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28 Abstract
29 Purposes: This study aimed to investigate the network coupling between arterial blood pressure 

30 (ABP) and changes in cerebral oxyhemoglobin concentration (Δ [O2Hb]/Δ [HHb]) oscillations 

31 based on dynamical Bayesian inference in hypertensive subjects. 

32 Methods: Two groups of subjects, consisting of 30 healthy (Group Control, 55.1 ± 10.6 y), and 32 

33 hypertensive individuals (Group AH, 58.9 ± 8.7 y), participated in this study. A functional near-

34 infrared spectroscopy system was used to measure the Δ [O2Hb] and Δ [HHb] signals in the 

35 bilateral prefrontal cortex (LPFC/RPFC), motor cortex (LMC/RMC), and occipital lobe 

36 (LOL/ROL) during the resting state (12 min). Based on continuous wavelet analysis and coupling 

37 functions, the directed coupling strength (CS) between ABP and cerebral hemoglobin was identified 

38 and analyzed in three frequency intervals (I: 0.6–2 Hz, II: 0.145–0.6 Hz, III: 0.01–0.08 Hz). The 

39 Pearson correlations between the CS and blood pressure parameters were calculated in the 

40 hypertension group.

41 Results: In interval I, Group AH exhibited a significantly higher CS for the coupling from ABP to 

42 Δ [O2Hb] than Group Control in LMC, RMC, LOL, and ROL. In interval III, the CS from ABP to Δ 

43 [O2Hb] in LPFC, RPFC, LMC, RMC, LOL, and ROL was significantly higher in Group AH than in 

44 Group Control. For the patients with hypertension, diastolic blood pressure was negatively and 

45 pulse pressure was positively related to the CS from ABP to Δ [O2Hb] oscillations in interval III.

46 Conclusions: The higher CS from ABP to Δ [O2Hb] in interval I indicated that the components of 

47 cardiac activity in cerebral hemoglobin oscillations were more directly responsive to the changes in 

48 systematic ABP in patients with hypertension than in healthy subjects. Meanwhile, the higher CS 

49 from ABP to Δ [O2Hb] in interval III indicated that the cerebral hemoglobin oscillations were A
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50 susceptible to changes in blood pressure in hypertensive subjects. The results may serve as evidence 

51 of impairment in cerebral autoregulation after hypertension. The Pearson correlation results showed 

52 that diastolic blood pressure and pulse pressure might be regarded as predictors of cerebral 

53 autoregulation function in patients with hypertension, and may be useful for hypertension 

54 stratification. This study provides novel insights into the interaction mechanism between ABP and 

55 cerebral hemodynamics and could help in the development of new assessment techniques for 

56 cerebral vascular disease.

57 Keywords: arterial blood pressure; cerebral hemodynamics; hypertension; dynamical Bayesian 

58 inference
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59 Introduction

60 The regulatory response of cerebral blood flow variables to changes in blood pressure ensures that 

61 the cerebral blood flow matches the brain’s metabolic demands and protects it from hypo- or 

62 hyperperfusion.1 The ability of the brain to regulate its blood supply is termed cerebral 

63 autoregulation (CA).2 CA is altered or impaired in patients suffering from hypertension and 

64 stroke.2,3 However, studies have demonstrated that CA impairment is not an all-or-none status; it is 

65 graded and variable among different diseases.4 Hypertension is the most powerful and important 

66 modifiable risk factor for stroke.5,6 Long-term hypertension causes the cerebral arterial walls to 

67 harden and thicken.7 It can also cause atherosclerosis or accelerate its development, and has a 

68 significant effect on brain structure and cognitive function.8 Thus, monitoring the dynamic 

69 regulation between arterial blood pressure (ABP) and cerebral blood flow in patients with 

70 hypertension would permit a more personalized physiology-based therapy designed to reduce the 

71 risk of secondary brain damage.

