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Purpose: We constructed a multitask learning model (latent space linear regression and deep learning
[LSLR-DL]) in which the 2 tasks of cross-sectional predictions (using OCT) of visual field (VF; central 10�) and
longitudinal progression predictions of VF (30�) were performed jointly via sharing the deep learning (DL)
component such that information from both tasks was used in an auxiliary manner (The Association for
Computing Machinery’s Special Interest Group on Knowledge Discovery and Data Mining [SIGKDD] 2021). The
purpose of the current study was to investigate the prediction accuracy preparing an independent validation
dataset.

Design: Cohort study.
Participants: Cross-sectional training and testing data sets included the VF (Humphrey Field Analyzer [HFA]

10-2 test) and an OCT measurement (obtained within 6 months) from 591 eyes of 351 healthy people or patients
with open-angle glaucoma (OAG) and from 155 eyes of 131 patients with OAG, respectively. Longitudinal training
and testing data sets included 7984 VF results (HFA 24-2 test) from 998 eyes of 592 patients with OAG and 1184
VF results (HFA 24-2 test) from 148 eyes of 84 patients with OAG, respectively. Each eye had 8 VF test results
(HFA 24-2 test). The OCT sequences within the observation period were used.

Methods: Root mean square error (RMSE) was used to evaluate the accuracy of LSLR-DL for the cross-
sectional prediction of VF (HFA 10-2 test). For the longitudinal prediction, the final (eighth) VF test (HFA 24-2
test) was predicted using a shorter VF series and relevant OCT images, and the RMSE was calculated. For
comparison, RMSE values were calculated by applying the DL component (cross-sectional prediction) and the
ordinary pointwise linear regression (longitudinal prediction).

Main Outcome Measures: Root mean square error in the cross-sectional and longitudinal predictions.
Results: Using LSLR-DL, the mean RMSE in the cross-sectional prediction was 6.4 dB and was between 4.4

dB (VF tests 1 and 2) and 3.7 dB (VF tests 1e7) in the longitudinal prediction, indicating that LSLR-DL significantly
outperformed other methods.

Conclusions: The results of this study indicate that LSLR-DL is useful for both the cross-sectional prediction
of VF (HFA 10-2 test) and the longitudinal progression prediction of VF (HFA 24-2 test). Ophthalmology
Science 2021;1:100055 ª 2021 by the American Academy of Ophthalmology. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Glaucoma causes irreversible damage to the visual field
(VF)1 and currently is the leading cause of irreversible
blindness worldwide.2 The VF test is a principal measure
for both diagnosing glaucoma and monitoring its
progression, and the Humphrey Field Analyzer (HFA) 24-
2 test (Carl Zeiss Meditec) is one of the most frequently
used VF measurements clinically. In the clinical setting,
assessing the progression of VF defects often relies on
applying a simple ordinary least squares linear regression
to VF measurements, as used in the software Progressor
(Medisoft Ltd).3 However, the VF threshold fluctuates in
both the short term4 and the long term,5 and
measurements of VF are associated with considerable
noise, even with good reliability indices,6,7 which hampers
ª 2021 by the American Academy of Ophthalmology
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the accurate estimation of the VF progression speed.8

Thus, numerous attempts have been made to improve the
accuracy of the analysis of VF progression. Additionally,
previous studies have suggested that it is also important to
measure the central 10� of the VF in patients with
glaucoma using a test such as the HFA 10-2 test.5e7 In
the clinic, however, it is difficult to perform HFA 24-2 tests
at a sufficient frequency,9,10 which implies that it is not
realistic to conduct the 10-2 VF test beyond a central 24�
VF test with a frequency of adequate density. Because of
the structureefunction relationship, the sensitivity of VF
can be predicted from the retinal thickness, including the
ganglion cell layer (GCL), in glaucoma.11,12 This may be
particularly feasible with the HFA 10-2 test because the
1https://doi.org/10.1016/j.xops.2021.100055
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spectral-domain OCT macular scanning area overlaps pri-
marily with the retina within the central 10�.13 Therefore,
the use of spectral-domain OCT to measure retinal thick-
ness could be beneficial for the prediction of VF sensitivity
in the central 10�. Furthermore, the high reproducibility of
OCT,14e17 in contrast to VF measurements, could highlight
the merit of this approach further.

The development of deep learning (DL) methods repre-
sents a revolutionary advance in imaging recognition.18 We
recently reported the benefits of applying DL to OCT
measurements regarding various aspects of VF, such as the
diagnosis of glaucoma19 and the cross-sectional prediction
of the HFA 10-2 test.20 Moreover, we recently proposed the
use of deeply regularized latent space linear regression
(DLLR), in which the DL component contributes to
improving the prediction accuracy of VF (HFA 24-2 test)
progression.21 Because both of these tasks (i.e., the cross-
sectional prediction of the HFA 10-2 test results and the
progression prediction of the HFA 24-2 test results) use DL to
obtain knowledge of the transforming information from the
OCT domain to the VF domain, it may be advantageous to
apply the knowledge learned in one of the tasks to another
task. Additionally, this application is clinically relevant
because patients typically undergo measurement in the clin-
ical setting using both the HFA 24-2 test longitudinally and
OCT measurements, but the HFA 10-2 test usually is
optional. Multitask learning22,23 is particularly useful when
the 2 tasks are performed simultaneously, where individual
tasks have relatedness and can lend strengths to each other.
A typical example is the joint prediction of VF progression
(HFA 10-2 test) and the prediction of VF progression
(HFA 24-2 test). This implies that the cross-sectional pre-
diction of the HFA 10-2 test results can be improved by
constructing such a multitask model in which the progression
of the HFA 24-2 test is predicted simultaneously. This has
clinical merit when we consider that in the clinical setting, the
use of the HFA 24-2 test and OCT measurement usually
results in a large amount of clinically available longitudinal
VF data, but the HFA 10-2 test does not. Therefore, we
constructed a multitask DL model (latent space linear
regression and DL [LSLR-DL]) to predict the HFA 10-2 test
results in a cross-sectional manner, along with the simulta-
neous longitudinal prediction of VF findings (HFA 24-2 test)
via sharing the DL component, such that both sets of infor-
mation were used in an auxiliary manner for both tasks;
however, the prediction accuracy was validated merely using
an internal cross-validation.24 The purpose of the current
study was to investigate the prediction accuracy preparing
an independent validation dataset.
Methods

