
Enhancing Example-Based Code Search with Functional
SemanticsI

Zhengzhao Chena, Renhe Jianga, Zejun Zhanga, Yu Peib, Minxue Pana, Tian
Zhanga, Xuandong Lia

aState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
bDepartment of Computing, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

As the quality and quantity of open source code increase, effective and efficient
search for code implementing certain semantics, or semantics-based code search,
has become an emerging need for software developers to retrieve and reuse ex-
isting source code. Previous techniques in semantics-based code search encode
the semantics of loop-free Java code snippets as constraints and utilize an SMT
solver to find encoded snippets that match an input/output (IO) query. We
present in this article the Quebio approach to semantics-based search for Java
methods. Quebio advances the state-of-the-art by supporting important lan-
guage features like invocation to library APIs and enabling the search to handle
more data types like array/List, Set, and Map. Compared with existing ap-
proaches, Quebio also integrates a customized keyword-based search that uses
as the input a textual, behavioral summary of the desired methods to quickly
prune the methods to be checked against the IO examples. To evaluate the
effectiveness and efficiency of Quebio, we constructed a repository of 14,792
methods from 723 open source Java projects hosted on GitHub and applied the
approach to resolve 47 queries extracted from StackOverflow. Quebio was able
to find methods correctly implementing the specified IO behaviors for 43 of the
queries, significantly outperforming the existing semantics-based code search
techniques. The average search time with Quebio was about 213 seconds for
each query.

Keywords: semantics-based code search, symbolic analysis, SMT solver

IThis work is supported by National Natural Science Foundation (Grant Nos. 61690204,
61632015 and 61972193) of China, and partly supported by the Hong Kong RGC General
Research Fund (GRF) under grant PolyU 152703/16E and PolyU 152002/18E, and the Hong
Kong Polytechnic University internal fund 1-ZVJ1 and G-YBXU.

Email addresses: 141220018@smail.nju.edu.cn (Zhengzhao Chen),
131220105@smail.nju.edu.cn (Renhe Jiang), MG1733092@smail.nju.edu.cn (Zejun Zhang),
csypei@comp.polyu.edu.hk (Yu Pei), mxp@nju.edu.cn (Minxue Pan), ztluck@nju.edu.cn (Tian
Zhang), lxd@nju.edu.cn (Xuandong Li)

Preprint submitted to Journal of Systems and Software August 5, 2022

This is the Pre-Published Version.https://doi.org/10.1016/j.jss.2020.110568

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

1. Introduction

As open source code getting more prevalent and more frequently used in
constructing new software systems [1], searching for code that can be reused,
with or without modifications, to solve the programming tasks at hand, i.e.,
code search, is becoming an inevitable activity in software development. A
recent case study shows that on average each developer conducts five search
sessions with 12 total queries for source code every workday [2].

To search for code, programmers can turn to general-purpose search en-
gines like Google or source-code-hosting platforms like SourceForge and GitHub,
which index source code and software projects based on their textual informa-
tion or documentation to support keyword-based code search. Since no se-
mantic information is taken into account when deciding whether a piece of
code should be considered as a match during the search, keyword-based search
often produce results that are irrelevant. To improve the search result qual-
ity, various semantics-based code search techniques have been developed in
the past few years [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18],
among which techniques for example-based code search have yielded promising
results [3, 19, 20, 21]. In example-based code search, a query typically contains
a set of examples specifying the desired input/output (IO) behaviors of the
target code. While such IO examples provide just incomplete functional spec-
ifications, they are lightweight—therefore easy to write and comprehend—and
allow for partial matching of code: A piece of source code constitutes a match
as long as it supports the specified IO behaviors, while how the code behaves
beyond the examples is unimportant, which helps the search to focus on the
core functionalities of code.

Satsy [19, 20, 21] is one of the state-of-the-art techniques for example-based
code search. Code search using Satsy is conducted in two phases. During an
offline encoding phase, Satsy gathers a collection of code snippets and encodes
the semantics of each code snippet into a logical formula concerning its input
and output variables. During an online search, Satsy binds concrete values from
IO examples to compatible variables in each formula to construct a constraint,
and checks the satisfiability of the constraint using a solver: the corresponding
code snippet implements an IO behavior if the constraint is satisfiable, and the
snippet is considered a match for the search if it implements all the IO behaviors
specified in a query. Although Satsy has been applied to search for Java code
in previous studies [19, 20, 21], its usefulness in daily code search activities is
limited, as it handles only loop-free code snippets manipulating data of char,
int, boolean, and String types.

In this paper, we propose a new approach, named Quebio, to example-based
search for Java methods. Taken a group of IO examples as the input, Quebio
searches for Java methods that implement the specified IO behaviors. Similar
to Satsy, the application of Quebio also involves two phases: an offline symbolic
encoding phase and an online method search phase. However, symbolic encoding
in Quebio is able to support more language features like invocation to library
APIs, which enables Quebio to handle more data types like array/List, Set, and

2

Map during the search. Method search with Quebio also involves a customized
keyword-based search to quickly prune the methods to be checked against the IO
examples, if a textual summary of the expected method behaviors is provided
as part of the query. The new features enable Quebio to be used in a wider
range of scenarios and be more efficient.

To evaluate the effectiveness and efficiency of Quebio, we built a local repos-
itory of 14,792 methods from 723 open source projects hosted on GitHub, con-
structed 47 queries based on questions from StackOverflow, and applied the
approach to resolve the queries. Quebio managed to find methods correctly
implementing the specified IO behaviors for 43 of the queries, among which 27
are most likely beyond the capability of Satsy, and the average search time with
Quebio was about 213 seconds for each query. Such results suggest that Quebio
significantly advances the state-of-the-art in semantics-based code search.

This work extends our previous research reported in [22]. The main differ-
ences between this work and the previous one include the following. First, our
previous technique applies a set of predefined program transformation rules to
encode the semantics of a method. However, it supports only a very limited
number of Java language features and often produces large formulas with many
temporary variables. In this work, we employ a revised version of the Sym-
bolic PathFinder (SPF) symbolic execution engine [23] to encode Java meth-
ods, which enables us to handle more language features and leads to formulas
with reduced size and complexity. Second, to further improve the efficiency of
the online method search, a customized keyword-based search is introduced to
quickly filter out less relevant methods so that fewer methods have to be checked
by the solver. Third, we conduct a more comprehensive study to evaluate the
effectiveness and efficiency of Quebio.

The primary contributions of our work are as follows:

• An approach, named Quebio, to semantics-based search for Java method
using IO examples; Compared with the state-of-the-art approach Satsy,
Quebio supports more language features (like loops and invocations to
library APIs) and more data types (like array/List, Set, and Map), leading
to improved applicability of the approach, and it employs a customized
keyword-based search to quickly filter out methods that are less likely
matches of the query under question, leading to improved search efficiency.

• An implementation of the approach that supports automated encoding of
Java methods and efficient search for methods with expected IO behaviors;

• A large-scale evaluation of the approach based on 14,792 Java methods
from real-world projects and 47 queries extracted from StackOverflow.
Quebio was able to find correct methods for 43 queries, with search time
for each query averaging to around 213 seconds.

The rest of the paper is organized as follows. Section 2 uses an example to
illustrate how Quebio can be used to effectively find Java methods of interest.
Section 3 gives an overview of the Quebio approach and explains how it works

3

id input output

E1 [1] [1]
E2 [1,2] [1,2]
E3 [2,1] [1,2]
E4 [1,3,4,2] [1,2,3,4]
E5 [12,34,8,65,22] [8,12,22,34,65]

Table 1: Example inputs and outputs for a method that sorts an array of integers in in-
creasing order. Quebio uses comma-separated values surrounded by a pair of square brackets
to represent an array or a list. ids are not part of the input for Quebio, but are added here
for easy reference.

in detail. Section 4 reports on the empirical experiments we conduct to evaluate
Quebio and the corresponding results. Section 5 reviews recent works related
to Quebio and Section 6 concludes the paper.

2. An Illustrative Example

In this section, we use an example to demonstrate from a user’s perspective
how the Quebio approach can be used to find Java methods that implement
behaviors specified in IO examples.

To sort a given array of integer values in increasing order is a simple, yet
common, task in software development. While the Java language already pro-
vides an efficient API (namely Arrays.sort()) to do the sorting, programmers
from different backgrounds still frequently ask questions about how to imple-
ment it. In fact, a question about “sort an array in Java”1 was posted in 2012 on
StackOverflow—a popular Q&A website for programmers—and 15 answers were
provided by the community to the question, and the thread has been viewed
more than 700K times ever since.

The task can be partially specified using the straightforward IO examples
listed in Table 1. Using the examples and an optional list of keywords “int array
sort” as the input2, Quebio was able to successfully find in about 12 minutes a
list of 560 Java methods that at least support some of the specified IO behaviors,
and the first of the returned methods actually correctly implements the desired
functionality.

Figure 1 shows a method named insertion from the search results. The
method takes an array as the input, implements insertion sort to rearrange
the elements in the input array in the expected order, and returns the sorted
array upon completion. Method insertion supports all the behaviors specified
by the examples listed in Table 1. Particularly, IO examples E1, E2, and E3 are
handled by the method along paths p1 = (2, 3, 12), p2 = (2, 3, 4, 5, 6, 10, 3, 12),
and p3 = (2, 3, 4, 5, 6, 7, 8, 6, 10, 3, 12), respectively, where each execution path
of the method is denoted using a sequence of line numbers.

1https://stackoverflow.com/questions/8938235/sort-an-array-in-java
2Query Q4 in Table 3.

4

https://stackoverflow.com/questions/8938235/sort-an-array-in-java

1 int[] insertion(int[] array){

2 int n = array.length;

3 for (int j = 1; j < n; j++) {

4 int key = array[j];

5 int i = j - 1;

6 while (i >= 0 && array[i] > key) {

7 array[i + 1] = array[i];

8 i--;

9 }

10 array[i + 1] = key;

11 }

12 return array;

13 }

Figure 1: A Java method insertion that implements insertion sort to rearrange the elements
in an integer array in increasing order. The method is returned by Quebio as a match when
IO examples from Table 1 are used for the query.