72

73 Various mathematical methods have been developed for non-invasive assessment of CA in the 

74 resting state. The most commonly used method was transfer function analysis, which involving the 

75 relationship between ABP and cerebral blood flow velocity in the frequency domain. It quantifies 

76 CA in terms of three parameters, including the amplitude with which cerebral blood flow velocity 

77 changes driven by ABP (gain) as well as the timing (phase) and linearity (coherence) of this 

78 relationship.9 Transfer function analysis treats CA as a linear process while it is well known that CA 

79 leads to a nonlinear pressure-flow interaction.10 Besides, it assumes stationary signals while 

80 physiological signals including ABP and cerebral hemodynamics are nonstationary, particularly 

81 under pathophysiological conditions.11 Despite the demonstration that the linear model provides an 

82 acceptable approximation, non-stationarities may render a high spread in the results.12 By studying 

83 the time-varying nature of CA, we can better understand the nature of CA and track improvement or 

84 deterioration over time.
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86 Continuous wavelet transform is a time-frequency analysis method that allows the identification of 

87 time-varying frequency and phase, and can express the non-stationary characteristics of 

88 hemodynamics.13 Based on continuous wavelet transform, wavelet coherence analysis characterizes 

89 intermittent cross-correlations between two time series at multiple time scales, which makes no 

90 assumption about the stationarity of the input signals.14 The wavelet phase coherence can reveal 

91 possible relationships by evaluating the match between the instantaneous phases of two signals.15-17 

92 It allows the identification of significant coherence of low-frequency components to cardiovascular 

93 signals even at low common power.18 However, the contributions of amplitude and phase in the 

94 coupling strength cannot be distinguished by such methods, leading to concealment of the subtle 

95 interactions within the cardio-cerebral system.19 Dynamical Bayesian inference (DBI) can identify 

96 time-varying dynamics in the presence of noise and follow the time evolution of the involved 

97 parameters.20 This method provides a new means of characterizing the directed interaction 

98 mechanisms of interacting oscillators between the systems and manifests in terms of strength and 

99 directionality.21 It can represent the functional contribution from each independent subsystem 

100 within a single coupling relationship.22 DBI has already been used to investigate effective coupling 

101 interactions among different physiological indexes, such as neuronal, cardiorespiratory, and 

102 vascular regulation.13,23-25 In our recent studies, the interaction between cerebral activity and ABP 

103 was detected and evaluated by using an effective coupling function based on DBI in patients with 

104 stroke.26 However, information about the functional mechanism and the causality underlying the 

105 coupling interaction between cerebral hemodynamic variables and ABP in subjects with 

106 hypertension is far from comprehensive.

107

108 In the present work, we aimed to study the alteration in the effective coupling interaction between 

109 blood pressure changes and cerebral hemoglobin oscillations based on DBI by using functional 

110 near-infrared spectroscopy (fNIRS) in patients with hypertension. fNIRS is a widely used 

111 noninvasive imaging technique that can describe the cerebral hemodynamic responses by measuring 

112 changes in oxy- and deoxyhemoglobin concentrations (Δ [O2Hb]/Δ [HHb], respectively).27 

113 Kainerstorfer et al. used fNIRS to measure Δ [O2Hb] and Δ [HHb] to describe the CA and A
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114 demonstrated that autoregulation can reliably be measured noninvasively in the microvasculature 

115 with fNIRS.28 Cerebral blood flow autoregulation can be monitored continuously with fNIRS in 

116 adult patients undergoing cardiopulmonary bypass.29 Furthermore, a good correlation was reported 

117 between fNIRS and transcranial Doppler assessments of cerebral blood flow autoregulation in 23 

118 patients with sepsis, and fNIRS shows promise for the continuous assessment of CA in adults.30 

119 Spatial mapping of dynamic autoregulation by multichannel fNIRS may serve as a powerful tool for 

120 identifying brain regions at specific risks for ischemia in various neurovascular diseases.31

121

122 In this study, cerebral hemoglobin parameters (Δ [O2Hb]/Δ [HHb]) were measured in the prefrontal 

123 cortex (PFC), motor cortex (MC), and occipital lobe (OL) using multichannel fNIRS. The PFC is 

124 mainly responsible for cognitive control and advanced neural information processing functions, 

125 such as judgment and analysis.32 The MC plays an important role in motor functions and is involved 

126 in the planning, control, and execution of voluntary movements.33 The OL is the visual processing 

127 center of the brain and is crucial for coordinating language, motion perception, and visuospatial 

128 processing.34 It was hypothesized that (1) hypertension may disturb the relationship between ABP 

129 and cerebral hemoglobin oscillations in the PFC, MC, and OL and (2) the degree of disturbance 

130 may be related to the magnitude of hypertension. In this study, coupling functions based on the DBI 

131 method were established to assess the relationship between ABP and cerebral hemoglobin 

132 oscillations in patients with hypertension. Furthermore, correlation analysis was used to reveal the 

133 relationship between the strength of the couplings and blood pressure. This study provides evidence 

134 for alterations in the mechanisms underlying cerebrovascular autoregulatory dynamics caused by 

135 hypertension.

