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Abstract: Streptococci are a family of bacterial species significantly affecting human health. In addition,
environmental Streptococci represent one of the major causes of diverse livestock diseases. Due to
antimicrobial resistance, there is an urgent need for novel antimicrobial agent discovery against
Streptococci. We discovered a class of benzoic acid derivatives named sigmacidins inhibiting the
bacterial RNA polymerase-σ factor interaction and demonstrating excellent antimicrobial activity
against Streptococci. In this work, a combinational computer approach was applied to gain insight into
the structural basis and mechanism of action of sigmacidins as antimicrobials against Streptococcus
pneumoniae. Both two- and three-dimensional quantitative structure-active relationships (2D and 3D
QSAR) of sigmacidins displayed good predictive ability. Moreover, molecular docking and molecular
dynamics simulation studies disclosed possible contacts between the inhibitors and the protein. The
results obtained in this study provided understanding and new directions to the further optimizations
of sigmacidins as novel antimicrobials.

Keywords: Streptococci; antimicrobials; QSAR; MD simulation

1. Introduction

Streptococci are a large family of Streptococcus species widely present in the environment
and as microbiota of mammals such as humans, wild animals and livestock. Streptococcus
pneumoniae, belonging to the alpha-hemolytic streptococcal species, is one of the most com-
mon human pathogens leading to a range of pneumococcal diseases, including otitis media,
sinusitis, pneumonia, septicemia, and meningitis [1]. The beta-hemolytic streptococcal
species such as Streptococcus pyogenes (Group A Streptococcus, GAS) and Streptococcus agalac-
tiae (Group B Streptococcus, GBS) represent the other two pathogens frequently triggering
human diseases such as streptococcal pharyngitis (strep throat), impetigo, pneumonia, and
meningitis [2,3]. In addition, more than one third of herd mastitis incidences are caused
by “Environmental Streptococci” [4,5]. This name was coined after Streptococci which leads
to animal diseases [6], such as Streptococcus dysgalactiae, Streptococcus uberis (Groups C
and G Streptococci, GCS and GGS), and Enterococcus spp., which used to be classed in the
genus Streptococcus (Group D Streptococcus) prior to 1984 [7]. The medical application to
treat streptococcal infections by antibiotics is sometimes ineffective due to antimicrobial
resistance [5,8]. As a result, S. pneumoniae has been listed in the World Health Organization
Global Priority Pathogens List for which new antibiotics are urgently needed [9].

The emergence of multidrug resistance to current antibiotics among pathogens high-
lights the importance of the discovery of novel antimicrobials with minimized antimicrobial
resistance. Protein-protein interactions (PPI) are appropriate targets for reducing antimicro-
bial resistance [10]. We focused on the specific and conserved bacterial PPIs for antimicro-
bial discovery [11]. Bacterial RNA polymerase (RNAP) comprises several subunits: 2α, β,
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β′,ω (Gram-positive bacteria include one more subunit ε) [12,13], and interacts with the
bacteria-specific transcription factor σ to form a holoenzyme to recognize DNA promoters
and initiate bacterial transcription. Therefore, this essential PPI represents an appropriate
target for antimicrobial agent discovery [14]. Biochemistry studies have shown that the
binding site between the region 2.2 of σ factor (σ2.2) and the clamp helix region of the RNAP
β′ subunit (β′CH) is the major binding site for this PPI [15]. Based on the structural biologi-
cal information [16,17] (Figure 1A), we designed a pharmacophore model and screened
out three hit compounds (C3, C4, and C5) showing the specific inhibitory activity [18]. The
optimization of compound 1 (C3) resulted in the discovery of a set of derivatives such as 3
(C3-005), 46 (ejmc 8e), and 40 (jmc Cpd. 54) with dramatically improved antibacterial activ-
ities, in particular against Streptococci including S. pneumoniae, S. pyogenes, S. agalactiae, and
Enterococcus faecalis with minimum inhibitory concentrations (MIC) lowered to 1 µg/mL,
comparable to current antibiotics in the market (Figure 1B) [19–21]. Considering the general
structure of benzoic acid in this class of compounds and the protein σ factor on which these
compounds mimic for binding, we named this class of antimicrobials as “sigmacidin”.
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Figure 1. (A) Escherichia coli RNA polymerase holoenzyme (α2ββ
′ωσ) (PDB: 1IW7, [17]) and the de-

tailed interactions between β′CH and σ2.2, hydrogen bonds: green, hydrophobic: magenta; (B) Chemi-
cal structures of reported sigmacidins derivatives targeting the RNAP-σ interaction and their activities
against S. pneumoniae.