This study was approved by the Research Ethics Committee of the
Graduate School of Medicine and Faculty of Medicine at the
University of Tokyo, Osaka University, Kyoto Prefectural Uni-
versity of Medicine, Shimane University, and Hiroshima Memorial
Hospital. The study complied with the tenets of the Declaration of
Helsinki. Patients provided written consent for their information to
be stored in the hospital database and used for research. In other
cases in which the study protocols did not require that each patient
2

provide written informed consent (based on the Ethical Guidelines
for Medical and Health Research Involving Human Subjects issued
by the Japanese government), the protocol was instead posted at
the outpatient clinic to notify study participants.

Data Collection

We obtained all data in the present study from Tokyo University
Hospital, Osaka University Hospital, Hospital of Kyoto Prefectural
University of Medicine, Oike-Ikeda Eye Clinic, Shimane Univer-
sity Hospital, Inouye Eye Hospital, and Hiroshima Memorial
Hospital. Inclusion criteria were (1) patients in whom glaucoma
was the only disease causing VF damage and (2) patients with at
least 8 VF measurements obtained via the 10-2 HFA (Carl Zeiss
Meditec). All studied patients had primary open-angle glaucoma
(OAG), which was defined as (1) the presence of typical glau-
comatous changes in the optic nerve head, such as a rim notch with
a rim width of 0.1 disc diameter or less or a vertical cup-to-disc
ratio of more than 0.7, a retinal nerve fiber layer defect with its
edge at the optic nerve head margin greater than a major retinal
vessel, diverging in an arcuate or wedge shape, or both and (2)
gonioscopically wide-open angles of grade 3 or 4 based on the
Shaffer classification. Exclusion criteria were (1) age younger than
20 years and (2) possible secondary ocular hypertension in either
eye. All patients had prior experience of VF measurement. We
applied these criteria to both the training and testing data sets.

Visual Field Measurement

In the cross-sectional prediction, we obtained VF measurements
using the HFA with the 10-2 program (Swedish Interactive
Threshold Algorithm Standard), whereas in the longitudinal pre-
diction, we obtained VF measurements using the HFA with the
24-2 program. Only reliable VFs were included, defined as a fix-
ation loss rate of less than 33%, a false-positive rate of less than
33%, and a false-negative rate of less than 33%.

OCT Measurement

We obtained OCT data using the RS 3000 (Nidek Co. Ltd) and
axial length measurements using the OA-2000 (TOMEY). All
spectral-domain OCT measurements were obtained after pupil
dilation with 1% tropicamide, and we performed OCT imaging
using the laser scan protocol. We carefully excluded data with
apparent eye movement or involuntary blinking or saccade from
the measurement. Following the manufacturer’s recommendation,
we also excluded imaging data with a quality factor of less than 7.
Similar to our previous report that analyzed OCT data,25 the fovea
was identified automatically as the pixel with the thinnest retinal
thickness close to the fixation point and a square imaging area
(30� � 30�) was centered on the fovea to exclude the area of the
optic disc and parapapillary atrophy. We corrected the
magnification effect on the basis of the formula provided by
the manufacturer, which was based on Littman’s equation,26,27

using the measured axial length value. Using software supplied
by the manufacturer, we calculated the thicknesses of (1) the
macular retinal nerve fiber layer (RNFL), (2) macular GCL and
inner plexiform layer (IPL), and (3) outer segment (OS) and
retinal pigment epithelium (RPE). Unlike our previous study in
which the mean thicknesses in the entire field were analyzed,
these were exported as images of 512 � 128 pixels and resized
to 224 � 224 pixels in the DL models using the pixel area
relationship, which is the preferred method for image decimation.
Besides the macular RNFL and GCLþIPL layers, we included
the thickness of the OSþRPE because the structureefunction
relationship becomes stronger by including this layer,28 probably
because the interindividual variation of the retinal layer
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thicknesses can be considered. These thicknesses of macular
RNFL, GCLþIPL, and OSþRPE were the 3 channels in DL.

Training and Testing Data Sets

Cross-sectional training and testing data sets included VF (HFA
10-2 test) and OCT measurement from 86 eyes of 43 healthy
participants and 505 eyes of 304 patients with OAG and 155 eyes
of 131 patients with OAG, respectively. Visual field (HFA 10-2
test) and OCT measurements were conducted within a period of 6
months. Longitudinal training and testing data sets included 7984
VF results (HFA 24-2 test) from 998 eyes of 592 patients with
OAG and 1184 VF results (HFA 24-2 test) from 148 eyes of 84
patients with OAG, respectively. For each eye, a time series of 8
VF results (HFA 24-2 test) were available. We obtained OCT se-
quences for each eye within the same observation period. No
overlap occurred between the training and testing data sets, both in
the cross-sectional and longitudinal data.

