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Change sign detection 
with differential MDL change 
statistics and its applications 
to COVID‑19 pandemic analysis
Kenji Yamanishi1*, Linchuan Xu2*, Ryo Yuki1, Shintaro Fukushima1 & Chuan‑hao Lin1

We are concerned with the issue of detecting changes and their signs from a data stream. For 
example, when given time series of COVID-19 cases in a region, we may raise early warning signals of 
an epidemic by detecting signs of changes in the data. We propose a novel methodology to address 
this issue. The key idea is to employ a new information-theoretic notion, which we call the differential 
minimum description length change statistics (D-MDL), for measuring the scores of change sign. We 
first give a fundamental theory for D-MDL. We then demonstrate its effectiveness using synthetic 
datasets. We apply it to detecting early warning signals of the COVID-19 epidemic using time series 
of the cases for individual countries. We empirically demonstrate that D-MDL is able to raise early 
warning signals of events such as significant increase/decrease of cases. Remarkably, for about 64% of 
the events of significant increase of cases in studied countries, our method can detect warning signals 
as early as nearly six days on average before the events, buying considerably long time for making 
responses. We further relate the warning signals to the dynamics of the basic reproduction number R0 
and the timing of social distancing. The results show that our method is a promising approach to the 
epidemic analysis from a data science viewpoint.

Motivation.  We address the issue of detecting changes and their signs in a data stream. For example, when 
given time series of the number of COVID-19 cases in a region, we may expect to warn the beginning of an 
epidemic by detecting changes and their signs.

Although change detection1–3 is a classical issue, it has remained open how signs of changes can be found. 
In principle the degree of change at a given time point has been evaluated in terms of the discrepancy measure 
(e.g.. the Kullback–Leibler (KL) divergence) between probability distributions of data before and after that time 
point1,4. It is reasonable to think that the differentials of the KL divergence may be related to signs of change. 
This is because the first differential of the KL divergence is a velocity of change while its second differential is 
an acceleration of change.

The problem is here that in real cases, the KL-divergence and its differentials cannot be exactly calculated since 
the true distribution is unknown in advance. A question lies in how we can estimate the discrepancy measure 
and their differentials from data when the parameter values are unknown.

The purpose of this paper is to answer the above question from an information-theoretic viewpoint based on 
the minimum description length (MDL) principle5 (see also studies6,7 for its recent advances). The MDL principle 
gives a strategy for evaluating the goodness of a probabilistic model in terms of codelength required for encoding 
the data where a shorter codelength indicates a better model. We apply this principle to change detection where 
a shorter codelength indicates a more significant change. Along this idea, we introduce the notion called the 
differential MDL change statistics (D-MDL) for the measure of change signs. We theoretically and empirically 
justify this notion, and then apply it to the COVID-19 pandemic analysis using open datasets.

Related work.  There are plenty of work on change detection1–4,8–11. In many of them, the degree of change 
has been related to the discrepancy measure for two distributions before and after a time point, such as likeli-
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hood ratio, KL-divergence. However, there is no work on relating the differential information such as the veloc-
ity of the change to change sign detection.

Most of previous studies in change detection are concerned with detecting abrupt changes3. In the scenario 
of concept drift12, the issues of detecting various types of changes, including incremental changes and gradual 
changes, have been addressed. How to find signs of changes has been addressed in the scenarios of volatility shift 
detection13, gradual change detection14 and clustering change detection15–17. However, the notion of differential 
information has never been related to change sign detection.

The MDL change statistics has been proposed as a test statistics in the hypothesis testing for change 
detection14,18. It is defined as the difference between the total codelength required for encoding data for the 
non-change case and that for the change case at a specific time point t. A number of data compression-based 
change statistics similar to it have also been proposed in data mining19–21. However, any differential variation of 
the compression-based change statistics has never been proposed.

Significance of this paper.  The significance of this paper is summarized as follows: 

(1)	 Proposal of D-MDL and its use for change sign detection. We introduce a novel notion of D-MDL as an 
approximation of KL-divergence of change and its differentials. We then propose practical algorithms for 
on-line detection of change signs on the basis of D-MDL.

(2)	 Theoretical and empirical justification of D-MDL. We theoretically justify D-MDL in the hypothesis testing 
of change detection. We consider the hypothesis tests which are equivalent with D-MDL scoring. We derive 
upper bounds on the error probabilities for these tests to show that they converge exponentially to zero as 
sample size increases. The bounds on the error probabilities are used to determine a threshold for raising 
an alarm with D-MDL. We also empirically justify D-MDL using synthetic datasets. We demonstrate that 
D-MDL outperforms existing change detection methods in terms of AUC for detecting the starting point 
of a gradual change.

(3)	 Applications to COVID-19 pandemic analysis. On the basis of the theoretical and empirical advantages of 
D-MDL, we apply it to the COVID-19 pandemic analysis. We are mainly concerned with how early we are 
able to detect signs of outbreaks or the contraction of the epidemic for individual countries. The results 
showed that for about 64% of outbreaks in studied countries, our method can detect signs as early as about 
6 days on average before the outbreaks. Considering the rapid spread, 6 days can earn us considerably long 
time for making responses, e.g., implementing control measures22–24. The earned time is especially precious 
in the presence of a considerably long period of the incubation of the COVID-1925–27. Moreover, we ana-
lyze relations between the change detection results and social distancing events. One of findings is that for 
individual countries, an average of about four changes/change signs detected before the implementation of 
social distancing correlates a significant decline from the peak of daily new cases by the end of April 2020.