136

137 Methods

138 Participants

139 Two groups of right-handed subjects were recruited in this study: 30 healthy (Group Control) and 

140 32 hypertensive participants (Group AH). Participants were recruited from the local community. 

141 None of the participants experienced subjective memory problems and had unimpaired overall A
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142 cognitive function based on a Mini-Mental State Examination (MMSE) assessment.35 Subjects in 

143 Group Control had no cardiovascular or neurological abnormalities. Hypertensive patients had 

144 systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg. Table 1 

145 shows the analysis of the characteristics of the participants by one-way ANOVA. The experimental 

146 procedure was approved by the Human Ethics Committee of the National Research Center for 

147 Rehabilitation Technical Aids and was in accordance with the Helsinki Declaration of 1975 (revised 

148 in 2008). Written informed consent was obtained from the participants in the current study.

149

150 Data acquisition and preprocessing

151 The participants refrained from strenuous exercise and alcohol for at least 12 h before experimental 

152 testing. All subjects underwent a 12 min resting-state session of fNIRS and ABP measurements. 

153 They were seated comfortably in a chair in a silent and light-dimmed room. During the resting state 

154 session, the subjects were instructed to maintain their sitting position at a wakeful resting state 

155 while remaining as motionless as possible.

156

157 A 32-channel fNIRS device (NirSmart, Danyang Huichuang Medical Equipment Co., Ltd, China) 

158 was applied to measure the cerebral hemoglobin variables (Δ [O2Hb] and Δ [HHb]) with two 

159 wavelengths (760 and 850 nm). The distance between the detectors and light sources was 3.0 cm. 

160 The sampling rates for signal acquisition were set to 10 Hz, and the differential path-length factor 

161 was set to 6.0. This fNIRS system was used and verified in our previous studies.36 Thirty-two 

162 channels (16 channels on each side) were placed at the bilateral PFC (LPFC/RPFC), MC 

163 (LMC/RMC), and OL (LOL/ROL). The calibration function of the instrument and corresponding 

164 template was used to ascertain that the channels fell exactly in accordance with the international 

165 10–10 electrode distribution system.37 During the placement of the probes into the template, the hair 

166 of the subjects was manually parted to ensure that the probes were in direct contact with the scalp. 

167 Finally, the probe template was covered with black cloth to reduce the impact of ambient light. Fig. 

168 1(A) shows the configuration of the sources, detectors, and measurement channels. 

169 A
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170 Continuous ABP signals were synchronized and recorded with the fNIRS measurement, which was 

171 monitored with a noninvasive blood pressure device (CNAPTM Monitor 500, CNSystems 

172 Medizintechnik AG, Graz, Austria). The sample frequency was 2000 Hz. This system comprises a 

173 sensor placed on the finger (second and third digit), a cuff for calibration, and a CNAP monitor 

174 (Fig. 1(B)). The ABP signal was fed into the platform using a DA100C amplifier for a Biopac 

175 MP160 (BIOPAC Systems Inc., USA).38 The Biopac MP160 and CNAPTM were connected to a 

176 computer by Ethernet interfacing, and signals were acquired using the software Acknowledge, 

177 which allows data conversion into MATLAB-compatible formats (MATLAB 2016b, MathWorks, 

178 MA, USA) files. The 2000 Hz raw ABP data were initially downsampled to 10 Hz to match the 

179 time base of the fNIRS signals.

180

181 The fNIRS data were preprocessed according to the following steps. First, the first 2 min of raw 

182 fNIRS data were discarded for each subject to obtain a steady signal. Second, the signals were 

183 processed by low-pass filtering to 2 Hz (six-order Butterworth in the forward and backward 

184 directions) to improve the signal-to-noise ratio.39 By applying the modified Beer–Lambert law,40 the 

185 filtered optical density signals were converted to Δ [O2Hb] and Δ [HHb].41 Third, principal and 

186 independent component analysis methods 42-45 were separately performed on the Δ [O2Hb] and Δ 

187 [HHb] signals to reduce physiological interference in the fNIRS measurements as follows: (1) 

188 Principal component analysis reduction was performed for each subject to reduce the data 

189 dimensionality (N=32) to a low dimensional (N=K). The number K of retained principal 

190 components (PCs) was determined according to the minimum number of PCs that retained more 

191 than 99% of the data variance.43 (2) The reduced data for each individual was subjected into 

192 independent component analysis decomposition with the number of independent components equal 

193 to the number of retained principal components. All the components derived from the independent 

194 component analysis were visually inspected to determine the components that might be related to 