Prediction of Visual Field

Latent Space Linear Regression and Deep Learning. Briefly, the
proposed LSLR-DL model worked as follows.
Figure 1. Diagram showing the architecture of VGG16. Transformation of
the sequences of OCT (224 � 224 pixels with 3 channels) into visual field
sequences was realized by VGG16.
1. In the cross-sectional prediction, the LSLR-DL model was
trained to predict the sensitivity of VF at each test point (68
points in the HFA 10-2 test) using the thicknesses of GCC,
macular RNFL, and OSþRPE (224 � 224 pixels with 3
channels). In the longitudinal prediction, the LSLR-DL
model was trained first to predict the VF threshold at each
test point (52 points in HFA 24-2 test mode) in the eighth VF
test (HFA 24-2 test) using the first and second VF results
(HFA 24-2 test) and also the thicknesses of GCC, macular
RNFL, and OSþRPE (224 � 224 pixels with 3 channels)
obtained in the same period. Subsequently, similar pre-
dictions were performed using different VF sequences (be-
tween the first third and first to seventh VFs by the HFA 24-2
test) and corresponding thicknesses ofGCC,macular RNFL,
and OSþRPE obtained in the same period. Predictions with
different lengths of training VF sequences were performed
separately because each of them corresponded to a unique
scenario. The cross-sectional prediction and longitudinal
prediction shared the DL component, such that they were
performed simultaneously. We trained the model so that the
summed loss with both the cross-sectional and longitudinal
training data sets was minimized.

2. In the longitudinal prediction, all HFA 24-2 test points of a
single eye were projected to a latent space to consider the
correlations among HFA 24-2 test points. They shared
parameters of linear regression in the latent space.

3. In the longitudinal prediction, the OCT sequences were
transformed to VF (HFA 24-2 test) sequences via DL, such
that the progression of VF (HFA 24-2 test) threshold was
regularized by the progression of OCT. The transformation
of the OCT sequences (224 � 224 pixels with 3 channels)
into VF (HFA 24-2 test) sequences was realized by
VGG16,29 a convolutional neural network (CNN),
considering the spatial relationships among the retina
voxels and the nonlinear relationship between the
thicknesses of the OCT-measured retinal layers and VF
(HFA 24-2 test) threshold. The CNN currently is the state-
of-the-art model for capturing spatially related information
and nonlinear transformation from one data space to
another. VGG16 won second place in the image classifi-
cation task of ImageNet Large Scale Visual Recognition
Challenge 2014 and has become a popular CNN model for
many image classification and regression tasks. The
pretraining of VGG16 was conducted using images of the
ImageNet database (http://www.image-net.org/). Figure 1
illustrates the architecture of VGG16.

4. In the longitudinal prediction, eyes with a similar HFA
24-2 test had similar regression parameters to avoid over-
fitting, based only on their own data.

5. We used the cross-sectional and longitudinal testing data
sets to evaluate the accuracies of the cross-sectional and
longitudinal predictions, respectively.
More technical descriptions of the LSLR-DL model are intro-
duced as follows as well as in Figure 2. In the cross-sectional
prediction, the HFA 10-2 test of an eye was transformed from an
OCT measurement using the DL component as follows:

fcðCi; qcÞ ¼ Vi þ ε; ð1Þ
where Ci˛R3 � H � W is a 3-dimensional array representing the

thickness of the OCT-measured retinal layers (the layers of macular
RNFL, GCLþIPL, and OSþRPE) of the ith eye; H and W are the
height and width of the measurement, respectively; Vi˛R68 is the
VF in the 10-2 test mode; fcð$; qcÞ is a function parameterized by
VGG16; qc contains the parameters to be estimated; and ε contains
the errors of the transformation.

For the longitudinal prediction, the projection of VF (HFA 24-2
test) threshold into a latent space and the LSLR were realized by
matrix factorization denoted as follows:

Fi ¼ GiWiP
T
i þ ε; ð2Þ

where Fi ˛RD � Ti is a matrix consisting of the sequence of
VF results (HFA 24-2 test) for the ith eye, D is the number of HFA
24-2 test points, Ti is the number of time stamps at which the HFA
24-2 tests were conducted, Gi ˛RD � S and Wi ˛RS � 2 are 2-factor
matrices to be estimated, S is a predefined hyperparameter, and PT

i
is the transpose of Pi˛RTi � 2; which was defined as Pi ¼ ½ti; 1i�.
Because ti˛RTi � 1 was a column vector of time stamps and
1i ˛RTi � 1 was a vector of ones, WiPT

i realized the linear regres-
sion of VF (HFA 24-2 test) threshold on time in the latent space.
The first column and the second column of Wi correspond to the
coefficient and intercept, respectively. Gi then can be interpreted as
a projection matrix that realizes the transformation of VF (HFA
24-2 test) threshold, and ε contains the errors of the projection. In
equation (2), the regression parameters inWi were shared by all VF
(HFA 24-2 test) points to force them to share the same progression
pattern in the latent space. The differences among the VF (HFA
24-2 test) points in the raw data space were preserved in the pro-
jection matrix Gi.