The change analysis is a pure data science methodology, which detects changes only using statistical models 
without using differential equations about the time evolution. Meanwhile, SIR (Susceptible Infected Recovered) 
model28 is a typical simulation method which predicts the time evolution of infected population with physics 
model-based differential equations. Although the fitness of the SIR model or its variants to COVID-19 data 
was argued29,30, the complicated situation of COVID-19 due to virus mutations31–33, international interactions, 
highly variable responses from authorities34, environmental effects35,36 etc. does not necessarily make any simu-
lation model perfect. Therefore, the basic reproduction number R037 (a term in epidemiology, representing the 
average number of people who will contract a contagious disease from one person with that disease) estimated 
from the SIR model may not be precise. We empirically demonstrate that as a byproduct, the dynamics of R0 
can be monitored by our methodology which only requires the information of daily new cases. The data science 
approach then may form a complementary relation with the simulation approach and gives new insights into 
epidemic analysis. The effect of social distancing in Germany has been evaluated using the framework of change 
point analysis together with SIR model38. However, there is no work on machine learning approaches to detecting 
signs of outbreak for COVID-19.

The software for the experiments is available at https://github.com/IbarakikenYukishi/differential-mdl-
change-statistics. An online detection system is available at https://ibarakikenyukishi.github.io/d-mdl-html/
index.html

The rest of this paper is organized as follows: “Methods” introduces D-MDL and gives a theory of its use in 
the context of change sign detection. “Result I: experiments with synthetic data” gives empirical justification of 
D-MDL using synthetic datasets. “Result II: applications to COVID-19 pandemic analysis” gives applications of 
D-MDL to the COVID-19 pandemic analysis. “Conclusion” gives concluding remarks.

Methods
Definitions of changes and their signs.  Let X  be a domain, which is either discrete or continuous. Here-
after we assume that X  is discrete without loss of generality. For a random variable x ∈ X  , let p(x; θ) = p

θ
(x) be 

the probability mass function (or the probability density function in the continuous case) specified by a param-
eter θ . Supposing that θ changes over time. In the case when θ gradually changes over time, we define the signs of 
change as the starting point of that change.

Let us consider the discrete time t. Let θt be the parameter value of θ at time t. Let D(p||q) denote the Kullback-
Leibler (KL) divergence between two probability mass functions p and q:
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We define the 0th, 1st, 2nd change degrees at time t as

When the parameter sequence {θt : t ∈ Z} is known, we can define the degree of changes at any given time point. 
We can think of �(0)

t  as the degree of change of the parameter value itself at time t. We can think of �(1)
t ,�

(2)
t  as 

the velocity of change and the acceleration of change of the parameter at time t, respectively. All of them quantify 
the signs of change. However, the parameter values are not known in advance for general cases. The problem is 
how we can define the degree of changes for such cases.

Differential MDL change statistics.  In the case where the true parameter values are unknown, the MDL 
change statistics has been proposed to measure the change degree14,18 from a given data sequence. Below we 
denote xa, . . . , xb = xba . In the case of a = 1 , we may drop off a and write it as xb.

When the parameter θ is unknown, we may estimate it as θ̂ using the maximum likelihood estimation method 
from a given sequence xn . I.e., θ̂ = argmaxθp(x

n; θ). Note that the maximum likelihood function p(xn; θ̂ ) does 
not form a probability distribution of xn because 

∑

xn p(x
n; θ̂ ) > 1 . Thus we construct a normalized maximum 

likelihood (NML) distribution40 by

and consider the logarithmic loss for xn relative to this distribution by

which we call the NML codelength, where log means the natural logarithm and Cn is called the parametric com-
plexity defined as

It is known39 that Eq. (1) is the optimal codelength that achieves the Shtarkov’s minimax regret in the case where 
the parameter value is unknown. It is known40 that under some regularity condition for the model class, Cn is 
asymptotically expanded as follows:

where I(θ) is the Fisher information matrix defined by I(θ) = limn→∞(1/n)Eθ [−∂2 log p(Xn; θ)/∂θ∂θ⊤] , d is 
the dimensionality of θ , and limn→∞ o(1) = 0.

According to the study14, the MDL change statistics at time point t is defined as follows:

The MDL change statistics is the difference between that the NML codelength of a given data sequence for non-
change and that for change at time t. It is a generalization of the likelihood ratio test1,41.

Therefore, by extending the change degrees �(0)
t ,�

(1)
t ,�

(2)
t , . . . to the cases where the true parameters are 

unknown, we may consider the following statistics:

�
(α)
t  corresponds to �(α)

t  . We call �(α)
t  the α th differential MDL change statistics, which we abbreviate as the α th 

D-MDL ( α = 0, 1, 2, . . . ) . The 0th D-MDL is the original MDL change statistics as in the study14.
For example, let us consider the uni-variate Gaussian distribution:

D(p||q) =
∑

x

p(x) log
p(x)

q(x)
.

�
(0)
t

def= D(p
θt
||p

θt−1
),

�
(1)
t

def= �
(0)
t+1 −�

(0)
t = D(p

θt+1
||p

θt
)− D(p

θt
||p

θt−1
),

�
(2)
t

def= �
(1)
t −�

(1)
t−1 = D(p

θt+1
||p

θt
)− 2D(p

θt
||p

θt−1
)+ D(p

θt−1
||p

θt−2
).

pNML (x
n)

def= maxθ p(x
n; θ)

∑

yn maxθ p(yn; θ)
= maxθ p(x

n; θ)
Cn

(1)LNML(x
n)

def= − log pNML (x
n),

(2)Cn
def=

∑

xn

max
θ

p(xn; θ).

(3)Cn = d

2
log

n

2π
+ log

∫

√

|I(θ)|dθ + o(1),

(4)�
(0)
t

def= 1

n
{LNML (x

n
1 )− (LNML (x

t
1)+ LNML (x

n
t+1)).

