
tial focused speckle is ∼30 μm. Speckle patterns before and
after each fine-tuning are demonstrated. As seen in Fig. 5(g),

the adaptive recursive algorithm can recover the focal
point in time, and then the focus can remain over time. By
contrast, with the traditional algorithm, due to the lack of abil-
ity of timely tracking, it cannot recover the focal point even
though fine-tuning is conducted. It is worth noting that
although we only report light focusing to a single position,
the trained TFOTNet is capable of focusing light to an arbi-
trary position or multiple positions simultaneously on the im-
age plane. As indicated above, during experiments, only the
speckles before and after fine-tuning are recorded with the tra-
ditional algorithm, and the middle image in the bottom row in
Fig. 5(g) is an interpolated result using recorded speckles.

3. Comparison of Light Focusing and Refocusing
Performance with TFOTNet, Conventional ConvLSTM, and
CNN
The ability of the conventional single-input-single-output
ConvLSTM network [85,86] and single-input-single-output
CNN in light focusing and refocusing through nonstationary
scattering media is investigated using both simulation and ex-
periments, and results are shown in Fig. 6. The structures of the
conventional ConvLSTM and CNN are shown in Figs. 6(d)
and 6(e), respectively. The conventional ConvLSTM
network consists of two ConvLSTM layers, one LSTM layer,
and one TimeDistributed dense layer working as the output
layer. The input of the network is speckle patterns, while
the output is their corresponding SLM patterns. All layers share
the same parameters with their corresponding ones in
TFOTNet, including kernel size, number of filters, activation
function, etc. As for CNN, it consists of two convolutional
layers, one fully connected layer, and the other fully connected
layer serving as the output layer. Except timestep, which is not
included in CNN, all of the other parameters are the same as
the ConvLSTM network. With simulation, in the first step, the
same 10,000 samples are used to train TFOTNet and CNN in
order to obtain a focal point, and training results are shown in
Fig. 6(a). All figures in Fig. 6(a) use the same colormap. The
PBRs of the focused speckle achieved by TFOTNet and CNN
are 41.5 and 15.6, respectively. As for the ConvLSTM network,
15,000 samples are used, which is an increase of 50% com-
pared with that needed by TFOTNet. Nonetheless, the
PBR of the focused speckle obtained with ConvLSTM is only
10.79, much lower than that achieved with the pre-trained
TFOTNet (41.5). This phenomenon actually indicates a draw-
back of conventional ConvLSTM networks, where, as both
temporal and spatial weights have to be learned during training,
a large amount of samples are required. However, TFOTNet
significantly enhances the modeling efficiency and effectively
overcomes this drawback. After obtaining a focal point, during
the fine-tuning phase with a nonstationary process, the same
adaptive hyperparameters and fine-tuning samples are offered
to TFOTNet, ConvLSTM, and CNN (except timestep). As
seen in Figs. 6(a) and 6(f ), with the same nonstationary process
and fine-tuning algorithm, TFOTNet always exhibits the best
performance in light focusing and refocusing. Nevertheless,
with the ConvLSTM network or CNN, over time, the back-
ground becomes so bright that a single focal point is no longer
able to be recovered, even though recursive fine-tuning is con-
ducted. As for experimental results, 10,000 samples are sent to
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Fig. 6. Comparisons about fine-tuning ability in a nonstationary process using three different networks (see Visualization 1). (a) Simulation
results. Light focusing and refocusing performance recorded at different times through a nonstationary process using the adaptive recursive algorithm
with TFOTNet (the first row), ConvLSTM (the second row), and CNN (the third row) is shown. All images use the same colormap and scale, and
the color bars indicate the light intensity in arbitrary units. (b) Experimental results. Light focusing and refocusing results using three networks with
the adaptive recursive algorithm in the same nonstationary process are shown. All speckle images use the same colormap and scale and are inter-
polated to 253 × 253. The color bars indicate the detected light intensity in arbitrary units. (c) Experimental results in the situation of low SNR. All
speckle images use the same colormap and scale and are interpolated to 253 × 253. The color bars indicate the detected light intensity in arbitrary
units. (d) Structure of a conventional single-input-single-output ConvLSTM. (e) Structure of a conventional single-input-single-output CNN.
(f ) Details of the nonstationary process and PBR with the three networks in simulation (a). (g) Details of the nonstationary process and PBR
with the three networks in experiment (b). (h) Details of the nonstationary process and PBR with the three networks in experiment (c).
(f )–(h) use the same legend.