Two things are particularly worth noting about the example. First, the im-
plementation of method insertion involves nested loops, object member access,
and array element access3, none of which is supported by existing techniques in
semantics-based code search like Satsy. Second, 6,202 methods were found with
signatures compatible with the specified IO examples in this search. If all of
them are to be examined by the SMT solver, Quebio can only check less than 3%
of the methods in 20 minutes. Thanks to the customized keyword-based search,
Quebio only needs to check 705 methods that are the most likely matches using
a solver and it successfully finishes the search within less than 12 minutes.

3. The Quebio Technique

In this section, we will explain how Quebio finds methods implementing
certain desired functionality based on a group of IO examples and an optional
list of keywords.

3.1. Overview
Figure 2 shows an overview of Quebio. There are two phases in applying

Quebio to do a code search. During offline symbolic encoding, Quebio takes a
collection of Java methods and the specifications of a set of library APIs as the
input, and constructs a logical formula to encode the semantics of each possible
execution path of each method (Section 3.2). The methods and their corre-
sponding logical formulas are stored into a repository, which will serve as the
method pool during the online search phase. Online method search is driven
by a group of IO examples specifying the expected IO behaviors of interested

3Array element access is handled by Quebio in the same way as how method invocations
are processed.

5

Figure 2: Overview of The Approach

methods and an optional list of keywords summarizing the semantics of those
methods. During the search, Quebio first gathers methods with signatures com-
patible with the types of values in the given IO examples from the pool, and
then conducts a customized keyword-based search to quickly narrow down the
set of possible matches (Section 3.3). Methods returned by the keyword-based
search from the repository are then checked against each IO example from the
query to decide how likely the expected IO behaviors are supported by each
method. Only methods with their likelihood of supporting all the specified be-
haviors above a threshold are reported to the user (Section 3.4). The rest of
this section elaborates on the steps in each phase.

3.2. Symbolic Encoding
This section describes Quebio’s symbolic-execution-based approach to en-

coding the semantics of Java methods.
In our previous work [22], we proposed a program-transformation-based ap-

proach to the symbolic encoding of Java methods. In that approach, we build
the control-flow graph (CFG) of a method, extract execution paths from the
CFG, encode each path into 3-address intermediate representation, and finally
translate the path into a logical formula using syntax-directed translation [24].
The approach, however, tends to produce formulas with a large number of tem-
porary symbols and redundant assertions, leading to longer processing time dur-
ing offline symbolic encoding as well as longer running time and higher failure
rate during constraint solving of the online method search. We therefore design
Quebio to integrate the SPF symbolic execution engine [23] for the symbolic
encoding of Java methods in this work.

A symbolic-execution [25] engine generates and explores execution paths of
a given program in a symbolic way. Along each path, the engine computes the
values of program variables as expressions on the symbolic values of the inputs
and gathers conditions under which the path will actually be executed: the ex-
pressions and conditions can be combined into a logical formula to capture the
semantics of the program along the path. SPF builds on the top of the Java

6

PathFinder (JPF) model checker. It introduces a customized bytecode instruc-
tion factory to replace the concrete execution semantics of Java programs with
symbolic execution, and it attaches a field attribute to each variable for storing
the symbolic value of the variable. To collect the logical formulas for the paths
of a method, Quebio monitors the execution of every return instruction in that
method. If the instruction executes successfully, which means a feasible path is
found, Quebio takes the path condition from the current execution context and
conjuncts it with the expressions for the symbolic values of the method’s output
parameters as well as return values to get the formula encoding the semantics
of the path.

A generic symbolic execution engine, however, is insufficient for the symbolic-
encoding of methods in the context of example-based code search for two main
reasons, both having to do with how calls to library APIs are handled dur-
ing symbolic execution. First, some library method implementations mix code
in Java and other programming languages like C, C++, and Assembly, while
adding support for the symbolic execution of those code to an existing generic
Java symbolic-execution engine can be extremely challenging. Second, the im-
plementation of certain library APIs can be long and highly complex. Relying
only on symbolic execution to discover the semantics of such APIs will most
likely result in symbolic expressions and path conditions that are beyond the
processing power of existing decision procedures. As a tradeoff between usabil-
ity and applicability, we design Quebio to make use of existing specifications
for library APIs during symbolic encoding. In particular, when encountering an
invocation to a library API with specification, Quebio will treat the invocation
as a blackbox and instantiate the corresponding specification based on the ac-
tual parameters used, instead of analyzing the API method implementation to
derive the semantics of the invocation.

Next, we explain how we specify library APIs and how we revise SPR to
utilize the specifications in symbolic encoding. While using SPR for encoding
the semantics of code snippets is not new [21], we extend the existing work
to support also the invocation of library APIs, enabling symbolic encoding to
handle a wider range of Java code.

3.2.1. Specifications of Library APIs
In this section, we describe how we specify the semantics of library APIs to be

used in symbolic encoding. Given an API methodm with n (0 ≤ n) parameters,
we manually craft a formula Fm that reflects the pre- and postconditions of m
as described in the associated documentations. In the formula, we use pi and
pi* to denote the value of the i-th parameter of m (0 ≤ i < n) at method
entry and exit, respectively, and use r to denote the return value of m, if any.
Note that, if m is an instance method, p0 is the receiver object (denoted using
this in Java) upon which m is invoked. Also note that, Quebio handles both
array element access and query of String length in the same way as it processes
method invocations.

For example, Figure 3 gives the documentation and the specification, in
the input format for the Z3 SMT solver [26], of method add from class java

7

/** Inserts the specified element at the

* specified position in this list. Shifts

* the element currently at that position

* (if any) and any subsequent elements to

* the right (adds one to their indices).

* @param index index at which the

specified element is to be inserted

* @param element element to be inserted */

public void add(int index, E element)

(implies (and (and

(= t1 (seq.len p0))

(>= p1 0))

(<= p1 t1))

(and (and (and

(= t2 (seq.extract p0 0 p1))

(= t3 (seq.unit p2)))

(= t4 (seq.extract p0 p1 (- t1 p1))))

(= p0* (seq.++ t2 t3 t4))))

Figure 3: The documentation (left) and logical formula (right) for method add from class
java.util.ArrayList.

.util.ArrayList. In the example, an arraylist is modelled as a Z3 sequence,
seq.len, seq.extract, seq.unit, and seq.++ are Z3 operations to get the size of
a sequence, to retrieve a sub-sequence, to construct a sequence with a single
element, and to get the concatenation of a list of sequences, respectively, and tj

s are temporary variables introduced to facilitate the reference to various aspects
of the parameters and the results of applying those operations (1 ≤ j ≤ 4). Note
that, since the method modifies only the receiver object p0, but not the other
two parameters p1 or p2, and it returns no value, neither of p1*, p2*, or r appears
in the specification. Here the formula specifies that, if the first parameter is a
valid index for the receiver list, the method will insert the second parameter
into the list at the position indicated by the first parameter, which is exactly
what the method should do according to its documentation.

3.2.2. Invoke Instructions
To enable the incorporation of API method specifications into the logical for-

mulas that encode the semantics of Java methods, we modify the interpretation
of method invocation instructions, namely invokevirtual, invokestatic, invoke-
special, and invokeinterface, in SPF. The new interpretation can be described
using the algorithm shown in Figure 4.

Upon the invocation to a library method in symbolic encoding, Quebio first
gets the current path condition pc (Line 4) and the method mi to invoke (Line
5) from the execution context. If the specification of mi is available (Line
6), Quebio updates the symbolic state of the program and the current path
condition accordingly based on the specification (Lines 7–26). Particularly, it
first gets the specification of mi (Line 7), gathers the symbolic values of the
parameters to be used to invoke mi (Lines 9–11), and creates new symbolic
variables to denote the values of parameters, on which method mi has side-
effect, after the invocation (Lines 14–16). The symbolic values of the parameters
before and after the invocation as well as that for the method return value
(created on Line 19, if necessary) are then used to instantiate the specification
of mi and the instantiation result is conjuncted with the current path condition
to produce the updated condition (Line 20). Afterwards, Quebio suspends the
symbolic execution of SPF (Line 22) and installs a callback method to be invoked

8

1 class INVOKE... extends ...INVOKE...{

2 Instruction execute(...){

3 ...

4 PathCondition pc = getPathCondition();

5 MethodInfo mi = getMethodToInvoke();

6 if(specRepo.containsSpecFor(mi)){

7 SMTSpec spec = specRepo.getSpecFor(mi);

8 int paramNum = mi.getparamNum();

9 Expression[] param = new Expression[paramNum];

10 for(int i = 0; i < paramNum; i++){

11 param[i] = getParamSymbolicValue(mi, i);

12 Expression[] _param = new Expression[paramNum];

13 for(int i = 0; i < paramNum; i++){

14 if(mi.modifiesParam(i)){

15 _param[i] = param[i].nextVersion();

16 setParamSymbolicValue(mi, i, _param[i]);

17 }

18 }

19 Expression _return = mi.hasReturnValue() ? createSymbolicVariable() : null;

20 updatePathCondition(spec.instantiate(param, _return, _param));

21
22 suspendSymbolicExecution();

23 addMethodExitListener(mi, () -> {

24 resumeSymbolicExecution();

25 if(mi.hasReturn()) setReturnSymbolicValue(_return);

26 });

27 }

28 return super.execute(...);

29 }

30 }

Figure 4: Interpretation of the invoke instruction family. Invocations to instructions like
invokevirtual, invokestatic, invokespecial, and invokeinterface are interpreted in similar ways.

when method mi returns (Line 23). The callback resumes symbolic execution
(Line 24) and sets _result as the attribute of mi’s return value (Line 25), if
applicable. Whether a specification is available for mi or not, SPF next invokes
the method concretely as usual.

For example, field length of a String object is modeled in Quebio as a method
with the same name that can be called on String objects, and the semantics of
the method in SMT is specified as (= r (seq.len (element p0))), where r denotes
the return value of the method and p0 denotes the receiver String object. Given
such a specification, symbolic execution of the statement on Line 2 of Figure 1
will lead to 1) a clause (= stringlength_1_INT (seq.len (element a_1_ARRAY))) be-
ing conjuncted to the current path condition and 2) the symbolic value of n

being set to stringlength_1_INT. In the clause, stringlength_1_INT and a_1_ARRAY

are the new symbolic variables generated by Quebio for the return value and
the single parameter of the method invocation, respectively. Here, the name of
each symbolic variable contains the name of its corresponding program variable,
a unique version number, and its type name, concatenated using underscores.