(5)�
(1)
t

def= �
(0)
t+1 −�

(0)
t ,

(6)�
(2)
t

def= �
(1)
t −�

(1)
t−1 = �

(0)
t+1 − 2�

(0)
t +�

(0)
t−1,

· · ·

(7)p(x; θ) = 1√
2πσ

exp

(

− (x − µ)2

2σ 2

)

,
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where x ∈ R and θ = (µ, σ) . We assume |µ| < µmax and σmin < σ < σmax where µmax < ∞ , 0 < σmin, σmax < ∞ 
are hyper parameters. The 0th D-MDL at time t is calculated as

where σ̂0, σ̂1 and σ̂2 denote the maximum likelihood (ML) estimators of σ calculated for xn1 , x
t
1 and xnt+1 , respec-

tively. Cn is the parametric complexity, which is calculated according to the study14, as

The 1st and 2nd D-MDL are calculated according to Eqs. (5) and (6) on the basis of Eq. (8).

Hypothesis testing for change detection.  The 0th D‑MDL test.  We give rationale of D-MDL using 
the framework of hypothesis testing for change detection. First suppose that a change point exists at t or not. Let 
us consider the following hypothesis testing framework: The null hypothesis H0 is that there is no change point 
while the alternative hypothesis H1 is that t is an only change point.

where θ0, θ1, θ2 (θ1  = θ2) are all unknown.
With the MDL principle, the test statistics is given as follows: For an accuracy parameter ǫ > 0,

where �(0)
t  is the 0th D-MDL as in equation (4). H1 is accepted if h0(xn; t, ǫ) > 0 , otherwise H0 is accepted. We 

call this test the 0th D-MDL test.
We define Type I error probability as the probability that the test accepts H1 although H0 is true (false alarm 

rate) while Type II error probability as the one that the test accepts H0 although H1 is true (overlooking rate). The 
following theorem justifies the use of the 0th D-MDL in change detection.

Theorem 2.1  14 Type I and II error probabilities for the 0th D-MDL test are upper bounded as follows:

where Cn is the parametric complexity as in Eq. (2) and

d(p, q) in Eq. (12) is the Bhattcharyya distance between p and q.

This theorem shows that Type I and II error probabilities in Eqs. (10) and (11) converge to zero exponen-
tially in n as n increases for some appropriate ǫ when d(pNML , pθ1∗θ2 ) is large. We see that the error exponents 
are governed by the parametric complexity (2) of the model class. In this sense the 0th MDL test is effective in 
change point detection.

The 1st D‑MDL test.  Next we give a hypothesis testing setting equivalent with the 1st D-MDL scoring. We con-
sider the situation where a change point exists at time either t or t + 1 . Let us consider the following hypotheses: 
The null hypothesis H0 is that the change point is t while the alternative one H1 is that it is t + 1.

where θ0, θ1, θ2, θ3 (θ0  = θ1, θ2  = θ3) are all unknown.
We consider the following test statistics: For an accuracy parameter ǫ > 0,

(8)�
(0)
t = 1

n
log

σ̂ n
0

σ̂ t
1 σ̂

n−t
2

+ 1

n
log

Cn

CtCn−t
,

logCn = 1

2
log

16|µmax|
πσ 2

min

+ n

2
log

n

2e
− logŴ

(

n− 1

2

)

.

{

H0 : xn1 ∼ p(Xn; θ0),
H1 : xt1 ∼ p(Xt; θ1), xnt+1 ∼ p(Xn−t; θ2),

(9)h0(x
n; t, ǫ) def= 1

n
{LNML (x

n
1 )− (LNML (x

t
1)+ LNML (x

n
t+1))} − ǫ = �

(0)
t − ǫ,

(10)Type I error prob. < exp

[

−n

(

ǫ − logCn

n

)]

,

(11)Type II error prob. ≤ exp

[

−n

(

d(pNML , pθ1∗θ2 )−
logCtCn−t

2n
− ǫ

2

)]

,

(12)

d(p, q)
def= − 1

n
log

(

∑

xn

(p(xn)q(xn))
1
2

)

,

pNML (x
n) = maxθ p(x

n; θ)
∑

yn maxθ p(yn; θ)
, p

θ1∗θ2 (x
n) = p(xt1; θ1)p(xnt+1; θ2).

{

H0 : xt1 ∼ p(Xt; θ0), xnt+1 ∼ p(Xn−t; θ1),
H1 : xt+1

1 ∼ p(Xt+1; θ2), xnt+2 ∼ p(Xn−t−1; θ3),

(13)h1(x
n; t, ǫ) def= 1

n

{

(

LNML (x
t
1)+ LNML (x

n
t+1)

)

−
(

LNML (x
t+1
1 )+ LNML (x

n
t+2)

)}

− ǫ,
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which compares the NML codelength for H0 with that for H1. We accept H1 if h1(xn; t, ǫ) > 0 , otherwise we 
accept H0 . We call this test the 1st D-MDL test. We easily see

where �(1)
t  is the 1st D-MDL. This implies that the 1st D-MDL test is equivalent with testing whether the 1st 

D-MDL is larger than ǫ or not. Hence this test is also equivalent with comparison of the degree of change at 
time t + 1 and that at time t. Intuitively, if the degree of change increases significantly as time goes by, then H1 
is accepted. Thus the basic performance of discrimination of the 1st D-MDL can be reduced to that of the 1st 
D-MDL test.

The following theorem shows the basic property of the 1st D-MDL test.

Theorem 2.2  Type I and II error probabilities for the 1st D-MDL test are upper bounded as follows:

where Cn is the parametric complexity as in Eq. (2), d is the Bhattacharyya distance as in Eq. (12) and

(The proof is in Sec. 1 of the supplementary information.)
This theorem shows that for some appropriate ǫ , Type I and II error probabilities in Eqs. (15) and (16) con-

verge to zero exponentially in n as n increases where the error exponents are related to the parametric complexi-
ties for the hypotheses as well as the Bhattacharyya distance between the null and alternative hypotheses. In this 
sense the 1st MDL test is effective. Type I error probability in Eq. (15) will be used for determining a threshold 
of the alarm.

