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Abstract

The last decade has seen a vast proliferation of mobile apps. To improve the
reliability of such apps, various techniques have been developed to automatically
generate tests for them. While such techniques have been proven to be useful
in producing test suites that achieve significant levels of code coverage, there is
still enormous demand for techniques that effectively generate tests to exercise
more code and detect more bugs of apps.

We propose in this paper the Adamant approach to automated Android app
testing. Adamant utilizes models that incorporate valuable human knowledge
about the behaviours of the app under consideration to guide effective test
generation, and the models are encoded in an extended version of the Interaction
Flow Modeling Language (IFML).

In an experimental evaluation on 10 open source Android apps, Adamant

generated over 130 test actions per minute, achieved around 68% code coverage,
and exposed 8 real bugs, significantly outperforming other test generation tools
like Monkey, AndroidRipper, and Gator in terms of code covered and bugs
detected.

Keywords: Interaction Flow Modeling Language, Android apps, Model-based
testing

1. Introduction

The past few years have seen a rapid growth in the popularity of mobile
devices and applications running on them, or mobile apps [1]. To ensure the re-
liability of mobile apps, developers conduct various quality assurance activities,
among which testing is the most frequently performed [2, 3, 4]. For testing to
be effective, tests of good quality are essential, but manual construction of those
tests can be tedious and highly time consuming, leading to increased costs for
mobile app testing.

In view of that, researchers developed many techniques and tools over the
years to automatically generate tests for mobile apps. Most of such works target
the Android platform, mainly due to its open-source nature and the fact that
it has the largest share of the mobile market [5]. For instance, Monkey [6]
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is a representative of the state-of-the-art Android test generation techniques.
Monkey implements a random strategy to automatically generate test scripts,
and it is more effective than most other Android test generation tools that are
publicly available [5]. Relying solely on computer automation, Monkey is good
at having simple interactions with the app under testing. It, however, lacks a
good knowledge of the app and has limited power in exercising important and
complex functionalities of the app. As a result, code coverage achieved by test
scripts produced by Monkey is often insufficient: Less than 50% of the code was
covered in an experiment on 68 open-source apps [5], and lower code coverage
was reported in another experiment with an industrial-level app [7].

We argue that human knowledge should be incorporated into test generation
to make the process more effective, and models that explicitly encode the knowl-
edge provide a good means of such incorporation. In this work, we propose the
Adamant approach that conveys, through an input model, valuable knowledge
of the app at hand to the test generation process cost-effectively. Guided by
such knowledge, Adamant can then generate test scripts that exercise more code
and detect more bugs of the app.

The input model is encoded in an extended version of the Interaction Flow
Modeling Language (IFML) [8], a graphical modeling language originally de-
signed for “expressing the content, user interaction and control behaviour of the
front-end of software applications”1. Graphical modeling languages, with intu-
itive notations and rigorous semantics, have been proven successful in modeling
traditional desktop applications, but the same success has not been witnessed
on the Android platform. Compared with desktop applications, Android apps’
executions highly rely on the graphical user interfaces (GUIs) of apps, hence it is
more straightforward for engineers to treat GUI elements as first-class citizens,
while events as associated to GUI elements and therefore auxiliary, in modeling
apps. However, existing modeling mechanisms like event-flow graphs [4] and
finite-state machines [9] focus more on events or actions firing the events, rather
than GUI elements.

As a newly standardized graphical language for modeling user interactions,
IFML provides already mechanisms to model most aspects of mobile app GUIs,
however it also suffers from a few limitations that make modeling Android apps
less straightforward and IFML models less useful for Android test generation.
For example, the modeling of Android-specific GUI elements like Notification-
Areas and events like SwipeEvent and PinchEvent is not readily supported by
IFML. More importantly, the language does not support the modeling of up-
dates to GUI-related application states. Adamant extends IFML accordingly
to address the limitations.

Given the model for an Android app in extended IFML (E-IFML), Adamant

traverses the model to produce event sequences for the app, with the feasibility
of each event sequence constrained by a group of conditions on the inputs to the
model. Adamant then employs a constraint solver to find appropriate values

1http://www.ifml.org/
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for the inputs so that the conditions are satisfied, and translates each event
sequence with the corresponding input values into a test script.

We implemented the approach into a tool, also called Adamant, that offers a
graphical front-end for E-IFML model construction and a back-end for Android
test generation and execution. To evaluate the performance of Adamant, we
applied it to generate test scripts for 10 open source Android apps. Adamant

generated over 130 test actions per minute on average, and the produced test
scripts managed to cover around 68% of the code and reveal 8 real bugs. We also
applied other state-of-the-art test generation tools like Monkey [6], AndroidRip-

per [10], and Gator [11] to the same apps. Experimental results show that
Adamant significantly outperformed all the three tools in terms of both state-
ment coverage achieved and number of bugs detected. In another small-scale
controlled experiment, we compared test generation using Adamant and manu-
ally. As the result, the two approaches achieved comparable cost-effectiveness.

While Adamant expects as the input E-IFML models for the apps under
testing and the construction of those models takes additional time, the benefits
of adopting a model-driven testing approach like Adamant are multifold and
beyond just test generation. Precise modeling forces developers to devise an ex-
plicit design for an app, which is one of the key ingredients for successful software
development [12]. Besides, models can also improve the development process,
e.g., by fostering the separation of concerns [13], improving the communication
between participants in a project [14], enabling the analysis, verification, and
validation of the apps at design time [15, 16], and accelerating the development
of apps through code generation [16]. Such benefits also add extra value to the
Adamant approach.

The contributions of this paper can be summarized as follows:

• Theory : To the best of our knowledge, E-IFML is the first extension of
IFML that enables the generation of concrete test scripts for Android
apps;

• Tool : We implemented the Adamant technique into a tool, also named
Adamant, that automatically generates test scripts for Android apps based
on models in E-IFML. The tool is publicly available at:

https://github.com/ADAMANT2018/ADAMANT.

• Experiments: We empirically evaluated Adamant on 10 open source An-
droid apps; The generated test scripts achieved high code coverage on
object apps and detected real bugs.

The remainder of this paper is organized as follows. Section 2 uses an exam-
ple to introduce the core concepts in IFML. Section 3 introduces the extensions
to IFML for facilitating Android GUI modeling. Section 4 formally defines E-
IFML models. Section 5 presents the detailed process of Android test generation
based on E-IFML models. Section 6 evaluates Adamant with real-world apps.
Section 7 reviews related work and Section 8 concludes the paper.
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Figure 1: An IFML model specifying a user login procedure.

2. The Interaction Flow Modeling Language

The Interaction Flow Modeling Language (IFML) supports the modeling of
user interfaces for applications on various types of platforms by defining both
a set of generic core concepts that are common to those user interfaces and
extension mechanisms to allow the refinement of the semantics of those concepts.
This section briefly introduces IFML concepts that are essential in modeling
Android app GUIs. An IFML model specifying the user login procedure through
a GUI is presented in Figure 1 as a running example.

In IFML, ViewContainers are used to help organize elements on GUIs. A
ViewContainer may comprise other ViewContainers or ViewComponents that
display contents and support user interactions.

In the example, a ViewContainer UserLogin contains three ViewComponents,
among which Username and Password are used for accepting textual inputs from
the user. To facilitate the reference to those inputs in other parts of the model,
two typed Parameters username and password are associated to the two compo-
nents. ViewContainers and ViewComponents are collectively referred to as view
elements in this work.

Events, denoted using small circles, can be triggered on view elements and
handled by Actions, denoted using hexagons. An action represents a possibly
parameterized piece of business logic. Actions are connected with their corre-
sponding events through InteractionFlows, denoted using directed lines pointing
from the latter to the former, and their parameters are associated with the re-
lated InteractionFlows. In IFML, input-output dependencies between view ele-
ments or between view elements and actions are represented by ParameterBind-
ings; A ParameterBindingGroup is simply a group of ParameterBindings. For a
simple event only causing a view transition, an InteractionFlow can also be used
to directly connect the event and the destination view. In the example, when a
touch event is triggered on ViewComponent Login, action Authentication will be
executed to handle the event. The ParameterBindingGroup associated with the
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corresponding InteractionFlow binds parameters username and password of User-

Login to those with the same names in the action2. Action Authentication then
decides whether the credentials are valid or not and triggers an ActionEvent, i.e.,
a specific type of event, upon its completion. There are two InteractionFlows
associated with the ActionEvent, which one to follow is decided by the eval-
uation result of the ActionEvent’s Interaction Flow Expression, denoted using
a rectangle. Following one of the two InteractionFlows, either ViewContainer
LoginFail or ViewContainer LoginSuccess will be shown. On ViewContainer Login-

Fail, a touch event triggered on ViewComponent Retry will transit the app back
to UserLogin so that the user can try to login again; On ViewContainer LoginSuc-

cess, a scroll event will cause the app to refresh the display of ViewComponent
UserDetailInfo in the container.

The example demonstrates the usage of core concepts in IFML. Given the
direct correspondence between those concepts and common notions in GUI de-
sign, GUI modeling in IFML is natural and straightforward in many cases.
IFML, however, lacks a good support for modeling certain Android view ele-
ments, events, and actions, which adds to the difficulties in modeling Android
apps with IFML and makes the resultant models less useful for test generation.
In the next section, we extend the language so that it can be readily used in
Android app modeling and test generation.

3. IFML Extension for Android App Modeling

To better model the interactions between users and Android apps, we ex-
tend existing mechanisms provided by IFML from three aspects regarding view
elements, events, and user interactions.