9

3.3. Keyword-Based Search
Quebio looks for methods of interest in two steps: a customized keyword-

based search and an example-based method matching. If the query contains
a list of keywords, Quebio first calculates a textual similarity between the
keywords and the summary of each method from the pool. Next, only meth-
ods with positive textual similarity will go through the second step and have
their constructed logical formulas checked against the IO examples for possible
matches. In such a design, the customized keyword-based search is employed
to quickly narrow down the set of possible matches, so that the more memory-
and computation-intensive example-based method matching only needs to be
applied to a smaller amount of methods, leading to improved search efficiency.

To support this keyword-based search, during the offline encoding process,
Quebio produces a natural language description for each method m by 1) treat-
ing the source code of m as a piece of text, 2) removing Java keywords from
that text while preserving m’s name as well as its variable names and types,
3) replacing the name of each method invoked by m with the summary of that
method extracted from the Java documentation, and 4) removing stop-words
like "to" and "the" from the text. Based on the description, Quebio generates a
summary for the method. Specifically, it calculates the TF-IDF [27] of the words
appearing in the description, sorts the words in decreasing order of frequency,
and selects the 5 most frequent words as the summary of the method.

During keyword-based search, Quebio calculates the cosine similarity [28]
between the query keywords and the method summary. Only methods with
positive similarity values will be used as candidates in the following step of
example-based method matching.

3.4. Example-based method matching
During example-based method matching, Quebio computes a matching index

for each method survived the keyword-based search to indicate how likely the
method’s behaviors comply with the IO examples: the greater the matching
index, the more likely the method supports the specified IO behaviors.

In this step, we model a method M as a triple 〈Ĩ , Õ, P̃ 〉, where Ĩ is the list
of M ’s input variables, Õ the list of M ’s output variables, and P̃ the list of
paths extracted from M via symbolic encoding (Section 3.2). An IO example
is modelled as a pair 〈σ̃, ω̃〉, where σ̃ is the list of input values and ω̃ is the list
of output values. Given a variable or a value v, function τ maps v to its type.
Note that function τ can be extended in a natural way so that it works also
on a list of variables or values. Function ζ maps a path p ∈ P̃ to the formula
constructed for p. Given a method M = 〈Ĩ , Õ, P̃ 〉 and an IO example (σ̃, ω̃), we
use functions α and β to bind values from σ̃ and ω̃ to variables from Ĩ and Õ,
respectively, when their types match. In other words, we require τ(σ̃) = τ(α(σ̃))
and τ(ω̃) = τ(β(ω̃)).

Next, we first explain, given a specific pair of binding functions α and β,
how Quebio decides whether an IO behavior is supported by method M , then
describe how the decisions based on different pairs of binding functions are
summarized to produce the matching index for M .

10

3.4.1. Method Matching Based on Given Binding Functions
Once binding functions α and β are fixed, the question of whether the IO

example (σ̃, ω̃) specifies a feasible behavior of method M equates to whether
formula

∃p ∈ P̃ : ζ(p)[σ̃/α(σ̃), ω̃/β(ω̃)] (1)

is satisfiable or not [29, 30], where ζ(p)[σ̃/α(σ̃), ω̃/β(ω̃)] represents the result
of replacing formal parameters α(σ̃) and β(ω̃) in ζ(p) with concrete values σ̃
and ω̃ from IO examples, respectively. Quebio follows Procedure 1 to decide on
that. In particular, Quebio constructs two constraints for each extracted path
p of M (Line 1): preCond is constructed by only binding each value from σ̃ to
its corresponding variable from α(σ̃) in ζ(p) (Line 2), which captures whether σ̃
constitutes an acceptable input forM along path p; prepostCond is constructed
by further binding each value from ω̃ to its corresponding variable from β(ω̃)
(Line 3), which captures not only whether σ̃ constitutes an acceptable input
for M along path p, but also whether the execution of M along p produces the
expected output values. The procedure returns "sat" if prepostCond is indeed
satisfiable (Lines 4–6). Otherwise, if all the input variables of M have been
assigned values (|Ĩ| = |σ̃|, Line 7) and methodM will execute along path p upon
input variables σ̃ (solve(preCond) = "sat", Line 7), whether prepostCond is
satisfiable determines whether the IO example is supported by M along path p
(Line 8). If no path from P̃ can conclusively decide whether the IO example is
supported or not, the procedure returns "unknown". In general, Procedure 1 may
return "unknown" for two reasons: First, the actual execution path for handling
the example input may not be included in P̃ ; Second, while the actual execution
path is included in P̃ , the SMT solver employed is not able to determine, within
the given time budget, whether the specified IO behavior is feasible for the path
or not.

Consider IO example E3 for method insertion from Section 2. When both
the input array [2, 1] and the output array [1, 2] are bound to parameter array,
constraint preCond that Quebio constructs for path p3 is the conjunction of
p3’s path condition and formula “(= (element array_1_ARRAY) (seq.++ (seq.unit

2) (seq.unit 1)))”, while constraint prepostCond constructed for the same path
is the conjunction of preCond and formula “(= (element array_12_ARRAY) (seq.++

(seq.unit 1) (seq.unit 2)))”, where array_1_ARRAY and array_12_ARRAY are the
symbolic variables introduced during symbolic encoding to represent the values
of parameter array. Since prepostCond is satisfiable, Procedure 1 will return
"sat".

3.4.2. Calculation of matching index
The matching index between method M and a group of IO examples sum-

marizes the path matching results derived from different binding relations be-
tween method parameters and the values in provided IO examples. Procedure 2
describes how Quebio calculates the summary. For each valid pair of functions
〈α, β〉 that binds concrete IO values to method parameters (Line 2), Quebio first
calculates the numbers of paths of M that support some IO example (Nsat),

11

Procedure 1 pathMatching

Input: Method M = 〈Ĩ , Õ, P̃ 〉, IO example 〈σ̃, ω̃〉, and two functions α and β
Output: Matching result from {"sat", "unsat", "unknown"}
1: for each p ∈ P̃ do
2: preCond← ζ(p)[σ̃/α(σ̃)]
3: prepostCond← ζ(p)[σ̃/α(σ̃), ω̃/β(ω̃)]
4: if solve(prepostCond) = "sat" then
5: return "sat";
6: end if
7: if |Ĩ| = |σ̃| ∧ solve(preCond) = "sat" then
8: return solve(prepostCond)
9: end if

10: end for
11: return "unknown";

that does not support any IO example (Nuns), and that we do not know whether
they support any IO example or not (Nunk) (Lines 4–10). Then, if there is at
least one IO example is supported (Line 11), Quebio calculates a matching in-
dex betweenM and the IO examples w.r.t. the current binding functions α and
β (Line 12). The overall matching index between method M and a group of
IO examples is defined as the largest matching index observed across all 〈α, β〉
pairs (Line 13). Methods with matching indexes greater than a threshold value
(0.5 by default) are reported to users in decreasing order of their matching
index values. Methods with matching indexes smaller than the threshold are
discarded.

3.5. Implementation
We have developed the Quebio approach into a tool, also named Quebio.

Internally, Quebio encodes the semantics of discovered paths from a method in
the Z3 input format [31], which extends the SMT-LIB2 standard [32], and it
invokes the Z3 SMT solver [26] to determine whether a particular path supports
an IO example. Based on our empirical experience, we set the timeout for each
invocation to Z3 to 2 seconds, and treat all invocations not finished within that
time limit as returning "unknown". To strike a good balance between effectiveness
and efficiency, Quebio stops the encoding of a method if 50 different feasible
paths have already been discovered or 5 minutes have passed.

We devised a simple domain specific language (DSL) to specify the IO ex-
amples as part of the input queries to Quebio. Table 2 lists the grammar of
the language in the ANTLR 4 syntax. A query may contain one or more exam-
ples, and each example is a mapping from a group of input values to another
group of output values. For simplicity reasons, the types of values are directly

4https://github.com/antlr/antlr4

12

https://github.com/antlr/antlr4

Procedure 2 matchingIndex

Input: Method M = 〈Ĩ , Õ, P̃ 〉, IO Examples {〈σ̃i, ω̃i〉}mi=1

Output: Matching index between M and the examples
1: index← 0
2: for each pair 〈α, β〉 of functions binding σ̃ and ω̃ to Ĩ and Õ do
3: Nsat ← 0, Nuns ← 0, Nunk ← 0
4: for each 〈σ̃i, ω̃i〉 ∈ {〈σ̃i, ω̃i〉}mi=1 do
5: state← pathMatching(M , 〈σ̃i, ω̃i〉, α, β)
6: if state = "sat" then Nsat++
7: else if state = "unsat" then Nuns++
8: else Nunk++
9: end if

10: end for
11: if Nsat 6= 0 then
12: curIndex← (Nsat + 0.5Nunk)/(Nsat +Nuns +Nunk)
13: index← max(index, curIndex)
14: end if
15: end for
16: return index

Table 2: A simple domain specific language for specifying the IO examples.

examples : example(’,’example)*
input : value(’,’value)*
output : value(’,’value)*

example : ’(’input’->’output’)’

value : primitive | container

primitive : INT | FLOAT | STRING | BOOLEAN

container : list | set | map

list : ’[’primitive(’,’primitive)*’]’

set : ’{’primitive(’,’primitive)*’}’

pair : primitive ’:’ primitive

map : ’{’pair(’,’pair)*’}’

INT : [-]?[0-9]+

FLOAT : [-]?[0-9]+[.][0-9]+

STRING : ’"’[-!#-~]*’"’

BOOLEAN : ’True’ | ’False’

inferred from the syntax of the values. The DSL currently supports 7 kinds of
data types, including int, float, boolean, String, array/List, Set, and Map. For
instance, ([3,4,2]->[2,3,4]),([7,6]->[6,7]) specifies two more IO examples that
can be used as the input to resolve the query described in Section 2 with Quebio.

In view that the tasks of checking whether a path supports an IO example
are independent of each other, Quebio employs multiple (4 by default) threads
to conduct such checks in parallel.

13

4. Evaluation

We design and conduct experiments to address the following research ques-
tions:

RQ1: How effective is Quebio in example-based code search?