The 2nd D‑MDL test.  Next we consider a hypothesis testing setting equivalent with the 2nd D-MDL scoring. 
Suppose that change points exist either at time t or at t − 1 and t + 1.

where θ0, θ1, θ2, θ3, θ4, (θ0  = θ1, θ2  = θ3  = θ4) are all unknown. H0 is the hypothesis that a change happens at 
time t while H1 is the hypothesis that two changes happen at time t − 1 and t. In H0 , t is a single change point 
while in H1, t is a transition point between two close change points. Thus this hypothesis testing evaluates whether 
time t is a change point or a transition point of close changes.

The test statistics is: For an accuracy parameter ǫ > 0,

We accept H1 if h2(xn; t, ǫ) > 0 , otherwise accept H0 . We call this test the 2nd MDL test.
U n d e r  t h e  a s s u m p t i o n  (1/n)LNML (x

t+1
1 ) ≈ (1/n)(LNML (x

t−1
1 )+ LNML (xtxt+1))  a n d 

(1/n)LNML (x
n
t ) ≈ (1/n)(LNML (xtxt+1)+ LNML (x

n
t+2)), we have

This implies that the 2nd D-MDL test is equivalent with testing whether the 2nd D-MDL is larger than 2ǫ or 
not. Intuitively, if the degree of two-step change exceeds significantly that of one-step change as time increases, 
then H1 is accepted. Thus the basic performance of discrimination of the 2nd D-MDL can be reduced to that of 
the 2nd D-MDL test.

The following theorem shows the basic property of the 2nd D-MDL test.

Theorem 2.3  Type I and II error probabilities for the 2nd D-MDL test are upper bounded as follows:

(14)h1(x
n; t, ǫ) = �

(1)
t − ǫ = �

(0)
t+1 −�

(0)
t − ǫ,

(15)Type I error prob. < exp

[

−n

(

ǫ − logCtCn−t

n

)]

,

(16)Type II error prob. ≤ exp

[

−n

(

d(pNML(t), pθ2∗θ3 )−
logCt+1Cn−t−1

2n
− ǫ

2

)]

,

pNML(t)(x
n) = maxθ p(x

t
1; θ)

∑

yt1
maxθ p(y

t
1; θ)

·
maxθ p(x

n
t+1; θ)

∑

ynt+1
maxθ p(y

n
t+1; θ)

,

p
θ2∗θ3 (x

n) =p(xt+1
1 ; θ2)p(xnt+2; θ3).

{

H0 : xt1 ∼ p(Xt; θ0), xnt+1 ∼ p(Xn−t; θ1),
H1 : xt−1

1 ∼ p(Xt−1; θ2), xtxt+1 ∼ p(X2; θ3), xnt+2 ∼ p(Xn−t−1; θ4).

(17)

h2(x
n; t, ǫ) def= 1

n

{

(

LNML (x
t
1)+ LNML (x

n
t+1)

)

−
(

LNML (x
t−1
1 )+ LNML (xtxt+1)+ LNML (x

n
t+2)

)}

− ǫ.

(18)�
(2)
t ≈ 2h2(x

n; t, ǫ)+ 2ǫ.

(19)Type I error prob. < exp

[

−n

(

ǫ − logCtCn−t

n

)]

,

(20)Type II error prob. ≤ exp

[

−n

(

d(pNML(t) , pθ2∗θ3∗θ4 )−
logCt−1C2Cn−t+1

2n
− ǫ

2

)]

,
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where Cn is the parametric complexity as in Eq. (2), d is the Bhattacharyya distance as in Eq. (12) and

This theorem can be proven similarly with Theorem 2.2 Type I probability in Eq. (19) will be used for deter-
mining the threshold in “Sequential change sign detection with D-MDL”.

Sequential change sign detection with D‑MDL.  In previous sections, we considered how to measure 
the change sign score at a specific time point t. In order to detect change signs sequentially for the case where 
there exist multiple change points, we can conduct sequential change sign detection using D-MDL in a simi-
lar manner with the study14. We give two variants of the sequential algorithms. One is the sequential D-MDL 
algorithm with fixed windowing while the other is that with adaptive windowing. In the former, we prepare a 
local window of fixed size to calculate D-MDL at the center of the window. We then slide the window to obtain 
a sequence of D-MDL change scores as with the study14 (see also the study42 for local windowing). We raise an 
alarm when the score exceeds the predetermined threshold β . The algorithm is summarized as follows:

In the study43, the sequential algorithm with adaptive windowing (SCAW) was proposed by combining the 0th 
D-MDL with ADWIN algorithm9 (see also the study44 for adaptive windowing) where the window grows until 
the maximum of the MDL change statistics in the window exceeds a threshold. Once it exceeds the threshold, 
we drop the data earlier than the time point where the maximum is achieved and the window shrinks. Then the 
process restarts. It outputs the size of window whenever a change point is detected.

According to the study43, for the window size w, the threshold ǫw for w�(0) is set so that the total number 
of false alarms is finite. This is set as follows: For some parameter δ > 0 , when the parameter is d-dimensional,

Hierarchical sequential D‑MDL algorithm.  Practically, we combine the algorithm with adaptive win-
dowing for the 0th D-MDL and the algorithms with fixed windowing for the 1st and 2nd D-MDL. We call this 
algorithm the hierarchical sequential D-MDL algorithm. It is designed as follows. We first output not only the 0th 
D-MDL score but also a window size with the 0th D-MDL with adaptive windowing and raise an alarm when the 
window shrinks, i.e., Eq. (21) is satisfied for some time in the window. We then output the 1st and 2nd D-MDL 
scores using the window produced by the 0th D-MDL and raise alarms when for some time in the window, the 
1st or 2nd D-MDL exceeds the threshold so as to expect the 1st and 2nd D-MDL to detect change signs before 
the window shrinkage. Note that the window shrinks only with the 0th D-MDL, but neither with the 1st nor 
2nd D-MDL.