The transformation of the OCT sequences into VF (HFA 24-2
test) threshold sequences also was realized by VGG16. Particu-
larly, each OCT measurement was transformed into a VF (HFA
24-2 test) threshold interpolated by LSLR at the time at which no
VF measurement was available. The transformation was realized
by the following equation:

fl
�
Cl
i ; ql
� ¼ GiWi

�
tli ; 1
�T þ ε; ð3Þ

where Cl
i˛R

3 � H � W is a 3-dimensional array representing the
lth thicknesses of the OCT-measured retinal layer of the ith eye and
tli is the time at which the OCT-measured thickness was obtained;
flð$; qlÞ is a function parameterized by VGG16, and ql contains the
3
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Figure 2. Diagram showing the architecture of the latent space linear regression and deep learning (LSLR-DL) model. The LSLR-DL model is a DL-based
model that simultaneously predicts the Humphrey Field Analyzer (HFA) 10-2 test in a cross-sectional manner and longitudinally predicts the progression of
the HFA 24-2 test, via sharing the DL component, such that both sets of information are used in an auxiliary manner for both tasks. Gþ

i is the pseudoinverse
of Gi in equation (2).
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parameters to be estimated. We propose performing the OCT
transformation because the underlying model can be shared by the
cross-sectional prediction. In this way, both the longitudinal pre-
diction and the cross-sectional prediction can use additional in-
formation for better performance. In particular, flð$; qlÞ shares
parameters in the convolutional layers with fcð$; qcÞ; which was for
the cross-sectional prediction in equation (1). flð$; qlÞ is not exactly
the same as fcð$; qcÞ; because the VF test points are not shared
between the longitudinal prediction (HFA 24-2 test) and the cross-
sectional prediction (HFA 10-2 test). Figure 2 illustrates the shared
convolutional layers and the difference between flð$; qlÞ and
fcð$; qcÞ; . The OCT in both the cross-sectional prediction and the
longitudinal prediction was processed by the same convolutional
layers. The processed OCT in the cross-sectional prediction then
was transformed into VF (HFA 10-2 test) using fully connected
layers, whereas the processed OCT in the longitudinal prediction
was transformed into VF (HFA 24-2 test) using different fully
connected layers.

Linear regression of VF (HFA 24-2 test) in the latent space is
regularized by the OCT information through equation (3), in which
the VF interpolated at the time stamp when an OCT was measured
was regularized by the VF results predicted from the OCT, as
illustrated in Figure 2. Figure 2 shows that 3 VFs (HFA 24-2 test)
are projected into the latent space by multiplying the pseudoinverse
of Gi. At the same time, 2 VF results predicted from 2 respective
OCTs are transformed into the same latent space. The linear
regression of VF results (HFA 24-2 test) over time is fitted on
the 5 data points, including both the VF (HFA 24-2 test) data
points and the OCT data points, instead of only the VF (HFA
24-2 test) data points.
L ¼
XN
i¼ 0

jjFi � GiWiP
T
i jj2F þ l1

XN
j¼ 1

z0;jjjW0 �W

4

To avoid overfitting the data from each eye, the regression
parameters of the eyes with similar VF (HFA 24-2 test) measure-
ments were also forced to be similar. The relationship between one
eye and the other eyes was defined as follows:

Wi ¼
XN
jsi

zi;j �Wj þ ε (4)

where zi;j ˛R is the similarity constant between the ith eye and
the jth eye. zi;j was quantified by the following equation:

zi;j ¼ exp

8<
:�

�PTi
k ¼ 1

PD
d ¼ 1

�
Fðd;kÞ
i � F�ðd;kÞ

j

��2
ðTiDsiÞ2

9=
;; ð5Þ

where Fðd;kÞ
i is the value at the dth row and the kth column of the

VF (HFA 24-2 test) matrix of the ith eye, and F�
j contains the VF

(HFA 24-2 test) thresholds interpolated by pointwise linear
regression (PLR), because the jth eye may have different time
stamps on which VF (HFA 24-2 test) tests were conducted from
those of the ith eye. si was the median of values

ðPTi
k¼ 1

PD
d¼ 1

ðFðd;kÞ
i � F�ðd;kÞ

j ÞÞ2 =ðTiDÞ2 computed from the combina-

tions of the ith eye and all other eyes. The definition of similarity
between 2 eyes, zi;j, followed the Gaussian kernel, was considered
to be reasonable in the field of kernel regression,

30
and worked

well as demonstrated by our previous study.
21

By combining the LSLR and DL, the objective function for a
test eye indexed by 0 was quantified as follows:
jjj2F þ l2
XN
i¼ 0

X
l

jjfl
�
Cl
i ; q
�� GiWi

�
tli; 1
�T jj2F; (6)
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where the eyes of indices from j ¼ 1 to N were used as training
information for the learning of linear regression for the test eye,

��$��$j2F is the square of the Frobenius norm, and l1; l2˛ R are
hyperparameters.

Because the cross-sectional prediction and longitudinal pre-
diction shared the DL component, the 2 prediction tasks were
performed jointly by having the following unified objective func-
tion:
L ¼
XN
i¼ 0

jjFi � GiWiP
T
i jj2F þ l1

XN
j¼ 1

z0;jjjW0 �Wjjj2F þ l2

 XN
i¼ 0

X
l

jjfl
�
Cl
i; q
�� GiWi

�
tli; 1
�T jj2F þ

XM
i¼ 0

jjfcðCi; qÞ�Vijj2F
!
;

(7)
where M is the number of VFs (HFA 10-2 test) in the cross-
sectional prediction task.

The optimization algorithms designed for DL (e.g., Adam31)
can be used to solve the objective function. We implemented the
LSLR-DL model in Pytorch and applied Adam as the learning
algorithm. The values of hyperparameters l1 and l2were deter-
mined by grid search, and the value of the hyperparameter S was
chosen as 4 because our previous study21 suggested that a small
value would work well.

Other Models (Cross-sectional Prediction of Visual Field
from OCT). The following models were also constructed for the
purpose of comparison.
1. Multiple linear regression (MLR): The VF (HFA
10-2 test) threshold at each test point was predicted
simply by applying MLR to 150 528 (224 � 224 � 3)
variables of GCC, macular RNFL, and OSþRPE
thicknesses.