3.1. Extensions to View Elements

In order to improve IFML’s expressiveness in modeling Android specific
contents, we extend the concepts of ViewContainer and ViewComponent as
illustrated in Figure 2 and Figure 3, respectively. In particular, we add two
subclasses of ViewContainer called AndroidAppContainer and AndroidSystem-
Container. An AndroidAppContainer defines an area on an Android GUI that
corresponds to a Screen, a ToolBar, a Web, or a navigation Drawer3; An An-
droidSystemContainer defines an area called NotificationArea, which is managed
by the system, instead of by individual apps, and displays notifications from the
Android system. These specific containers are introduced to help restrict the
components that can appear in certain GUI areas and facilitate locating widgets
during testing. For example, large images or long texts should not be used in a
ToolBar, and system notifications should be shown in the NotificationArea.

2Parameters are all unique, even though they apparently share the same name.
3A navigation drawer is a sliding panel that can be used to show the app’s navigation

menu. It is hidden when not in use.
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ViewContainer

AndroidAppContainer AndroidSystemContainer

Drawer Screen ToolBar Web NotificationArea

Figure 2: The extension to ViewContainer.

ViewComponent

AndroidAppComponent AndroidSystemComponent

Button Text Icon Image

ProgressBar EditText NotificationCompoundButton

Figure 3: The extension to ViewComponent.

The concept of ViewComponent is extended in a similar way. As shown
in Fig. 3, we add AndroidAppComponent and AndroidSystemComponent for
components specific to Android apps and the Android system, respectively.
AndroidAppComponents include common components on Android GUIs, such
as Buttons, Texts, Icons, Images, ProgressBars, EditTexts, and CompoundBut-
tons. Since a NotificationArea is dedicated for displaying notifications from the
Android system, we introduce Notification as a type of AndroidSystemCompo-
nent to model the notification content list in notification areas.

3.2. Extensions to Events

The Android platform supports a rich set of gestures that can be performed
on view elements, each of which triggers its own type of event to be handled
separately. Thus, it is necessary to distinguish the different types of events when
modeling such apps. Events resulting from user interactions are modeled using
ViewElementEvents in IFML, our extension to which is shown in Fig. 4.

A subclass AndroidElementEvent is introduced to model the following types
of events: TouchEvent, DoubleTapEvent, LongPressEvent, PinchEvent,
ScrollEvent, SwipeEvent, and DragDropEvent, each event type for modeling
a particular type of user gesture. Besides, InputEvent is added to model text
input events. We associated attributes with some event types to accommodate
extra information about the gestures. For instance, each LongPressEvent has
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ViewElementEvent

AndroidElementEvent

TouchEvent DoubleTapEvent LongPressEvent PinchEvent

ScrollEvent SwipeEvent DragDropEvent InputEvent

Figure 4: The extension to ViewElementEvent.

an attribute called length to specify the duration of the long press gesture, each
SwipeEvent has an attribute called direction to specify how the swipe gesture
was made, and each ScrollEvent has two attributes called startingPoint and
endingPoint to specify where the scroll gesture starts and ends on the screen.
These extended events enable us to model gestures on Android apps easily.

To fully capture the behaviours of an Android app, system events must also
be considered in the app’s model, since those events may occur at different
points in time and affect the app’s behaviour in various ways. For instance,
an event caused by the sudden disconnection of Wifi may interrupt the normal
use of an Android app whose functionality hinges on good network connec-
tion, and an event caused by a change of the device orientation will result in
an adjustment to the current view on the screen. As shown in Fig. 5, we
extend SystemEvents with a subclass AndroidSystemEvent, which has 5 sub-
classes itself. A SensorEvent occurs when the sensed condition is changed. It
can either be a MotionSensorEvent, an EnvironmentSensorEvent, or a Position-
SensorEvent, each of which can be further divided into more specific classes. A
ConnectionEvent happens when a connection is established or broken, and it can
be a BlueToothEvent, a NFCEvent, a WifiEvent, a P2Pevent, or a USBEvent.
The meaning of the rest events, including BatteryEvent, NotificationEvent, and
StorageEvent, are straightforward. The support for system events is essential
for modeling Android apps. Most state-of-the-art modeling approaches only fo-
cus on events that are internal to apps while ignore system events, but system
events can also affect apps’ behaviours and therefore should not be ignored in
modeling.

3.3. Extensions to Expression and Action

IFML uses Expressions, Actions, and external models to express the inter-
nal logic of applications [8]. To figure out the details of an app’s internal logic,
one needs to refer to the corresponding domain models, e.g., in the form of
UML diagrams. Such design makes the modeling process more error-prone and
the models harder to comprehend, since the internal logic is usually scattered
throughout the whole application. To address, at least partially, that problem
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SystemEvent

AndroidSystemEvent

BatteryEvent NotificationEvent

StorageEvent ConnectionEvent SensorEvent

Figure 5: The extension to system event.

while without sacrificing the user-friendliness of E-IFML, we allow Java expres-
sions to be directly used in E-IFML models to encode simple calculation. The
choice of the Java programming language is motivated by the fact that most
Android apps are written in Java. In this way, expressions devised in the design
phase can be easily reused to implement the logic later, and expressions from the
implementation can be reused when constructing models, e.g., through reverse
engineering. The extension is sufficient for modeling simple logics behind many
GUI interactions and significantly increases the expressing power of E-IFML.
Such extension also enables test generation to take those logics into account
and produce scripts that exercise different behaviors of apps, as we describe in
Section 5.

Similarly, an Action in IFML represents a piece of business logic triggered
by an Event, while the detailed logic is typically described in other behavioural
models [8] and stored in its attribute dynamicBehaviour. Accordingly, we add an
executionExpression attribute to each Action object. An execution expression
models the influences of an Action on the app GUI, using a group of Java
expressions with side-effects (to parameters). Correspondingly, a subclass of
Expression called ExecutionExpression is added.

3.4. An Example E-IFML Model

The above extensions enable us to easily model concrete user interactions on
Android apps using E-IFML. For example, Figure 6 shows the E-IFML model
for the user login procedure of an Android app, as described in Figure 1.

In Figure 6, the original ViewContainers and ViewComponents are now mod-
eled as Screens, EditTexts, Texts, and Buttons; The three events on view ele-
ments Login, LoginSuccess and Retry are specified as TouchEvent, ScrollEvent, and
TouchEvent, respectively; The internal business logic of Action Authentication is
now represented as an ExecutionExpression, which defines how a method check

is invoked on username and password to decide the validity of the credentials.
Note that the (possibly complex) internal logic of check is encapsulated into

a Java method and invoked in the example, which showcases the expressiveness
of E-IFML expressions. Complex expressions or expressions invoking complex
computations, however, will impose challenges to the constraint solving process
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Figure 6: An E-IFML model specifying the user login procedure using an Android app.

(Section 5) if the E-IFML model is to be used for generating tests, so it is im-
portant to build the models at proper abstraction levels in practice to facilitate
both model construction and model-driven testing.

The E-IFML model is not only more informative than the corresponding
IFML one, but also more instructive for model-based automated test genera-
tion. For instance, to locate view element LoginSuccess of type Text on Screen
LoginSuccess, a test generator will only need to check TextViews, but not widgets
of other types, on the GUI, and the type of an event helps to regulate the type
of test action that should be generated to trigger the event.

4. Formal Definition of Extended IFML Models

This section presents the formal definition and semantics of extended IFML
(E-IFML) models, based on which Section 5 develops techniques that use E-
IFML models to guide Android app test generation.

We use TW to denote the set of ViewComponent types (including, e.g., TText,
TButton, and TList), TC to denote the set of ViewContainer types (including, e.g.,
TDrawer, TScreen, and TToolbar), TE to denote the set of AndroidElementEvent
types (including, e.g., TTouchEvent, TScrollEvent, and TLongPressEvent), and TS
to denote the set of AndroidSystemEvent types (including, e.g., TBatteryEvent,
TStorageEvent, and TSensorEvent). T “ TE Y TS and T “ TW Y TC are then the
sets of all event types and view types supported in E-IFML, respectively.

4.1. The Model

An E-IFML model is a 7-tuple xP,E,W,CV,A, E , F y, with its components
formally defined as the following.

P is the set of unique parameters and E “ EAYEIYEE is the set of expres-
sions in the model, where 1) EA is the set of ActivationExpressions, 2) EI is the
set of InteractionFlowExpressions, and 3) EE is the set of ExecutionExpressions.
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W is the set of all atomic views in the model. An atomic view (i.e., a
ViewComponent) w is a 4-tuple xp, ea, tw, cy, where 1) p P P is the parameter
associated with w; 2) ea P EA is an ActivationExpression for w. That is, w is
only enabled if e evaluates to true; 3) tw P TW is the type of w; 4) c is the
composite view that immediately contains w.

CV is the set of all composite views in the model. A composite view (i.e.,
a ViewContainer) c is a 4-tuple xWc, Pc, tc, ccy, where 1) Wc Ď W is the set of
atomic views within c; 2) Pc Ď P is the set of parameters associated with c;
3) tc P TC is the type of c; 4) cc is the composite view that immediately contains
c. A composite view c contains another composite view c1, denoted as c1 Î c, if
and only if c1.wc1 Ď c.wc; c immediately contains c1, denoted as c1 ă c, if c1 Î c
and no composite view c2 (c2 R tc, c1u) exists such that c1 Î c2 ^ c2 Î c. The
contains and immediately-contains relation can be easily extended to work also
between composite views and atomic views.