195 physiological interference and artifacts. (3) Significant independent components were extracted by 

196 confirming the power spectra and eliminating unwanted independent components. (4) The 

197 hemodynamic response was reconstructed using the retained independent components (N=K), and A
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198 then the data were restored to the original dimensions (N=32). Finally, the filtered Δ [O2Hb] and Δ 

199 [HHb] signals for each channel were visually examined to check for movement artifacts, which 

200 were removed by moving standard deviation and cubic spline interpolation.46

201

202 Coupling function

203 In this study, the phase of the cerebral hemoglobin parameters (Δ [O2Hb] and Δ [HHb]) and ABP 

204 oscillations were extracted by continuous wavelet transform, which can provide logarithmic 

205 frequency resolution and appropriate representation of low-frequency spectral structures.47,48 

206 Besides, this transformation allows direct reconstruction of any order time-derivatives of any order 

207 the component’s amplitude and phase.47 The oscillators of the Δ [O2Hb] and Δ [HHb] signals were 

208 distinguished in three frequency intervals as follows:49 I, 0.6–2 Hz; II, 0.145–0.6 Hz; and III, 0.01–

209 0.08 Hz. The cerebral oxygenation oscillations in intervals I and II correspond to cardiac activity 

210 and respiratory activity, respectively.23 The oscillations in frequency III mainly reflects 

211 hemodynamic fluctuations that originate from spontaneous cortical activity.50,51

212

213 The DBI of the coupling functions was used to reconstruct a stochastic differential model, where the 

214 deterministic part was allowed to be time varying.20,21,52 The model to be inferred is described by 

215 the following stochastic differential equation:53

216 (1)𝜙1 = 𝜔1 + 𝑞1(𝜙1,𝜙2) + 𝜉1(𝑡)

217 𝜙2 = 𝜔2 + 𝑞2(𝜙1,𝜙2) + 𝜉2(𝑡)

218 where  is the parameter of the natural frequency, and is the phase of oscillator . The coupling 𝜔𝑖 𝜙𝑖 𝑖

219 function  describes the influence of oscillator  on the phase of oscillator . The stochastic 𝑞𝑖(𝜙𝑖,𝜙𝜎) 𝜎 𝑖

220 part is modeled by Gaussian white noise .𝜉𝑖(𝑡)

221

222 In this study, CS was applied to quantify the coupling amplitude.  from the oscillator  to  is 𝐶𝑆𝑖,𝜎 𝑖 𝜎

223 defined as the Euclidean norm of the inferred parameters from the phase dynamics as follows:52

224   (2)𝐶𝑆2,1 = ‖𝑞1(𝜙1,𝜙2)‖ = c2
1 + c2

3 + …,A
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225 𝐶𝑆1,2 = ‖𝑞2(𝜙1,𝜙2)‖ = c2
2 + c2

4 + …,

226 where the odd inferred parameters are assigned to the base functions  for the coupling that 𝑞1(𝜙1,𝜙2)

227 the first oscillator imposes on the second ( ), and vice versa ( ).𝐶𝑆1,2: 1→2 𝐶𝑆2,1:2→1 

228

229 The coupling direction (CD) is defined as the normalization of the predominant coupling 

230 amplitude:54

231 (3)𝐶𝐷 =
𝐶𝑆2,1 ― 𝐶𝑆1,2

𝐶𝑆2,1 + 𝐶𝑆1,2

232 If , then oscillator  drives ; if , then oscillator  drives . The  𝐶𝐷 ∈ (0,1] 𝜑2 𝜑1 𝐶𝐷 ∈ [ ―1,0)  𝜙1 𝜙2

233 quantified values of the  or the  represent measures of the combined relationships between the 𝐶𝑆 𝐶𝐷

234 oscillators. To characterize the coupling function between ABP and cerebral hemoglobin more 

235 clearly, channel-wise CS values were averaged in six regions of interest according to the 

236 distribution of fNIRS channels. Because coupling in the weak direction is usually not important, for 

237 the sake of simplicity, only the coupling in the principal direction was described.