2. Support vector regression (SVR) constructs a hyperplane,
which provides the largest separation margin between 2
classes. A soft margin allows some errors to occur be-
tween the separation hyperplane, and a kernel function
maps the data into higher-dimensional space, which al-
lows a linear separation in a nonlinear classification
problem.32 At each test point, the VF (HFA 10-2 test)
threshold was predicted by applying SVR to 150 528
(224 � 224 � 3) variables of GCC, RNFL, and
OSþRPE.

3. Deep learning: At each test point, the VF (HFA 10-2 test)
threshold was predicted simply by applying VGG16 to the
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX52
i¼ 1

ðpredicted VF threshold of the ith point� actual VF threshold of the ith pointÞ2
52

vuut ; ð7Þ (8)
GCC, RNFL, and OSþRPE thicknesses (224 � 224 pixels
with 3 channels).

4. Convolutional neural network and tensor regression (CNN-
TR): At each test point, the VF (HFA 10-2 test) threshold
was predicted by applying CNN-TR20 to the GCC, RNFL,
and OSþRPE thicknesses (224 � 224 pixels with 3
channels). Convolutional neural network and tensor
regression is a recent method that combines a CNN with
tensor regression.
Other Models (Longitudinal Prediction of Visual Field).

1. Pointwise linear regression: Using ordinary least squares

linear regression, VF (HFA 24-2 test) threshold was
regressed against time at each VF test point.

2. Deeply regularized latent space linear regression: TheDLLR
model uses OCT measurements to regularize the linear
regression of VF measurements against time in a latent
space. The OCT measurements lie in a completely different
data space to VF, and the OCT measurements also may be
obtained at different points in time to the VF measurements.
To address the heterogeneity in data space, DLLR trans-
forms both the extracted information of the OCT and VF
measurements into the same latent space. Deeply regularized
latent space linear regression focuses on the coefficient and
the intercept of the latent space linear regression of the
measurement sets to address the heterogeneity in time. This
model outperformed PLR21,33 because glaucomatous VF
damage results from the loss of retinal ganglion cells and
VF threshold also fluctuates in both the short4 and long5

terms. Moreover, VF measurements are associated with
considerable noise,6,7 which hampers the accurate
estimation of the speed of VF progression,8 whereas OCT
measurements are highly reproducible.14e17 The major
difference between LSLR-DL and DLLR is the way in
which OCTs are used to regularize the progression pattern of
VFs. In particular, DLLR transforms all OCTs together into
the latent space to regularize the coefficient directly and to
intercept the linear regression while LSLR-DL transforms
OCTs individually into VFs to regularize the VFs interpo-
lated at time stamps when OCTs were measured.
Statistical Analysis

We evaluated cross-sectional prediction errors using RMSE, which
is defined as follows:
where i is the number of the predicted 52 test points.
Using a linear mixed model, we compared the RMSE values

with LSLR-DL, MLR, SVR, DL, and CNN-TR models, whereby
the prediction error values were nested within each patient and test
point. The linear mixed model is equivalent to ordinary linear
5



Table 1. Demographic Information of the Cross-sectional Training and Testing Data Sets

Variable Cross-sectional Training Data Set Cross-sectional Testing Data Set

Eyes (left/right) 289/302 89/66
Sex (female/male) 191/156 70/61
Age (yrs) 55.1 � 14.8 65.8 � 12.2
Axial length (mm) 25.4 � 2.7 24.6 � 1.7
Threshold (HFA 10-2 test; dB) 24.1 � 9.3 21.9 � 7.8
MD (HFA 10-2 test; dB) �8.8 � 9.4 �10.4 � 8.1
RNFL (mm) 30.5 � 9.0 26.9 � 8.4
GCLþIPL (mm) 39.7 � 9.0 38.7 � 7.5
OSþRPE (mm) 67.1 � 3.8 65.6 � 5.1

GCL ¼ ganglion cell layer; HFA ¼ Humphrey Field Analyzer; IPL ¼ inner plexiform layer; MD ¼ mean deviation; OS ¼ outer segment; RNFL ¼ retinal
nerve fiber layer; RPE ¼ retinal pigment epithelium.
Data are presented as no. or mean � standard deviation.
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regression in that the model describes the relationship between the
predictor variables and a single outcome variable. However, stan-
dard linear regression analysis assumes that all observations are
independent of each other. In the present study, the measurements
were nested within patients and also test points, and hence are
dependent on each other. Ignoring this measurement grouping re-
sults in the underestimation of standard errors of regression co-
efficients. The linear mixed model adjusts for the hierarchical
structure of the data, modeling such a way that measurements are
grouped within patients to reduce the possible bias derived from
the nested structure of data.34,35 Using Holm’s method, we
adjusted for multiple comparisons.

We also calculated longitudinal prediction error as the RSME
between the predicted and actual 52 threshold values of the eighth
VF (HFA 24-2 test). Using the linear mixed model, we compared
these values among PLR, DLLR, and LSLR-DL, whereby the
values were nested within patients and test points and also the test
points of the VF (HFA 24-2 test).
Results

Table 1 presents demographic information of the cross-
sectional training and testing data sets. In the training data
set, 191 patients were women and 156 patients were men. In
the testing data set, 70 patients were women and 61 patients
were men. The mean � standard deviation age of the pa-
tients was 55.1 � 14.8 years and 65.8 � 12.2 years in the
Table 2. Demographic Information of the Lon

Variable Long

Eyes (right/left)
Sex (female/male)
Age (yrs)
Axial length (mm)
mTD of first VF (HFA 24-2 test; dB)
mTD progression rate with VF1-10 (HFA 24-2 test; dB/yr)
Sequences of OCT (no. of times)
Macular RNFL of first OCT (mm)
GCLþIPL of first OCT (mm)
OSþRPE of first OCT (mm)

GCL ¼ ganglion cell layer; HFA ¼ Humphrey Field Analyzer; IPL ¼ inner ple
retinal nerve fiber layer; RPE ¼ retinal pigment epithelium.
Data are presented as no. or mean � standard deviation.
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training and testing data sets, respectively. In the training
data set, the mean deviation of the HFA 10-2 test
was �8.8 � 9.4 dB, whereas this value was �10.4 � 8.1 dB
in the testing data set.