With a new class of antimicrobial agents in hand, we intend to make use of the
quantitative structure-activity relationship (QSAR) analysis to explore the relationship
between the observed antimicrobial activity and numerical descriptors in order to predict
the biological properties of perspective compounds and guide future syntheses [22]. The 2D
QSAR study considers physicochemical properties of signal atoms and functional groups
and their contribution to biological activity, while 3D QSAR could foresee the potential
three-dimensional structure of the ligand molecules [23]. In this study, statistical methods
including multiple linear regression (MLR) and partial least square analysis (PLS) were
applied to analyze the correlation between properties or descriptors of the molecules and
molecular properties [24].

In an attempt to reveal the relationships between the chemical structures and their
activity against the representative S. pneumoniae, we took fiftysix molecules reported previ-
ously [20,21] to generate a set of quantitative rules and construct both 2D and 3D QSAR
models for the design of novel derivatives. Their structures are given in the supporting
information (Table S1) and their activities against S. pneumoniae (MIC) are shown in Table 1.
Moreover, molecular docking and molecular dynamics (MD) simulations were performed
to gain insight into the structural basis and the inhibitory mechanism of the inhibitors.
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Table 1. Compounds selected for modeling and their observed and predicted activity against
S. pneumoniae.

Cpd. MIC
(µg/mL) MW MIC (M) pMIC

2D QSAR 3D QSAR

Predicted pMIC ∆ b Predicted pMIC ∆ b

1 a 256 394.40 6.49 × 10−4 3.188 3.503 −0.315 3.616 −0.428
2 a 128 409.41 3.13 × 10−4 3.505 3.579 −0.074 4.060 −0.555
3 8 448.28 1.78 × 10−5 4.748 4.406 0.342 4.552 0.196
4 256 362.34 7.07 × 10−4 3.151 3.295 −0.144 3.089 0.062
5 256 354.36 7.22 × 10−4 3.141 2.899 0.242 2.994 0.148
6 128 409.42 3.13 × 10−4 3.505 3.119 0.386 3.564 −0.059

7 a 64 395.43 1.62 × 10−4 3.791 3.529 0.262 3.674 0.117
8 64 394.40 1.62 × 10−4 3.790 3.508 0.282 3.642 0.148
9 128 394.40 3.25 × 10−4 3.489 3.516 −0.027 3.692 −0.203

10 256 523.52 4.89 × 10−4 3.311 3.942 −0.631 3.303 0.008
11 256 376.36 6.80 × 10−4 3.167 3.224 −0.057 3.140 0.027
12 256 394.35 6.49 × 10−4 3.188 3.328 −0.14 3.181 0.007
13 128 376.36 3.40 × 10−4 3.468 3.575 −0.107 3.261 0.207
14 8 449.31 1.78 × 10−5 4.749 4.541 0.208 4.437 0.313

15 a 256 463.29 5.53 × 10−4 3.258 3.996 −0.738 4.507 −1.249
16 256 418.44 6.12 × 10−4 3.213 4.095 −0.882 3.311 −0.098
17 128 397.38 3.22 × 10−4 3.492 3.802 −0.31 4.072 −0.580

18 a 32 436.48 7.33 × 10−5 4.135 4.154 −0.019 4.012 0.123
19 256 409.42 6.25 × 10−4 3.204 3.069 0.135 3.467 −0.263
20 64 409.42 1.56 × 10−4 3.806 3.229 0.577 3.827 −0.021
21 32 407.44 7.85 × 10−5 4.105 4.247 −0.142 4.181 −0.076

