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Abstract: Selenium nanoparticles (SeNPs) are a novel elemental form selenium and often reported
to possess beneficial bioactivities such as anticancer, promoting bone growth and immunomodu-
lation. Our previous study demonstrated that chitosan-stabilized SeNPs have strong activity in
immunomodulation. However, the mechanism underlying the immunomodulation of SeNPs is still
unknown. The aim of this study is to identify the molecular mechanisms involved in SeNP-induced
immunomodulation. Using zebrafish, as a common immunological animal model with a highly
conserved molecular mechanism with other vertebrates, we conducted serum proteomic and tissue
transcriptome analyses on individuals fed with SeNP in healthy or disease conditions. We also com-
pared differences between SeNPs and an exogenous antioxidant Trolox in immune activity and redox
regulation. Our results suggest that the immunomodulation activity was highly related to antioxidant
activity and lipid metabolism. Interestingly, the biological functions enhanced by SeNP were almost
identical in the healthy and disease conditions. However, while the SeNP was suppressing ROS in
healthy individuals, it promoted ROS formation during disease condition. This might be related
to the defense mechanism against pathogens. SOD and NFkβ appeared to be the key molecular
switch changing effect of SeNPs when individuals undergo infection, indicating the close relationship
between immune and redox regulation.

Keywords: Orbitrap tandem mass spectrometry; antioxidant; lipid metabolism; infection

1. Introduction

Selenium (Se) is an essential element for all animals. Common Se exists in inor-
ganic (e.g., selenite) or organic form (selenomethionine) and plays an important role in
human health through functions and activities of various selenoproteins [1]. More than
25 selenoproteins have been identified in humans and animals, including enzymes such
as glutathione peroxidase (GPx), playing important roles in regulation of the immune,
antioxidant and other metabolisms [2].

The health and biological effects of Se are well-known to relate to its chemical forms.
Traditionally, only effects on inorganic (e.g., selenate) and organic (selenomethionine) Se
species are studied. Recently, selenium nanoparticles (SeNPs), nanoparticles of elemental Se
(i.e., Se0), have been reported to have many unique biological activities, such as anticancer,
bone growth promotion and immunomodulation [3–5]. These unique biological functions
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benefit in part from the effects of unique properties of nanoparticles on the cell life cycle [6]
and from their excellent bioavailability [4].

One of the promises of SeNPs is their ability to modulate the immune system. For
example, SeNPs were found to promote activities of T-helper cells and cytokine expression
to fight tumors [7]. They have also been reported to improve the systemic and mucosal
immune status [8]. SeNPs have also been proposed to be used as adjuvants for vaccines as
they induced a robust Th1 cytokine response [9]. SeNP is also considered as a promising
Se formulation for antioxidant function regulation [10]. For example, cysteine-stabilized
SeNP was shown to have a better antioxidant effect when compared with selenite or naked
SeNP [11]. SeNP was effective as an antioxidant in protecting liver against acetaminophen-
induced hepatic damage [12].

It is well-established that antioxidant and immune regulations are interrelated [13].
Antioxidants have been shown in much research to have anti-inflammatory effects [14].
For SeNPs, however, it is not well-established whether its effects on the immune system
is related to its antioxidant properties. Moreover, up until now, most research on SeNPs
has been focused on its effects on healthy individuals; its effects on sick individuals are not
known. In our previous study, we found that chitosan-stabilized SeNP could promote a
wide range of innate and adaptive immune responses to confer strong protection against
bacteria pathogens [5]. Therefore, this SeNP can be used as a model to understand if
the antioxidant and immune regulatory effects of SeNP are related in healthy and sick
individuals.

Biochemical changes in serum are often used as biomarkers indicative of the over-
all health and immune status of an individual, including assessments of key proteins,
cytokines, and metabolites [15]. The evaluation of serum proteins is a well-established
laboratory approach in the diagnosis of many diseases [16,17]. For example, serum im-
munoglobulin levels are frequently increased during the infection of pathogens [18]. Com-
plement components in serum are responsible for a number of reactions that help fight
infections, such as the opsonization of pathogens [19]. Selenoproteins such as the selenopro-
tein p and GPx present in serum are also widely used as indicators of Se and the redox status
in a given individual, respectively [20]. Therefore, variations in the levels of serum proteins
can be used to reflect the health of the host and can provide insight into the physiological
status of the host.

Inflammation-induced innate immune cell activities require energy. For example, T-
lymphocyte proliferation is highly reliant on glycolysis and the degradation of lipids for en-
ergy through β-oxidation [21]. Macrophages reduced the inflammatory phenotype through
enhancing the β-oxidation of lipids by inhibiting the activity of acetyl-CoA carboxylase
(ACC) through phosphorylation [21]. A previous study reported that Se supplementation-
induced ROS–lipid metabolism is highly linked with immune responses [22]. Se supple-
mentation (e.g., deficiency or excess) is highly associated with lipid metabolism [23,24].
For example, dietary Se deficiency suppressed lipid synthesis in a pig liver and activated
signaling pathway links to nutrient sensing, which led to a low body weight and deficient
energy [25]. Conversely, excessive Se supplementation induced hyperglycemia and hyper-
insulinemia, which are associated with the suppression of sugar metabolism and elevated
lipid metabolism [26]. Tang reported that dietary Se supplementation induced reactive
oxygen species (ROS), which, in turn, modulated hepatic energy metabolism (e.g., central
carbon and lipid metabolism) and inflammation [25,27]. ROS regulates lipid synthesis
through de novo synthesis lipid substrates such as citrate and acetyl-CoA [25]. Therefore, it
is interesting to understand if SeNP plays a role in regulating lipid metabolism in relation
to its immunomodulation activities.
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In this study, SeNPs were synthesized using chitosan as a stabilizer. We compare
immune responses and redox conditions of the animals under healthy and disease condi-
tions after exposed to SeNPs in the diet. Serum proteomics and transcriptome analyses
were used to explore the potential mechanisms of SeNP immunomodulation. We also
expose zebrafish to this SeNP via diet and contrast that with a diet containing exogenous
antioxidant Trolox. We will explore the immune mechanisms following these three hy-
potheses: (1) SeNP and Trolox have different regulations in the immune responses and
antioxidative activity, (2) SeNP changes different serum protein expressions in immune
activity in healthy and disease condition and (3) the immunomodulation of SeNP might
rely on Se endogenous metabolism and lipid regulation in the body.