238

239 Significance test 

240 CS and CD were applied to quantitatively represent the directed coupling relationships between the 

241 oscillators from different physiological sources.54,55 CS was defined to quantify the coupling 

242 amplitude and CD represents the predominant direction of the coupling function. Given the 

243 statistical properties of the signals, a nonzero CS may be detected from inferred couplings even 

244 from completely uncoupled or very weakly coupled systems. Therefore, ascertaining whether the 

245 detected CS is genuine or spurious due to the inference method is necessary. In this study, the 

246 amplitude-adjusted Fourier transform surrogate test was employed to detect the effectiveness of the 

247 results for the coupling functions in each interval.56 With this method, a set of 100 amplitude-

248 adjusted Fourier transform surrogates were generated for each signal by randomizing the phases of 

249 the original signal to create a new signal mimicking the original signal, but without having any 

250 phase relationship to it.57 This method was applied for each channel, subject, and interval, thereby 

251 providing pairs of surrogate phases (ABP and fNIRS signal). These pairs were used as input for the A
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252 DBI to calculate the surrogate coupling. For each interval, if the actual value of CS was higher than 

253 95% of the highest values obtained for this artificial unrelated surrogate distribution, then the CS 

254 value was sufficiently high to indicate a significant relationship between the signals at this 

255 frequency. Only those exhibiting a statistically significant difference compared with their 

256 corresponding surrogates were discussed.

257

258 Statistical analysis 

259 Shapiro-Wilk test was applied to test the variance normality of distribution of the CS. In the present 

260 work, Wilcoxon signed-rank test was performed on the region-wise CS between Group Control and 

261 Group AH because of the non-normal distribution of this variable. Bonferroni’s t-test was used for 

262 the inter-group pair-wise comparisons. In each frequency interval, two groups for CS comparison 

263 were designed (Group Control vs Group AH). Thus, there were  inter-groups pair-wise 

264 comparisons. Therefore, the corrected statistical significance was defined as p < 0.0167 (p < 

265 porigin/3). Pearson correlation coefficient test was conducted to identify the correlation between CS 

266 and blood pressure parameters (SBP/DBP/pulse pressure). Although nonparametric tests were used, 

267 box-and-whisker plots were used for the descriptive statistics to visually illustrate the significant 

268 differences in the CS between the two groups.

269

270 Results
271 Coupling between ABP and cerebral hemoglobin

272 The coupling quantities and characteristics were described using the inferred parameters. The 

273 coupling function  represents the coupling from ABP to Δ [O2Hb] oscillations. An example of the 

274 region-averaged coupling function from ABP to Δ [O2Hb] oscillations in RMC in interval III is 

275 shown in Fig. 2 (A), and correspond surrogate data is illustrated in Fig. 2 (B). Compared with that 

276 from the actual results, the amplitude of the coupling obtained from the surrogate data shown is 

277 negligible. The amplitude and shape of the coupling function might reveal the detailed mechanism 

278 of the directed interaction between ABP and cerebral hemodynamics.58A
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279

280 Directed region-wise CS was quantified to assess the influence of hypertension on network 

281 coupling between cerebral hemoglobin variables and ABP. The results of the region-wise CS from 

282 ABP to cerebral hemoglobin (ABP → Δ [O2Hb] and ABP → Δ [HHb]) are shown in Fig. 3-4 

283 (oscillation 1 → oscillation 2, oscillation 1 exerted influence on oscillation 2). Inter-group 

284 comparisons of the frequency-specific CS between ABP and cerebral hemoglobin signals (Δ 

285 [O2Hb]/Δ [HHb]) were performed in six regions of interest (LPFC/RPFC, LMC/RMC, and 

286 LOL/ROL).

287

288 In interval I, the CS from ABP to Δ [O2Hb] was significantly higher in Group AH than in Group 

289 Control in LMC (p = 0. 0007), RMC (p = 0.0008), LOL (p = 0.00001), and ROL (p = 0.00004) 

290 (Fig. 3 (A)). For the CS from ABP to Δ [HHb], no significant difference was found between the 

291 two groups (Fig. 3 (B)). 

292

293 In interval III, the CS from ABP to Δ [O2Hb] in Group AH was significantly higher than that in 

294 Group Control in LPFC (p = 0.016), RPFC (p = 0.003), LMC (p = 0.00008), RMC (p = 0.0008), 

295 LOL (p = 0.0007), and ROL (p = 0.001) (Fig. 4 (A)). The CS from ABP to Δ [HHb] was also 

296 significantly higher in Group AH than in Group Control in LMC (p = 0.012) and RMC (p = 0.008) 

297 (Fig. 4 (B)).