22 a 256 383.38 6.68 × 10−4 3.175 3.173 0.002 3.612 −0.437
23 32 448.28 7.14 × 10−5 4.146 4.418 −0.272 4.426 −0.280
24 32 498.51 6.42 × 10−5 4.193 4.182 0.011 3.936 0.256
25 64 428.85 1.49 × 10−4 3.826 3.860 −0.034 3.894 −0.068
26 64 431.23 1.48 × 10−4 3.829 4.013 −0.184 3.401 0.427
27 64 395.43 1.62 × 10−4 3.791 3.660 0.131 3.462 0.329
28 256 395.43 6.47 × 10−4 3.189 3.581 −0.392 3.366 −0.177
29 256 436.44 5.87 × 10−4 3.232 3.228 0.004 3.632 −0.400
30 4 483.75 8.27 × 10−6 5.083 4.915 0.168 4.469 0.614
31 16 479.33 3.34 × 10−5 4.477 4.297 0.180 5.112 −0.635
32 16 534.41 2.99 × 10−5 4.524 4.359 0.165 4.744 −0.221
33 64 484.38 1.32 × 10−4 3.879 4.246 −0.367 3.787 0.092
34 16 463.33 3.45 × 10−5 4.462 4.776 −0.314 4.466 −0.004
35 256 396.78 6.45 × 10−4 3.190 3.656 −0.466 3.353 −0.163
36 4 528.20 7.57 × 10−6 5.121 4.962 0.159 4.467 0.654
37 256 483.75 5.29 × 10−4 3.276 4.912 −1.636 4.470 −1.194

38 a 4 449.31 8.90 × 10−6 5.050 4.500 0.550 5.204 −0.154
39 16 403.28 3.97 × 10−5 4.401 4.082 0.319 4.561 −0.160
40 1 483.75 2.07 × 10−6 5.685 4.868 0.817 5.246 0.439

41 a 16 434.29 3.68 × 10−5 4.434 4.798 −0.364 5.189 −0.755
42 32 418.29 7.65 × 10−5 4.116 3.891 0.225 4.428 −0.311
43 32 446.35 7.17 × 10−5 4.145 4.213 −0.068 4.449 −0.304

44 a 8 482.72 1.66 × 10−5 4.781 4.773 0.008 4.648 0.133
45 8 482.72 1.66 × 10−5 4.781 4.766 0.015 4.653 0.128
46 2 516.27 3.87 × 10−6 5.412 4.925 0.487 4.725 0.687
47 4 468.74 8.53 × 10−6 5.069 5.159 −0.090 5.289 −0.221
48 4 448.32 8.92 × 10−6 5.050 5.073 −0.023 5.081 −0.031
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Table 1. Cont.

Cpd. MIC
(µg/mL) MW MIC (M) pMIC

2D QSAR 3D QSAR

Predicted pMIC ∆ b Predicted pMIC ∆ b

49 8 478.30 1.67 × 10−5 4.777 4.278 0.499 4.681 0.096
50 8 466.27 1.72 × 10−5 4.766 4.512 0.254 4.592 0.174
51 4 516.27 7.75 × 10−6 5.111 4.914 0.197 4.737 0.374

52 a 2 502.29 3.98 × 10−6 5.400 5.271 0.129 5.273 0.126
53 a 8 464.32 1.72 × 10−5 4.764 4.611 0.153 5.126 −0.362
54 2 468.74 4.27 × 10−6 5.370 5.169 0.201 5.271 0.099
55 4 452.28 8.84 × 10−6 5.053 4.908 0.145 5.218 −0.164
56 2 502.29 3.98 × 10−6 5.400 5.251 0.149 5.243 0.157

a Compounds taken for the test set; b ∆ = Experimental pMIC—Predicted pMIC.

2. Results and Discussion
2.1. Two-Dimensional QSAR
2.1.1. Two-Dimensional QSAR Study

A 2D QSAR study for compounds against S. pneumoniae was performed to determine
the factors/descriptors related to the antibacterial activities of compounds 1–56, and to
disclose the structural features contributing towards the bacterial inhibitory activities. In
this study, the molecular properties for the compounds in the training set were calculated
using the “Calculate Molecular Properties” protocol in Discovery Studio 2016 (DS 2016).

Descriptors used for the building of the model were selected based on the results of
the intercorrelation matrix between the calculated descriptors. In the present research,
the selected descriptors have intercorrelation values lower than 0.5 (Table 2) to avoid
model overfitting, and the result of the matrix analysis revealed the independence of
these descriptors.