RQ2: How efficient is Quebio in example-based code search?

RQ3: How does the customized keyword-based search affect the effectiveness
and efficiency of Quebio?

In RQ1 and RQ2, we evaluate the effectiveness and efficiency of Quebio
from a user’s perspective. One key difference between Quebio and existing
example-based code search techniques is in that Quebio conducts a tailored
keyword-based search before launching the more precise, but also more expen-
sive, semantics-based search. We therefore investigate in RQ3 the impact of
that keyword-based search on the overall effectiveness and efficiency of Quebio.

4.1. Experimental Subjects
We collect in total 47 queries from the popular Q&A website StackOverflow

for programmers as our experimental subjects in three phases. Table 3 shows,
for each of the 47 queries, its id, a short description, and the list of keywords
as part of the input to Quebio. In phase one, we review 1000 most frequently
asked questions with tag java on StackOverflow and gather 35 queries (Q1–Q35)
that 1) ask about the implementation of certain functionalities expressible using
IO examples and 2) concern only data types supported by Quebio. In phase
two, to facilitate our comparison between Quebio and Satsy [21], we make sure
all the 8 subject queries that were also extracted from StackOverflow and used
in [21] are studied in our experiments. Since 2 of those 8 queries are already
included in phase one (Q12 and Q20), we add the remaining 6 (Q36–Q41). In
phase three, to make our selection of subject queries more representative of code
search tasks programmers would perform in real-world scenarios, we construct
more queries based on 6 questions selected from StackOverflow using the same
two criteria as mentioned above but with few answers (Q42–Q47). For each
query, we construct 5 IO examples to be used to drive the search with Quebio.

4.2. Measures
We distinguish two types of methods among those returned by Quebio:

Methods that accept all the IO examples and have the matching index equal
to 1 are called valid results, while methods that are manually confirmed to
have indeed solved the underlying questions are called correct results. More-
over, we assume users are interested in finding any method that implements the
expected behaviors correctly, and they will not check the remaining returned
methods once a correct implementation is found. Correspondingly, we assess the
effectiveness of Quebio on a particular query in terms of the following measures:

#R: the number of methods returned;

14

Table 3: Subject queries used in the experiments.

id description keyword

Q1 Get the separate digits of an int number separate digits number
Q2 Reverse an int value without using array reverse int value
Q3 Concatenate int values concatenate int value
Q4 Sort integers in increasing order int array sort
Q5 Convert letters in a string to a number convert string to int
Q6 Round a double to an int round double int
Q7 Divide two integers to produce a double divide integer
Q8 Round a double to 2 decimal places round double places
Q9 Check if an int is prime more efficiently check int prime
Q10 Pad an integer with zeros on the left pad integer
Q11 Convert a String to an int convert string to int
Q12 Check if a String is numeric string numeric
Q13 Count the occurrence of a char in a String count char in string
Q14 Reverse a String string reverse
Q15 Check whether a String is not null and not empty string null empty
Q16 Check String for palindrome string palindrome
Q17 Concatenate two strings string concatenate
Q18 Evaluate a math expression in String form string evaluate
Q19 Convert an ArrayList to a String convert list to string
Q20 Remove the last character from a String string remove last
Q21 Test if an array contains a given value array contain
Q22 Concatenate two arrays array concatenate
Q23 Reverse an int array array reverse
Q24 Remove objects from an array array remove
Q25 Add new elements to an array array add
Q26 Find the max value in an array of primitives array max
Q27 Find the min value in an array of primitives array min
Q28 Find the index of maximum from slice of an array array max index
Q29 Sort an array array sort
Q30 Find duplicates in an Array array find duplicate
Q31 Sort an Array in decreasing order array sort descending
Q32 Find the index of an element in an array array find index
Q33 Remove repeated elements from ArrayList array remove repeated
Q34 Intersect ArrayLists arraylist intersection
Q35 Union of ArrayLists arraylist union
Q36 Check if one string contains another, case insensitive check string contain another
Q37 Capitalize the first letter of a string capitalize first letter string
Q38 Determine if a number is positive determine number positive
Q39 Trim the file extension from a file name trim file extension name
Q40 Turn a string into a char turn string to char character
Q41 Check if one string is a rotation of another check string rotation another
Q42 Largest element in two array largest common element array
Q43 Compare integer within a range compare integer largest max range
Q44 Same numbers from two int arrays common number two integer array
Q45 If the sum of any two elements equals another check array sum two element
Q46 Search elements from a list search arraylist match element list
Q47 Remove values greater than 100 list integer remove number grater

#V: the number of returned methods that are valid;
#C: the number of returned methods that are correct;
Rk: the top rank of correct methods in the result list.

We record the following measures regarding the efficiency of Quebio during
each query as well:

#Mc: the number of methods from the pool with IO parameters that are com-
patible with the specified IO examples;

#Ms: the number of methods that survived keyword-based search and therefore
are to be examined by method matching;

15

#Me: the number of candidate methods actually examined by method match-
ing within the given time limit;

Tkb: the time used by Quebio on keyword-based search;
Teb: the time used by Quebio on example-based method matching;
T: the total time used by Quebio to produce the results; Since the com-

patibility between IO examples and method signatures can be checked
instantly, we have T=Tkb + Teb.

All times are in seconds.
To facilitate the evaluation of the impact of the customized keyword-based

search, we also count, for each query, 1) the number #Cu of correct methods
that are only returned when keyword-based search is enabled or disabled, i.e.,
the number of returned correct methods that are unique in each case, and 2)
the method survival rate in keyword-based search, which is calculated as the
ratio of the number of methods surviving keyword-based seach to the number
of methods with compatible parameters, i.e., #Ms/#Mc.

Note that, when keyword-based search is disabled, the number of methods
from the pool with IO parameters that are compatible with the specified IO
examples will be the same as the number of methods that are to be examined
by example-based method matching, i.e., #Mc = #Ms.

4.3. Construction of The Method Pool
We construct the pool of methods used in the experiments by gathering

relevant methods from repositories of open source Java projects hosted on the
GitHub software development platform. Due to the sheer number of such repos-
itories, it is prohibitively expensive for us to download all of them blindly. We
therefore rely on the search functionality provided by the GitHub platform to
narrow down the repositories that may be relevant to the subject queries, and
then only download the source code of those repositories. In particular, we first
use the search tool provided by GitHub to look for relevant repositories based
on the keywords from the queries, as shown in column keyword of Table 3.
Then we gather for each query the first 5 repositories as well as the repositories
containing the first 15 code snippets from the results. Next, to diversify the
methods pool, we search for repositories related with container types such as
LinkedList, TreeSet, and HashMap. We collect totally 723 distinct Java repositories
in this way.

We check out the latest revisions of all these repositories and gather in
total 6,487,974 methods. From these methods, we select the ones that Quebio
should be able to process as our subjects using the following criteria: (1) the
method is not an abstract or native method; (2) the method concerns only
primitive, String, and/or container data types like array/List, Set, and Map;
(3) the method has at least one input and one output variable; (4) the method
compiles successfully. We are left with 24,898 methods satisfying these criteria.
We manage to encode 14,792 of them in 160 hours, producing logical formulas
for 246,986 paths from those methods via symbolic execution. The box plot in
Figure 5 relates the number of paths extracted from a method and the time

16

Figure 5: Relation between the numbers of paths extracted from the methods and the time
required to encode the methods.

required to encode the method: each box at position x shows the distribution of
the encoding time across all methods with x extracted paths. We can see from
the figure that, as expected, the encoding time is proportional to the number of
paths extracted from each method in general.

The reasons why the other 10,106 methods were not encoded into our local
repository are grouped into 6 classes, which are shown in column reason of Ta-
ble 4. Columns #m and %m of the table show the number and the percentage of
methods that failed to be encoded for a particular reason: 2,287 methods involve
variables of unsupported data types like multidimensional arrays and nested con-
tainers; 3,457 methods contain invocations to unsupported library methods, i.e.,
library methods with no logical formulas encoding their semantics; The encod-
ing of 2,303 methods terminated prematurely due to Z3 errors raised during
the resolution of path constraints. Such errors often occur when the method
has bit operations or the path constraint is incomplete; The encoding of 134
methods was not able to find any feasible path within the 5 minute time frame
allocated for the task; 752 methods were not encoded because runtime excep-
tions like NullPointerException and ArrayIndexOutOfBoundsException were thrown
by the Java PathFinder; Encoding of the others failed silently without gener-
ating any error message. Unsupported data type, unsupported library method,
and complex constrains are the major reasons for failures in method encoding.

4.4. Experimental Protocol
Each experiment then involves running Quebio, with or without enabling

the customized keyword-based search, to look for interested methods.
To answer RQ1 and RQ2, we feed the IO examples and keywords of each

query to Quebio to search for matching methods from the pool. Valid results
can easily be identified by checking whether their matching index is equal to 1.

17

Table 4: Reasons why Quebio failed to encode some methods. For each reason, the number
of methods whose encoding failed due to the reason (#m) and the percentage of those methods
(%m).

reason #m %m
Unsupported data type 2,287 23
Unsupported library method 3,457 34
Z3 error 2,303 23
Timeout 134 1
Runtime exception 752 7
Others 1,173 12
Total 10,106 100

To determine the correct methods in the results, two of the authors manually
examine all the methods returned by Quebio. They first mark the methods
that, they believe, implement the expected behaviors as correct independently,
and then discuss each method where their independent marks differ. We con-
servatively only mark a method as correct if both authors reach a consensus on
that in the end.

To answer RQ3, we run Quebio again on the same set of subject queries but
with keyword-based search disabled—we refer to Quebio running in this mode
as Quebio-. We compare the results produced by Quebio and Quebio- in terms
of the measures described in Section 4.2.

All the experiments are conducted on a laptop computer with Intel Core
i7-6700 CPU (3.4GHz) and 16G RAM running Ubuntu 16.04. The limit on the
amount of time to spend on each experiment, whether keyword-based search
is enabled or not, is set to 20 minutes, which is in alignment with the settings
adopted in [19].

4.5. Experimental Results
We report on the experimental results and answer the research questions in

this section.