298

299 Correlation analysis between CS and blood pressure

300 The Pearson correlation between CS and blood pressure parameters (SBP/DBP/pulse pressure) was 

301 calculated in the hypertension group. Pulse pressure is the difference between the SBP and DBP. A 

302 significantly negative correlation was observed between DBP and CS (ABP → Δ [O2Hb]) in LMC 

303 (interval II: r = -0.467, p = 0.007; interval III: r = -0.468, p = 0.007) and RMC (interval II: r = -

304 0.427, p = 0.015; interval III, r = -0.440, p = 0.012). Correlation analysis also revealed that pulse 

305 pressure was significantly positively correlated with the CS (ABP → Δ [O2Hb]) in LMC (interval A
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306 II, r = 0.467, p = 0.007) and RMC (interval II: r = -0.440, p = 0.012; interval III: r = 0.440, p = 

307 0.012).

308

309 Discussion
310 Regulation of the cerebral circulation relies on the complex interaction among the cardiovascular, 

311 respiratory, and neurophysiological parameters.23 Cerebral circulation may be disturbed by damage 

312 to one or more of these parameters.59 In this study, the frequency-specific coupling interaction 

313 between ABP and cerebral hemoglobin oscillations measured by fNIRS was analyzed based on 

314 coupling functions and DBI in subjects with hypertension. In interval I, Group AH exhibited 

315 significantly higher CS for the coupling from ABP to Δ [O2Hb] than Group Control in MC and OL. 

316 In interval III, the CS from ABP to Δ [O2Hb] in PFC, MC, and OL were significantly higher in 

317 Group AH than in Group Control. Correlation analysis revealed that DBP was negatively and pulse 

318 pressure was positively related to the CS from ABP to Δ [O2Hb] oscillations in interval III. This 

319 study demonstrated the applicability of fNIRS-based technology in evaluating the directed 

320 interaction relationship between ABP and cerebral hemodynamic oscillations in hypertensive 

321 patients.

322

323 It is widely accepted that enhanced brain activation induces intensified blood flow in the active 

324 brain regions, leading to an increase in Δ [O2Hb] and a decrease in Δ [HHb].60 However, the 

325 correlation between Δ [O2Hb] and Δ [HHb] is not perfectly negatively correlated, deviating 

326 especially in the resting state.61,62 In the present work, the CS between ABP and Δ [O2Hb] was not 

327 always the same as the CS between ABP and Δ [HHb]. This might be explained by the fact that the 

328 [HHb] signal may be less contaminated by systemic changes than the [O2Hb] signal.63 A previous 

329 study also showed that the cerebral vein (containing more [HHb]) might be less reactive to blood 

330 pressure variations than the artery (containing more [O2Hb]).64 Therefore, the coupling between 

331 ABP and Δ [O2Hb] was chosen for discussion in detail below.

332 A
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333 The oscillations in interval I reflect the effects of cardiac activity.23 Cardiac activity is the most 

334 evident source of physiological oscillations and carries most of the burden of the increase in 

335 cerebral blood flow. Frequency interval II corresponds to respiration activity, which can provide 

336 energy for physiological activities and promote blood flow through the vessels.23 The oscillations in 

337 intervals I and II serve as pumps that drive blood through the vessels.65 The current study found that 

338 the oscillations between ABP and cardiac activity were more strongly coupled than those of the 

339 other oscillation sources, which is consistent with the fact. In interval I, the CS from ABP to Δ 

340 [O2Hb]/Δ [HHb] showed higher amplitudes in patients with hypertension than in Group Control. 

341 This result indicated that the components of cardiac activity in cerebral hemoglobin oscillations 

342 more directly respond to changes in systematic ABP in hypertension patients. These hypertension-

343 related changes in the coupling pattern appear to reflect the altered regulation between the 

344 fluctuation of systematic blood pressure and the cerebral hemodynamic response originating from 

345 cardiac activity.

346

347 In the present work, the cerebral oscillations in interval III (0.01–0.08 Hz) are thought to mainly 

348 reflect hemodynamic fluctuations that originate from spontaneous cortical activity.50,51 The brain is 

349 critically dependent on a continuous supply of blood to function. To ensure that the cerebral blood 

350 flow matches the brain’s metabolic demands, cerebral blood vessels have actively respond to 

351 spontaneous or induced blood pressure fluctuations.66-68 CA is the ability of the brain to regulate its 

352 blood supply, which reflects the ability of cerebral microvasculature to adapt to ABP changes.69 It 

353 has the characteristics of a high-pass filter, dampening the slower frequency oscillations (< 0.1 Hz) 

354 in response to pressure changes.10 In subjects with a disturbed CA, the brain may be excessively 

355 sensitive to fluctuations in ABP.12

356

357 In interval III, the coupling from ABP to Δ [O2Hb] showed significantly higher strength in Group 

358 AH than in Group Control (Fig. 4). These results indicated that ABP oscillations exerted a greater 

359 influence on Δ [O2Hb] in patients with hypertension than in healthy controls. It appears to suggest 