Table 2. Intercorrelation data of descriptors used to develop 2D QSAR Model.

Property AlogP HBA Count LUMO Eigenvalue
VAMP

Molecular Polar
Surface Area

AlogP 1.000 −0.367 −0.264 −0.490
HBA Count 1.000 −0.114 0.405

LUMO Eigenvalue VAMP 1.000 −0.350
Molecular Polar Surface Area 1.000

A Multiple Linear Regression (MLR) analysis method was used to construct the model.
The statistical quality of the MLR model was judged by the calculation of the squared
correlation coefficient (r2) for internal validation and the predictive squared correlation
coefficient (r2

pred) for external validation [25]. Moreover, the predictive power of the QSAR
model was verified using LOO internal validation or cross validation (q2). Usually, a value
of q2 > 0.5 is considered acceptable [26]. In this model, the r2 was 0.732, r2

pred was 0.613,
and q2 equaled 0.562, which indicated the true predictive ability of the model (Table 3)

Table 3. Regression statistics table.

R r2 r2

(Adjusted)
r2

(Prediction)
RMS Residual

Error
q2

(Cross-Validation)
RMS Residual Error
(Cross-Validation)

0.856 0.732 0.705 0.613 0.399 0.562 0.526

2.1.2. Two-Dimensional QSAR Model Analysis

The predicted activities for the inhibitors versus their experimental activities and the
residues between them are listed in Table 1. The correlation between the predicted activities
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and the experimental activities are depicted in Figure 2. These results demonstrated that the
predicted activities by the constructed MLR model were in good agreement with the experi-
ment data, suggesting that the 2D QSAR model was reliable for structure-activity prediction.
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Equation (1) represents the MLR model obtained by DS 2016. According to Equation (1),
four descriptors, including (a) ALogP reflecting lipophilicity [27], (b) hydrogen bond ac-
ceptor (HBA) which is critical to potency, selectivity, permeability, and solubility [28],
(c) molecular polar surface area, a guideline towards the improvement of oral absorption
and permeability [29], and (d) LUMO eigenvalue that is related to electrostatic proper-
ties [30], were used to describe the relationship between chemical properties and the
antimicrobial activity. Compared with the molecular polar surface area, AlogP, HBA
count, and LUMO Eigenvalue showed higher correlations, and slight variations of these
descriptors significantly affected the activity.

Equation (1) representing the 2D QSAR model:

pMIC = 0.5647 + 0.5705(ALogP) − 0.2073(HBA Count) + 0.0090 (Molecular Polar Surface Area)

+ 0.2049(LUMO Eigenvalue VAMP)
(1)

To further improve the predictive ability of the above model, an outlier analysis was
conducted using the Find Outlier Molecules module of DS 2016 to identify the outliers
in the dataset, and the acceptable level was set to 95 (95% confidence interval). Results
showed that four compounds were returned as outliers, including compounds 10,for which
the Molecular PSA was too high, 33 for which the LUMO Eigenvalue VAMP was too low,
and 39 and 43, for which the Molecular PSA was too low. These four compounds were
removed and a new 2D QSAR model was constructed. In the revised model, r2 was 0.777,
r2

pred was 0.721, and q2 equaled to 0.690, which indicated the improved predictive ability
of the model (Table 4).

Table 4. Regression statistics table.

R r2 r2 (Adjusted) r2 (Prediction)
RMS Residual

Error
q2

(Cross-Validation)
RMS Residual Error
(Cross-Validation)

0.882 0.777 0.753 0.721 0.375 0.690 0.447

Equation (2) represents the revised MLR model. As shown in the equation, changes in
the ALogP and LUMO Eigenvalue VAMP may affect the antimicrobial active significantly
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as they have higher correlations in comparison with HBA count and molecular polar
surface area.