Research Article Vol. 9, No. 8 / August 2021 / Photonics Research B273

https://doi.org/10.6084/m9.figshare.13263749


initialize and train TFOTNet, ConvLSTM, and CNN. With
TFOTNet, after training, a focused speckle can be obtained
while using the other two networks, clear background speckles
are observed with PBR dropping to less than 60% of that
achieved by TFOTNet, as shown in Figs. 6(b) and 6(g).
With adaptive recursive fine-tuning, a focused speckle can
always be retained using TFOTNet through a nonstationary
scattering medium; by contrast, the focal point is submerged
over time when ConvLSTM or CNN is used, which agrees
well with simulation results. Interestingly, experimental results
demonstrate that in situations of low SNR, as shown in
Figs. 6(c) and 6(h), among the three networks, only the pro-
posed TFOTNet is able to obtain focus after training, even
though the same training samples and parameters are used.
In the situations indicated by Figs. 6(a)–6(c), the SNR of
the training results of TFOTNet is calculated as 14, 12, and
10, respectively, which is defined as the ratio of the mean value
of the signal and the standard deviation of the noises [87,88].
As seen in Fig. 6(c), even if some fine-tuning samples are of-
fered, the fine-tuned ConvLSTM or CNN still cannot focus
light through a nonstationary scattering medium. As indicated
by Figs. 6(a) and 6(b), the refocusing performance of conven-
tional ConvLSTM or CNN degrades over time; thus, it can be
deduced that under the circumstances of low SNR a focal point
can hardly be obtained with these two networks. This phe-
nomenon manifests that TFOTNet is more robust to noises
than conventional single-input-single-output networks.

As mentioned above, the SLM used in the experiment limits
the fine-tuning sample collection speed, which further restricts
the allowed changing speed of the scattering medium.
Nevertheless, it should be emphasized here that there is no fun-
damental limitation on the speed of the proposed adaptive deep
learning framework, since much faster modulators can be em-
ployed. With a current commercially available DMD whose
frame rate has reached 23 kHz [82], both sample collection
speed and the SDT of the altering medium can be improved
nearly 4000 times. Thus, for the experimental results shown in
Fig. 5, the SDT can be shortened to 3.5–113 ms, indicating
that the proposed framework can be potentially applied for
wavefront shaping in dynamic media, for instance, optical
focusing and imaging at depths in vivo that alters at the
speed of milliseconds [84]. Therefore, the proposed framework
opens up a potential pathway to resolve the high demand of
wavefront shaping on responding time, taking a significant
step towards practical realizations. The proposed adaptive re-
cursive fine-tuning approach applying millisecond variation
media in vivo will be further studied and will be reported
elsewhere.

4. Comparison of Time Cost in Focusing Recovery with
Various Algorithms
It should be noted that time cost in focusing recovery by the
adaptive recursive fine-tuning algorithm and the two represen-
tative conventional wavefront shaping techniques, continuous
sequential algorithm (CSA) and transmission matrix measure-
ment, is discussed herein for comparison. Assuming a nonsta-
tionary process whose duration is t, on average, the medium
status changes per Δt. For the adaptive recursive algorithm,
on average, M samples are needed for each fine-tuning, and

totally M total samples are used during the whole nonstationary
course. In comparison, if CSA or transmission matrix mea-
surement is adopted to recover the focusing performance
through the changed medium, the iterative optimization pro-
cess or transmission matrix measurement has to be repeated
from the beginning. Thus, the time cost should be
�KN 2 × M total

M �∕F and �4N 2 × M total

M �∕F , respectively, where N
is the dimension of the SLM pattern, K is the pixel gray level,
and F is the frame rate of the SLM. M total

M represents how many
times fine-tuning has been done during the whole nonstation-
ary process, and, each time fine-tuning is conducted, CSA or
transmission matrix measurement will also be run once for fo-
cusing recovery. As for the adaptive recursive algorithm, the
total time spent in one fine-tuning is M

F � ptp. The fine-tuning
time cost consists of two parts: sample collection time and com-
putational time. The sample collection time is independent of
the SLM dimension N ; instead, it is determined by the sample
amount M and the SLM frame rate F , written as M