Consider the example in Figure 6. Let cu be the composite view for ViewCon-
tainer UserLogin, wu and wp be the atomic views for ViewComponents username

and password, cu.pu and cu.pp be the parameters associated with wu and wp
4. We

have wu “ xcu.pu, true, TEditText, cuy and cu “ xtwu, wpu, tcu.pu, cu.ppu, TScreen,
NULLy.

A is the set of actions in the model. An action a is a pair xPa, Eay, where
1) Pa Ď P is the set of parameters associated with a; 2) Ea Ď EE is the set of
expressions that will be evaluated when a is executed.

Composite views and actions are collectively referred to as event contexts,
since events can be triggered on both composite views and actions. That is, the
set EC of event contexts is equal to CV YA. Given an expression e defined in
an event context ec P EC, we denote the evaluation result of e w.r.t. ec as JeKec.
E is the set of all events in the model. An event ε is a 6-tuple xecε, tε, dε, aeε, eε,

Fεy, where 1) ecε P EC is the event context on which ε is triggered; 2) tε P T
is the type of ε; 3) dε is the data associated with ε, whose meaning is deter-
mined by tε; For example, information like durationT ime will be stored in dε
if tε “ TLongPressEvent. 4) aeε P EA is the ActivationExpression associated with
ε; Similar to the case for view components, ε is only enabled if aeε evaluates to
true; 5) eε P EI is the InteractionFlowExpression of ε, if any; 6) Fε is the set of
interaction flows starting from ε. The flow to be executed is determined based
on the evaluation result of eε and available flows in Fε;

F is the set of all interaction flows in the model. An interaction flow f
is a 4-tuple xεf , cf , ecf , Bf y, where 1) εf P E is the event initiating f ; 2) cf
is a constant value; f is only executed if the interaction flow expression of its
initiating event εf .e evaluates to cf . 3) ecf P EC is the destination context of
f ; We refer to the triggering context of f ’s initiating event, i.e., εf .ec, as the
source context of f . 4) Bf Ď P ˆ P is the group of parameter bindings for f .

Continue with the example in Figure 6. Action Authentication can be denoted
as α “ xtα.pu, α.ppu,Hy. The event triggering the action is εα “ xcu, TTouchEvent,

4We refer to a parameter p defined in context c as c.p.
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null, true, null, tfαuy, where fα “ xεα, true, α, tcu.pu Ñ α.pu, cu.pp Ñ α.ppuy is
the interaction flow connecting εα and α. Here we use Ñ to denote the binding
relation between parameters.

Based on these definitions, the behaviors of an app, driven by events trig-
gered by users or generated by the system, can then be modeled as paths of a
finite automaton M “ tΣ,S, ts0u,T ,F u, where

• Σ “ E ˆ F is the set of event and interaction flow pairs in the app;

• S “ EC “ CV YA is the set of event contexts in the app;

• s0 P CV is the initial composite view of the app;

• T Ď S ˆ Σˆ S is the set of transitions between event contexts;

• F “ CV is the set of composite views where the handling of user interac-
tions terminates.

Note that we regard all composite views, but no action, as acceptable final
states of the automaton, since a user may decide to exit an app at any view of
the app, while an app should always be able to arrive at a composite view after
finishing the execution of an action.

4.2. Well-formedness and Feasibility of Paths

Given a transition τ “ xecb, xε, fy, ecey P T , τ is well-formed if the following
conditions are satisfied:

C1. Event ε can be triggered on ecb. More specifically, if ecb P CV , then the
event context on which ε is triggered is within ecb, i.e., ε.ec Î ecb; If
ecb P A, then ε.t should be of type ActionEvent;

C2. f starts from ε, i.e., f P ε.F ; and

C3. The destination event context of f is ece, i.e., f.ecf “ ece.

Due to the constraints imposed, e.g., by activation expressions on atomic
views, a well-formed transition τ may not be actually feasible during app execu-
tions. Particularly, τ is feasible if and only if there exists a function α : P Ñ V
that assigns a concrete value αppq to each input parameter p P P such that the
following conditions are satisfied:

C4. Event ε is enabled in context ecb, i.e., Jε.aeKecb “ true;

C5. the interaction flow expression ε.e evaluates to f.c in context ecb and
therefore f is activated, i.e., Jε.eKecb “ f.c.

Correspondingly, a sequence ρ “ ρ1, ρ2, . . . , ρn of transitions (ρi P T , 1 ď
i ď n) constitutes a well-formed path on M if and only if 1) ρ1.src “ s0, 2)
ρi.dest “ ρi`1.src (1 ď i ă n), and 3) each ρj (1 ď j ď n) is well-formed ; a
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Figure 7: The overview of ADAMANT.

well-formed path ρ is feasible if and only if there exists a function α : P Ñ V
that renders all transitions on ρ feasible.

To decide whether a well-formed path ρ is feasible or not, we collect the
group Gρ of constraints along ρ on M’s parameters, and find solutions to the
constraints using an off-the-shelf solver. Execution expressions and parameter
binding are processed in a similar way during this feasibility analysis as in
symbolic execution [17]. The constraints can be used not only to determine
the feasibility of a path, but also to find out actual assignments to the input
parameters that will realize the path, if it is decided to be feasible.

5. Test Generation Based on E-IFML Models

Based on the above definitions, we propose the Adamant approach for au-
tomated Android app testing based on E-IFML models. A high-level overview
of Adamant is depicted in Figure 7. Taking the E-IFML model of an Android
app as the input, Adamant constructs the corresponding finite state automaton
M, traverses the automaton in a depth-first manner to generate paths of M
with constraints G for their feasibility. Adamant then employs an off-the-shelf
constraint solver to find solutions to G, i.e., assignments to parameters in M.
If successful, Adamant then combines the paths and corresponding assignments
to produce concrete test scripts, which are then passed to script automators
such as Robotium [18] to be executed on Android apps.

5.1. Path Generation

Algorithm 1 outlines the main logic of path construction. Recursive function
traverse takes four arguments: the current context of traversal, (symbolic or
concrete) values of the parameters in the model, the path under construction,
and all the feasible paths constructed.

During the execution of traverse, if path should be extended (Line 2), we
get the set of candidate events from context (Line 3) and, for each event and
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Algorithm 1: Algorithm for path generation.

1 Function traverse(context, values, path, paths):
2 if shouldExtend(path) then
3 foreach event P getEventspcontextq do
4 foreach f P event.F do
5 values1 Ð evalpcontext, values, event, fq;
6 path1 Ð path ¨ xcontext, event, f.ecy;
7 traverse(f.ec, values1, path1, Paths);

8 end

9 end

10 else
11 if hasNewEvent(path, paths) then
12 constraintsÐ path.getConstraintspq;
13 solutionÐ solvepconstraintsq;
14 if solution ‰ null then
15 paths.addppath, solutionq;
16 end

17 end

18 end
19 return paths

20 end

its associated interaction flow (Lines 3 and 4), Adamant symbolically triggers
the event and follows the interaction flow (Line 5), causing updates to values
(Line 5) and path to be extended to path1 (Line 6). Afterwards, the recursion
continues using the updated context, values, and path (Line 7). Once the algo-
rithm decides the current path no longer needs to be extended, path is checked
against all paths from Paths to find out if it exercises any new event (Line 11).
When yes, the constraints collected along path is send to a solver (Lines 12 and
13). If a solution can be found for the constraints, path is feasible and gets
added to Paths (Line 15).

To get all the feasible concrete paths onM, we call function traverse with
arguments context “ s0, values “ H, path “ r s (i.e., an empty sequence), and
paths “ tu (i.e., an empty map). The return value contains paths that start
from the initial composite view s0 and satisfy the requirements regarding path
constitution, as described below.

To strike a balance between cost and effectiveness, we adopt event coverage
as our test adequacy criterion in path generation. A path is considered useful
only if it can help increase the overall event coverage, i.e., if it contains events
that were not covered by other paths. For that, we use two parameters Maximum
Events and Maximum Duplicate Events to restrict the length of each path:

• Maximum Events specifies the maximum number of events that are fired
in a path. This parameter directly restricts the length of each path.
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• Maximum Duplicate Events specifies the maximum number of duplicate
events that are fired in a path.

5.2. Test Script Generation

When generating test cases from paths of M, only events are needed, while
event contexts can be ignored, since they correspond to the expected results of
handling the events. Events in a path can be transformed in order into actions
of test scripts, which can be executed later by testing tools such as Robotium.

1 <path id="1">

2 <event order="1">

3 <component type="EditText" index =0/>

4 <operation type="Input" reference="2018 ADAMANT"/>

5 </event >

6 <event order="2">

7 <component type="EditText" index =1/>

8 <operation type="Input" reference="qwerty"/>

9 </event >

10 <event order="3">

11 <component type="Button" text="Login"/>

12 <operation type="Touch"/>

13 </event >

14 <event order="4">

15 <component type="Screen"/>

16 <operation type="Scroll" reference="Down"/>

17 </event >

18 </path>

Listing 1: Sample sequence of events.

1 public class Testcases

2 extends ActivityInstrumentationTestCase2{

3 private Solo solo = null;

4 private static Class <?> launcherActivityClass;

5 ...

6 public void testcase001 () throws Exception {

7 solo.typeText(0, "2018 ADAMANT );

8 solo.typeText(1, "qwerty123456");

9 solo.clickOnText("Login");

10 solo.scrollToSide(Solo.Down);

11 ...

12 }

13 }

Listing 2: Robotium test script.