Equation (2) representing the upgraded 2D QSAR model:

pMIC = 0.6578 + 0.5757(ALogP) − 0.07427(HBA Count) + 0.01056 (Molecular Polar Surface Area) −
0.2082(LUMO Eigenvalue VAMP)

(2)

2.2. Three-Dimensional QSAR
2.2.1. Molecular Alignment

Structural alignment of the molecules is critical to both the predictive accuracy of a 3D
QSAR model and reliability of contour models. Therefore, we applied flexible alignment to
align all the molecules in this study. The most active compound, 40, was selected as the
alignment template and the rest of the compounds were aligned to it by using the common
substructure as displayed in Figure 3.
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2.2.2. Three-Dimensional QSAR Study

The 3D QSAR model in this study was built by the Field-Based model module in
Maestro 10.2. The statistical parameters are presented in Table 5. Here, r2 is the non-cross-
validated value for the regression, r2

CV is the LOO cross-validated correlation value, r2

scramble represents the average value of r2 from a series of models built using scrambled
activities, and “Stability” reflects the sensitivity of the model to omissions from the training
set. Q2 is directly analogous to r2, but is based on the test set predictions. When the r2 value
is larger than the stability value, this is an indication that the dataset is over-fit. As we set
PLS factor to six considering the statistical results, the three-factor model was selected with
r2 and r2

CV values of 0.805 and 0.568, respectively, and a stability value of 0.883 (Table 5).

Table 5. Statistical results of the 3D QSAR model.

SD r2 r2
CV

r2

Scramble
Stability F P RMSE Q2 Pearson-r

0.356 0.805 0.568 0.482 0.883 56.4 1.31×10−14 0.52 0.528 0.835

The model was built using four fields, including steric, electrostatic, hydrogen bond
(H-bond) donor, and H-bond acceptor. As shown in Table 6, the steric field and the
hydrophobic field contributed significantly to the antibacterial activity with percentages of
36.1% and 29.8%, respectively.
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Table 6. Field Distribution (%).

Steric Electrostatic Hydrophobic H-Bond Acceptor H-Bond Donor

36.1 9.4 29.8 9.8 14.9

The eleven compounds randomly selected by Maestro 10.2 were used as the test
set to validate the predictive ability of the 3D QSAR model. As a result, the predicted
pMIC values shown in Table 1 were in good alignment with the experimental data, with
a Pearson-r (the correlation between the predicted and observed activity for the test set)
value of 0.835 and a Q2 value of 0.528. The correlation plots between the experimental and
predicted pMIC values for both the training and test sets were shown in Figure 4. Though
some outliers may possibly be generated, the results demonstrated the potential of the 3D
QSAR model to be used for drug design with a good predictive power.
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2.2.3. Interpretation of the 3D QSAR Contour Maps

To visualize the structure-activity relationship of these inhibitors, the steric, electro-
static, hydrophobic, H-bond donor, and H-bond acceptor contour maps of the models are
displayed in Figure 5. The most active compound, 40, was used for further analysis.

In the steric contour (Figure 5A), the green regions represented that the introduction of
bulky substituents might increase activity, while steric hindrance should be avoided in the
yellow regions. As shown in Figure 5A, a relatively large green contour was found around
3,4-diCl groups of compound 40, indicating that bulky substituents might be preferred
in this region, while at 5- and 6-positions of the right benzene ring, steric hindrance
was unfavorable.

The electrostatic contour (Figure 5B) for compound 40 showed that a relatively large
blue contour was located around the para-position to the -COOH group, suggesting that
electron-deficient substituents may increase the activity. In addition, a small blue region
was found to surround the -NO2 group, this can explain why reduction or removal of -NO2
resulted in reduction of the antimicrobial activity. In contrast, the red contour was mainly
located around the linker, which meant electron-rich linkers may improve the activity.
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Figure 5. Three-dimensional QSAR StDev*Coeff contour maps using the most bioactive compound
40. (A) Steric fields: favored (green) and disfavored (yellow); (B) electrostatic fields: electropositive
(blue) and electronegative (red); (C) hydrophobic field: favored (yellow) and disfavored (white);
(D) H-bond acceptor field: favored (Red) and disfavored (magenta); Hydrogen bond donor field:
favored (blackish green) and disfavored (pale green).

On the hydrophobic contour map (Figure 5C), the yellow regions indicated that the
hydrophobic groups were preferred, while the white regions favored hydrophilic groups. It
was shown that a relatively large blue region appeared around the 3,4-diCl groups; together
with the prediction of the steric contour, the models indicated that replacing the -Cl with
bulky and hydrophobic substituents might be beneficial to the antibacterial activity. In the
contrast, the white regions were adjacent to the molecule but did not wrap it up like the
yellow regions.