2. Materials and Methods
2.1. Selenium Nanoparticles (SeNPs) Preparation and Characterization

Selenium nanoparticles (SeNPs) using chitosan as a stabilizer were synthesized using
a controllable reduction method, as described in Xia et al. [5]. Freshly prepared ascorbic
acid solution (100 mM) was added into aqueous 0.25% (w/v) chitosan solution and mixed
by magnetic stirring. Drop by drop sodium selenite solution (25 mM) was added into the
mixture in the dark. The mixture was then made up to 25 mL by MilliQ water (Millipore,
Burlington, MA, USA) and allowed to react at room temperature for 12 h in the dark before
subjected to extensive dialysis (Mw cut off: 8000).

Size distribution of the nanoparticle was measured by high-resolution transmis-
sion electron microscopy (HRTEM; JEOL 2010, Horiba EX-250, Peabody, MA, USA) and
NanoSight NS300 (Malvern Instruments Ltd., Worcestershire, UK). The elemental composi-
tions of the SeNPs were measured by energy dispersive X-ray spectroscopy (EDX) under
TEM. HRTEM and selected area electron diffraction (SAEN) pattern of the SeNPs were
acquired on a JEOL 2010 microspore to understand the crystal structure of the NP. The Se
concentration in the SeNP stock was determined by ICP-MS (Agilent 7500, Santa Clara,
CA, USA).

2.2. SeNPs Diet and Trolox Diet Preparation

Preparation of the SeNP diet followed the method described in Xia et al. [5]. A diet
containing 10 µg/g SeNP was made by thoroughly mixing the appropriate volume of SeNP
stock with 10 g of dry fish diet (Otohime B1, Campbell, CA, USA) in a Petri dish (Thermo
Fisher, Waltham, MA, USA). The mixture was then freeze-dried for 48 h and passed through
a 100-µm sieve to break into particle sizes suitable for zebrafish.

The total antioxidant capacity of the SeNP was determined using an antioxidant
capacity assay kit (Sigma, Burlington, MA, USA). The results indicated that 1 M SeNP (1 M
in Se) had a total antioxidant capacity equal to 0.349 M Trolox. The total antioxidant capacity
of 10 µg/g SeNP was equal to 11 µg/g Trolox. A Trolox diet (11 µg/g) was prepared by
dissolving 110 µg Trolox in 10 mL MilliQ water and mixed with 10 g base fish diet. A
control diet was prepared by mixing with MilliQ water only using the same protocol. All
diets were preserved in 50 mL centrifuge tubes at 4 ◦C in dark until the experiment. The
SeNP diet was analyzed by TEM and EDX. The total Se concentrations of the experiment
diets were determined by IPC-MS.

2.3. Fish Maintenance

Adult zebrafish (Danio rerio) was maintained in a 15-L tank flowthrough system at a
temperature of 28 ± 0.5 ◦C and pH 7.0 ± 0.2 under a 14:10 light/dark cycle. Daily care
and experiments carried out were under approved animal care and ethics protocols of the
institution (19–20/70-ABCT-R-GRF). Fish were fed with commercial fish feed (Otohime B1,
Reed Mariculture, Campbell, CA, USA) three times per day and supplemented with live
brine shrimp nauplii once a day.
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2.4. Comparison of Immunomodulation Effects with SeNP and Trolox Diet

We performed a bacterial challenge to examine the immune responses of individuals
under the SeNP or Trolox diet. A total of 240 male zebrafish (~9 months) were randomly
selected and acclimated in experimental tanks for 3 days before experiment. One hundred
and twenty fish were fed with the SeNP diet, while another 120 fish were fed with only
the base diet as the control. The fish were fed at a daily ration of 2% body weight. After
9 days of feeding, the fish in each treatment were randomly separated into two groups. The
disease group contained 60 zebrafish intraperitoneally (ip) injected with 2.5 × 106 cfu of
Aeromonas hydrophila (ATCC 7699, Manassas, VA, USA) in 10 µL using a 33-gauge needle.
This protocol has been validated in our laboratory and can induce ~70% mortality in 72 h [5].
The remaining 60 fish in each diet treatment were subjected to an ip injection of 10 µL
phosphate-buffered saline (PBS) as a control and are denoted as the healthy group. The
survival rate of fish after the injection were recorded every 4 h until 72 h post-injection.
Zebrafish that survived until the end of the experiment were euthanized to collect blood
and serum for proteomic analyses. This study only used male zebrafish as the preliminary
data showed that the serum from female fish contained high levels of vitellogenin in the
serum and interfered with the detection of lower abundance proteins.