Table 2 shows the demographic information of the
longitudinal training and testing data sets. The mean �
standard deviation age of the patients was 60.7 � 13.5
years and 61.2 � 10.4 years in the training and testing
data sets, respectively. Visual field results (HFA 24-2 test)
were obtained for 5.9 � 1.9 years and 5.4 � 1.1 years in
the training and testing data sets, respectively. The mean
number of OCT measurements was 5.6 � 2.8, with a
maximum of 12 and a minimum of 1 in the training data
sets, and the number in the testing data sets was 5.2 �
1.6, with a maximum of 9 and a minimum of 2. In the
initial HFA 24-2 test, the mean total deviation (mTD)
value was �6.2 � 7.1 and �4.9 � 4.6 dB in the training
and testing data sets, respectively. The mTD progression
rate with VFs from 1st to 10th (VF1-10) was �0.3 � 0.8
dB/year and �0.3 � 0.7 dB/year in the training and
testing data sets, respectively.

Cross-sectional Prediction

Figure 3 shows the threshold of the HFA 10-2 test at each test
point in the cross-sectional testing dataset. The mean value
ranged from 14.6 to 29.3 dB. Figure 4 presents the
gitudinal Training and Testing Data Sets

itudinal Training Data Set Longitudinal Testing Data Set

505/493 72/76
296/296 46/38

60.7 � 13.5 61.2 � 10.4
25.8 � 1.9 24.9 � 1.8
�6.2 � 7.1 �4.9 � 4.6
�0.3 � 0.8 �0.3 � 0.7
5.6 � 2.8 5.2 � 1.6

30.4 � 9.0 30.4 � 7.5
42.7 � 8.7 41.6 � 8.1
65.4 � 4.9 65.2 � 5.1

xiform layer; mTD ¼ mean total deviation; OS ¼ outer segment; RNFL ¼



Figure 3. Visual field (Humphrey Field Analyzer 10-2 test) threshold at
each test point in the cross-sectional testing data set. The mean value
ranged from 16.0 to 29.3 dB.
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comparisons of the cross-sectional RMSE values among
MLR, SVR, and LSLR-DL models. The RMSE with LSLR-
DL (6.4 � 3.1 dB) was significantly (P < 0.05, linear mixed
model adjusted for multiple comparisons using Holm’s
method) smaller than that of the MLR (12.2 � 4.2 dB), SVR
(8.8 � 3.5 dB), DL (7.7 � 3.6 dB), and CNN-TR (7.3 � 3.6
dB) models. Figure 5 shows the cross-sectional absolute
prediction error at each VF (HFA 10-2 test) point. The mean
value ranged from 3.4 to 6.1 dB. Prediction error values
tended to be small in the inferotemporal area. Note that no
Figure 4. Box-and-whisker plot comparing cross-sectional root mean square e
vector regression (SVR), deep learning (DL), convolutional neural network and
learning (LSLR-DL) values. The RMSE with LSLR-DL values were significantl
**P < 0.01. $P > 0.05.
discrimination exists between the absolute prediction error
and RMSE in the pointwise prediction error. In the entire VF
(HFA 10-2 test), the mean of these values was 5.0 � 0.6 dB.

Longitudinal Prediction

Figure 6 shows the threshold of the HFA 24-2 test at each
test point (eighth VF) in the longitudinal testing data set.
The mean value ranged from 14.2 to 28.5 dB. Figure 7
and Table 3 show the comparisons of the longitudinal
RMSE values across LSLR-DL, DLLR, and PLR models.
In all VF sequences (HFA 24-2 test), the LSLR-DL model
significantly (P < 0.001, linear mixed model adjusted for
multiple comparisons using Holm’s method) outperformed
PLR. The LSLR-DL model significantly (P < 0.05, linear
mixed model adjusted for multiple comparisons using
Holm’s method) outperformed DLLR for the series first and
second VF test to the first through fifth VF test (HFA 24-2
test). Figure 8 shows the absolute prediction errors at each
VF (HFA 24-2 test) test point with the LSLR-DL, DLLR,
and PLR models. In comparison with the PLR model, the
values were significantly smaller with LSLR-DL model at
all test points for the series the first and second VF results to
the first through fourth VF results (HFA 24-2 test), in 51 test
points in the first through fifth VF results (HFA 24-2 test), in
24 test points in the first through sixth VF results (HFA 24-2
test), and in 10 test points in the first through seventh VF
results (HFA 24-2 test). In comparison with DLLR, the
values were significantly (P < 0.05, linear mixed model
adjusted for multiple comparisons using Holm’s method)
rror (RMSE) values across the multiple linear regression (MLR), support
tensor regression (CNN-TR), and latent space linear regression and deep

y smaller than with the MLR, SVR, DL, and CNN-TR models. *P < 0.05.