360 that fluctuations in ABP would result in greater transmission to the Δ [O2Hb] signal in the brain in A
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361 patients with hypertension. This result is consistent with the literature, which indicates that even a 

362 slight change in perfusion pressure may lead to alterations in cerebral blood flow.70 This may be 

363 explained by the fact that the cerebral arterial and vessel walls become hardened and thickened due 

364 to the long-term effects of hypertension,7 which in turn would increase the pulsatility of the flow 

365 through the cerebral arteries.71 Consequently, the brain tissue is particularly vulnerable to blood 

366 pressure changes. The increased CS from ABP to cerebral hemoglobin variables in Group AH in 

367 interval III supports the idea that the loss of CA could increase the transmission of pressure to the 

368 cerebral capillaries.72,73 This result was consistent with previous studies that CA is impaired in 

369 patients with hypertension.74,75 A previous study also suggested that hypertension might result in 

370 the pathological alteration of the vascular wall, impairment of vital hemodynamic responses 

371 regulating cerebral perfusion.76

372

373 At present, various methods have been used to assess CA, such as autoregulatory index, transfer 

374 function analysis, and wavelet phase coherence (WPCO).9 To verify the validity of the data 

375 measured in our study, the WPCO method was adopted to analyze the relationships between ABP 

376 and Δ [O2Hb]/Δ [HHb] signals in interval III (0.01–0.08 Hz). More details about the WPCO can be 

377 found in the Supplement. Result showed that no significant difference was found in WPCO value 

378 between normotensive and hypertensive groups in interval III. The same results have also been 

379 observed in the previous studies using autoregulatory index and transfer function analysis to 

380 evaluate the function of CA in patients with hypertension.77-79 According to the definition, the 

381 WPCO describes the functional connectivity, but does not provide information about causality or 

382 the directed influence between ABP and cerebral oxygenation hemodynamics. To fully understand 

383 the causal relationship, the coupling function based on DBI was applied in our study. It can provide 

384 a new means of characterizing the directed interaction mechanisms of interacting oscillators 

385 between the systems and manifests in terms of strength and directionality.21 The current results 

386 obtained by these two methods indicate that the application of the coupling function could be better 

387 to detect the changes of CA. Previous study has proved that hypertension is involved in the 

388 pathogenesis of cardio-cerebrovascular diseases, such as stroke.76 Therefore, monitoring and A
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389 evaluating of CA in patients with hypertension might be helpful for early warning of cardio-

390 cerebrovascular diseases.

391

392 The frequency-specific changes in network coupling between ABP and Δ [O2Hb] in different brain 

393 suggest an alteration of the cerebral hemodynamic response in these brain regions, which might 

394 affect the function of these corresponding regions. There is growing evidence that hypertension 

395 contributes to both early cerebrovascular brain aging and cognitive decline.80 A previous study also 

396 reported that hypertensive individuals have impairments in cognitive function, mobility, and mood, 

397 even in the absence of clinical symptoms or disease.81 Consistent with the literature, this study 

398 found that the CS from ABP to Δ [O2Hb] increased significantly in PFC and MC in hypertensive 

399 participants relative to normotensive participants, which indicates impaired CA regulation in PFC 

400 and MC. These results might relate to a decline in cognitive and motor ability in patients with 

401 hypertension. These results are in line with the previous observations (Hajjar et., al, 2010) that 

402 hypertension is associated with impaired vasoreactivity in all cortical brain regions and is more 

403 prominent in the frontal and parietal areas.82 Previous studies have demonstrated that patients with 

404 hypertension had worse visuospatial abilities.83 Consistent with the literature, this research found 

405 that the effects that change in ABP have an increased influence on the Δ [O2Hb] in OL.