4.5.1. RQ1: Effectiveness.
Table 5 lists, in column Quebio, for each query the number of methods re-

turned (#R), the number of returned methods that are valid (#V), the number
of returned methods that are correct (#C), and the top rank of correct methods
in the result list (Rk).

Quebio was able to return result methods for all queries but Q19, and it
typically returns quite a few methods for each of those queries. Such results
suggest that there do exist many methods in open source software reposito-
ries implementing functionalities similar to what programmers often ask about.
Quebio found over 100 matching methods for queries like Q4 and Q23. One
reason for so many result methods is that the desired functionality is often
(re)implemented in various open source projects. For example, many methods
in the repository sort elements in a list, therefore Quebio was able to find 560
likely methods for query Q4. Another reason is related to the fact that some

18

Table 5: Experimental results.

id Quebio Quebio-

#R #V #C Rk #Mc #Ms #Me T Tkb Teb #Cu #R #V #C Rk #Mc #Me T #Cu

Q1 2 1 1 1 3263 57 57 61.7 10.5 51.2 0 77 71 1 6 3263 3263 609.7 0
Q2 158 40 12 1 5077 257 257 109.9 12.4 97.5 10 1230 388 2 8 5077 2195 1200.0 0
Q3 38 4 0 0 2873 76 76 65.2 10.1 55.1 0 133 21 0 0 2873 235 1200.0 0
Q4 560 27 36 1 6202 705 705 714.4 8.1 706.3 36 83 0 0 0 6202 174 1200.0 0
Q5 22 12 4 1 838 75 75 65.5 4.9 60.6 4 41 19 0 0 838 87 1200.0 0
Q6 17 0 7 10 158 24 24 9.0 5.3 3.7 1 111 4 6 105 158 137 1200.0 0
Q7 2 0 2 1 25 2 2 4.1 4.0 0.1 0 17 0 2 1 25 25 1200.0 0
Q8 15 11 2 1 549 80 80 4.7 2.3 2.4 0 77 51 2 1 549 252 1200.0 0
Q9 39 11 2 1 1173 44 44 13.4 4.5 8.9 2 146 56 0 0 1173 149 1200.0 0
Q10 1 1 1 1 39 2 2 3.5 3.4 0.1 0 17 11 1 1 39 34 1200.0 0
Q11 46 12 4 1 838 75 75 55.7 5.0 50.7 4 22 3 0 0 838 45 1200.0 0
Q12 189 76 1 76 711 193 193 61.0 1.8 59.2 1 99 43 0 0 711 103 1200.0 0
Q13 72 29 7 1 244 109 109 140.9 3.3 137.6 6 28 14 1 15 244 38 1200.0 0
Q14 111 28 1 30 755 159 159 29.5 2.0 27.5 1 103 20 0 0 755 118 1200.0 0
Q15 198 97 18 1 711 204 204 67.1 1.8 65.3 12 87 40 6 12 711 93 1200.0 0
Q16 191 77 2 64 711 195 195 64.0 1.8 62.2 2 76 35 0 0 711 77 1200.0 0
Q17 21 18 4 6 213 24 24 6.0 1.0 5.0 3 70 60 1 37 213 96 1200.0 0
Q18 68 8 0 0 838 164 164 191.7 5.0 186.7 0 11 1 0 0 838 27 1200.0 0
Q19 0 0 0 0 17 17 17 7.9 4.0 3.9 0 0 0 0 0 17 17 868.2 0
Q20 287 129 9 1 755 306 306 65.6 1.9 63.7 7 96 19 2 3 755 98 1200.0 0
Q21 40 20 23 1 347 43 43 35.9 2.7 33.2 22 14 6 1 6 347 15 1200.0 0
Q22 39 39 2 28 969 48 48 20.2 4.2 16.0 2 21 20 0 0 969 56 1200.0 0
Q23 555 13 32 1 6202 685 685 567.3 8.3 559.0 32 12 0 0 0 6202 29 1200.0 0
Q24 66 11 15 1 1317 100 100 184.7 4.2 180.5 15 4 0 0 0 1317 12 1200.0 0
Q25 33 12 1 2 3047 393 393 450.8 5.9 444.9 1 0 0 0 0 3047 12 1200.0 0
Q26 375 94 29 13 2873 730 730 1162.5 10.2 1152.3 28 9 2 1 1 2873 22 1200.0 0
Q27 380 98 20 15 2873 539 539 709.1 10.2 698.9 20 9 3 0 0 2873 21 1200.0 0
Q28 478 193 3 1 2873 805 805 1052.9 10.2 1042.7 3 4 1 0 0 2873 17 1200.0 0
Q29 559 19 37 1 6202 695 695 574.5 8.3 566.2 37 6 0 0 0 6202 16 1200.0 0
Q30 67 24 10 13 692 71 71 88.7 3.8 84.9 10 9 2 0 0 692 15 1200.0 0
Q31 558 10 9 1 6202 695 695 605.4 8.2 597.2 9 6 0 0 0 6202 15 1200.0 0
Q32 143 76 8 1 1317 178 178 209.2 7.3 201.9 8 4 2 0 0 1317 7 1200.0 0
Q33 620 9 4 74 6202 883 883 819.8 8.3 811.5 4 4 0 0 0 6202 12 1200.0 0
Q34 48 36 4 8 969 53 53 25.5 4.2 21.3 4 15 9 0 0 969 47 1200.0 0
Q35 40 39 2 38 969 47 47 18.7 4.1 14.6 2 15 15 0 0 969 49 1200.0 0
Q36 32 12 3 7 224 41 41 15.4 1.2 14.2 0 199 95 3 3 224 224 172.1 0
Q37 38 29 2 1 755 167 167 41.3 2.1 39.2 0 196 181 2 3 755 775 271.9 0
Q38 11 3 0 0 1173 12 12 8.6 4.9 3.7 0 1147 480 0 0 1173 1173 394.7 0
Q39 11 10 2 3 755 116 116 14.2 2.1 12.1 0 189 184 2 6 755 755 267.9 0
Q40 53 52 3 8 838 259 259 313.7 5.4 308.3 0 129 120 3 1 838 838 980.1 0
Q41 32 13 1 10 224 39 39 16.0 0.9 15.1 0 201 101 1 8 224 224 174.7 0
Q42 10 1 1 1 316 20 20 79.7 5.1 74.6 0 164 70 1 70 316 316 553.6 0
Q43 102 34 1 29 1996 188 188 152.2 8.7 143.5 1 571 166 0 0 1996 1009 1200.0 0
Q44 97 50 4 1 971 103 103 66.9 4.2 62.7 1 551 268 3 75 971 864 1200.0 0
Q45 115 41 1 10 693 133 133 148.7 3.8 144.9 1 271 112 0 0 693 324 1200.0 0
Q46 25 14 8 3 971 26 26 27.2 4.3 22.9 7 129 56 1 33 971 222 1200.0 0
Q47 416 5 1 4 6206 696 696 872.1 8.2 863.9 1 60 0 0 0 6206 130 1200.0 0

Tot. 6980 1538 339 - 84166 10533 10533 10022.1 244.0 9778.1 297 6463 2749 42 - 84166 14482 49892.9 0
Avg. 149 33 7 11 1791 224 224 213.2 5.2 208.0 6 138 58 0.89 20 1791 308 1061.6 0

of the IO examples used in the queries can often be interpreted in different
ways, leading to partially matched methods in the results. For instance, the
IO examples used to characterize query Q23 are ([1]->[1]), ([1,2]->[2,1]),
([1,1]->[1,1]), ([1,3,2]->[2,3,1]), ([1,3,2,4]->[4,2 ,3,1]), while an array
copying method supports the first two examples and a sorting method supports
the first three.

For 44 out of the 47 queries, the returned methods contained at least one
valid method. Overall, the numbers of valid methods are considerably smaller
than those of returned methods for most queries, which is as expected, since
it is more difficult for methods to support all, rather than just some, of the
IO examples. Quebio returned quite a number of valid methods for queries
like Q2 because it allows the values of certain parameters of a method to be
decided by the solver during matching, which significantly increases the chance
for IO examples to be supported by methods in unexpected ways. For example,
(123->321) is an IO example we use for query Q2. However, a method “int add(

19

int a,int b){return a+b;}” in our local repository will be returned as a valid match
since, when we assign 123 to a, the solver can find a model where b has value
198 to satisfy a + b = 321. Such over-flexibility is intrinsic to example-based
code search since no rules regarding how the input and output values should be
used by the methods are imposed by the queries, but its negative impact can
be partially relieved by the optional keyword-based search in Quebio: Although
method add will be a valid match for query Q2, its similarity with the keywords
of the query is low, therefore the method will rank lower than many other
valid methods. In fact, the first valid method for query Q2 is named reverse

in our experiments and it indeed correctly implements the functionality as
expected by Query Q2. For a few queries, e.g., Q10, Q22, Q35, Q39, and Q40,
almost all returned methods are valid. Consider query Q10 for example. The IO
examples used for the query include (0,2->"00"), (1,2->"01"), (12,4->"0012"),
(23,2->"23"), and (23,1->"23"). These examples are so representative and
restrictive that most methods either accept or reject all of them, which explains
why we only find one likely method that is also valid.

Quebio managed to return correct methods for 43 queries, and the total
number of correct methods is much smaller than that of valid methods, indi-
cating that IO examples are indeed weak specifications. A closer look at the
search results reveal that 241 of the correct methods are also valid. This leaves
us with 1,297 valid but incorrect methods, which we refer to as false-positives,
and 98 correct but invalid methods, which we refer to as false-negatives. In
general, both false-positives and false-negatives are inevitable with example-
based code search: A valid method may be incorrect if it does not satisfy the
intended specification for the query which the IO examples fail to convey; A
correct method may have a matching index smaller than 1 if its path to sup-
port an IO example is not extracted during symbolic encoding or the constraint
solver fails to confirm the satisfiability of that path within the given time or
using the allocated resources. To reduce the number of false-positives, we need
to devise new, easy-to-use ways to provide auxiliary information to the search
process to complement the weak specifications, or we may generate new inputs
and outputs for the valid methods based on dynamic analysis and provide users
with the extra behaviors to help them identify correct methods easier. To re-
duce the number of false-negatives, we may check the conformance between an
IO example and a method by actually running the method on the given input
values and comparing the actual outputs with the expected ones.