Listing 1 shows a sample sequence of events generated by the technique
described in Section 5.1. Every event in a path has two sub-elements: com-
ponent and operation. A component pinpoints a target UI widget or UI com-
ponent by specifying the type, id and text, while an operation provides the
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type and parameter information about the action to be applied on the com-
ponent. In the example, the first two events (Lines 2–9) are triggered by in-
putting “2018ADAMANT” and “qwerty123456” in the EditTexts of index 0
and 1, the third event(Lines 10-13) is triggered by touching on the Button with
text “Login” to submit the inputs, the last event (Lines 14–17) is triggered
by scrolling down the screen. Here string literals like “2018ADAMANT” and
“qwerty123456” are provided as optional values for the EditTexts in the model.
Besides of looking for valid inputs through constraint solving, Adamant also
utilizes such information, if available, when generating paths.

Adamant translates the sequence of events in Listing 1 into the test script
shown in Listing 2. In particular, Lines 7-10 in method testcase001 correspond
to the four events from Listing 1, respectively. Test scripts like these can be
fed to test automation frameworks like Robotium to drive the execution of the
target app.

If the execution of test script fails, Robotium records information about
the exception causing the failure, which can be used together with Android’s
logcat mechanism to facilitate the debugging process. Adamant also records
screenshots of the app during testing, which can be used by test engineers, e.g.,
to manually confirm if a script tests interesting behaviours.

5.3. Tool implementation

We implemented the approach into a tool also called Adamant, based on the
Eclipse Modeling Framework(EMF) and the Sirius API [19]. In this way, the
Eclipse diagram editor can be leveraged as the graphical E-IFML model editor,
and the conversion from user-built models to XML files can be easily supported
using Sirius. The backend of Adamant takes the XML files as the input and
generates test scripts.

As Section 3.2 shows, Adamant supports the modeling of most Android
events. However, whether it can produce the corresponding gestures to these
different types of events depends on the capability of the script executor. In
the current implementation, Adamant uses Robotium as the script executor,
since Robotium supports most types of events, such as click, scroll and rota-
tion. For certain types of events with attributes, besides of using Adamant’s
default attribute values, users can also provide their own values to customize
the corresponding gestures. For example, the scroll gesture corresponding to a
ScrollEvent is augmented with two attributes startingPoint and endingPoint
encoding the positions where the gesture starts and ends, respectively. The
handling of time duration between consecutive events is delegated to Robotium.
Robotium has a “wait or time-out” mechanism to execute events. After trig-
gering an event, it would wait for a given time until the component on which
the next event should be activated is visible. An error occurs if the time is up
before the component becomes visible. Adamant also allows a user to set a
customized waiting time before/after executing an event. As the experimental
evaluation in Section 6 shows, using default settings of Adamant can achieve
good performance.
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Adamant employs the Z3 constraint solver [20] to find solutions to path
constraints. Since constraint solving can be highly time-consuming, Adamant

caches the constraints and their solutions for better performance. The basic
idea is that it identifies sub-groups of constraints that are independent from the
others. If a sub-group of constraints were never solved before, Z3 is invoked to
find solutions for the constraints, and the results (including whether there exists
a solution and, when yes, what the solutions are) are stored together with the
constraints into a map. If a sub-group of constraints was already solved before,
the results are directly retrieved from the map. Since many events in E-IFML
models depend on a fixed number of parameters, executions that differ only in
other parameters then share the independent sub-groups of constraints related
to those events. As the result, the number of constraint combinations associ-
ated with different paths is mush smaller than that of all possible combinations,
and reusing constraint solving solutions significantly improves the overall per-
formance of Adamant, as demonstrated by the experimental evaluation of the
tool in Section 6.

6. Evaluation

The experimental evaluation of Adamant assesses to what extent Adamant

facilitates test generation for Android apps, and it aims to address the following
research questions:

• RQ1: How effective is Adamant?

• RQ2: How efficient is Adamant?

In RQ1 and RQ2, we evaluate the effectiveness and efficiency of Adamant

in Android test generation from a user’s perspective.

• RQ3: How does Adamant compare with other Android test generation
tools?

In RQ3, we compare Adamant with three state-of-the-art tools for An-
droid test generation: Monkey, AndroidRipper, and Gator. Monkey

randomly generates event sequences for Android apps and, although sim-
ple, it outperforms most other existing tools that are publicly available
in the area [5]; AndroidRipper implements an opposite strategy by ex-
tending a tool that automatically explores an app’s GUI to generate tests
that exercise the app in a structured manner [10]. Unlike Monkey or
AndroidRipper that build test scripts via dynamic analysis, Gator [11]
employs static analysis to model GUI related objects and events of An-
droid apps, and it has been applied to Android test generation [21].

• RQ4: How does constraint and solution caching impact Adamant’s effi-
ciency?
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Constraint solving is time-consuming and can greatly degrade Adamant’s
efficiency if not used sparingly. In view of that, Adamant employs con-
straint and solution caching when generating execution paths from E-
IFML models (Section 5.3). In RQ4, we zoom in on this design choice of
Adamant and study whether and to what extent constraint and solution
caching helps improve Adamant’s efficiency.

6.1. Experimental Objects

To collect the apps to be used in the experiments, we first summarized apps
from two lists of open source Android apps, one on Wikipedia [22] and the other
on GitHub [23], into 10 categories: Browser, Communication, Security, Multi-
media, Reading, Education, Tool, Weather, Productivity and Other. Then, we
randomly select one app from each category that 1) has been released in Google
Play, FDroid or GitHub, and 2) has at least 100 stars in GitHub, and use the
latest versions of the selected apps (as of September 2018) as our objects. Such
selection process is to ensure the diversity of objects. Table 1 lists, for each
object, the name (App), the version (Ver), the category (Category), the size
in lines of code (LOC), and the number of Activities (#Act). The app size
ranges from about just one thousand to over 70 thousand lines of code, which
illustrates from another aspect the diversity of experimental objects.

6.2. Experimental Subjects

We recruit ten third-year undergraduate students majoring in Software Engi-
neering to build E-IFML models for the selected object apps. All these students
gained basic knowledge in mobile development and UML from their previous
studies, but received no exposure to IFML before participating in the experi-
ments. Such selection of subjects is acceptable, since previous study found out
that students and professionals perform similarly on approaches that are new to
them [24], while the task of constructing E-IFML models is new for both these
students and professional developers.

Table 1: Apps used as objects in the experiments.

App Ver Category LOC #Act

Bookdash 2.6.0 Education 7501 6
Connectbot 1.9.2-80 Communication 28791 12
Goodweather 4.4 Weather 5262 7
I2P 0.9.32 Security 24106 11
Kiwix 2.2 Reading 11270 8
Lightning 4.4.0.24 Browser 21017 8
Omninotes 5.4.1 Productivity 20305 9
Owncloud 2.0.1 Other 72862 12
Ringdroid 2.7.4 Multimedia 5295 4
Talalarmo 3.9 Tool 1224 2

Total 197633 79
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6.3. Measures

In this work, we categorize test actions from a generated test script into
four groups: successful, bug revealing, inexecutable, and unreachable: A test
action is considered successful, if it can be executed during testing, its execution
successfully triggers an event, and the handling of the event is completed with
no problem; A test action is bug revealing if, while it can be executed during
testing and its execution can successfully trigger an event, the handling of the
event either terminates prematurely or hangs; A test action is inexecutable, if it
will be attempted during testing but fails to trigger any event, e.g., because the
GUI element that action operates on cannot be located in the context activity
or its intended event is not supported on the target GUI element; A test action
is unreachable, if it is located after a bug revealing or inexecutable action in a
test script, and therefore it is never attempted during testing. We refer to test
actions that are either successful or bug revealing as executable actions, and
those that are either bug revealing or inexecutable as unsuccessful actions.

Test generation techniques like Monkey and AndroidRipper incrementally
construct test scripts via dynamic analysis, and each test action they generate is
always executable. In contrast, techniques like Adamant and Gator first build
a model for the app under testing and then utilize the model to guide test script
generation. In case the model does not comply with the app, generated test
actions may 1) be inexecutable, 2) reveal bugs in either the app or the model,
and/or 3) leave actions in the same script but after them unreachable.

Let #A, #As, #Ab, #Ai, #Au, and #Ae be the number of all, successful,
bug revealing, inexecutable, unreachable, and executable test actions in a test
suite, respectively. We have #Ae = #As+#Ab and #A=#Ae+#Ai+#Au.

To evaluate the effectiveness of a test generation approach from a user’s
perspective, we assess the size and quality of the test suites produced by the
approach in terms of four commonly used measures [5]:

#K: the number of test scripts they contain;

#A: the number of test actions they contain;

#B: the number of unique bugs they reveal;

%C: the statement coverage they achieve.

During the experiments, we record the time Tg in minutes that each tool
takes to generate the tests. Note that, for test generation based on dynamic
analysis, generated tests are executed along the way, so Tg includes the test
execution time. For test generation based on static analysis, test execution,
however, is typically not part of the generation process. We therefore record in
addition the time Te in minutes that is required for the tests generated by a
static tool to execute. Besides of Tg and Te, we also measure the efficiency of
test generation using the following metrics:

APM: the number of test actions generated per minute, i.e., #A/Tg;

%E: the percentage of generated test actions that are executable, i.e., #Ae/#A.
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In the case of Adamant, since the construction of its input models requires
considerable manual effort, we also measure the size of the E-IFML models used
as the input for running Adamant in terms of: the number #Cn of contain-
ers, the number #Cm of components, the number #Ev of events, the number
#IF of interaction flows, the number #Ex of expressions, the number #Ac
of actions, and the time cost Tm in minutes for preparing them. We use
#E to denote the total number of elements an E-IFML model contains, i.e.,
#E=#Cn+#Cm+#Ev+#IF+#Ex+#Ac.