F . The com-
putational time is the product of epoch number p and time cost
per epoch tp. Considering that during the fine-tuning, only the
last layer of the pre-trained network, which has N 2 neurons,
is adjusted, tp is the function of N 2, that is
tp � g�N 2� � λ�N �N 2. Besides N, λ�N � is also influenced
by various factors such as network structures, computational
engine, and amount of fine-tuning samples. It should be noted
that taking a powerful GPU will reduce tp, thus reducing λ�N �.
As an example, in our work, with the TFOTNet and reported
computation platform (Acer Predator G9-792, 16 Gb RAM,
and a GTX 980M GPU), in simulation, tp is 0.38, 0.4,
0.45, 0.49, 0.54, and 0.61 s when N is set as 8, 16, 32,
64, 128, and 256, respectively. The fine-tuning sample amount
used here is 1000, which is the largest sample amount used in
the reported experiments, and the timestep and batch size are
set as 2 and 64, respectively. It can be expected that tp can be
further reduced if the fine-tuning sample amount is smaller, or
a more powerful computational unit is adopted.
λ�N � � tp∕N 2 is calculated to vary from 9.2 × 10−6 to
5.9 × 10−3. In our work, N � 32, and λ�N � is calculated to
be 4.4 × 10−4. For an intuitive comparison, herein, time cost
in one focusing recovery process using the adaptive recursive
fine-tuning algorithm, CSA, and transmission matrix measure-
ment is given below based on the setup reported in this article,
with the SLM pattern size being 32 × 32 and frame rate of
LCoS-SLM as 60 Hz. K varies with different setups, which
can be set as 8 [22], 191 [89], or other values, and here we
adopt K � 32 to be consistent with our experimental settings.
Hence, more than 9 min is needed by CSA to complete an
iterative optimization process. To measure a new transmission
matrix that represents the changed medium status, nearly 70 s
is required. As indicated by experimental results in Fig. 5, with
the adaptive recursive algorithm, time spent in each fine-tuning
varies from 6 to 170 s with the frame rate of the SLM being
only ∼6 Hz. Since 60 Hz is used for optimization time estima-
tion, for a fair comparison, the fine-tuning time should be re-
duced by 10 times, varying from 0.6 to 17 s. Therefore, the
proposed adaptive fine-tuning algorithm can improve the speed
by 32–910 times and 4–113 times against CSA and transmis-
sion matrix measurement, respectively. In addition, to measure
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a transmission matrix, interference between the modulated
light and a reference light is required, which significantly
increases the system complexity and reduces the utilization ef-
ficiency of the SLM, considering that part of the SLM pixels
work as the reference. As CSA optimizes each pixel independ-
ently, the detected intensity improvement at the output plane is
small, which may lead to errors in phase selection, especially
when the SNR is low [90].

One promising application of the proposed framework is
encryption. Recently, learning-based optical encryption has
been reported [91] with parameters of the trained model as
the security keys, achieving high security. In their study, static
diffusers are used. With our framework, rotating diffusers can
be applied to create much more complex scattering conditions,
which enhances system security as more parameters are re-
quired to precisely model the process. More importantly, the
introduction of a fine-tuning engine makes the system robust
to attack. If it is sensed that current security key is partially
eavesdropped, the diffuser can be rotated to create a new scat-
tering situation to disable the leaked key. Meanwhile, with our
adaptive fine-tuning system, security keys that fit for the new
setting can be obtained rapidly, preventing loss due to attack.
Demonstration of the idea is underway and will be reported
elsewhere.

Lastly, but not the least, it should be admitted that since the
fine-tuning cost is determined by the correlation between the
medium statuses, it is natural that more samples and longer
times are needed to recover a focal point in situations with
a short SDT or dramatic disturbance. The proposed adaptive
deep learning framework makes the best use of correlation be-
tween medium statuses to reduce the cost in focusing recovery
as much as possible. However, in extreme cases where the
medium decorrelates rapidly, or the persistence is low between
iterations, a new training or optimization cycle may be re-
quired. The proposed adaptive recursive framework can achieve
optimal tracking performance to a physical process change un-
less unpredictable.

4. INFLUENCE OF HYPERPARAMETERS ON
FINE-TUNING AND THE IMPLEMENTATION OF
ADAPTIVE PBR TARGET

Hyperparameters including timestep, batch size, initial learning
rate, and numbers of fine-tuning samples are investigated, re-
spectively, as they will influence light refocusing performance
or fine-tuning time cost. Simulation is conducted to evaluate
the fine-tuning time cost to reach a pre-defined PBR target,
as the above listed relevant parameters are individually varied
with the medium changing at different speeds; then these re-
sults can be scaled in light of specific implementations. In all
cases, fine-tuning is conducted with the same time interval after
the original focal point is obtained. This is to ensure the
same degree of medium change when different hyperpara-
meters are investigated in a steadily altering situation, since
the fine-tuning cost is directly related with the correlation
amongst medium statuses. In this simulation, serving as an ex-
ample, the PBR target is set as 37, and the time interval is set
as 1 s. Nevertheless, values are not fixed; instead, they are
adjustable according to specific setups. When one hyperpara-

meter is under test, all other hyperparameters remain as their
default values, which are given in the inserted table in Fig. 2.
From Figs. 7(a)–7(d), it can be seen that when medium altering
is mild, and the SDT is larger than 10.8 s, varying one hyper-
parameter does not lead to significant differences in the fine-
tuning time. With faster speed (SDT is smaller than 10.8 s),
selecting suitable values for hyperparameters becomes more
essential, as they are exerting growing influence on the fine-
tuning time cost. Sample collection time is estimated using
the maximal frame rate of commercial LCoS-SLM, which is
generally 60 Hz. As for epochs, there is no doubt that more
epochs require longer computation time and may lead to over-
fitting. On the other hand, more epochs may contribute to
better light focusing performance.