H-bond acceptor and donor contour maps are displayed in Figure 5D. H-bond accep-
tors were favored as red regions and unfavored in the magenta regions. Moreover, H-bond
donors were preferred as blackish green and pale green as the unfavorable regions. The
magenta and blackish green contours covered the middle benzene ring, while the red and
pale green regions encircled the -COOH group. Briefly, the H-bond acceptor and donor
groups contributed less to the activity compared to the steric and hydrophobic groups.

2.3. Docking and MD Simulations Studies of Compound 1 and 40
2.3.1. Docking Studies

To compare the differences between the most bioactive compound 40 and the hit
compound 1 in the binding processes, their potential binding modes and key interactions
were analyzed using the LibDock module of DS 2016. As shown in Figure 6A,B, the -NH2
and -NO2 groups of compound 1 formed hydrogen bonds with Asp542 (H···O 2.15 Å)
and Arg550 (O···H 1.85 Å) of β′CH region, respectively. Additionally, some weak π-cation
interactions existed between the aromatic ring of compound 1 and Arg553 and Arg546.
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Figure 6. Binding modes and details of interaction of compound 1 (yellow, (A,B)) and compound 40
(magenta, (C,D)) in complex with β′CH extracted from RNAP holoenzyme (PDB: 1IW7, [17]).

In Figure 6C,D, it is suggested that compound 40 formed three classical hydrogen
bonds with β′-CH region, including two H-bonds between the carboxylic group and Arg553
(O···H 2.68 Å) and Lys556 (O···H 2.32 Å), one H-bond between -NO2 and Arg550 (O···H
2.93 Å), while the S atom formed a nonclassical H-bond with Arg546 (S···H 2.48 Å).

The docking results indicated both compounds made extensive contacts with β′CH.
In comparison to the hit compound 1, compound 40 made more interactions with the
“hotspot” residues, including Arg546, Arg550, and Arg553 through hydrogen bonds.

2.3.2. MD Simulation Studies

To further understand the difference on the binding processes of hit compound 1 and
compound 40, 10 ns MD simulations based on the above-mentioned binding modes were
performed. To study the dynamic stability of both systems, root-mean-square deviations
(RMSD) from the starting structures were analyzed (Figure 7). The plots showed that
both the two systems reached equilibrium within 6 ns, and the proteins and ligands in
both systems were stable after equilibrium. Average RMSD values for the protein and
ligand in 1-β′CH bound system were 2.0 Å and 4.1 Å, respectively, while the corresponding
values for the 40-β′CH bound system were 2.3 Å and 4.0 Å, respectively. Moreover, it was
observed that compound 40 fluctuated more violently which might be due to the distances
of the connected bonds between 40 and β′CH in the docking model. They were slightly
longer than the distances between compound 1 and β′CH. In addition, the protein in the
40-β′CH system encountered more sizable rearrangement. This may be due to compound
40 having a more flexible structure. It could generate more conformations which require
the protein to make more changes to adapt.
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(B) for the compounds 1- and 40-β′CH systems as a function of the simulation time.

The energy of both complexes through MD simulation is shown in Figure 8. During the
10 ns production run, due to the existence of counter ions, the potential energy will often not
decrease [31]. Results demonstrated that compound 40 in complex with the β′CH region
had a much lower total energy compared to that of hit compound 1 (Figure 8A), especially
the electrostatic energy (Figure 8B), while the van der Waals energies of the two systems
were similar (Figure 8C). These results indicated that more attention should be given on
the electrostatic energy when developing high-affinity inhibitors of the β′CH-σ interaction.
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The binding energy of both inhibitors with β′CH were calculated using the Calcu-
late Binding Energy module of DS 2016. For each system, binding energy calculation
was performed for snapshots extracted every 100 ps from the last 2 ns of the whole
10 ns MD trajectory. For each snapshot, the free energy was calculated for each molec-
ular species (complex, protein, and ligand), and the binding free energy was defined
as: ∆Ebinding = ∆EComplex − ∆EReceptor − ∆ELigand [32]. Results showed that the average
binding energy for compounds 1 and 40 were −12.1359 kcal/mol and -9.8806 kcal/mol,
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respectively. These results showed similar binding interactions of compounds, while
compound 40 is a more flexible molecule, which may lead to higher binding energy
as demonstrated.