6.4. Experimental Protocol

Before the ten undergraduate students start to build E-IFML models for the
object apps, a 90-minute training session is provided to help them get familiar
with E-IFML modeling. After the training is finished, each student is assigned
an app randomly and asked to build an E-IFML model for the app from a user’s
perspective. Each model produced is then independently reviewed by two other
students from the ten to ensure the correctness. The students are also required
to record the time they spend in both model construction and review.

Next, Adamant is applied to the E-IFML models to generate test scripts
for the ten object apps, and the generated tests are executed on the apps us-
ing Robotium. When the execution of a test action fails to start or run to its
completion, Robotium will log the problem. We analyze the log and the cor-
responding test script to determine whether the test action is bug revealing or
inexecutable: We conservatively mark the action as bug revealing only if the
problematic behavior has been confirmed as an issue on GitHub.

Constraint and solution caching, as presented in Section 5.2, is enabled by
default in the experiments described above, and the results are used to answer
the first three research questions; To answer RQ4, we repeat the experiments
with constraint and solution caching disabled. In both cases, the value of Max-
imum Duplicate Events used in path generation (defined in Section 5.1) by
Adamant is empirically set to 2, while Maximum Events is set ranging from 5
to 11, respectively. A more thorough investigation on how these values affect
the effectiveness and efficiency of Adamant is left for future work.

To make the comparison among test generation techniques more straight-
forward, Monkey, AndroidRipper, and Gator are applied to the same set of
objects: Monkey runs on each app for at least the same amount of time as
used by Adamant, and no less than ten minutes. The reason is that, Monkey

was reported to hit its maximum code coverage within five to ten minutes [5].
Besides, since Monkey implements a random strategy for test generation, we
repeat the experiment on each app using Monkey for 3 times and use the av-
erage of the results for comparison; AndroidRipper is configured to perform a
breath-first search and allowed to run until its natural termination, with the
time interval between two consecutive events being set to 1 second; Gator is
also configured to run until its natural termination. Given the Window Transi-
tion Graph (WTG) produced at the end of a Gator run, we construct sequences
of GUI events via a depth-first search, which are then translated to test scripts
in the Robotium format. The default value for the maximum number of events
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Table 2: Experimental results from applying Adamant on the ten apps.

App #K #A %C #B Tg Te APM %E
E-IFML Model

Tm

#Cn #Cm #Ev #IF #Ex #Ac #E

Bookdash 19 180 84 0 0.2 7.0 900.0 100 21 32 40 41 19 5 158 240
ConnectBot 71 483 54 0 1.9 32.7 254.2 96 52 112 149 154 49 22 538 1080
Goodweather 28 174 84 1 0.5 7.9 348.0 99 28 59 60 61 10 4 222 360
I2P 41 451 70 0 0.5 39.7 902.0 100 67 97 108 113 36 14 435 660
Kiwix 35 252 78 1 0.5 16.8 504.0 100 38 121 108 115 63 33 478 600
Lightning 76 532 69 0 10.8 28.2 49.3 100 47 146 137 166 40 22 558 900
Omninotes 66 594 71 1 2.3 45.9 258.3 100 58 121 167 172 70 35 623 960
OwnCloud 82 648 57 5 9.7 34.4 66.8 98 65 136 195 203 72 53 724 1500
Ringdroid 28 210 82 0 0.7 9.3 300.0 100 15 52 57 61 19 8 212 360
Talalarmo 11 55 92 0 0.1 5.0 550.0 100 10 17 21 24 6 3 81 120

Overall 457 3579 68 8 27.2 226.9 131.6 99 401 893 1042 1110 384 199 4029 6780

each path may have is set to 3, as was done in [21]. All tests generated by each
technique are considered in the comparison.

A home-brewed tool based on the Eclipse Java Development Tools (JDT) [25]
is utilized to collect the statement coverage information of all the tests generated
by each approach.

All experiments were conducted on a DELL laptop, running 64-bit Windows
10 Home on a 4-core, 2.6GHz, I7 CPU and 8GB RAM. Android apps were run
in an emulator configured with 4GB RAM, X86 64 ABI image, and Android
Lollipop (SDK 5.1.1, API level 22).

6.5. Experimental Results

This section reports on the results of the experiments and answers the re-
search questions.

6.5.1. RQ1: Effectiveness.

Table 2 reports on the results from applying Adamant on the ten object
apps. For each app, the table lists the measures for effectiveness as defined in
Section 6.3. Overall, Adamant generated for the apps 11 to 82 scripts with 55
to 648 test actions, averaging to 46 scripts and 358 actions for each app.

Statement coverage. The statement coverage achieved by the generated
tests varies between 54% and 92% on individual apps, amounting to 68% over
all the ten apps, which suggests that Adamant is effective in exercising most
code of the apps.

The highest coverage was achieved on app Talalarmo, which is the smallest in
size among all the objects: Smaller apps tend to have fewer functionalities and
are often easier to build comprehensive models for. The lowest coverage was
observed on app Connectbot. While this app is not the largest in LOC, it has
the most activities and a significant portion of its code is only exercised upon
inputting strings in certain formats, which increases the difficulties in testing
more of its code.

Bug detection. In total, 8 unique bugs in the object apps were revealed
by 22 unsuccessful test actions, among which 9 caused crashes and the other
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Table 3: Bugs found by Adamant.

ID App
Bug

Sym Description

B1 Goodweather ISE provider doesn’t exist: network

B2 Owncloud NPE Method ’java.lang.String.toCharArray()’ is invoked on a null
object reference.

B3 Owncloud NPE Method ’com.owncloud.android.lib.common.operations.Re-
moteOperationResult.isSuccess()’ is invoked on a null object
reference.

B4 Owncloud NPE Method ’android.view.View.getImportantForAccessibility()’
is invoked on a null object reference.

B5 Owncloud INC When exiting or going back from searching, the file list is
cleared not refreshed.

B6 Owncloud CCE com.owncloud.android.ui.activity.FolderPickerActivity can-
not be cast to com.owncloud.android.ui.activity.FileDisplay-
Activity.

B7 Omninotes INC User authentication can be bypassed by clicking on the
“password forgotten” button on the login activity and then
the BACK button.

B8 Kiwix SC Service Pico TTS crashes with error message “Fatal signal
11 (SIGSEGV), code 1, fault addr 0x7f0dda-291970 in tid
14926(com.svox.pico)”.

13 were inexecutable. Specifically, 7 out of the 9 crashes happened due to
bugs hidden in apps, while the other 2 were caused by the crash of Robotium

when test cases tried to restart the object apps. Among the 13 failures caused
by inexecutable test actions, 5 were due to unexpected conditions such as no
response from remote servers caused by unreliable network, while the rest 8
happened when the target GUI elements cannot be found on the corresponding
app activities, which indicates that there are discrepancies between the E-IFML
models built by students and the actual app implementations. A closer look at
the discrepancies reveals that 3 expressions were incorrectly specified. Recall
that all the models contain in total 384 expressions (Table 2). While a systematic
study on the quality of the expressions is beyond the scope of this paper and
we leave it for future work, existing evidence suggests users can correctly write
most expressions with reasonable effort.

Table 3 lists for each bug its ID (ID), the app it belongs to (App), its symp-
tom (Sym), and a short description (Description). In column Sym, NPE stands
for NullPointerException, CCE stands for ClassCastException, INC stands for
Inconsistency, ISE stands for IllegalStateException, and SC stands for service
crash.

Bugs B1, B2, B3, B4, B6, and B8 caused apps to crash during the execution
of test scripts, while bugs B5 and B7 caused test execution to hang. In partic-
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ular, Bug B5 was revealed in the popular file sharing app named OwnCloud by
a test script that opens a directoy dir in the app, performs a file search, exits
from the search, and then selects a file from dir. The test was generated, since
the model of the app suggests that, when exiting from a search, the app should
return to the state before the search, which is quite reasonable. However, the
app failed to clear the search result and show the contents of directory dir when
exiting from the search, making the selection of a file from dir infeasible and
causing the test execution to hang. Bug B7 was found in a note taking app
named Omninotes. To delete a locked note in Omninotes, a user needs to log in
first. Adamant, however, was able to generate a test script that circumvents the
rule by first clicking on the “password forgotten” button on the login dialog and
pressing the BACK button, and then deletes the locked note without logging
in. With the note deleted, a following action that operates on the note becomes
inexecutable and the execution of the test script hangs. The app behaviors re-
lated to bugs B5 and B7 are both marked as buggy by the app developers on
GitHub5.

Since bugs like B5 and B7 do not cause any crashes, they will not attract
any attention even if tools like Monkey and AndroidRipper are employed.
Adamant, however, can also help discover such bugs if they cause behaviors
that contradict users’ expectations.

Adamant effectively generated test scripts to exercise 68% of the object apps’
statements and discover 8 unique bugs.

6.5.2. RQ2: Efficiency.

Table 2 also lists for each object app the measures for Adamant’s efficiency,
the size information about the corresponding E-IFML model, and the time
students spent to construct and review the model.