Among all of the hyperparameters evaluated above, the
amount of fine-tuning samples imposes the most significant
influence on the fine-tuning time cost. A comparison of the
required fine-tuning sample amount with and without adaptive
adjustments of hyperparameters in the situations of different
SDTs is shown in Fig. 7(e). As seen, without adaptive modi-
fications of hyperparameters, the required sample amount is
2–3 times that needed by the adaptive algorithm to reach a
pre-defined PBR target, resulting in much longer fine-tuning
time cost. The result can be extended to other SDTs that are
not tested here. During fine-tuning, if the number of newly
collected samples is smaller than 100, then previously collected
samples are included to concatenate with new samples; thus,
a total of 1000 samples are used for fine-tuning to avoid over-
fitting. Increasing the fine-tuning sample amount theoretically
leads to better focusing performance, which, however, also pro-
longs the fine-tuning process, as more time is spent at sample
collection, indicating larger change to the medium status dur-
ing this time period, which will degrade the fine-tuned PBR.
With the goal of balancing the trade-off between the overall
PBR and the fine-tuning time cost, we explore the relationship
between PBR after fine-tuning and fine-tuning samples
amounts using the adaptive algorithm when the medium
changes at different speeds, with results shown in Figs. 7(f )
and 7(g). In all cases, fine-tuning is conducted after a fixed time
interval when the initial focused speckle is obtained, and it is
chosen as 1 s as an example, which is scalable. With slow
medium change (SDT larger than 2.8 s), less than 30 fine-
tuning samples are sufficient to recover the PBR back to 37,
which is regarded as an acceptable PBR threshold in this sim-
ulation. With faster medium changes, characterized by SDT
ranging from 1.6 to 1.2 s, several hundred samples are needed
to surpass the PBR threshold. With further expedition of the
medium change (SDT lower than 1.2 s), up to several thousand
samples are required. As longer time is required to collect more
samples, the capability of tracking the medium change and
keeping light focused will be affected. To mitigate this di-
lemma, an adaptive PBR target is employed; as a faster SDT
accommodates a relatively lower PBR target, less time is
needed. With instructive results shown in Fig. 7, for a certain
SDT interval, the adaptive PBR target is defined as the mean
value of the maximal and minimal PBR that can be achieved
after fine-tuning, i.e., PBR target � max�PBR��min�PBR�

2 , serving
as a criterion to evaluate the focusing recovery performance.
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Although different setups result in different initial focused
speckles, the ratio between the PBR target and PBR of the
initial focused pattern remains unchanged as long as the
SDT is the same. By doing so, the presented results can be
safely scaled to any other implementations.

5. CONCLUSION

In summary, the proposed deep learning-empowered adaptive
wavefront framework is able to achieve focusing and fast refo-
cusing of light through time-variant scattering media, which
now allows a complex nonstationary stochastic process for
the kind of first time, to the best of our knowledge. With
the proposed adaptive recursive fine-tuning of TFOTNet, op-
tical focusing can be recovered in time from degradation, which
is much more rapid (with fundamental potential to achieve
real-time) than both the traditional fine-tuning algorithm
and the representative conventional methods, which require
a new time- and/or resource-demanding optimization process.
Simulation and experimental results agree very well and mani-
fest the merits of the proposed framework. The experimental
results indicate that with the proposed adaptive recursive frame-
work, for all SUMM investigated here, the GFP can be en-
hanced by 43%–444% against the traditional algorithm, and
the GTE is reduced by 30%–93%. Moreover, as the nonsta-
tionary process is prolonged, both the GFP enhancement per-
centage and the GTE reduction percentage over the traditional
algorithm increase. It can be expected that similar performance
improvement can be achieved by other implementations of the
proposed framework. All results shown in the article are scalable
according to the specific implementations; with the proposed
framework, light focusing can be safely retained in all realiza-
tions. As stated, with DMD and more powerful GPU, the pro-
posed framework has potential to deal with scattering media of

SDT being several milliseconds; thus, it opens up a potential
pathway to resolve the high demand of wavefront shaping on
responding time, taking a significant step towards practical
realizations.
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