Immune response biomarkers (lysozyme activity, phagocytic respiratory burst activity
and lymphocytes proliferation) were studied to compare these two equal antioxidant
capacity diets. Zebrafish was fed with the SeNP diet, Trolox diet and the control diet at a
ration of 2% body weight per day. After 9 days of exposure, 45 zebrafish from each treatment
were sacrificed to collect the serum, liver, kidney and spleen, and each replicate was pooled
from 5 individuals. Serum lysozyme activity, phagocytic respiratory burst activity, T-cell
and B-cell proliferation were measured using previously published methods. [5].

2.5. Comparison of Antioxidation Effects with SeNP and Trolox Diet

The total intracellular reactive oxygen species (ROS) was measured with a commercial
kit (Abcam, Cambridge, UK). For each replicate, liver samples from 5 individual zebrafish
were homogenized on ice in 1 mL of PBS at pH 7.0. Homogenized samples were then
incubated with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) in a dark, humidified
chamber for 20 min at 28 ◦C. The ROS concentration was measured on a plate on a fluores-
cence plate reader at Ex/Em = 485/535 nm after incubation. The ROS concentration was
normalized against the protein concentration in samples.

The total reduced GSH concentration was measured with a commercial kit (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China). Liver homogenates (500 µL) from
5 individuals were diluted with 1 mL of PBS and centrifuged under 4000× g for 10 min at
4 ◦C. The supernatants were incubated with 5,5-dithio-bis-(2-nitrobenzoic acid) to produce
a yellow color with 5-thio-2-nitrobenzoic acid (TNB). Mixed disulphide, GSTNB (between
GSH and TNB), is reduced by glutathione reductase (GR) to regenerate GSH and release
TNB. The rate of TNB production is directly proportional to this reaction, which is, in turn,
directly proportional to the concentration of GSH. The concentration of TNB was measured
at 405–414 nm normalized by the protein concentration in the samples.

Activities of four key antioxidant enzymes in the liver, namely GPx, GR, CAT and
SOD, were measured using commercial kits in triplicate (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China). For GPx, the enzymatic activity was measured by the rate
of formation of oxidized glutathione (GSSG). Homogenized liver samples (5 µL) were
incubated with 5, 5′-dithiobis (2-nitrobenzoic acid) (DTNB at 100 µL) to generate TNB
for 10 min, and the concentration of TNB was measured afterwards as described above.
Positive controls were performed by adding 20 µmol/L GSH solution in 5 µL. The activity of
GPx was calculated following the manufacturer’s protocol and expressed as U/mg protein.
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The GR activity was determined by measuring the rate of NADPH oxidation [28]. A
small amount (10 µL) of homogenized liver sample was added to 200 µL of 1 mM NADPH
solution. The concentration of oxidized NADPH was measured by absorbance at 340 nm
for 3 min. Each unit of GR activity is defined as the amount of protein that oxidized 1 mM
NADPH per min.

The activity of a CAT was determined by the catalyzed decomposition of a fixed
concentration of hydrogen peroxide (1 µmol; H2O2) per min. Firstly, 10 µL of homogenized
liver samples were incubated with ammonium molybdate (220 µL) for 10 min. The residual
ammonium molybdate was reacted with H2O2 to generate a yellowish complex (OD at
240 nm). One unit of catalase activity is defined as 1 µmol H2O2 consumed per mg of
protein per sec. The activity of SOD was measured based on the inhibition of tetrazolium
salt (WST-1) reduction. SOD reduces the natural oxidation of WST-1, which would convert
it into a water-soluble formazan dye. Liver homogenates (20 µL) were incubated with
WST-1 solution (200 µL) for 20 min, and SOD activity was calculated based on formazan dye
concentrations measured by absorbance at 450 nm. One unit of SOD activity is defined as
the amount of enzymes required to inhibit the oxidation reaction by 50% and was expressed
as U/mg protein.

2.6. Serum Collection and Proteomic Sample Preparation

After the bacterial challenge, zebrafish serum was collected from healthy and disease
conditions following a published protocol [29]. Fish was euthanized by immersion into
1.0 mg/mL MS-222 (Sigma, Burlington, MA, USA) for 2 min. The caudal peduncle of
each zebrafish was then cut with a scalpel. Fish, with wounds pointing down, were
individually placed into 0.5 mL microcentrifuge tubes with a small hole at the end. This
0.5-mL microcentrifuge tube containing the fish was, in turn, placed inside a 1.5 mL
microcentrifuge tube (Eppendorf, Hamburg, Germany). This assembly was centrifuged
at 700 rpm for 5 min at 12 ◦C to collect blood. As each zebrafish could only give small
amounts of blood, we pooled blood from 5 individuals as one replicate. Blood was allowed
to clot on ice for 30 min, and serum was separated from blood cells by centrifugation at
1500 rpm for 10 min at 4 ◦C. Serum was stored at 80 ◦C until analysis. Three replicates of
serum samples were collected for each treatment. Protein concentrations of each serum
sample was determined using BCA protein assay (Thermo Scientific, Waltham, MA, USA).