7



Figure 5. Cross-sectional absolute prediction error at each visual field
(Humphrey Field Analyzer 10-2 test) point. The mean value ranged from
3.4 to 6.1 dB. Prediction error values tended to be small in the infero-
temporal area.
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smaller with the LSLR-DL model at 17 test points in the first
and second VF results (HFA 24-2 test), in 9 test points in
first through third VF results (HFA 24-2 test), in 5 test
points in the first through fourth VF results (HFA 24-2 test),
and in 2 test points from the first through fifth VF results to
the first through sixth VF results (HFA 24-2 test).
Discussion

In the present study, we constructed a DL-based model that
simultaneously predicts the HFA 10-2 test results in a cross-
sectional manner, along with a longitudinal prediction of the
progression of the HFA 24-2 test results, via sharing the DL
component such that both predictions were used in an
auxiliary manner for both tasks. This model was trained using
a cross-sectional training data set from 591 eyes of 351
healthy participants or patients with OAG and a longitudinal
training data set from 7984 VF results (HFA 24-2 test) from
998 eyes of 592 patients with OAG. Our results indicate that
the mean RMSEs with the LSLR-DL model were 6.4 dB in
the cross-sectional prediction of the HFA 10-2 test and
Figure 6. Visual field (Humphrey Field Analyzer 24-2 test) threshold at
each test point in the longitudinal testing data set. The mean value ranged
from 10.9 to 28.5 dB.

8

between 4.5 dB (first and second VF test) and 3.6 dB (first
through seventh VF test) in the longitudinal prediction of the
HFA 24-2 test. These values were significantly smaller than
those of other methods, including the MLR, SVR, DL only,
and CNN-TR models for the cross-sectional prediction and
the PLR model for the longitudinal prediction.

The results of our study suggest that in the cross-sectional
prediction of VF (HFA 10-2 test), the largest prediction error
is observed with the MLR model (12.1 dB on average; Fig
5).20,36 This may be because the relationship between
structures, such as the thickness of the RNFL and GCC,
and function has been known to be nonlinear.13,37

Conversely, in the SVR model, regression is performed in a
latent space (kernel plane); hence, no discrimination exists
between linear and nonlinear. Indeed, the SVR model
yielded a significantly more accurate prediction error (8.8
dB on average). The application of DL only and the CNN-
TR model resulted in even smaller RMSE values (7.7 and
7.3 dB on average, respectively). This is because CNN is
currently the state-of-the-art model for capturing spatially
related information and nonlinear transformation from one
data space to another. Overfitting is a common phenomenon
in DL. The usefulness of a DLmodel cannot be generalized to
outside data, and overfitting often is observed with DL when
the size of the training data is small, such as in the present
study (591 eyes). For small training data sets, the augmen-
tation method has been known to be particularly useful for
avoiding this overfitting problem,38,39 and indeed, we have
shown the usefulness of this technique for the diagnosis of
glaucoma using a fundus photograph and DL40 as well as
longitudinal VF prediction using PLR.41 In the LSLR-DL
model, the cross-sectional prediction of VF (HFA 10-2 test)
was performed simultaneously with the longitudinal predic-
tion, which serves as a kind of data augmentation. This
augmentation method in the LSLR-DL model may be more
useful than the simple application of an ordinary augmenta-
tion (such as rotation, scale up and scale down, and change
brightness) to OCT images, because the training data in the
longitudinal prediction are real data instead of manipulated
data. Consequently, the cross-sectional prediction of VF
(HFA 10-2 test) enabled a significantly smaller prediction
error in comparison with the simple application of DL.

In this study, prediction errors tended to be smaller in the
central inferotemporal area than in other areas (Fig 6), which
corresponds to the preserved central isle of the VF (HFA 10-2
test) in patients with advanced glaucoma as proposed by
Weber et al42 and Hood et al.43 Indeed, in the present study,
the values of visual sensitivity in this area were higher than
in other regions in general (Fig 4). The smaller absolute
prediction error values in this area (Fig 6) may be attributed
to the smaller variation of visual sensitivity in this area;
otherwise, the predominant usefulness of OCT is in early to
moderate glaucoma, rather than in advanced glaucoma.13,44

This tendency was in agreement with our previous
studies.20,36 Sequentially, further improvement is required
in the prediction accuracy in other regions.

The sensitivity of VF fluctuates in both the short4 and
long5 terms, and accurately assessing VF progression is
hampered by VF variability.8 The reliability of VF
measurements is affected inherently by the patient’s



Figure 7. Box-and-whisker plot comparing the longitudinal root mean square error (RMSE) values between latent space linear regression and deep learning
(LSLR-DL), deeply regularized latent space linear regression (DLLR), and pointwise linear regression (PLR) values. The LSLR-DL model significantly
outperformed the PLR model with all sequences of visual field (VF; Humphrey Field Analyzer [HFA] 24-2 test). The LSLR-DL model significantly out-
performed the DLLR model from the first and second VF tests to the first through fifth VF tests (HFA 24-2 test). *P < 0.05. **P < 0.01. $P > 0.05.
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concentration, and previous reports have suggested that
measurement noise cannot be avoided, even when
reliability indices are sufficient.6,7 Consequently, a
considerable number of VF results must be required to
obtain reliable PLR results, as widely discussed in
previous studies.45e48 By contrast, as shown in the present
study, a much more accurate prediction of the longitudinal
progression of VF (HFA 24-2 test) was achieved via the
LSLR-DL model in comparison with the PLR model
through the use of additional information on the thickness of
the retinal layers (see Fig 8). The accuracy of LSLR-DL
using the initial 2 VF results (HFA 24-2 test) was almost
similar to that with an initial 6 or 7 VF results (HFA 24-2
test) with the PLR model when predicting the eighth VF
Table 3. Comparisons of the Longitudinal Root Mean Square Error Va
Space Linear Regression, and Latent Space Lin