To further understand the mechanic of action of the inhibitors, the final snapshots of
the 10 ns trajectory were used to analyze the interactions between β′CH and compound 40
and 1, respectively. For compound 1, in comparison with the starting conformation, the
most outstanding difference was that the benzoic acid moiety was turned over to form
two hydrogen bonds between the carboxylic group and Arg549 and Arg553 (Figure 9A,B).
Moreover, the nitro group not only retained the H-Bonding interaction with Arg550, but
also formed a new hydrogen bond with Arg546.
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Figure 9. (A) Snapshot at 10 ns showed the binding mode of compound 1 in complex with β′CH
region, and details of the interactions (B); (C) snapshot at 10 ns showed the binding mode of com-
pound 40 in complex with β′CH region, and details of interactions (D). Hydrogen bonds (green),
electrostatic interactions (yellow) and hydrophobic interactions (magenta).

For compound 40, the three benzene rings of compound 40 positioned much closer to
the surface of the helix. This led to the molecule that made more interactions with the key
residues of β′CH region (Figure 9C). As shown in Figure 9D, the carboxylic acid group of 40
formed a hydrogen bond and a salt-bridge with residues Arg553 and Lys556, respectively.
Moreover, the nitro group formed two hydrogen bonds with Arg546 and Arg550, while a
salt bridge was also formed between the nitro group and Arg550. In addition, the 3,4-diCl
group of the left benzene ring formed hydrophobic interactions with Arg545. Overall, these
interactions may play key roles for the bioactivity of compound 40.

3. Materials and Methods
3.1. Dataset

All small molecule RNAP-σ inhibitors and their antimicrobial activities (MIC, µg/mL)
were adopted from previous studies [20,21]. The MIC values in units of microgram per
milliliter (µg/mL) were transformed in molarity (M) and subsequently transformed to
pMIC (−logMIC). The dataset was divided into a training set for model generation and a
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test set (Table 1) for model validation, containing 45 and 11 compounds, respectively. The
test set was chosen randomly by Maestro 10.2.

3.2. Preparation of the Small Molecules

The 3D structures of compounds were generated using Maestro 10.2, geometrically
minimized with Macromodel (Maestro 10.2) based on the OPLS-2005 force field and all
other parameters were set to the default settings [33].

3.3. Two-Dimensional QSAR Model Construction

Two-dimensional molecular properties of the training set compounds were calculated
by module “Calculate Molecular Properties” in DS 2016. Two-dimensional descriptors
including PKa, AlogP, molecular weight, molecular property counts (Num_aromatic Rings,
Num_H_Acceptors, Num_H_Donors, Num_Rings, Num_RotatableBonds), Molecualr sur-
face Area, Molecular_Fractional Polar Surface Area, HOMO Eigenvalue VAMP, and LUMO
Eigenvalue VAMP were adopted. The model was validated using the test set correlation
and Leave-one-out (LOO) cross validation.

3.4. Three-Dimensional QSAR Model Construction

A 3D QSAR model was developed by Maestro 10.2. The alignment was achieved
by using the Flexible Ligand Alignment module. The 3D QSAR model was generated by
Field-based QSAR module with default parameters. The field style was set to Gaussian
field, including steric, electrostatic, hydrophobic, H-bond acceptor, and donor field. The
maximum PLS factor was set to six and in the PLS regression analysis, a leave-one-out
(LOO) cross validation was performed to find the optimal number of components. The
descriptors were generated in a 3D cubic lattice with grid spacing of 1 Å and extending to
3 Å units beyond the aligned molecules in all directions. In addition, the cutoff values for
truncating steric force and electrostatic force fields were both set to 30 kcal/mol.