In this algorithm, for the window size w, the threshold for the 1st D-MDL score w�(1)
t  is determined so that 

Type I error probability in Eq. (15) is less than the confidence parameter δ1 . That is, from Eqs. (15) and (3), let-
ting the threshold be ǫ(1)w = ǫw, we use Eq. (3) ignoring O(1) term to obtain

This yields

We employ the righthand side of Eq. (22) as the threshold of an alert of the 1st D-MDL.
The threshold ǫ(2)w  for the 2nd D-MDL score w�(2)

t  can also be derived similarly with the 1st one. Note that by 
Eq. (18), the threshold is 2 times the accuracy parameter for the hypothesis testing. Letting δ2 be the confidence 
parameter, we have

pNML(t)(x
n) = maxθ p(x

t
1; θ)

∑

yt1
maxθ p(y

t
1; θ)

·
maxθ p(x

n
t+1; θ)

∑

ynt+1
maxθ p(y

n
t+1; θ)

,

p
θ2∗θ3∗θ4 (x

n) =p(xt−1
1 ; θ2)p(xtxt+1; θ3)p(xnt+2; θ4).

(21)ǫw = (2+ d/2+ δ) logw + log(1/δ).

Type I prob. < exp(−ǫ(1)w + logCtCn−t)

≈ exp(−ǫ(1)w + (d/2) log(w/2)× 2) ≤ δ1.

(22)ǫ(1)w ≥ d log(w/2)+ log(1/δ1).
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We employ the righthand side of Eq. (23) as the threshold of an alert of the 2nd D-MDL. In practice, δ1 and δ2 
are estimated from data (see “Data modeling”).

The hierarchical sequential D-MDL algorithm is summarized as follows:

Result I: experiments with synthetic data
Datasets.  To evaluate how well D-MDL performs for abrupt/gradual change detection, we consider two 
cases; multiple mean change detection and multiple variance one.

In the case of multiple mean change detection, we constructed synthetic datasets as follows: Each datum was 
independently drawn from the Gaussian distribution N (µt , 1) where the mean µt abruptly/gradually changed 
over time according to the following rule: In the case of abrupt changes,

where H(x) is the Heaviside step function that takes 1 if x > 0 otherwise 0. In the case of gradual changes, H is 
replaced with the following continuous function:

In the case of multiple variance change detection, each datum was independently drawn from the Gaussian 
distribution N (0, σ 2

t ) where the variance σ 2
t  abruptly/gradually changed over time according to the following 

rule: In the case of abrupt changes,

In the case of gradual changes, H is replaced with S as with the multiple mean changes.
We define a sign of a gradual change as the starting point of that change. In all the datasets, change points for 

abrupt changes and change signs for gradual changes were set at nine points: t = 1000 , 2000, . . . , 9000.

Evaluation metric.  For any change detection algorithm that outputs change scores for all time points, let-
ting β be a threshold parameter, we convert change-point scores {st} into binary alarms {at} as follows:

(23)ǫ(2)w ≥ 2(d log(w/2)+ log(1/δ2)).

µt = 0.3

9
∑

i=1

(10− i)H(n− 1000i),

S(x) =
{

0 (x < 0),
x/300 (0 ≤ x < 300),
1 (x ≥ 300).

log σt = 0.1

9
∑

i=1

(10− i)H(n− 1000i).
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By varying β , we evaluate the change detection algorithms in terms of benefit and false alarm rate defined as 
follows: Let T be a maximum tolerant delay of change detection. When the change truly starts from t∗ , we define 
benefit of an alarm at time t as

where t∗ is a change point for abrupt change, while it is a sign for gradual change.
The total benefit of alarm sequence an−1

0  is calculated as

The number of false alarms is calculated as

where �(t) takes 1 if and only if t is true, otherwise 0. We evaluate the performance of any algorithm in terms of 
AUC (Area under curve) of the graph of the total benefit B/ supβ B , against the false alarm rate (FAR) N/ supβ N , 
with β varying.

Methods for comparison.  In order to conduct the sequential D-MDL algorithm, we employed the uni-
variate Gaussian distribution whose probability density function is given by Eq. (7).

We employed three sequential change detection methods for comparison: 

(1)	 Bayesian online change point detection (BOCPD)11: A retrospective Bayesian online change detection 
method. It originally calculates the posterior of run length. We modified it to compute a change score by 
taking the expectation of the reciprocal of run length with respect to the posterior.

(2)	 ChangeFinder (CF)4: A state-of-the-art method of abrupt change detection.
(3)	 ADWIN29: A change detection method with adaptive windowing.

We conducted the sequential D-MDL algorithms with fixed window size in order to investigate their most basic 
performance in terms of the AUC metric. The sequential D-MDL algorithm with adaptive windowing outputs 
the window size rather than the D-MDL values themselves, hence in order to evaluate the effectiveness of the 
magnitude of D-MDL, the sequential D-MDL with fixed windowing is a better target for the comparison. All 
of CF, BOCPD, and ADWIN2 had some parameters, which we determined from five training sequences drawn 
from the data generation mechanism so that the AUC scores were made the largest.

Results.  The performance comparison is summarized in Table 1. We see that both for the datasets, in the 
case of abrupt changes, the 0th D-MDL performs best, while in the case of gradual changes, the 1st D-MDL per-
forms best and the 2nd D-MDL performs worse than the 1st but better than the 0th. That matches our intuition. 
Because the 0th D-MDL was designed so that it could detect abrupt changes while the 1st one was designed so 
that it could detect starting points of gradual changes.