The top-ranked correct methods appear in position 1 for 22 queries, between
positions 2 and 10 for 11 queries, and after position 10 for another 10 queries,
which suggests that the ranking mechanism in Quebio is overall effective.

Quebio found only valid methods but no correct methods for 4 queries. We
manually crafted correct implementations for all those 4 methods, constructed
logical formulas to encode 145 of their paths into the method pool using Quebio,
and conducted the same search again. Quebio was able to find all the manually
written methods and return them as valid matches for the queries. Such results
suggest the previous failures were most likely due to a lack of correct matches
in our local repository of methods, rather than Quebio’s inability to find such

20

matches when they do exist.

Quebio returned 6,980 methods for 46 out of the 47 queries, among which
339 methods were correct implementations for 43 queries, averaging to 7.9

correct methods for each query.

4.5.2. RQ2: Efficiency.
Table 5 also lists, in column Quebio, for each query the number of methods

from the pool with IO parameters that are compatible with the specified IO
examples (#Mc), the number of methods that survived keyword-based search
and are to be examined by method matching (#Ms), the number of candidate
methods actually examined by method matching within the given time limit
(#Me), the total time in seconds used by Quebio to produce the results (T),
and the breakdown of that to the time spent on keyword-based search (Tkb) and
example-based method matching (Teb). In total, Quebio spent 9,986 seconds
to resolve all the 47 queries and return the 6,980 result methods and the 339
correct matches. On average, it took Quebio 213 seconds, 1.4 seconds, and 29.5
seconds to resolve a query, to produce a result method, and to return a correct
implementation, respectively.

Figure 6 shows the distribution of the total search time T for processing each
query. A bar at x-coordinate a with height n indicates that, for n queries, the
total search time was between a−100 and a seconds. The distribution is clearly
skewed to the left, indicating that the search time for most queries is limited.
Particularly, only less than 100 seconds were spent on the process of 29 queries,
and the search time was less than 600 seconds, or 10 minutes, for 41 queries.

Compared with keyword-based search, example-based method matching took
considerably more time. Particularly, keyword-based search took between 10
and 13 seconds to finish only on 6 queries, while on all the other 41 cases, the
search finished within 10 seconds. In contrast, it took Quebio longer than 60
seconds to finish example-based method matching on 25 queries, and the time
was even long than 600 seconds on 6 of the queries. In total, the time spent on
keyword-based search accounts for less than 2.5% of the overall search time on
all the queries, which suggests example-based method matching to be the main
target when improving the efficiency of the search.

The scatter chart in Figure 7 shows the relation between the number of
methods examined in example-based method matching and the total time spent
in each search. The figure suggests that the search time is in proportion to
the number of methods examined, which suggests that a meaningful way to
improve the efficiency of Quebio is to be more selective and apply the method
matching step to a more restricted set of candidate methods. The optional
keyword-based search step of Quebio was introduced exactly for this purpose,
we study its impact on the effectiveness and efficiency of Quebio in RQ3.

On average, Quebio spent 213 seconds, 1.4 seconds, and 29.5 seconds to
handle a query, to produce a result method, and to return a correct

implementation, respectively.

21

0

5

10

15

20

25

30

35

100 200 300 400 500 600 700 800 900 1000 1100 1200

#
Q

u
e

ry

T (s)

Figure 6: Distribution of the total time (T) for processing each query.

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900 1000

T
 (

s)

#Me

Figure 7: Relation between the overall search time (T) and the number of methods examined
during example-based method matching (#Me).

4.5.3. RQ3: Usefulness of keyword-based search.
Table 5 also lists for each query the same set of measures, except #Ms, for

the effectiveness and efficiency of Quebio-. To facilitate the comparison between
Quebio and Quebio-, the numbers of correct methods exclusively returned by
Quebio in each mode (#Cu) are provided in the same table as well.

Compared with Quebio, Quebio- returned a similar number of result methods
(6,463 vs. 6,980), which contain more methods that fully support the given IO
examples (2,749 vs. 1,538) but considerably fewer methods that indeed correctly
implement the desired functionalities (42 vs. 339). Particularly, we make the
following three observations about the two modes. First, Quebio- was not able
to return more correct methods than Quebio for any query: When Quebio was
not able to return any correct method for a query, neither can Quebio-; Out
of the 43 queries for which Quebio found correct methods, Quebio- found the
same amount of correct methods for 10 queries, found some, but fewer, correct
methods for another 10 queries, and found no correct method for the remaining
23 queries. Second, when both Quebio and Quebio- are suceesul, i.e., both of
them found at least one correct method, all the correct methods returned by

22

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
Q
u
e
ry

TQuebio/TQuebio-

Figure 8: Distribution of the ratio between Quebio’s search time and that of Quebio-
(TQuebio/TQuebio−).

Quebio- are also found by Quebio: Quebio- produced no unique correct method
for any query (#Cu is always 0 with Quebio-). Third, when both Quebio and
Quebio- are successful, the top ranks of correct methods with Quebio were
better, i.e., smaller, on all but 4 queries. Overall, the result quality of Quebio
improves significantly when keyword-based search is performed before example-
based method matching.

Keyword-based search also helps to improve the efficiency of method search.
Figure 8 depicts the distribution of the ratio between the total search time with
Quebio and that with Quebio-. A bar at x-coordinate a with height n indicates
that, for n queries, the ratio of the total search time with Quebio to that with
Quebio- was between a − 0.1 and a. Again, the distribution is clearly skewed
to the left, indicating that the search time with Quebio is only a small portion
of that with Quebio- for most queries. For example, for 27 queries only less
than 10% of the time is needed when they are handled by Quebio rather than
Quebio-, and for 41 queries less than half of the time is needed when Quebio
rather than Quebio- is used to carry out the search. The total search time for
the 47 queries with Quebio is merely 20% of that with Quebio-.

Quebio needs considerably shorter time to complete all the searches because
keyword-based search can greatly reduce the number of methods to be examined
during example-based method matching. Figure 9 shows the distribution of the
method survival rate (#Ms/#Mc) across all queries. A bar at x-coordinate a
with height n indicates that, for n queries, the ratio of the number of methods
surviving keyword-based seach, and therefore need to be matched against the
given IO examples, to the number of methods with compatible parameters was
between a−0.1 and a. It turns out that keyword-based search was able to filter
out more than half of the compatible methods for all queries but Q19, which
naturally will lead to reduced search time.

On the other hand, without the filtering via keyword-based search, Quebio-
has to check the semantics of each compatible method, which may not even
be feasible when the time budget allocated for the search is limited. In fact,

23

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
Q
u
e
ry

#Ms/#Mc

Figure 9: Distribution of the method survival rate (#Ms/#Mc) in keyword-based search with
Quebio.

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#Q
u
er
y

#Me/#Mc

Figure 10: Distribution of the examination rate (#Me/#Mc) in example-based method match-
ing with Quebio-.

Quebio- was not able to check all the compatible methods when processing most,
38 to be precise, of the subject queries. Figure 10 depicts the distribution of
the examination rate (#Me/#Mc) across all queries in the experiments with
Quebio-. A bar at x-coordinate a with height n indicates that, for n queries,
the ratio of the number of methods examined during example-based method
matching to the number of methods with compatible parameters was between
a − 0.1 and a. Quebio- only managed to examine less than 60% of all the
compatible methods within 20 minutes for 34 queries, and the examination rate
was even below 10% for 20 queries. The overall low examination rate with
Quebio- explains why so many correct methods were missed when keyworkd-
based search was disabled.
Compared with the case where keyword-based search is disabled, Quebio with
keyword-based search finds 8 times more correct methods (339 vs. 42) and
correct methods to 23 more queries, while using only 20% of the time.

4.6. Comparison with Satsy
For each of the eight queries used to evaluate Satsy [21] and each of the three

techniques, namely Quebio (Quebio), the round-robin mode of Satsy (Satsy
RR), and the ranked mode of Satsy (Satsy Ranked), Table 6 lists the number of

24

Table 6: Comparison with Satsy

ID Quebio Satsy RR Satsy Ranked

D@10 C D@10 C D@10 C

Q12 0 100 4.7 1.7 1 1
Q20 8 1 4.7 1.9 1 1
Q36 1 7 5.3 1.2 5.7 2.4
Q37 2 1 6.3 1 1 1
Q38 0 0 4 1 4 2.5
Q39 2 3 6.7 1 1 1
Q40 1 8 8.3 1 6.7 1.5
Q41 1 10 2.7 2.1 7.1 1.5

Average 1.9 13 4.3 1.1 2.8 1.2

desirable results among the top 10 that get returned (D@10) and the top rank
of the desirable results (Rk). All the measures of Satsy are from its previous
evaluation as reported in [21], and they reflect the average situation across
multiple attempts on the same query using various examples.

Note that a direct comparison between these values will be inappropriate,
as the two sets of experiments apply different criteria to determine whether a
result is desirable or not. On the one hand, authors of [21] were interested in
returned code snippets that are useful for solving the corresponding question,
while we are more concerned with returned methods that correctly implement
the functionality specified by the IO examples. On the other hand, it remains
unknown to us what specific criteria were applied to decide the usefulness of
code snippets, and it is also not clear how much effort would be needed to adjust
the useful code snippets to suit a target programming task, while the correct
methods returned by Quebio are most likely directly reusable. We therefore
refrain from quantitatively comparing the effectiveness of Satsy and Quebio.

Qualitatively, both Quebio and Satsy can return useful results for the queries.
Quebio was able to find correct implementations for 7 of the 8 queries, among
which 6 queries have at least one correct method ranked among the top 10
results and 3 queries have multiple correct methods ranked among the top 10.
Quebio found no matching method for query Q38, since comparing the number
with zero using the greater-than operator is enough to “determine if a number
is positive”, and it is unnecessary to be implemented as a method. Satsy was
able to find useful code snippets for all the 8 queries and rank them close to the
top of the result list in either mode.