It took Adamant 27.2 minutes in total to generate all the test scripts for the
object apps, with the average being 2.7 minutes for each app, which suggests
the time cost for running Adamant is moderate in most cases. Only two out
of the ten apps had longer test generation time than the average: Lightning and
OwnCloud. Both apps are larger and more complex than the others: OwnCloud is
the largest, in terms of both the number of activities and lines of code, among
all the object apps, and its E-IFML model is also the most complex among the
ten: the model has by far the largest number of events, information flows, and
expressions, and the longest construction and review time; While Lightning is
not as large or complex, it has by far the largest number of paths to examine
during path generation (Section 5.1), and it takes quite some time for Adamant

to construct and then process those paths. As expected, it takes longer to
execute, than to generate, the tests. The execution time of all the generated
tests amounts to 226.9 minutes, averaging to 0.5 minutes per test script and 3.8

5http://www.github.com/federicoiosue/Omni-Notes/issues/372 for bug B5, and http:

//www.github.com/nextcloud/android/issues/1640 for bug B7.
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seconds per test action.
The APM values on most apps ranged between 250 and 1000, which suggests

that Adamant is reasonably efficient in generating tests for the apps. The lowest
APM values were observed on apps Lightning and OwnCloud, most likely due to
the long generation time. Overall, Adamant generated 131.6 test actions per
minute for the apps.

Measure %E is equal to 100% for 7 of the objects, and is above 95% for
the remaining 3, indicating that most test actions generated by Adamant are
indeed executable. On the one hand, such high values show that the models
faithfully capture the behaviors of the apps; On the other hand, they also speak
well for Adamant’s capability to correctly consume the information provided
by the models. We further inspected the reasons for the low percentages of
the 3 apps. For apps GoodWeather and OwnCloud, bugs in their implementations
rendered 1 generated test actions to be inexecutable and 15 to be unreachable.
As for ConnectBot, the reason, however, lies in bugs in the constructed model:
6 test scripts generated for ConnectBot based on the faulty model failed due to
the bugs, leaving 14 actions unreachable. Overall, 99% of the generated test
actions are indeed executable.

To get a better understanding of the overall cost for the application of
Adamant, we also examine the time spent in preparing the input models . Ta-
ble 2 shows that considerable manual effort is required to construct the E-IFML
models in the experiments and the modeling time is in proportion to the overall
size of the resultant models: the average time needed to model a single GUI
element is around 1.7 minutes (=6780/4029) across all objects, and that average
time for each app varies between 1.3 and 2.1 minutes. In view of such high cost
for manually constructing the models, we plan to develop techniques to (at least
partially) automate the task of E-IFML model construction for Android apps
in the future.

On average, Adamant generates 131.6 test actions per minute, 99% of which
are executable. The construction time of E-IFML models is in proportion to
the size of resultant models, averaging to c.a. 1.7 minutes per GUI element.

6.5.3. RQ3: Comparison with other techniques.

Table 4 presents the results of running Monkey, AndroidRipper, and Gator

on the same apps. Note that the table does not report the values of all mea-
sures: 1) Since the number of generated test scripts and the length of a test
script largely depend on the configurations of these tools, the table does not
report measure #K; Instead, we report the more meaningful measure #A. 2)
AndroidRipper does not report the total number of generated test actions to the
user, so we also omit measures #A and APM for AndroidRipper in the table;
3) Measure %E is omitted for both Monkey and AndroidRipper, because test
actions generated by these two tools are always executable, resulting in 100%
values for the measure; 4) Neither AndroidRipper nor Gator detected any bug
in the object apps, hence we also leave out column #B for the two tools in
the table. Besides, AndroidRipper failed to test app Bookdash since exceptions
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Table 4: Experimental results of Monkey, AndroidRipper, and Gator on the objects.

App %U
˚ Monkey AndroidRipper Gator

#A %C %U #B Tg APM %C %U Tg #A %C %U Tg Te APM %E

Bookdash 22.0 9500 62 0.9 0 10.0 950 - - - 130 33 0.0 0.2 9.0 650 90
ConnectBot 17.0 33500 42 3.2 0 35.0 957 22 4.5 49.3 4413 18 0.0 0.6 232.9 7355 4
Goodweather 17.7 9500 62 0.8 0 10.0 950 15 0.6 5.3 102 24 0.3 0.1 8.8 1020 91
I2P 45.4 39600 27 1.2 0 41.7 950 21 0.0 21.4 609 15 0.1 1.4 38.1 435 12
Kiwix 18.1 18000 63 1.2 1 20.0 900 32 0.0 18.5 - - - - - - -
Lightning 9.0 28000 61 2.7 0 30.0 933 40 3.7 23.2 1191 34 0.7 12.1 82.2 98 21
Omninotes 26.6 45000 45 1.5 0 48.3 932 21 0.0 3.1 35282 22 0.4 74.4 1903.5 474 0
OwnCloud 19.1 35000 40 4.2 0 36.7 954 25 1.8 11.3 - - - - - - -
Ringdroid 20.5 11100 58 3.1 0 11.7 949 48 0.3 42.5 5424 51 0.9 0.1 334.6 5424 45
Talalarmo 25.5 9200 63 0.4 0 10.0 920 39 0.0 2.8 15 39 0.0 0.1 1.0 150 100

Overall 21.8 238400 45 2.8 1 253.4 941 25 1.8 177.4 47166 24 0.3 89.0 2610.1 530 7

%U
˚
: %U achieved by Adamant.

were thrown when loading the app, while Gator reported OutofMemoryError
and failed to generate any test cases on apps Owncloud and Kiwix after running
for 5 hours. We use dashes (-) in the table to indicate that the corresponding
measures are not available, and we exclude the apps from the computation of
overall measures for the two tools.

While the numbers of generated test actions vary drastically across different
tools and objects (#A), the overall statement coverage achieved by the tools
(%C) is in general consistent with that reported in a previous study [5]: Monkey

achieved an overall coverage of 45%, AndroidRipper 25%, and Gator 24%. In
comparison, tests generated by Adamant covered 68% statements of the apps,
i.e., 23%, 43%, and 44% more than the other three tools.

Although Monkey generated the most actions and at the highest speed, the
statement coverage it achieved was not as high, suggesting that many such ac-
tions are redundant. We conjecture the reason is that Monkey has no knowledge
about the app’s behavior and does not keep track of which behaviors were tested
already. The coverage achieved by AndroidRipper and Gator was even lower.
AndroidRipper failed to recognize a considerable number of activities, leaving
many GUI elements untested. The low coverage of AndroidRipper on apps like
I2P, Omninotes, and Talalarmo was also because the tool crashed from time to
time, causing the systematic exploration to end prematurely.As for Gator, the
low statement coverage was mainly due to the fact that only a small portion, 7%
to be precise (%E), of generated test actions are executable. We inspected the
failed test scripts and found the major reason for the high failing rate is that,
since the extracted WTG models are often incomplete and/or incorrect, they
provide little information regarding app states, e.g. whether a GUI element is
visible or whether an event is feasible, to facilitate test generation. As a result,
a large number of test actions generated for apps Connectbot and Omninote at-
tempt to select an item from an empty list or click on an invisible element. Such
problems, however, would not occur with Adamant. In E-IFML models, we can
easily describe preconditions of such test actions using Expressions, so that list
item selection is only actioned when the corresponding list is not empty.
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Table 4 also lists the percentage of statements that are exclusively covered
by each tool (%U). Monkey, AndroidRipper, and Gator achieved an average
of 2.8%, 1.8%, and 0.3% in this measure. Adamant achieved 21.8%, i.e., 7.8
times as much as Monkey, 12.1 times as much as AndroidRipper, and 72.7
times as much as Gator. Monkey and AndroidRipper achieved unique state-
ments coverage over 4.0% on apps Connectbot and Owncloud, because the subjects
simplified or omitted some functions when building the E-IFML models for the
apps. Nevertheless, Adamant significantly outperformed the other three tools
from the aspect of statements coverage.

Test generation time (Tg) with Adamant and Gator is considerably shorter
than that with Monkey and AndroidRipper. Such difference is easily under-
standable, since test generation using the latter two tools involves executing
the generated tests, which can be quite time-consuming but also ensures all the
generate actions are executable. In comparison, while a significant percentage
of test actions generated by Gator are inexecutable, Adamant does not suffer
from the same problem, thanks to the guidance provided by the E-IFML models.
The overall time cost of applying the tools to test the object apps is of similar
magnitude, if both test generation time and test execution time is considered.

Regarding bugs in the objects, only Monkey helped to discover bug B8,
while neither AndroidRipper nor Gator detected any bug. In other words,
seven bugs (B1 through B7) were only detected by Adamant. In this regard,
Adamant also performs much better than the other three tools.

Adamant significantly outperforms Monkey, AndroidRipper, and Gator in
terms of statement coverage achieved and number of bugs discovered.

6.5.4. RQ4: Constraint and Solution Caching.

Table 5 shows the time cost of Adamant in generating tests for the apps
with or without constraint and solution caching enabled. In particular, the
table lists for each app and each configuration the total time for test generation
(Total) and the time spent in constraint solving using Z3 (Z3) in seconds, as
well as the ratio between the two (Z3/Total). With caching disabled, the time
for constraint solving accounts for 88.4% of the total test generation time. The
high ratio is largely due to frequent invocations to the constraint solver when
generating test cases. Some events in the object apps can only be triggered
using user inputs, such as text inputs and list item selections, satisfying certain
conditions. Although there is only a small number of GUI elements associated
with such events in the object apps, many test scripts contain test actions aiming
to trigger such events. For the test actions to be executable, related constraints
need to be solved and suitable user inputs need to be constructed.

With constraint and solution caching enabled, a 99% reduction of the total
Z3 execution time, i.e., from 15281.8 seconds to 119.6 seconds, was achieved,
since only combinations of related constraints for each input need to be solved
once and just once under such settings. The results suggest that caching enables
most of the test generation processes to finish in about 10 minutes.
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Table 5: Test generation time in seconds with and without Z3 solution caching.