406

407 SBP and DBP are two fundamental components of blood pressure, and both are the risk factors for 

408 cardiovascular disease.84 It has been confirmed that both SBP and DBP are important predictors of 

409 brain structure and function, and the combined prediction afforded by SBP and DBP is stronger 

410 than the prediction afforded by either of the two alone.85 Pulse pressure is an indirect marker of 

411 arterial stiffness, which is influenced by stroke volume and vascular resistance..80,86 The 2018 

412 European blood pressure guidelines affirmed that a pulse pressure > 60 mmHg in older 

413 hypertensive persons increases the risk of cardiovascular disease.87 Besides, it is also recognized 

414 that pulse pressure is associated with brain structure and function, and suboptimal pulse pressure 

415 control may increase the risk of the development of cognitive impairment in elderly individuals.88 

416 Kannel et., al found that the incidence of cardiovascular events increased with a decrease in DBP < A
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417 80 mmHg when the SBP remained ≥ 140 mmHg.89 Besides, a study suggests that there is an 

418 interaction between DBP and CA in elderly patients with hypertension.90 Consistent with these 

419 studies, in interval III, DBP was negatively and pulse pressure was positively related to the CS from 

420 ABP to Δ [O2Hb] oscillations in patients with hypertension. The results indicated that both DBP 

421 and pulse pressure are closely related to the CA function. Thus, DBP and pulse pressure might be 

422 regarded as predictors of CA function in patients with hypertension; moreover, they may be useful 

423 for hypertension stratification and permit more personalized antihypertensive therapy.

424

425 Conclusions
426 In this study, the frequency-specific effective interaction between ABP and cerebral hemoglobin 

427 signals (Δ [O2Hb] and Δ [HHb]) was calculated based on coupling functions and DBI by using 

428 fNIRS in subjects with hypertension. The CS values enabled us to quantitatively describe the 

429 directed interactive regulation mechanism between ABP and cerebral hemodynamics. In interval I, 

430 Group AH showed significantly higher CS for the coupling from ABP to Δ [O2Hb] than Group 

431 Control in LPFC, MC, and OL. In interval III, the CS from ABP to Δ [O2Hb] in PFC, MC, and OL 

432 was significantly higher in Group AH than in Group Control, which suggests a greater influence is 

433 exerted by ABP fluctuations on cerebral hemoglobin variables in hypertension. This result indicates 

434 more direct changes in cerebral hemodynamics due to the changes in systemic blood pressure. 

435 Taken together, the hypertension-related changes in the coupling interactions might suggest an 

436 abnormal autoregulation function between ABP and cerebral hemodynamics, which might lead to 

437 the brain becoming at risk for hyper or hypoperfusion injury. The Pearson correlations showed that 

438 DBP and pulse pressure might be regarded as predictors of CA function in patients with 

439 hypertension and may be useful for hypertension stratification. Assessing the frequency-specific 

440 coupling interaction between ABP and cerebral hemodynamics based on fNIRS could provide 

441 valuable diagnostic information and help develop novel techniques to estimate the interactive 

442 autoregulation capacity in patients with hypertension.
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708 Figure 1. Schematic of the experimental layout. (A) Channel configuration of the fNIRS layout 

709 with 20 sources (blue) and 12 detectors (yellow), resulting in 32 channels. ‘‘C’’ means channel. 

710 Six cerebral cortex areas are separated by the rectangular frame as LPFC, RPFC, LMC, RMC, 

711 LOL, and ROL. (B) Location illustration of the ABP layout.

712

713 Figure 2. An example of region-averaged coupling functions in interval III. (A) The coupling 

714 function  describes the functional influence from the ABP to Δ [O2Hb] oscillator in RMC. (B) 

715 The corresponding surrogate coupling function. represents Δ [O2Hb] oscillations and  represents 

716 ABP oscillations.

717

718 Figure 3. Comparison of the region-wise CS between different groups in interval I from ABP to 

719 (A) Δ [O2Hb] and (B) Δ [HHb]. The arrows represent direction. ‘‘*’’ indicates a significant 

720 difference. Control: Group Control; AH: Group AH.

721

722 Figure 4. Comparison of region-wise CS between different groups in interval III from ABP to 

723 (A) Δ [O2Hb] and (B) Δ [HHb]. The arrows represent direction. ‘‘*’’ indicates a significant 

724 difference. Control: Group Control; AH: Group AH.
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Table 1. Characteristics of the participants 

Parameters 
Group Control 

(N=30) 

Group AH 

(N=32) 
p value 

Age (years) 55.1 ± 10.6 58.9 ± 8.7 0.133 

Sex (male/female) 16/14 18/14 0.821 

BMI 25.7 ± 3.3 25.8 ± 3.5 0.909 

MMSE 25.7 ± 2.3 25.9 ± 1.9 0.796 

Systolic blood pressure (mmHg) 126.2 ± 11.2 150.9 ± 16.1 < 0.000* 

Diastolic blood pressure (mmHg) 82.6 ± 6.5 89.9 ± 0.8 0.003* 

Values are presented as means with standard deviations. BMI, Body Mass Index. p
 
for the 

difference between Group Control and Group AH. *p < 0.05.  
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