Since the Satsy tool is not publicly available for download, we are not able
to apply Satsy to the other 39 queries used in our experiments and study the
actual results. Nevertheless, we manually analyzed the queries and the desired
functionalities and determined that most likely Satsy, in its implementation as
described in [21], cannot successfully resolve 27 of the queries: 21 queries concern
data types like array and List, which are not supported by Satsy, while 6 other
queries demand implementations involving loops or other language features not
supported by Satsy. Table 7 lists the IDs of the queries that, according to our

25

Table 7: Queries that, according to our analysis, can or cannot be resolved by Satsy.

resolvable? reason query

Yes
Q3, Q5, Q6, Q7, Q8, Q11, Q12, Q14,
Q15, Q16, Q17, Q20, Q36, Q37, Q38,
Q39, Q40, Q41, Q43, Q45

No Unsurported data types
Q4, Q19, Q21, Q22, Q23, Q24, Q25,
Q26, Q27, Q28, Q29, Q30, Q31, Q32,
Q33, Q34, Q35, Q42, Q44, Q46, Q47

Unsurported language constructs Q1, Q2, Q9, Q10, Q13, Q18

analysis, Satsy can or cannot resolve.

4.7. Threats to Validity
We discuss in this section potential threats to the validity of our findings

and how we mitigate them.
Threats to construct validity concerns whether the measures we use in the

experiments reflect real-world situations. In this work, we measure the effective-
ness of Quebio by looking at the number of returned methods that are correct
implementations of the queries under consideration. While correct implementa-
tions of the desirable behaviors are the most useful for a user, different people
may have different opinions regarding which methods are indeed correct, which
imposes threats to the construct validity of our findings. To mitigate the threat,
two of our authors manually checked the returned methods independently and
only marked the methods as correct when a consensus on their correctness can
be reached.

Threats to internal validity mainly have to do with the uncontrolled factors
that may have influenced the experimental results. In our experiments, we
devised the keywords and IO examples to be used for finding matching methods
in each query, while different choices of the keywords and examples may influence
the methods returned by Quebio. In the future, we plan to alter the inputs
and investigate to what extent those choices affect the quality of search results.
Another threat to internal validity lies in the possible bugs in the implementation
of Quebio and the scripts we prepare to run Quebio and to process the search
results. To minimize the threat, we reviewed our implementation carefully and
ran tests to make sure the tool and the scripts function as expected.

Threats to external validity concerns whether the experimental findings
can generalize to other situations. One threat to external validity in this work
is related to the representativeness of the subject queries examined in the ex-
periments. All subject queries used in the experiments are gathered from
StackOverflow—a popular Q&A platform for programmers—and queries de-
rived from both popular questions and unpopular questions, i.e., questions with
many or no answers, are used as the subjects, which helps to ensure that the
queries reflect real questions programmers ask. Overall, Quebio proved to be ef-
fective in handling the queries. Another threat to external validity concerns the

26

limited data types that Quebio supports in its current implementation. While
Quebio has the ability to handle API calls in candidate methods, the availabil-
ity and the complexity of logical formulas encoding those APIs’ semantics can
present challenges to Quebio in achieving similar levels of effectiveness and ef-
ficiency on other queries. In the future, we plan to extend Quebio to support
more data types and conduct more extensive experiments to investigate how
such extension affects the performance of Quebio.

5. Related Work

This work aims to help software developers search for and reuse code on
the Internet. To support searching with functional semantics, we generate path
constraints for a Java method via symbolic analysis. Our work is closely related
to researches from three different areas: code search, symbolic execution, and
specification generation.

5.1. Code Search
By treating source code just as texts, keyword-based code search can be

easily conducted on systems like Google and Bing that implement general pur-
pose information retrieval techniques and software project hosting websites like
GitHub and SourceForge. Results from such searches, however, often have lim-
ited precision due to the gap between the concepts that the code manipulates
and the terms used in natural language (NL) queries as keywords to refer to
those concepts.

Various technique have been developed to fill this gap and to improve the
search precision. Vinayakarao et al. [7] devise the anne approach to gener-
ate NL annotations for source code lines based on the syntactic elements con-
tained in those lines, while Zhang et al. [8] propose an approach to expand
NL queries with semantically related API class names; Some other techniques
exploit semantic information of the code to improve the precision of search re-
sults. Stolee’s paper [2] compares several semantics-based search engines for
code, including Exemplar [3], S6 [4], CodeGenie [5], and Sourcerer [6]. These
search engines use data-flow analysis, testing, and/or AST analysis to extract
semantic information from source code and utilize it to guide the search. Li et
al. [10] propose the racs approach to find JavaScript code snippets that utilize
existing frameworks to implement specific features. By mining API usage pat-
terns in the form of method call relationship graphs and abstracting NL search
queries to action relationship graphs, racs reduces the code search problem to a
graph search problem; Example code fragments, instead of keywords in NL, have
also been used to construct queries that can better guide the search. FaCoY
[12] leverages Q&A posts from StackOverflow to build mappings between code
snippets and questions. Given a code fragment as the user input, FaCoY first
searches for similar code snippets and obtains their related questions. Then,
it searches for similar questions and uses all related code snippets to generate
an expanded code query. Finally, it searches for similar code fragments from

27

GitHub using the expanded code queries. DyCLINK [13] records instruction-
level traces from the execution of some sample code, organizes the traces into
instruction-level dynamic dependency graphs, and employs subgraph matching
algorithms to detect code with similar behaviors.

With the development of deep learning, there have been attempts to use
deep neural network for code search. For example, Gu et al. [16] develop the
CODEnn system that trains a deep neural network to embed a code snippet
and its NL description into two similar vectors. The network is then used to
retrieve code snippets related to an NL query according to their vectors. Zhao
et al. [17] propose the DeepSim technique where the control flow and data flow
of a piece of code is encoded into a semantic matrix and a deep learning model
is developed to measure code functional similarity based on this representation.
Nguyen et al. [18] develop the D2Vec neural network model to compute the
vector representations for the APIs. The model maintains the global context of
the current API topic under description and the local orders of words and APIs
in the text phrases, which helps to capture the semantics of API documentation.

Based on the insight that code snippets returned for a query tend to serve
as inspirations or triggers for further queries, Martie et al. [14] build CodeEx-
change (CE) and CodeLikeThis (CLT) to support incremental code search. CE
allows programmers to use characteristics to filter search results, while CLT
enables programmers to find code that is analogous to the previous search re-
sults. Sivaraman et al. [15] develop the alice interactive technique that searches
for code with or without features specified in a query language. By adding or
removing the specified features, users are able to refine a searche easily in it-
erations. Instead of always returning existing code as search results, the swim
technique [11] developed by Raghothaman et al. combines code search and pro-
gram synthesis to suggest code snippets for API-related NL queries. swim first
searches for APIs relevant to the queries using a general-purpose search engine,
and then finds code fragments corresponding to those APIs from GitHub. Next,
it trains a probabilistic model to describe usage patterns from these APIs and
code fragments, and uses the probabilistic model to synthesize an idiomatic
piece of code to describe the usage of the APIs.

Our approach Quebio is closely related to Satsy [19, 20, 21], which pioneered
the idea of using IO examples and SMT solver to find source code snippets with
specific IO behaviors. Quebio advances the state-of-the-art of example-based
code search by supporting more language features and more data types, which
significantly enhances the applicability of the techniques. Quebio is also the first
technique to integrate a customized keyword-based search with the example-
based code search, so that the overall approach strikes a good balance between
effectiveness and efficiency.

5.2. Symbolic Execution
Symbolic execution [25] is a program analysis technique that generates test

data for a program automatically by solving its path constraints. A recent sur-
vey [33] points out that all existing symbolic execution tools such as KLEE [34]
and Symbolic JPF [23] suffer from three fundamental problems that limit their

28

effectiveness on real-world software. The first problem is path explosion: A
program may have such a large number of paths that it becomes impossible to
enumerate those paths in a reasonable time. The second problem is path diver-
gence: Some parts of a program may be in binary form or different programming
languages, posing challenges to the symbolic executor in understanding the se-
mantics of those parts and constructing the path conditions. The third problem
is that many path constraints are too complex to solve. For example, it is dif-
ficult for existing constraint solvers like Z3 [26] to solve complex constraints
involving nonlinear operations.

Since Quebio employs an symbolic executor to encode the semantics of meth-
ods, naturally it is influenced by the same problems from which symbolic ex-
ecution tools suffer. Quebio, however, remains a rather promising approach
to example-based code search for two reasons. First, Quebio seldom needs
to enumerate a large number of execution paths of a target method. On the
one hand, compared with whole programs, methods are typically less complex
and have fewer different execution paths; On the other hand, in example-based
code search, users often resort to small examples that are easy to write and
comprehend when constructing queries, and those small examples are typically
processed by methods along short execution paths. As a result, while Quebio
only extracts relatively short execution paths of methods via symbolic execution
during the offline encoding phase, the paths are often enough to decide whether
the IO examples are supported or not. Second, the problems of path divergence
and constraint complexity become significantly more severe when the code to
be symbolically executed contains invocations to other methods, while Quebio
alleviates the problems by treating library APIs as blackboxes and incorporat-
ing their semantics by instantiating their specifications at the call site. In this
way, Quebio greatly reduces the number of cases where it needs to symbolically
execute code in other languages or produces complex constraints because of
method inlining.

5.3. Specification Generation
Various mechanisms have been developed in the past to specify the seman-

tics of code. For example, the Java Modeling Language (JML) [35, 36] can
be used to specify assertions, pre- and postconditions, and invariants of Java
classes and interfaces. Manually constructing the specifications, however, can
be very tedious and time-consuming, specification generation therefore has at-
tracted much attention among researchers in the past few years. Daikon [37, 38]
is a dynamic invariant inference technique, which generates pre- and postcon-
ditions of API methods by dynamically running them, collecting the execution
traces, and using machine learning algorithms to analyze the traces. The in-
ferred specifications, however, may overfit the executions analyzed during the
inference and be incorrect. Zhai et al. [39] propose a technique that analyzes
the documentation written in natural language for API methods and constructs
equivalent, but simpler, implementations in Java as executable specifications for
the methods. When used in symbolic execution, the executable specifications
can significantly simplify the constraints produced.

29

Quebio relies on the availability of specifications for library APIs to encode
the semantics of target methods efficiently, and high quality specifications au-
tomatically generated by tools will enable Quebio to be applied to support a
wider range of searches.