From each replicate, 10 µg serum protein was then diluted with 5 µL of 6 M urea
buffer (6 M urea, 50 mM dithiothreitol (DTT), 10 mM Tris-HCL, pH 8.0, Sigma, Burlington,
MA, USA) and then reduced with 5 µL of 5 mM DTT in 25 mM ammonium bicarbonate
for 45 min at 56 ◦C, and then underwent alkylation with 10 µL of 14 mM iodoacetamide
(IAA, Sigma, Burlington, MA, USA) in 25 mM ammonium bicarbonate for 30 min at room
temperature in the dark.

The protein in each sample was allowed to precipitate using cold acetone for 2 h at
−20 ◦C. Centrifugation at 14,000 rpm for 10 min at 4 ◦C was used to harvest the protein
and the protein pellet was air-dried for 30 min. The protein pellet was then dissolved in
2 µL of 6 M urea buffer containing 1 µg trypsin (Promega, Madison, WI, USA) and 20 µL of
25 mM ammonium bicarbonate at 37 ◦C overnight. Digestion was stopped by acidification
(pH < 3) using 5% trifluoroacetic acid (TFA, Sigma, Burlington, MA, USA) the following
morning. Peptides were then extracted using C18 ZipTip (Millipore, Burlington, MA, USA)
pre-equilibrated with 0.1% TFA. After sample loading, peptides were eluted with 80%
acetonitrile (ACN, MS grade, Sigma, Burlington, MA, USA) in 0.1% TFA. Then, CentriVap
Centrifugal Vacuum Concentrators (Labconco, Kansas City, MO, USA) were used to dry
the peptides, which were resuspended in 10 µL of 0.1% formic acid (FA, Sigma, Burlington,
MA, USA) afterwards.

For each sample, 1 µL of 1 fmol/µL typically digested alcohol dehydrogenase protein
from Saccharomyces cerevisiae (Sigma, Burlington, MA, USA) was added as an internal
standard prior to LC-MS/MS analysis. Each unique peptide concentration detected by
LC-MS/MS was normalized to the concentration of the internal standard peptides [30].
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2.7. Serum Proteomics Analysis

Peptide samples were analyzed by ultra-high-performance liquid chromatography
(UHPLC, UltiMate 3000 Rapid Separation Quaternary System, Thermo Scientific, Waltham,
MA, USA) coupled with an Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Thermo
Scientific, Waltham, MA, USA). For each sample, 2 µg of digested serum containing the
internal standard was loaded in a nanoflow C18 column (15 cm in length, 75 µm in diameter;
Thermo Scientific, Waltham, MA, USA) equilibrated in 0.1% FA. Peptides were eluted with
a linear gradient of 5–30% solvent B (80% ACN in 0.01% TFA) at a constant flow rate of
300 nL/min for over 120 min. Eluted peptides were analyzed with an Orbitrap tandem
mass spectrometer in positive mode using the following settings: spray voltage 2800 V and
temperature of the capillary 300 ◦C. The maximal injection time was 20 ms. Full-scan MS
spectra were acquired from 350 to 1500 m/z, with a resolution of 60,000 and an automatic
gain control (AGC) target of 400,000. DDA mode was used to acquire the data. For MS/MS
scans, the activation type was set to higher-energy collisional dissociation (HCD) with
a collision energy of 30%. The Orbitrap MS/MS scan range mode was set on auto (m/z
Normal) with a resolution of 15,000, and the AGC target was set as 50,000. Ions were
injected using all available parallelizable times, and the maximum injection time was 30 ms.

Data collected were searched against the National Center for Biotechnology Informa-
tion nonredundant (NCBInr) database containing all zebrafish protein entries (143,725 se-
quences; 8 November 2011), and the NCBInr database with a taxonomy filter of Saccha-
romyces cerevisiae using Mascot v. 2.3.2 (Matrix Science, Chicago, IL, USA). The following
settings were used: ‘trypsin’ was selected for the enzymes used, ‘Carbamidomethyl (C)’
and ‘Oxidation (M)’ were selected for variable modifications, the peptide mass tolerance
was set at 20 ppm, the peptide charges were 2+, 3+, and 4+, the mass tolerance for MS/MS
was set at 0.1 Da. Any search results with ion scores of less than 20 were discarded [31].
The false discovery rate (FDR) was set at 1%.

For label-free quantitation, proteins with a ≤0.80- or ≥1.20-fold difference were re-
garded as differentially expressed proteins (DEPs) as previous studied [32]. DEPs were
identified using MaxQuant v. 1.2.2.5 on DDA raw files in each sample, as described by
Cox et al. [33]. Database acquisition and quantitative parameters were the same as above.
Normalized intensity values (LFQ intensity) were calculated and exported for quantitation
using Perseus v. 1.6.0.2. DEPs were obtained from two pairs of comparisons, namely
between (1) healthy animals of SeNP and control diets and between (2) disease animals of
SeNP and control diets.

Zebrafish serum proteomic results were imported into the Ingenuity Pathway Anal-
ysis (IPA, Version 01–13, Ingenuity Systems, Redwood City, CA, USA) and Database for
Annotation, Visualization and Integrated Discovery (DAVID) v6.8 to explore gene ontology
(GO) functional annotations. Enrichment scores of proteins were expressed as −log10
(p-value) to assess the probability that annotations in the protein list could be due to chance,
assuming an underlying hypergeometric distribution. Canonical pathway and molecular
network analyses were determined using Ingenuity Pathway Analysis (IPA) core analysis
(Version 01–13, Ingenuity Systems, Redwood City, CA, USA) using DEPs. Matched proteins
encoding genes from the Ingenuity Knowledge Base were used to generate molecular
networks to understand the biological and molecular functions of DEPs. Right-tailed
Fisher’s exact tests were utilized to determine the probability that biological functions
and/or diseases were associated with particular proteins. Fisher’s exact test was used to
determine the statistical significance and canonical pathways with enrichment scores of 2
or higher were considered as significantly enriched pathways.