3.5. Docking and Molecular Dynamic Simulations

The crystal structure of the β′CH region was extracted from the crystal structure
of bacterial RNAP (PDB: 1IW7, [17]) which was downloaded from Protein Data Bank.
Structures of the compounds and the protein for docking were imported to DS 2016 and the
conformations were generated with the protocol “Prepare Protein” and “Prepare Ligands”,
respectively. Molecular Docking was performed using the LibDock tool and the identified
critical residues for the σ2.2-β′CH region PPI (including Arg546, Arg550, Arg553, Leu566)
were defined as the binding sites. The docking process was conducted with the default
parameters unless otherwise mentioned. MD simulation was conducted in a similar manner
as described [34]. Binding free energy was calculated according to the literature [32].

4. Conclusions

Streptococci are an important bacterial family closely related to human wellbeing,
while environmental Streptococci significantly affect herd health. Antimicrobial resistance
to conventional antibiotics is emerging due to natural resistance mechanisms and antibiotic
misuse. Therefore, novel antimicrobial agents are urgently required. We focused on
bacterial transcription [35,36] and discovered a series of benzoic acid derivatives and
named them sigmacidins. They were capable of mimicking bacterial transcription factor
σ at the region 2.2 to disrupt its binding to RNAP and to exhibit excellent antimicrobial
activity against Streptococci including E. faecalis.

In this study, a combined computational approach was applied to investigate the
relationship of the structural basis and antimicrobial activities of sigmacidins. Both 2D and
3D QSAR models were constructed, and the binding poses of the inhibitors to the protein
were obtained.

The 2D QSAR model constructed revealed close structure-activity correlation and
contribution of various properties/descriptors in the activity. In the model identified
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in this study, ALogP, hydrogen bond acceptor (HBA), molecular polar surface area, and
LUMO eigenvalue were taken to describe the SAR. The 2D QSAR equation implied that
the activity of the compounds was related to and can be improved by increasing AlogP,
molecular polar surface area, and the LUMO eigenvalue. This equation will be useful to
estimate antimicrobial activity of newly designed compounds. Two-dimensional QSAR for
bioactivity prediction is simple and efficient; however, it was obtained based on limited
structures of substituents and may have accurate correlations to a relatively small range of
substitutions for further structural optimizations.

The 3D QSAR model gained further insight into the 3D structure information for
the understanding of the SAR of these antimicrobials. The importance of the steric and
hydrophobic properties of the 3,4-substitution of the left benzene ring was highlighted,
while the substituents at para-position of the -COOH group could be further explored for
novel derivative synthesis. Besides guiding the modifications of existing molecules, the
constructed model can also be used directly for virtual screening to identified novel hits.

Finally, molecular docking indicated possible binding poses of the inhibitors in com-
plex with β′CH and MD simulations used to rationalize the docked poses. In this study, the
docking model of the 40-β′CH system showed similar stability to 1-β′CH and the binding
free energy of 40-β′CH was slightly higher than that of 1-β′CH, probably due to its flexible
structure. Fortunately, the surface of the protein fragment is enriched in arginine which
is elastic and able to accommodate more conformational changes of compound 40. In
addition, compared to the starting docking models, after 10 ns simulation, both compounds
formed more H-bonding contacts with β′CH region, especially with “hotspot” residues,
including Arg546, Arg550, and Arg553. This indicated that the binding affinity might
be increased by enhancing acidity of the inhibitors. For example, the nitro group can be
replaced by acidic substituents. While compound 40 demonstrated significantly superior
antibacterial activity to compound 1, the possible reasons may include the greater bacterial
cell membrane permeability of compound 40 which was optimized from hit compound
1. Nevertheless, the docking and MD simulations showed some difference, probably due
to the challenging PPI target with a relatively flat binding site. Here, we need to combine
the two methods which put forward possible contacts between ligands and the β′CH
region. This combination is useful for future structure-based drug design. The newly
designed compounds that fulfill the requirement by these 3D features may be able to bind
to the same target protein and possess significant antimicrobial activity, which remain to be
experimentally evaluated.

Overall, the models established in this study provided useful indications for the design
of novel sigmacidins derivatives against pathogenic Streptococci. Note that sigmacidins also
demonstrated excellent antimicrobial activity against Staphylococci such as Staphylococcus
aureus, Staphylococcus epidermidis, and Staphylococcus Saprophyticus [20,21]. We believe that
the further development of sigmacidins via ligand-based and structure-based drug design
will contribute to novel antimicrobial agent discovery in the post-antibiotic era.
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