Result II: applications to COVID‑19 pandemic analysis
Since the beginning of 2020, many regions/countries have suffered from the epidemic of COVID-19. The purpose 
of our analysis is to demonstrate the importance of monitoring the dynamics of the epidemic through detecting 
the occurrence of drastic outbreaks and their signs. We define outbreak as a significant increase in the number 

at =
{

1 (st > β),
0 (otherwise).

b(t; t∗) =
{

1− |t−t∗|
T (0 ≤ |t − t∗| < T),

0 (otherwise),

B(an−1
0 ) =

n−1
∑

k=0

akb(k; t∗).

N(an−1
0 ) =

n−1
∑

k=0

ak�(b(k; t∗) = 0).

Table 1.   Average AUC scores ± standard deviation on the synthetic datasets.

Multiple-mean-changing 
datasets

Multiple-variance-changing 
datasets

Abrupt Gradual Abrupt Gradual

BOCPD 0.546± 0.059 0.416± 0.038 0.574± 0.022 0.354± 0.029

CF 0.591± 0.031 0.505± 0.029 0.608± 0.023 0.506± 0.018

ADWIN2 0.500± 0.000 0.542± 0.016 0.500± 0.000 0.458± 0.024

D-MDL (0th) 0.918± 0.016 0.614± 0.041 0.825± 0.031 0.521± 0.050

D-MDL (1st) 0.480± 0.006 0.623± 0.020 0.272± 0.016 0.533± 0.023

D-MDL (2nd) 0.494± 0.006 0.620± 0.003 0.486± 0.004 0.526± 0.003
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of cases in a region/country. We note that to contain the spread of COVID-19, many countries have enacted 
social distancing policies, e.g., stay-at-home order, closing non-essential services, and limiting travel. We thus 
also relate the results of our analysis to social distancing events.

In particular, we are mainly concerned with the following two problems: 

1.	 How early are the outbreak signs detected prior to outbreaks?
2.	 How are the outbreaks/outbreak signs related to the social distancing events?

As a byproduct, the analysis of the dynamics of the basic reproduction number R037 is conducted, which can 
serve as supplementary information to the particular value estimated from the SIR model45.

Data source.  We studied the data provided by European Centre for Disease Prevention and Control 
(ECDC) which can be accessed through the link https://www.ecdc.europa.eu/en/publications-data/download-
todays-data-geographic-distribution-covid-19-cases-worldwide. In this paper, we focused on the first wave 
because various factors made the situations very complicated in later waves, e.g., virus mutations31–33, people 
being tired of social distancing and the mixture of two waves in the transition period. In particular, we studied 
37 countries with no less than 10,000 cumulative cases by Apr. 30, 2020 since some countries started to ease the 
social distancing around the date. More details about these countries can be found in Sec. 2 of the supplementary 
information. It is worth mentioning that the proposed method can be applied to any region/country where there 
is a COVID-19 epidemic because the input to the method is only the number of cases. In practice, we suggest 
starting to run our algorithm when the spread of the virus into the region of concern through local infections 
begins but not when the cases are just imported.

Data modeling.  We studied two data models by considering the value of R0, which by definition is the 
product of transmissibility, the average contact rate between susceptible and infected individuals, and the dura-
tion of infectiousness45. At the initial phase of an epidemic, R0 is larger than one37. And the cumulative cases may 
grow exponentially46–49. We thus employed the Malthusian growth model50 because it is widely used for charac-
terizing the early phase of an epidemic48,49. In particular, the cumulative cases at time t, C(t), grows according to 
the following equation:

where C(0) is the number of cases at the start of an epidemic, and r is the growth rate of daily new cases. In the 
experiments, we took the logarithm of C(t) to obtain the linear regression of the logarithm growth with respect 
to time as follows:

We modeled the residual error of the linear regression using the univariate Gaussian. See Sec. 3 in the supple-
mentary file for the detail of calculation of the MDL change statistics for this model. When a change is detected 
in the modeling of the residual error, we examine the increase/decrease in the coefficient of the linear regression, 
i.e., r. We expect to detect changes in the parameter of the exponential modeling to monitor the increase/decrease 
of R0 because R0− 1 is proportional to r47.

In later phases, the exponential growth pattern may not hold. For instance, when R0 < 1 , daily new cases 
would continue to decline and cease to exist37. Considering the complicated real scenarios, epidemic models with 
certain assumptions on the growth rate or R0 may not fit an epidemic at a given time. Therefore, we employed the 
univariate Gaussian distribution as in Eq. (7) to directly model the number of daily new cases, without assum-
ing any patterns of the growth. The change in the parameter of the Gaussian modeling may reveal the relation 
between one and R0, i.e., R0 > 1 when daily new cases increase significantly or R0 < 1 when daily new cases 
decrease significantly.

We conducted the hierarchical sequential D-MDL algorithm as in “Hierarchical sequential D-MDL algo-
rithm”. The confidence parameter δ for the 0th D-MDL as in Eq. (21) was set to be 0.05. Those for the 1st and 
2nd D-MDL, i.e. δ1, δ2 as in Eqs. (22), (23) were determined as follows: We calculated the D-MDL scores around 
the time when the initial warning was announced by an authority; we determined δ1, δ2 so that the score was the 
threshold. For example, the initial warning for Japan was set on Feb. 27, when the government required closing 
elementary, junior high and high schools. If the resulting δ1, δ2 was larger than 1, it was set to be 0.99 because 
of the concept of confidence parameter. More details about the implementation are provided in Sec. 4 of the 
supplementary information.

Case study.  We present a representative case study of Japan due to space consideration. For results of all 
the studied countries, please refer to Sec. 5 of the supplementary information. In Japan, state of emergency as 
the social distancing event was issued on Apr. 7. The results are presented in Fig. 1 and Fig. 2 for the Gaussian 
modeling and the exponential modeling, respectively. Change scores were normalized into the range [0, 1]. The 
data of Japan did not include the confirmed cases from ‘Diamond Princess’.