2.8. Transcriptome Analysis

The transcriptome analysis of livers and kidneys was carried out to make two pairs
of comparisons between (1) healthy animals of SeNP and control diets and between (2)
disease animals of SeNP and control diets. The total RNA of the kidneys and livers
were extracted with the RNeasy Mini kit (Qiagen, Hilden, Germany), according to the
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manufacturer’s instructions. Purity of the RNA samples was determined with a NanoDrop
200 spectrophotometer (Thermo Scientific, Waltham, MA, USA), quality of the samples
was determined with the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA) and concentration of RNA samples were measured by the Agilent RNA 6000 Nano
Kit (Agilent Technologies, Santa Clara, CA, USA). All RNA samples used for RNA-seq
have OD260/280 = 1.8~2.2, OD260/230 = 1.8~2.2, without degradation and contamination,
and RNA integrity number (RIN) value≥7.0.

Sequencing library construction and Illumina sequencing were performed. Firstly,
mRNA was enriched via purification with oligo (dT) magnetic beads and broken into
short fragments in a fragmentation buffer [34]. First-stand cDNA was then synthesized
using random hexamer-primed reverse transcription using fragmented mRNA as the
templates. Following that, complementary second-strand cDNA was synthesized using
DNA polymerase I. Then, the double-stranded cDNA was purified by magnetic beads
and sequencing, and adaptors were ligated to the terminal end of the purified cDNA.
Next, these products were subjected to TAE-agarose and further enriched using PCR
amplification. Enriched fragments were again purified by magnetic beads and dissolved in
the appropriate amount of Epstein–Barr solution and sequenced using an Illumina HiSeq
4000 platform.

Sequence raw reads were generated with the Sequence Platform. Data filtering is
carried out to obtain high-quality reads as the clean reads (clean data) and filter out adaptor
sequences and/or low-quality reads present in the raw reads. The quality of sequencing
was presented high, as the ratio of clean reads in raw reads was over 98% for all samples.
The clean reads were mapped to a reference genome of Danio rerio GRCz downloaded
from Ensembl (ftp://ftp.ensembl.org, accessed on 7 April 2022) using hierarchical indexing
for the spliced alignment of transcripts (HISAT2). Clean reads data were imported into
the HTSeq Python package to map the reads to genes. The fragment per kb per million
fragments (FPKM) method was used in calculating the expression level. DESeq2 was used
to identify differential expressed genes (DEGs) defined as log fold change values larger
than 1 and p-values less than 0.01 [35,36].

Transcriptome profiles were integrated, and the extent of overlap was presented in
Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on 7 April
2022). A cluster analysis of DEGs was carried out using an R package heatmap. For function
analysis, GOseq (version: v1.16.2) was used to compare the DEGs to reference genes for
GO enrichment analysis. Web Gene Ontology Annotation Plot (WEGO) was used for visu-
alizing, comparing and plotting the GO annotation results (corrected p-value < 0.01) [37].
KEGG was used to perform a pathway enrichment analysis of the DEGs. In addition, a
scatter plot was used to display the RichFactor, p-value and DEG number of the enriched
pathways. RichFactor is the ratio of differentially expressed gene numbers annotated in a
pathway compared to all gene numbers annotated in the pathway.

2.9. ICP-MS Analysis

Tissue samples (including brain, gill, gut, kidney, liver, gonad and muscle) were
collected by necropsy to determine the total Se concentration. Tissues were weighed (mg
dry weight) and transferred into 50 mL digestion tubes containing 1 mL 70% nitric acid
(metal grade, Sigma, Burlington, MA, USA). Digestion was carried out in heat block for 2 h
at 95 ◦C and 0.25 mL 30% H2O2 (Sigma, Burlington, MA, USA) to the tube and continued
to be heated for another 2 h at 95 ◦C. The digested mixture then was diluted four-fold with
5% nitric acid and filtered through 0.45-µm Hydrophilic Teflon filters (Sigma, Burlington,
MA, USA). Filtered samples were furthered diluted five-fold with 5% nitric acid in 15-mL
Falcon tubes to achieve a final volume of 5 mL. Indium was added as an internal standard
for determination of consistency of machine efficiency. ICP-MS (Agilent 7500, Santa Clara,
CA, USA) was used to determine the total Se concentration. Using spiked samples and
certified reference materials (DORM-4, National Research Council Canada, Ottawa, ONT,

ftp://ftp.ensembl.org
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Canada), the average Se recovery of our method was 92.4%. MilliQ water was used as
blank sample.

2.10. Statistical Analyses

Survivorship of fish in these treatments was compared using a Kaplan–Meier analysis
coupled with log-rank test (Mantel–Cox) and Gehan–Breslow–Wilcoxon tests in SPSS (ver
15.0, IBM SPSS Statistics, Chicago, IL, USA). Other endpoints were compared using one-way
ANOVA with Duncan’s multiple comparison and two-way ANOVA using both diet and
disease as fixed factor with SPSS. All data were presented as mean ± SD and considered to
be significantly different at the p < 0.05 level.