App
Without Caching (s) With Caching (s)

Total Z3 Z3/Total (%) Total Z3 Z3/Total (%)

Bookdash 202.0 185.0 91.6 14.5 0.8 5.6
ConnectBot 295.7 154.1 52.1 110.1 3.4 3.0
Goodweather 379.4 346.6 91.4 28.9 0.1 0.6
I2p 160.8 129.1 80.3 25.5 0.6 2.4
Kiwix 436.9 400.8 91.7 29.9 2.0 6.7
Lightning 8550.6 7735.0 90.5 634.5 41.3 6.5
Omninotes 1711.3 1514.0 88.5 143.1 3.7 2.5
OwnCloud 5410.0 4718.8 87.2 556.0 66.9 12.0
RingDroid 145.8 97.8 67.1 38.1 0.7 1.9
Talalarmo 0.8 0.6 75.0 0.1 ă0.1 42.9

Total 17293.3 15281.8 88.4 1581.6 119.6 7.6

Constraint and solution caching drastically reduces the test generation time
with Adamant.

6.6. Test Generation Using Adamant versus Manually

Experiments described above clearly show that, compared with tools like
Monkey, AndroidRipper, and Gator, Adamant greatly facilitates the effective
and efficient generation of test scripts for Android apps. The significant amount
of manual effort required for constructing Adamant’s input E-IFML models,
however, may raise the question that why not invest that effort in directly
crafting the tests. In view of that, we investigate also the following research
question:

• RQ5: How does generating tests using Adamant compare with crafting
the tests manually in terms of their cost-effectiveness ratios?

To address the research question, we conducted a preliminary controlled experi-
ment, where both approaches are applied to a group of Android apps to produce
test scripts.

Objects. We select as the objects four apps from Table 1: Bookdash, Good-
weather, Ringdroid, and Talalarmo. These four apps are the smallest from the
10 objects used in the previous experiments, and it took the students 2 to 6
hours to model them. We refrained from using larger apps in this controlled
experiment since a longer experiment with multiple sessions would be needed to
obtain meaningful results on those apps, which, however, will greatly increase
the chance that uncontrolled factors, e.g., breaks between the sessions, influence
our experimental results.

Subjects. We recruit as our subjects 12 postgraduate students majored in
software engineering and with considerable (i.e., between 2 and 5 year) experi-
ence in mobile app testing. We did not ask the undergraduate students from the
previous experiments to participate in this experiment, since writing tests is no
new task for professionals, and for such a task, experienced graduate students
perform similarly to industry personnel [26].
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Table 6: Results of the controlled experiment to compare Adamant and Manual ap-
proaches.

App
Adamant Manual

S-ID #K #A %C %U S-ID #K #A %C %U

Bookdash

S1 16 65 70 3.6 S1 12 96 70 1.9
S2 13 73 78 5.3 S2 8 58 75 4.5
S3 17 86 82 8.2 S3 9 89 78 4.9

Avg. 15 75 76 5.7 Avg. 10 81 75 3.8

Goodweather

S1 17 40 57 3.0 S2 36 159 59 4.9
S2 14 41 72 5.1 S2 19 95 74 7.4
S3 16 57 73 6.0 S3 15 116 80 12.9

Avg. 16 46 67 4.7 Avg. 23 123 71 8.4

Ringdroid

S1 11 27 69 8.9 S1 10 57 54 2.5
S2 30 85 73 10.3 S2 6 49 70 3.0
S3 18 49 74 11.1 S3 12 67 70 3.3

Avg. 20 54 72 10.1 Avg. 9 58 65 2.9

Talalarmo

S1 11 33 87 2.3 S1 9 47 88 1.1
S2 14 39 90 2.1 S2 9 78 88 1.8
S3 15 47 90 2.6 S3 17 69 89 1.4

Avg. 13 40 89 2.3 Avg. 12 65 88 1.4

Setup. The controlled experiment is conducted in two phases. In phase one,
the four objects are randomly assigned to the subjects so that each object is
tested by exactly three subjects. In this phase, subjects need to first construct
the E-IFML model for their assigned apps and then generate tests. In phase
two, the four objects are randomly assigned to the subjects again, so that each
object is tested by exactly three different subjects than in phase one. In this
phase, subjects need to manually prepare test scripts in Robotium format for
their assigned apps. Besides, a 4-hour training was provided to all the subjects
before the experiment starts, 2 hours for test script writing using Robotium and
2 hours for E-IFML modeling and test generation using Adamant.

At the end of each phase, all the test scripts produced for each object app
are collected. At the end of the experiment, we get six test suites for each object
app, three generated using Adamant and the other three crafted manually. Since
the two test generation approaches were allocated the same amount of time, we
compare their cost-effectiveness in terms of their effectiveness.

To avoid imposing too much burden on the subjects, we limit the experiment
time on each app in either phase to 3 hours, resulting in a 6-hour test generation
time in total for each student. Running the produced test scripts for debugging
purposes or coverage information is allowed during both phases to enable quick
feedback. Such settings also ensure that the experiment covers both cases where
complete E-IFML models can be constructed and cases where only partial E-
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IFML models can be built for test generation.
Results. Table 6 lists, for each object app (App), each subject (S-ID),

and each test generation approach, the basic measures as explained earlier:
the number of test scripts produced (#K), the number of test actions (#A), the
statement coverage achieved (%C), and the percentage of statements exclusively
covered (%U). Note that, given an object app and a test generation approach,
the results from various subjects are listed in increasing order of statement
coverage they achieved, and the average of the three results is reported in the
table (row Avg.). Also note that, since no bug was detected by either approach,
partly due to the limited time we allocate for conducting the experiment, we do
not report the number of bugs detected (#B) in the table.

The two approaches achieved very close average statement coverage on apps
Bookdash and Talalarmo. We conjecture the reason to be that the two apps
are relatively small so that most parts of the apps can be tested in 3 hours
using either approach. On average, Adamant produced slightly higher coverage
(72%) than the manual approach (65%) on Ringdroid. A closer look at the
app reveals that Ringdroid contains several complex activities with many GUI
elements. For instance, one activity in Ringdroid contains 16 GUI widgets, on
which 16 events could be triggered, transiting the app to 4 dialog screens with
another 16 element. In such a case, once an E-IFML model has been built
for those activities, Adamant will traverse the model to generate test scripts
exercising the app in a systematic way, while it is more likely for a tester to
miss some possible behaviors during the tedious process of manual test script
construction. As for GoodWeather, the app is the largest object used in this
experiment and it contains the largest number of activities. As a result, all the
three subjects failed to model all the activities within the given time duration,
which led to a slightly lower coverage by test scripts generated using Adamant,
compared with the manually constructed ones. The differences between the two
approaches in terms of %U are in line with those in terms of %C.

Overall, the experimental results suggest that both test generation tech-
niques are able to produce tests with high coverage: test generation using E-
IFML and Adamant is slightly better at thoroughly testing parts of an app,
while it is relatively easier for manual test construction to quickly explore dif-
ferent behaviors involving a wide range of components of an app.

Test generation using Adamant and manually are comparably effective in
terms of statement coverage achieved.

While the two approaches seem to have comparable effectiveness in state-
ment coverage, we argue there is more to the value of E-IFML models for An-
droid apps than just in test generation. On the one hand, the E-IFML models
can be constructed at an early stage (e.g., during detailed design) in mobile
development, so that they can benefit not only testers but also developers of
the apps [27], while GUI test scripts are typically only produced and utilized
when significant effort has been invested in implementing the apps. On the
other hand, the cost for maintaining GUI test scripts when the app evolves can
be so high that engineers would rather write new tests than to update the old
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ones [28]. Models, however, can be updated at a relatively smaller price, since
they involve fewer low level details. Besides, models have been used to facilitate
the automated maintenance of GUI tests [29, 30]. In the future, we also plan to
systematically investigate the utilization of E-IFML models for the purpose of
GUI test maintenance.

6.7. Threats to Validity

In this section, we discuss possible threats to the validity of our findings in
the experiments and how we mitigate them.

6.7.1. Construct validity

Threats to construct validity mainly concerns whether the measurements
used in the experiment reflect real-world situations.

An important goal for Android app testing is to find bugs in object apps. In
this work, we consider test action executions that terminate prematurely or hang
as bug revealing, and we manually check the executions that hang to find out the
underlying reasons. While most bug revealing actions indicate real bugs in the
apps, we might have missed actions whose execution terminated normally but
deviating from the expected behavior. To partially solve that problem, next we
plan to develop techniques to automatically detect mismatches between actual
execution traces and expected paths on E-IFML models of the generated test
scripts.

To measure the quality of generated test scripts, we used the percentage of
statements that the tests cover. While statement coverage is one of the most
recognised metrics for measuring test adequacy, measures based on other met-
rics may render the experimental results differently. In the future, we plan to
do more experiments using a larger collection of metrics to get a more compre-
hensive understanding of the performance of Adamant.

6.7.2. Internal validity

Threats to internal validity are mainly concerned with the uncontrolled fac-
tors that may have also contributed to the experimental results.

In our experiments, one major threat to internal validity lies in the possible
faults in the models we construct for the object apps or in the implementation
of the Adamant tool. To address the threat, we provide training to students
preparing the E-IFML models and review our models and the tool implementa-
tion to ensure their correctness.