6. Conclusions

Code search plays an important role in modern software engineering. With
the amount of source code available on the Internet increasing, semantics-based
code search can help software developers retrieve and reuse existing code more
effectively. In this paper, we present an approach to example-based search for
Java methods. We encode the semantics of Java methods along various execu-
tion paths into constraints and leverage an SMT solver to check whether the
expected IO behaviors are supported by the methods. Our approach advances
the state-of-the-art in example-based code search and is able to handle more
language features like method invocation and loop and more data types like
array/List, Set, and Map; Our approach also integrates a customized keyword-
based search to quickly prune out methods that are less likely matches, so
that the overall search efficiency is improved. We conducted experiments on
47 queries based on real-world questions from programmers to evaluate our ap-
proach. The approach was able to find correct methods from a pool of 14,792
candidates for 43 of the queries, spending on average around 213 seconds on
each query. Such results suggest our approach is both effective and efficient.

[1] S. E. Sim, M. Umarji, S. Ratanotayanon, C. V. Lopes, How well do
search engines support code retrieval on the web?, ACM Trans. Softw.
Eng. Methodol. 21 (1) (2011) 4:1–4:25.

[2] C. Sadowski, K. T. Stolee, S. Elbaum, How developers search for code: A
case study, in: Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, ACM, New York, NY, USA,
2015, pp. 191–201.

[3] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, Q. Xie, Exemplar: A
source code search engine for finding highly relevant applications, IEEE
Transactions on Software Engineering 38 (5) (2012) 1069–1087.

[4] S. P. Reiss, Semantics-based code search, in: Proceedings of the 31st Inter-
national Conference on Software Engineering, ICSE ’09, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 243–253.

[5] O. A. L. Lemos, S. K. Bajracharya, J. Ossher, R. S. Morla, P. C. Masiero,
P. Baldi, C. V. Lopes, Codegenie: Using test-cases to search and reuse
source code, in: Proceedings of the Twenty-second IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’07, ACM,
New York, NY, USA, 2007, pp. 525–526.

30

[6] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, C. Lopes,
Sourcerer: A search engine for open source code supporting structure-based
search, in: Companion to the 21st ACM SIGPLAN Symposium on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA
’06, ACM, New York, NY, USA, 2006, pp. 681–682.

[7] V. Vinayakarao, A. Sarma, R. Purandare, S. Jain, S. Jain, Anne: Improving
source code search using entity retrieval approach, in: Proceedings of the
Tenth ACM International Conference on Web Search and Data Mining -
WSDM ’17, ACM Press, New York, New York, USA, 2017, pp. 211–220.

[8] F. Zhang, H. Niu, I. Keivanloo, Y. Zou, Expanding queries for code search
using semantically related api class-names, IEEE Transactions on Software
Engineering 44 (11) (2018) 1070–1082.

[9] Z. Lin, Y. Zou, J. Zhao, B. Xie, Improving software text retrieval using
conceptual knowledge in source code, ASE 2017 - Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering
(2017) 123–134.

[10] X. Li, Z. Wang, Q. Wang, S. Yan, T. Xie, H. Mei, Relationship-aware
code search for javascript frameworks, in: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software En-
gineering - FSE 2016, ACM Press, New York, New York, USA, 2016, pp.
690–701.

[11] M. Raghothaman, Y. Wei, Y. Hamadi, Swim: Synthesizing what i mean:
Code search and idiomatic snippet synthesis, in: Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, ACM, New
York, NY, USA, 2016, pp. 357–367.

[12] K. Kim, D. Kim, T. F. Bissyandé, E. Choi, L. Li, J. Klein, Y. L. Traon,
FaCoY - a code-to-code search engine, in: Proceedings of the 40th Inter-
national Conference on Software Engineering - ICSE ’18, ACM Press, New
York, New York, USA, 2018, pp. 946–957.

[13] F.-H. Su, J. Bell, K. Harvey, S. Sethumadhavan, G. Kaiser, T. Jebara,
Code relatives: detecting similarly behaving software, in: Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering - FSE 2016, ACM Press, New York, New York,
USA, 2016, pp. 702–714.

[14] L. Martie, A. van der Hoek, T. Kwak, Understanding the impact of support
for iteration on code search, in: Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering - ESEC/FSE 2017, ACM Press,
New York, New York, USA, 2017, pp. 774–785.

[15] A. Sivaraman, T. Zhang, G. Van den Broeck, M. Kim, Active inductive
logic programming for code search, in: 2019 IEEE/ACM 41st International

31

Conference on Software Engineering (ICSE), Vol. 2019-May, IEEE, 2019,
pp. 292–303.

[16] X. Gu, H. Zhang, S. Kim, Deep code search, in: Proceedings of the 40th
International Conference on Software Engineering - ICSE ’18, ACM Press,
New York, New York, USA, 2018, pp. 933–944.

[17] G. Zhao, J. Huang, Deepsim: deep learning code functional similarity, in:
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering - ESEC/FSE 2018, ACM Press, New York, New York, USA,
2018, pp. 141–151.

[18] T. Nguyen, N. Tran, H. Phan, T. Nguyen, L. Truong, A. T. Nguyen, H. A.
Nguyen, T. N. Nguyen, Complementing global and local contexts in rep-
resenting api descriptions to improve api retrieval tasks, in: Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
- ESEC/FSE 2018, ACM Press, New York, New York, USA, 2018, pp.
551–562.

[19] K. T. Stolee, Solving the search for source code, Ph.D. thesis, University
of Nebraska - Lincoln (2013).

[20] K. T. Stolee, S. Elbaum, D. Dobos, Solving the search for source code,
ACM Trans. Softw. Eng. Methodol. 23 (3) (2014) 26:1–26:45.

[21] K. T. Stolee, S. Elbaum, M. B. Dwyer, Code search with input/output
queries, Journal of Systems and Software 116 (C) (2016) 35–48.

[22] R. Jiang, Z. Chen, Z. Zhang, Y. Pei, M. Pan, T. Zhang, Semantics-based
code search using input/output examples, in: Proceedings of the IEEE 18th
International Working Conference on Source Code Analysis and Manipu-
lation, SCAM ’18, 2018, pp. 92–102.

[23] C. S. Pǎsǎreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, M. Pape, Combining unit-level symbolic execution
and system-level concrete execution for testing nasa software, in: Proceed-
ings of the 2008 International Symposium on Software Testing and Analysis,
ISSTA ’08, ACM, New York, NY, USA, 2008, pp. 15–26.

[24] A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2nd Edition), Addison-Wesley, Boston, MA, USA,
2006.

[25] L. A. Clarke, A system to generate test data and symbolically execute
programs, IEEE Trans. Softw. Eng. 2 (3) (1976) 215–222.

32

[26] L. de Moura, N. Bjørner, Z3: An efficient smt solver, in: C. R. Ramakr-
ishnan, J. Rehof (Eds.), Tools and Algorithms for the Construction and
Analysis of Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008,
pp. 337–340.

[27] K. S. Jones, A statistical interpretation of term specificity and its applica-
tion in retrieval, Journal of Documentation 28 (1972) 11–21.

[28] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd
Edition, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2011.

[29] S. Jha, S. Gulwani, S. A. Seshia, A. Tiwari, Oracle-guided component-based
program synthesis, in: Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, ACM, New
York, NY, USA, 2010, pp. 215–224.

[30] O. Polozov, S. Gulwani, Flashmeta: A framework for inductive program
synthesis, in: Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Appli-
cations, OOPSLA 2015, ACM, New York, NY, USA, 2015, pp. 107–126.

[31] Z3-guide.
URL https://rise4fun.com/Z3/tutorial/guide

[32] C. Barrett, P. Fontaine, C. Tinelli, The smt-lib standard: Version 2.6, Tech.
rep., Department of Computer Science, The University of Iowa, available
at www.SMT-LIB.org (2017).

[33] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, P. Mcminn, An orchestrated survey on auto-
mated software test case generation, Journal of Systems & Software 86 (8)
(2013) 1978–2001.

[34] C. Cadar, D. Dunbar, D. Engler, Klee: Unassisted and automatic genera-
tion of high-coverage tests for complex systems programs, in: Proceedings
of the 8th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’08, USENIX Association, Berkeley, CA, USA, 2008, pp.
209–224.

[35] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens,
K. R. M. Leino, E. Poll, An overview of jml tools and applications, Inter-
national Journal on Software Tools for Technology Transfer 7 (3) (2005)
212–232.

[36] P. Chalin, J. R. Kiniry, G. T. Leavens, E. Poll, Beyond assertions: Ad-
vanced specification and verification with jml and esc/java2, in: F. S.
de Boer, M. M. Bonsangue, S. Graf, W.-P. de Roever (Eds.), Formal Meth-
ods for Components and Objects, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2006, pp. 342–363.

33

https://rise4fun.com/Z3/tutorial/guide
https://rise4fun.com/Z3/tutorial/guide

[37] M. D. Ernst, J. Cockrell, W. G. Griswold, D. Notkin, Dynamically discov-
ering likely program invariants to support program evolution, in: Proceed-
ings of the 21st International Conference on Software Engineering, ICSE
’99, ACM, New York, NY, USA, 1999, pp. 213–224.

[38] C. Csallner, N. Tillmann, Y. Smaragdakis, Dysy: Dynamic symbolic ex-
ecution for invariant inference, in: Proceedings of the 30th International
Conference on Software Engineering, ICSE ’08, ACM, New York, NY, USA,
2008, pp. 281–290.

[39] J. Zhai, J. Huang, S. Ma, X. Zhang, L. Tan, J. Zhao, F. Qin, Automatic
model generation from documentation for java api functions, in: Proceed-
ings of the 38th International Conference on Software Engineering, ICSE
’16, ACM, New York, NY, USA, 2016, pp. 380–391.

34

	Introduction
	An Illustrative Example
	The Quebio Technique
	Overview
	Symbolic Encoding
	Specifications of Library APIs
	Invoke Instructions

	Keyword-Based Search
	Example-based method matching
	Method Matching Based on Given Binding Functions
	Calculation of matching index

	Implementation

	Evaluation
	Experimental Subjects
	Measures
	Construction of The Method Pool
	Experimental Protocol
	Experimental Results
	RQ1: Effectiveness.
	RQ2: Efficiency.
	RQ3: Usefulness of keyword-based search.

	Comparison with Satsy
	Threats to Validity

	Related Work
	Code Search
	Symbolic Execution
	Specification Generation

	Conclusions