3. Results
3.1. SeNPs and SeNP Diet Characterization

Chitosan-stabilized SeNPs are largely spherical, with an average diameter of 67.08
nm (SD = 4.84 nm) and haves a homogeneous structure (Figure 1A). High-resolution
transmission electron microscopy (HRTEM) images show a clear lattice d-spacing value
of 3.32 Å (Figure 1B). Selected Area Electron Diffraction (SAED) suggested that this SeNP
has a polycrystalline structure, which is similar to other polysaccharide-stabilized SeNPs
produced using a similar method [4,5]. The stability of the nanomaterials is critical for its
application as a nutrient supplement; thus, we measured the size distribution and stability
of SeNPs with a mean size at 129 nm and standard deviation (SD) at 40 nm (Figure 1C). An
Energy-Dispersive X-ray Analysis (EDX) indicated that SeNPs contained mostly selenium
(Se, 82.71%) and some carbon (C, 17.29%), which was likely from the chitosan surface
stabilizer (Figure 1D). Copper (Cu) peaks were visible in the EDX spectra due to the Cu
support grid. No other obvious peaks for the other elements were observed in EDX,
confirming that the SeNPs were of high purity.
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Figure 1. Characterization of chitosan-stabilized SeNPs and the diet: (A) representative TEM image
of SeNPs; (B) representative HR-TEM image of SeNPs (Inset: SAEN pattern of SeNPs); (C) size
distribution of SeNPs by NanoSight (Mean: 129 nm, SD: 40 nm); (D) Elemental analysis by EDX
spectrum; (E) representative image of SeNP diet; (F) representative TEM image of SeNP diet (black
arrows indicated SeNPs attaching on fish diet particulates).
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As shown in Figure 1E,F, the SeNP diet had a proper size for adult zebrafish, and the
SeNPs were well-attached to fish feed particulates under TEM observation. These spherical
NP-like structures are not shown in the control diet. From ICP-MS, the control diet has
3.6 µg/g Se, and the SeNP diet has 13.2 µg/g Se. The results in the control and SeNP diet
were similar to the value reported by earlier studies using the same base fish diet [3,5,38].

3.2. Comparison of Immunomodulation Effects with SeNP and Trolox Diet

There was no mortality in PBS-injected zebrafish. For (A) hydrophila-injected fish,
individuals displayed symptoms, including abdominal swelling, hemorrhagic septicemia
and mortality. The survival rate (A) of hydrophila-injected fish fed the control diet de-
creased to 70% after 24 h and significantly decreased to 33.3% at 48 h, finally reaching 26.7%
after 72 h (Figure 2A). Although both the SeNP and Trolox diets had protective effects on
zebrafish against (A) hydrophila infection, the SeNP diet showed more protection at 24 h
post-injection, with an 86.7% survival rate compared with 66.7% in the Trolox group. After
72 h post-injection, for the SeNP diet group, the survival rate was 45.0%. For the Trolox
diet group, the effect was similar, and the survival rate was 41.7% after 72 h.

Despite having equal antioxidant capacity, the Trolox and SeNP diets had different
effects on the immune system. The serum lysozyme activity was significantly increased
by both the SeNP and Trolox diets, but SeNP had a significantly higher effect than Trolox
(Figure 2B). Both diets had little effect on the phagocytic respiratory burst without a
stimulation (Figure 2C,D). When stimulated by PMA, however, only the SeNP diet led to a
significantly higher response than the control.

The two diets also had different effects on immune cell proliferation. Both diets had
no significant effect on B-cell proliferation. However, both diets had a significant effect on
T-cell proliferation, but SeNP had significantly higher effect than Trolox (Figure 2E).

3.3. Comparison of Antioxidation Effects with SeNP and Trolox Diet

Both the SeNP and Trolox diets led to a significant decrease of the total ROS concen-
tration in healthy fish by 40.7% and 36.6%, respectively (Figure 2F). Fish with disease had
a significant increase in the total ROS when compared with healthy fish. Trolox had no
effect on the ROS concentration in diseased fish, while SeNP led to a significantly more
pronounced increase when compared with the control. Two-way ANOVA also showed
significant interactions between the diet and different health conditions (p < 0.01).

A reduced GSH concentration was significantly increased by SeNP in both healthy
and disease conditions (Figure 2G). However, the magnitude of the increase was higher in
healthy conditions than in disease conditions, and this was confirmed by the significant
interaction of feeding treatments and different conditions in two-way ANOVA (p < 0.05).
Trolox had no significant effect on reduced GSH concentrations in both conditions.

SeNP and Trolox diets again had different effects on activities on the four tested en-
zymes. For GPx and GR, their activities decreased in diseased individuals when compared
with healthy individuals. The SeNP diet improved their activities in both healthy and
diseased conditions. For GPx, the SeNP diet could eliminate the decrease completely
in diseased individuals (Figure 2H). Trolox had no difference in GPx activity in healthy
individuals but led to a smaller decrease in diseased individuals. Trolox had no significant
effect on GR activity when compared with the control (Figure 2I).