With the Gaussian modeling, there were several alarms raised before the social distancing event. For each 
alarm raised by the 0th D-MDL, the interpretation can be a statistically significant increase in cases, with refer-
ence to Fig. 1a. Hereafter, a change that was detected by the 0th D-MDL and that corresponded to the increase 
of cases was regarded as an outbreak, which instantiates our definition of outbreak. The outbreak detection is 
the classic change detection. We further relate it to R0. Around the dates of the alarms, R0 > 1 was considered 

(24)C(t) = C(0) exp(rt),

(25)logC(t) = rt + logC(0).



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:19795  | https://doi.org/10.1038/s41598-021-98781-4

www.nature.com/scientificreports/

a

b

c

d

e

Figure 1.   The results for Japan with the Gaussian modeling. The date on which the social distancing was 
implemented is marked by a solid line in black. (a) The number of daily new cases. (b) The change scores 
produced by the 0th D-MDL where the line in blue denotes values of scores and dashed lines in red mark 
alarms. (c) The window sized for the sequential D-MDL algorithm with adaptive windowing where lines in red 
mark the shrinkage of windows. (d) The change scores produced by the 1st D-MDL. (e) The change scores by 
the 2nd D-MDL. In all figures the negative scores are omitted.
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Figure 2.   The results for Japan with the exponential modeling. The label “Local cumulative cases” in subfigure 
(a) means that the cumulative cases only accumulate daily cases from each starting date of change detection 
and would be set to zero after each change detected by the 0th D-MDL. The date on which the social distancing 
was implemented is marked by a solid line in black. (a) The number of cumulative cases. (b) The change scores 
produced by the 0th D-MDL where the line in blue denotes values of scores and dashed lines in red mark 
alarms. (c) The window sized for the sequential D-MDL algorithm with adaptive windowing where lines in 
red mark the shrinkage of windows. (d) The change scores produced by the 1st D-MDL. (e) The change scores 
produced by the 2nd D-MDL.
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since we can confirm that the new infections resulted from community transmission. Correspondingly, R0 was 
estimated around 2.5 in early March by an epidemiological study51. When the 0th D-MDL raised an alarm, the 
window size shrank to zero. Before that, both the 1st and the 2nd D-MDL raised alarms, which are interpreted as 
the changes in the velocity and the acceleration of the increase of cases, respectively. We can conclude that the 1st 
and the 2nd D-MDL were able to detect the signs of the outbreak by examining the velocity and the acceleration 
of the spread. The sign detection is the new concept with which we propose to supplement the classic change 
detection. The 0th D-MDL raised no alarms about outbreaks after the event. We think the social distancing played 
a critical role in containing the spread because it can significantly suppress R0 through reducing the contact rate. 
The 1st D-MDL still raised alarms, which were signs of decreases in the cases.

As for the exponential modeling, there were alarms raised by the 0th D-MDL both before and after the 
social distancing event. By looking at the growth pattern of local cumulative cases in Fig. 2a, we can see that 
all the alarms were about the cessations of the exponential growth. Moreover, we checked that the alarms were 
associated with decreases in the coefficient of the linear regression. Therefore, we concluded that all the alarms 
indicated significant decreases in R0. Although the last two alarms were raised on Mar. 26 and Apr. 28, the dates 
as the change points were within the windows as of Mar. 26 and Apr. 28, and were identified as Mar. 12 and Apr. 
18, respectively. There was an epidemiological study51 which showed the effectiveness of the initial warning 
announced on Feb. 27 at reducing R0. As a result, it demonstrated that our method can effectively identify the 
decrease in R0 around Mar. 12. According to the result, our method identified another decrease in R0 around 
Apr. 18, which we think was mainly due to the social distancing event on Apr. 7. Therefore, our method based 
on the exponential modeling also confirmed that social distancing was very effective at containing the spread. 
The alarms raised by the 1st and 2nd D-MDL demonstrated the capability of the sign detection.

As a comparison, the Gaussian modeling was effective at estimating the relation between one and R0 while the 
exponential modeling was able to monitor the change in the value of R0. The two models form a complementary 
relation on monitoring the dynamics of R0. For instance, for Japan, the Gaussian modeling showed that the 
value of R0 reminded at a value larger than one, and the exponential modeling showed that its value decreased 
during the studied period. Due to the difference in the modeling, the changes detected by the 0th D-MDL were 
at different dates between the Gaussian modeling and the exponential modeling. In terms of the sign detection, 
both the Gaussian modeling and the exponential modeling were effective.

Summarization on individual countries.  This section summarizes several statistics about the change 
detection results in Table 2 and presents two interesting observations. The first is about how early the signs can 
be detected prior to changes. For the countries studied, there were 106 and 54 changes in total detected by the 
Gaussian modeling and the exponential modeling, respectively. There were more changes detected by the Gauss-
ian modeling because daily cases would significantly change with either R0 > 1 or R0 < 1 while it may take 
relatively longer time for significant changes in R0. The number of changes whose signs were detected by either 
the 1st or the 2nd D-MDL was 68 and 26 for the Gaussian modeling and the exponential modeling, respectively, 
representing high detection rates. For each change whose signs were detected, we measured the time difference 
between the earliest sign alarm and the change alarm. For the Gaussian modeling which can detect outbreaks, 
the time difference in terms of the number of days is 6.25 (mean) ± 6.04 (standard deviation). Considering the 
fast spread, six days can buy us considerably long time to prepare for an outbreak, and even to avoid a potential 
outbreak.