The short duration of our controlled experiment, as described in Section
6.6, poses a threat to the validity of our findings regarding the two approaches’
capabilities, therefore we refrained from drawing any conclusions quantitatively.
To mitigate the threat, the subjects should be allowed to work on the assigned
tasks in multiple sessions and for a longer duration, mimicking the settings of
real-world modeling processes. We leave such an experiment for future work.
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6.7.3. External validity

Threats to external validity are mainly concerned with whether the findings
in our experiment are generalisable for other situations.

Adamant aims to automatically generate test scripts for Android apps, and
we used 10 real-world Android apps in our experiments to evaluate the perfor-
mance of Adamant. While the apps are from different categories and of different
sizes, they are all open source apps and the total number of object apps is rela-
tively small. These apps may not be good representatives of the other Android
apps, which poses a major threat to the external validity of our findings. In
the future, we plan to carry out more extensive experiments on more diversified
Android apps to confirm the effectiveness of our technique and tool.

Another threat has to do with the students involved in the experiments. Due
to difficulties in recruiting professionals to participate in the experiments, we
selected students from appropriate backgrounds as our subjects. While previous
studies suggest these students behave similarly to professionals in conducting
the tasks assigned to them, extensive experiments involving professional pro-
grammers/engineers are needed to better support the external validity of ours
findings, e.g., in the context of mobile development in industry.

6.8. Discussion

We discuss in this section lessons learned from this research, limitations in
E-IFML and the Adamant approach, and future directions for research.

We have gathered several important lessons from this research. The first
lesson is that models encoding valuable human knowledge about the apps un-
der consideration really make a difference in GUI test generation, while not
using any models or using models of low quality can significantly degrade the
generation results. To be the most helpful for the test generation process, the
models need to capture not only the properties and actions of elements on an
app’s GUI but also parts of the app’s business logic that are related to the
GUI. Without information about the business logic, the models will have only
limited power in guiding test generation to explore the more involved app be-
haviors. The second (related) lesson is that to make the model-driven approach
more accessible to practitioners, it is critical to reduce the difficulties in, and
the cost of, constructing high-quality models. To that end, an easy-to-use and
expressive-enough modeling language can be of great value, while techniques
and tools that can effectively help improve the models automatically extracted
from apps would also be highly appreciated. Our extension to IFML, as de-
scribed in this work, constitutes an effort to define such a modeling language.
The third lesson we learn is that model-based testing is not necessarily more
expensive than manual test preparation. Both techniques have their own areas
of excellence and can be used together to best suit the apps under testing.

The experimental results reveal two major limitations of E-IFML and the
Adamant approach to GUI test generation in their current state. First, no
mechanism is provided to help verify the correctness of E-IFML models w.r.t.
their corresponding apps. The correctness of the input models is of course
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extremely important for the generation of quality tests with Adamant, but
Adamant simply assumes at the moment that the input models faithfully re-
flect the characteristics of the apps from a user’s perspective. Second, E-IFML
offers no construct to support the specification of test oracles. As a result, all
the generated tests essentially resort to the primitive oracle that none of the
executable test actions should cause an app to crash or hang. While such oracle
managed to help Adamant discover interesting bugs in the experiments, it is
just weak specification and may leave many unexpected behaviors undetected.

In the future, besides of improving both E-IFML and Adamant and overcom-
ing the above-mentioned limitations, we also plan to develop new techniques to
make the results of generated tests easier to consume. For instance, one problem
worth investigating is how to locate the problems when a generated test fails.
Here, a failure can be caused by a bug in the app, a discrepancy in the E-IFML
model, or both.

7. Related Work

This section reviews recent works on mobile and GUI interaction modeling
and mobile testing that are closely related to this paper.

7.1. Mobile and GUI Interaction Modeling

Model driven engineering (MDE) has been widely used in all stages of soft-
ware development. In recent years, due to the rapid growth of mobile devices
and applications as well as the unique features (e.g., Android fragmentation,
short time-to-market, and quick technological innovations) of mobile develop-
ment, many model-based development (MDD) methods and tools were adapted
for mobile platforms. Parada et al. [31] propose an approach that uses stan-
dard UML class and sequence diagrams to describe the application structural
and behavioral views, respectively, and generates Android code based on the di-
agrams. Balagtas-Fernandez and Hussmann [32] present a prototype tool named
MobiA to facilitate the development of high-level models for mobile applications
and the transformation of those models to platform specific code. Heitkötter et
al. [33] propose the MD2 approach for model-driven cross-platform development
of apps. A domain specific textual language is used in MD2 to define platform
independent models for apps, which are then compiled to native projects on An-
droid or iOS. Christoph Rieger [34] proposes a domain specific language named
MAML for mobile application development. MAML targets non-technical users
and can be used to jointly model data, views, business logic, and user interac-
tions of mobile apps from a process perspective. Moreover, models in MAML can
be automatically transformed to generate apps for multiple platforms. These
approaches mainly focus on the business modeling for mobile apps.

As GUIs are getting more complex, graphical modeling languages that can
visually reflect the detailed GUI interactions are needed. Researches on model-
ing with IFML are thus emerging [35, 36]. Raneburger et al. [37] examine the
usefulness of IFML in multi-device GUI generation, which involves first creating
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a platform-independent model and then transforming the model to get GUIs for
various platforms. Frajták et al. [38, 39] model web applications with IFML,
transform the models into their front-end test models, and generate test cases for
automatic front-end testing. Their technique focuses on scenario—rather than
whole application—modeling and testing, and supports only a limited subset of
events (such as clicking and form submitting) and view elements (such as lists
and forms). Brambilla et al. [13] extend IFML to support the modeling of sim-
ple GUI elements, like containers, components, actions, and events, to facilitate
the generation of web views coded in HTML5, CSS3, and JavaScript for mobile
apps.

Few existing research work on GUI modeling investigated the use of IFML
to facilitate test case generation for Android apps, and, due to features of mo-
bile/Android app GUIs, existing model-based testing methods and tools are
unlikely to be as effective if applied directly on mobile apps. In this work, we
extend IFML with the support for modeling all important aspects of concrete
user interactions with Android apps, and use E-IFML models to guide effective
automated test script generation.

7.2. Automated Mobile Testing

Automated testing has long been an important topic in mobile development.
In recent years, several successful tools, such as Robotium [18], Appium [40],
and MonkeyRunner [41], have been developed for automatically executing test
scripts on mobile apps. Meanwhile, many approaches have been proposed for the
automatic generation of test scripts. Machiry et al. [42] propose the Dynodroid

approach that infers representative sequences of GUI and system events for apps
and performs fuzz testing with improved random strategies. Since then, random-
based automatic testing approaches have bloomed [43, 3, 44]. Another large
body of researches focused on testing mobile applications based on program
analysis. Mirzaei et al. [45] present an approach called TrimDroid, which
relies on program analysis to extract formal specifications of apps and reduce
equivalent user inputs. Anand et al. [46] and Mirzaei et al. [47] employ symbolic
execution techniques to systematically generate test inputs to achieve high code
coverage on mobile apps.

Model-based testing (MBT) methods and tools have also been developed to
generate and execute tests for mobile apps. A large body of other research uses
dynamic exploration to build models. Representatives of such works include,
e.g., AndroidRipper [10] and its descendant MobiGUITAR [48], both of which
are based on GUI ripping [49]. AndroidRipper dynamically analyses an app’s
GUI and systematically traverses the GUI to construct sequences of fireable
events as executable test scripts, while MobiGUITAR constructs a state ma-
chine model of the GUI and utilizes the model and test adequacy criteria to
guide the generation of test scripts. Su et al. [50] introduce Stoat, an auto-
mated model-based testing approach that generates a stochastic model based
on Gibbs sampling from an app and leverages dynamic analysis to explore the
app’s behaviours. Yang et al. [9] propose a grey-box approach that employs
static analysis to extract events from an app and implements dynamic crawling
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to reverse-engineer a model of the app by triggering the events on the run-
ning app. While these approaches have been proved to be useful in producing
test suites that achieve significant levels of code coverage, none of them utilizes
human knowledge about behaviors of the apps to make test generation more
effective.

Jaaskelainen et al. [51, 52] propose an open-source framework named Tema

for online GUI testing of mobile apps. Tema automatically generates abstract
tests based on manually crafted, platform-independent behavioral models of
apps that focus on abstract user actions and app state changes. The ab-
stract tests are then translated to concrete tests by mapping abstract actions
to platform-dependent user actions. Li et al. [53] propose the ADAutomation

technique that generates test scripts for Android and iOS apps by traversing
a user provided UML activity diagram modeling user behaviors. Amalfitano
et al. [54] propose the juGULAR interactive technique that leverages recorded
sequences of user events to facilitate the testing of GUIs that can only “be so-
licited by specific user input event sequences”, or gate GUIs. In comparison, we
extend the IFML to support the easy and expressive modeling of Android apps
and use E-IFML models to guide the automated test generation for Android
apps with Adamant. Experimental results show that test scripts generated by
Adamant can achieve higher code coverage and detect real bugs.

8. Conclusion

We present in this paper the Adamant approach to automated Android
testing based on E-IFML models. E-IFML is tailored to support easy and
expressive Android app modeling. Implementing a path exploration algorithm
augmented with constraint solving, Adamant can automatically and effectively
process E-IFML models and generate test scripts for Android apps.

We conducted experiments on 10 open-source Android apps to evaluate the
performance of Adamant. The results show that Adamant is highly effective
in terms of code coverage achieved and the number of bugs detected, and that
Adamant significantly outperforms other state-of-the-art test generation tools
like Monkey, AndroidRipper, and Gator. Such results confirm that the incor-
poration of human knowledge into automated techniques can drastically improve
the effectiveness of test generation for Android apps.
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