For CAT, a decrease in activity was observed when comparing individuals with
disease against healthy individuals (Figure 2J). Both the SeNP and Trolox diets significantly
decreased CAT activity in healthy individuals but had no effect on individuals with the
disease. The SeNP and Trolox diets significantly increased SOD activity in healthy fish
(Figure 2K). In diseased individuals, SeNP had no significant effect, but Trolox significantly
decreased SOD activity.
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Figure 2. Dietary SeNPs and Trolox-induced immune and antioxidant responses: (A) Bacterial chal-
lenge by Aeromonas hydrophila in the zebrafish fed with SeNP, Trolox or control diets; (B) Lysozyme
activity; (C) Extracellular respiratory burst activity; (D) Intracellular respiratory burst activity;
(E) Lymphocyte proliferation; (F) ROS concentration; (G) GSH concentration; (H) GPx activity;
(I) CAT activity; (J) GR activity; (K) SOD activity. Different alphabets in the figure indicate statistically
different groups where * p < 0.05.
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3.4. Serum Proteomic Analysis

To examine serum protein regulation by SeNP, we collected serum samples from
healthy and disease zebrafish fed with the SeNP diet and control diets for 9 days (Fig-
ure 3A). A total of 632 protein families were identified in the zebrafish serum samples,
including healthy and diseased conditions and 157 protein families were common to all
groups (Figure 3B). GO functional annotation in the IPA reported that most of serum
proteins were classified as enzymes (45.5%), peptidases (19.4%) and transporters (9.0%)
(Figure 3C). DAVID classified the serum proteins into three main categories (biological
processes, molecular functions and cellular components). For biological processes, cellular
component organization or biogenesis had largest enrichment score (6.68), followed by pri-
mary metabolic process (5.41), glycolysis (4.70) and catabolic process (4.03) (Figure 3D). For
molecular functions, all of the top categories were enzyme activities such as peptide activity
(10.11), endopeptidase activity (10.06), threonine-type endopeptidase activity (8.30) and
hydrolase activity (7.01) (Figure 3E). The number of identified protein families and serum
protein classification was all comparable with the reported zebrafish plasma proteomic
profiles [29,39].
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Figure 3. Serum proteomic analysis with/without dietary SeNPs in healthy and diseased conditions:
(A) Experimental scheme of serum proteomic analysis; (B) Venn diagram depicting the total number
of identified protein families in zebrafish serum from the control diet and SeNP diet in healthy
conditions and control diet and SeNP diet in diseased condition. (C) Protein type category by IPA
classification; (D) GO term biological processes analysis of serum proteins; (E) GO term molecular
functions analysis of serum proteins.
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We identified a total of 190 differentially expressed proteins (DEPs) between the control
and SeNP diets in healthy conditions and 185 DEPs under diseased conditions (details in
Supplementary Table S1). In a healthy condition, parvalbumin isoform X1 (XP_005164345)
was decreased 41.67-fold in the SeNP diet. Jeltraxin (XP_001331789) and carboxylesterase
3 precursor (NP_001038401) were increased in the SeNP diet with 29.24-fold and 10.93-
folds, respectively. In disease conditions, pyruvate kinase isozyme M1/M2 isoform X1
(XP_005163170) was the most differentially expressed with a 14.21-fold decrease in the
SeNP diet treatment. Complement C4-B (XP_001334640) and immunoglobulin light-chain
constant region (ABC59635) were the most increased in expression with 13.57-fold and
13.50-fold change, respectively.

3.5. Canonical Pathway and Molecular Network Analyses from Serum Proteomics

Enriched canonical pathways and molecular networks in IPA were employed using
the DEPs between the SeNP and control diets in healthy and diseased conditions. In
canonical pathways, an analysis of the 45 total enriched pathways were identified in
healthy conditions, and 46 enriched pathways were identified in diseased conditions. The
top 15 significantly enriched pathways in the healthy and diseased conditions were largely
identical and were related to immune and antioxidant activities (Figure 4A,B).

The top 5 enriched pathways in both conditions were all related to immune regulation.
In healthy conditions, the most significantly enriched pathways were the acute phase
response signaling pathway (Figure 4A, Enrichment score 18.10), followed by LXR/RXR
activation (Enrichment score 16.40), FXR/RXR activation (Enrichment score 16.10), com-
plement system (Enrichment score 14.70) and coagulation system pathways (Enrichment
score 13.00). In diseased conditions, the most significantly enriched pathways were the
complement system pathway (Figure 4B, Enrichment score 21.70), followed by the acute
phase response signaling pathway (Enrichment score 19.50), LXR/RXR activation (Enrich-
ment score 16.70), FXR/RXR activation (Enrichment score 16.40) and coagulation system
pathways (Enrichment score 14.20).

Molecular network analyses identified a total of nine networks that were significantly
enriched in the healthy condition and 11 networks in the diseased condition. In the healthy
condition, the top three enriched molecular networks were related to free radical scaveng-
ing, lipid metabolism and immunological disease (Table 1). In the diseased condition, the
top three enriched molecular networks were related to carbohydrate metabolism, lipid
metabolism and immunological disease (Table 1). In all these molecular networks, about
half of the proteins in the networks were also identified as DEPs in our previous analysis.
Interestingly, two out of the three top molecular networks under healthy and diseased
conditions were identical (Lipid metabolism and Immunological disease). For a Lipid
metabolism molecular network, the DEPs involved were almost identical in both con-
ditions (18 out of 21), suggesting that the role of SeNP on lipid metabolism remained
unchanged in the healthy or diseased conditions. This contrasted the other common molec-
ular network (Immunological disease), where only a few DEPs involved were common to
both conditions (7 out of 20), suggesting that the role of SeNPs on the immune system was
different in the healthy and diseased conditions.
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Figure 4. Top 15 enriched canonical pathways identified in IPA by DEPs in (A) healthy and (B) dis-
eased conditions. The pathways are indicated on the y-axis. On the x-axis, the enrichment score
(−log10(p-value)) for each pathway is indicated by the bars. (C) Healthy top molecular network
involving free radical scavenging, small molecule biochemistry and drug metabolism. (D) Disease
top molecular network in conditions involving carbohydrate metabolism, nucleic acid metabolism,
small molecule biochemistry. Upregulated proteins are represented in red and downregulated
proteins are represented in green. Orange represents predicted activation, while blue represents
predicted inhibition.
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Table 1. The top three molecular networks based on differentially expressed proteins (DEPs) compar-
ing the two diets under healthy and diseased conditions, respectively. DEPs are indicated in bold
text.