Method

No. of Known Visual Field (Hum

2 3 4

PLR 27.5 (16.1) 12.9 (7.0) 8.2 (4.4
DLLR 4.6 (2.7) 4.4 (2.7) 4.1 (2.6
LSLR-DL 4.4 (2.7)*,y 4.2 (2.7)*,y 4.0 (2.6

DLLR ¼ deeply regularized latent space linear regression; LSLR-DL ¼ latent sp
*P < 0.01, PLR vs. LSLR-DL.
yP < 0.05, DLLR vs. LSLR-DL.
result (HFA 24-2 test). This is in agreement with our pre-
vious studies suggesting that the application of L1 or L2
regularization to the PLR model using the least absolute
shrinkage and selection operator regression49,50 enabled a
much more accurate prediction of VF progression.51,52 In
comparison with the application of least absolute
shrinkage and selection operator regression, the LSLR-DL
model has possible merit in that the regularization in the
longitudinal prediction was performed using related clinical
information (cross-sectional prediction). In the LSLR-DL
model, the longitudinal prediction of VF (HFA 24-2 test)
progression was performed by further using the cross-
sectional prediction of VF findings (HFA 10-2 test) as
auxiliary information. The use of the cross-sectional
lues across Pointwise Linear Regression, Deeply Regularized Latent
ear Regression and Deep Learning Models

phrey Field Analyzer 24-2 Test) Measurements

5 6 7

) 6.0 (3.3) 4.7 (2.6) 4.0 (2.3)
) 4.0 (2.6) 3.8 (2.4) 3.7 (2.3)
)*,y 3.9 (2.6)*,y 3.8 (2.4)* 3.7 (2.3)*

ace linear regression and deep learning; PLR ¼ pointwise linear regression.
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Figure 8. Absolute prediction errors at each visual field (VF; Humphrey Field Analyzer [HFA] 24-2 test) test point with the latent space linear regression and
deep learning (LSLR-DL), deeply regularized latent space linear regression (DLLR), and pointwise linear regression (PLR)models. The values were significantly
smaller with the LSLR-DL model than the PLR model at all test points for series of the first and second VF tests to the first through fourth VF tests (HFA 24-2
test), in 51 test points in the first through fifth VF tests (HFA 24-2 test), in 24 test points in the first through sixth VF tests (HFA 24-2 test), and in 10 test points
in the first through seventh VF tests (HFA 24-2 test). The values were significantly smaller with the LSLR-DLmodel than the DLLRmodel at 17 test points in
the first and secondVF test (HFA24-2 test), in 9 test points in the first through third VF tests (HFA24-2 test), in 5 test points in the first through fourthVF tests
(HFA 24-2 test), and in 2 test points from the first through fifth VF tests to the first through sixth VF tests (HFA 24-2 test).
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prediction of VF findings (HFA 10-2 test) can be regarded
as a kind of additional regularization on the DL parameters
in the longitudinal prediction of VF (HFA 24-2 test) pro-
gression. Moreover, the joint prediction of VF findings
(HFA 10-2 test) and the prediction of VF (HFA 24-2 test)
progression is a typical multitask learning problem22 in
which individual tasks have relatedness and can lend
strengths to each other. Indeed, accurate cross-sectional
and longitudinal predictions are related to each other: an
accurate cross-sectional prediction is beneficial for longitu-
dinal prediction, which implies that pursuing each task
provides useful information for another task. Consequently,
an even more accurate prediction of the longitudinal pro-
gression of VF (HFA 24-2 test) was achieved via the LSLR-
DL model in comparison with our previous model of DLLR
(Fig 8).

However, we observed a significant difference only
with short VF sequences (up to the first through fifth VF
test) and not at all test points (between 17 and 32 test
points). This may be because, first, DLLR already has
achieved a considerably accurate prediction performance
with sufficiently long VF sequences (RMSE, 3.8 dB with
the first through sixth VF tests and 3.7 dB with the first
through seventh VF tests). Second, in the cross-sectional
prediction, the number of training OCTs was
10
significantly less than in the longitudinal prediction, with a
ratio of approximately 1:10. Therefore, because of the
significant relatively smaller number of OCT results, the
cross-sectional prediction may provide only limited in-
formation on the longitudinal prediction. We used the
OSþRPE thickness because the structureefunction rela-
tionship becomes stronger by including this layer, in
addition to the macular RNFL and GCLþIPL.28 In our
study with DLLR, we investigated the influence of
omitting this layer, and as a result, no significant change
was found in the prediction accuracy, and hence only a
negligible difference would result by including or
removing this layer.

A limitation of the present study is that in the cross-
sectional prediction task, we studied the values of VF
sensitivity only within the central 10�. The HFA 24-2 VF
test usually is used in the clinical setting, and predictions
using the HFA 24-2 test also would be useful clinically. We
recommend a future study to investigate the current
approach to predicting the HFA 24-2 test. The macular OCT
scan does not cover such a wide area, and the current
approach may not be used directly for that purpose.
Nevertheless, we suggest the usefulness of the application of
mathematical methods, such as SVR or DL,53,54 to predict
VF findings in a different region. Further study is
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necessary to investigate whether such an approach, in
conjunction with the current method, is useful.

To conclude, we constructed a novel model of LSLR-DL
that jointly performs a cross-sectional prediction of VF
(HFA 10-2 test) findings and longitudinal prediction of VF
(HFA 24-2 test) findings, sharing a DL component such that
either one can lend strengths to the other. Consequently, we
found that an accurate prediction was achieved in both tasks.
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