In particular, with the Gaussian modeling, the 1st D-MDL detected signs for 65 changes and the 2nd D-MDL 
detected signs for 27 changes. The smaller number by the 2nd D-MDL might be because the 1st D-MDL is bet-
ter at detecting starting points of gradual changes, and is consistent with results on the synthetic datasets as in 
Table 1. The number of days before which the 1st D-MDL detected signs was 6.35 ± 5.91, and the number for 
the 2nd D-MDL was 5.56 ± 6.50. Note that not all the changes allowed for sign detection since the 1st D-MDL 

Table 2.   Summarization of statistics where changes represent the alarms raised by the 0th D-MDL and signs 
were alarms raised by either the 1st or the 2nd D-MDL.

Measurement Gaussian Exponential

Total number of changes 106 54

Number/percentage of changes whose signs were detected by either the 1st or the 2nd D-MDL 68/64% 26/48%

Number of days before which the first sign was detected by either the 1st or the 2nd D-MDL for a change 6.25± 6.04 11.27± 7.72

Total number of changes that allowed for the 1st/2nd D-MDL sign detection 88/81 53/53

Number of changes whose signs were detected by the 1st/2nd D-MDL 65/27 26/6

Number of days before which the first 1st D-MDL sign was detected for a change 6.35± 5.91 11.27± 7.72

Number of days before which the first 2nd D-MDL sign was detected for a change 5.56± 6.50 5.17± 5.67

Number of changes and signs before the event for the downward countries 4.30± 2.79 -

Number of changes and signs before the event for the non-downward countries 5.96± 4.22 -

Number of days from event’s date to the first downward change’s date for downward countries 30.00± 8.28 -

Number of days from event’s date to Apr. 30 for non-downward countries 36.54± 7.28 -

Number of decreasing changes and signs for the downward countries - 10.60± 6.67

Number of decreasing changes and signs the non-downward countries - 9.96± 9.65
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and the 2nd D-MDL sign detection require one more and two more data points in the window than the 0th 
D-MDL, respectively. The number of changes allowing for a 1st D-DML sign was 88 while the number for a 2nd 
D-DML sign was 81. Hence, it turned out that some changes occurred too quickly before signs can be detected. 
The analysis of the results obtained by the exponential modeling is similar and omitted for space consideration.

Second, we observed that on average, countries responding faster in terms of a smaller number of alarms 
raised by the Gaussian modeling before the social distancing event saw a quicker contraction of daily cases. As 
of Apr. 30, the curve of daily cases in many countries had been flatten, and even started to be downward. There-
fore, alarms for declines in the number of daily cases from the global peak number were raised for ten countries 
including Austria, China, Germany, Iran, Italy, Netherlands, South Korea, Spain, Switzerland, and Turkey. These 
countries are referred to as downward countries. In total, the number of all kinds of alarms raised before the event 
for downward countries was 4.30 ± 2.79 while it was 5.96 ± 4.22 for other countries. Therefore, if the social dis-
tancing is a viable option, it is suggested that the action should better be taken before it is late, e.g., later than four 
alarms. We further measured that it took an average of 30 days to suppress the spread if prompt social distancing 
policies were enacted. By contrast, the average number of days from the date of social distancing event to Apr. 
30 was nearly 37 for non-downward countries, which was considerably more than the time used for suppressing 
the spread in downward countries. The results of the exponential modeling confirmed the above observation. 
In particular, changes and their signs which corresponded to decreases in R0 for the downward countries were 
more than those for the non-downward countries.

Limitations and challenges of the COVID‑19 analysis.  Since the proposed method only examines the 
number of COVID-19 cases, the analysis can only give an overall estimation of the dynamics of the pandemic 
which are the results of the joint effects of various kinds of physical factors including the characteristics of the 
virus, human mobility patterns, mask usage, vaccine coverage, environmental factors, and etc. When changes 
happen to any one of the physical factors, e.g., virus mutations or the entry of the virus into sewage52, the number 
of cases may change. Accordingly, the major limitation of the proposed method is that itself cannot associate the 
detected changes, either outbreaks or their signs, with a particular physical factor.

We were concerned with detecting signs of the first wave of COVID-19. Although we employed the Gaussian 
model and the exponential growth model in computing D-MDL, such models might not be necessarily most 
appropriate for dealing with later waves, since a number of waves are mixed in the transition periods. One of 
challenges is to consider more sophisticated models such as latent variable models in dealing with later waves.

Conclusion
This paper has proposed a novel methodology for detecting signs of changes from a data stream. The key idea is 
to use the differential MDL change statistics (D-MDL) as a sign score. This score can be thought of as a natural 
extension of the differentials of the Kullback–Leibler divergence for measuring the degree of changes to the case 
where the true mechanism for generating data is unknown. We have theoretically justified D-MDL using the 
hypothesis testing framework and have empirically justified the sequential D-MDL algorithm using the syn-
thetic data. On the basis of the theory of D-MDL, we have applied it to the COVID-19 pandemic analysis. We 
have observed that the 0th D-MDL found change points related to outbreaks and that the 1st and 2nd D-MDL 
were able to detect their signs several days earlier than them. We have further related the change points to the 
dynamics of the basic reproduction number R0. We have also found that the countries with no more than five 
changes/change signs before the implementation of social distancing tended to experience the decrease in the 
number of cases considerably earlier. This analysis is a new promising approach to the pandemic analysis from 
the view of data science.

Change detection, which aims to detect points in a sequence of random variables at which the probability 
distribution change, has been studied for decades and has wide applications, such as event detection, failure 
detection, malware detection, etc4,14,43. Change sign detection proposed in this paper aims to detect early warn-
ing signals of such changes by identifying the speed and acceleration of changes in the probability distribution, 
and therefore has the same applicability as the change detection.

Future work includes studying how we can integrate the change analysis such as our methodology with the 
conventional simulation studies such as SIR model. It is expected that our data science approach has a comple-
mentary relation with the simulation approach and gives new insights into epidemiology. Moreover, we plan to 
study later waves which are more complicated situations than the first wave.
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