Analysis ID Molecules in Network Score Focus Molecules Top Diseases and
Functions
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1

A2M, adhesion molecule, AKR1B1, APOA1,
Cg, Cpla2, F10, GGCT, GLRX, glutathione
peroxidase, GPX1, GPX3, GPX4, Growth
hormone, GST, GSTM3, GSTP1, Hif, Ldh

(complex), LDHA, LDHB, LDL, MTPN, NFkβ
(complex), peroxidase (miscellaneous),

PGAM2, PRDX1, PRDX2, PRDX5, PRDX6,
PROC, SHBG, Sod, SOD1, SYK/ZAP

45 22

Free Radical
Scavenging, Small

Molecule
Biochemistry, Drug

Metabolism

2

AHSG, Alpha 1 antitrypsin, APOA4, APOB,
BHMT, Ces, CES1, CETP, CFH, CP, creatine

kinase, ERK1/2, ESD, Ferritin, FGA, GC,
HDL, HDL-cholesterol, hemoglobin, HPX,

ITIH4, ITLN1, MHC Class II (complex), Nos,
Nr1h, PRKAA, RBP4, SERPINA1, SERPINA9,

SERPINC1, SERPINF2, SH3BGRL, TF,
VLDL, VLDL-cholesterol

43 21

Lipid Metabolism,
Small Molecule
Biochemistry,
Vitamin and

Mineral
Metabolism

3

Akt, C3, C5, C6, C7, C8, C1q, C3-Cfb,
C5-C6-C7, C5-C6-C7-C8, C5-C6-C7-C8-C9,

C8A, C8B, C8G, CFI, Collagen Alpha1,
Collagen type IV, Collagen(s), Complement,
Complement component 1, CSTB, elastase,

Fibrin, Fibrinogen, HABP2, HBE1, HBZ,
Kallikrein, Laminin (complex), LRG1, MAC,

NME3, Pdi, PLG, SERPING1

30 16

Immunological
Disease,

Developmental
Disorder,

Hereditary
Disorder
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1

20s proteasome, ACLY, AK1, ALDOA, AMPK,
Dynamin, EGLN, ENO3, ERK, GAPDH,

GAPDHS, GOT, GOT1, Hif1, Ikb,
Immunoproteasome Pa28/20s, LDHA, LDHB,
LRG1, NDPK, NME1, NME2, NME3, PGK1,

PGM1, PRDX2, PRDX5, Proteasome
PA700/20s, PSMA, PSMA4, PSMA5, PSMA8,

PSMB3, Rsk, SOD1

44 22

Carbohydrate
Metabolism,
Nucleic Acid

Metabolism, Small
Molecule

Biochemistry

2

AHSG, Alpha 1 antitrypsin, AMBP, APOA4,
APOB, CES1, CETP, CFH, CP, creatine kinase,

ERK1/2, Ferritin, FGA, GC, HBZ, HDL,
HDL-cholesterol, hemoglobin, HPX, Iti, ITIH3,
ITIH4, ITLN1, MHC Class II (complex), Nos,

Nr1h, PRKAA, RBP4, SERPINA1, SERPINA9,
SERPINC1, SERPINF2, TF, VLDL,

VLDL-cholesterol

41 21

Lipid Metabolism,
Small Molecule
Biochemistry,
Vitamin and

Mineral
Metabolism

3

A2M, C6, C7, C3-Cfb, C5-C6-C7, C5-C6-C7-C8,
C5-C6-C7-C8-C9, C8A, C8B, CAPNS1, CFB,
CFD, CFI, CFP, chymotrypsin, coagulation

factor, CORO1A, Ecm, elastase, F9, F10,
glutathione peroxidase, Hif, Kallikrein, Ldh

(complex), MASP2, NFkβ (complex), PAPSS2,
PLG, PROC, PRSS2, Serine Protease,

SERPING1, SOD3, trypsin

38 20

Immunological
Disease,

Developmental
Disorder,

Hereditary
Disorder
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In healthy conditions, the top enriched molecular network was related to free radical
scavenging. Interactions of the molecules revolve around two important molecule hubs
of SOD and NFkβ (complex) (Figure 4C). In the diseased conditions, the top enriched
molecular network was carbohydrate metabolism. Interactions of the molecules showed
that there were two important molecule groups, and they communicate via modulation of
SOD1 (Figure 4D).

3.6. Uptake of Se and Transcriptomic Response of Kidney and Liver

The uptake of Se was only significant in the gut (1.34 to 2.51 µg/g), liver (1.63 to
2.44 µg/g) and kidneys (1.15 to 2.25 µg/g) after the 9-day exposure period (Figure 5A).
This finding is consistent with previous studies that the liver and kidneys are the most
sensitive tissues in dietary Se supplementation [24]. We finally decided to perform RNA-
Seq analysis on the liver and kidneys instead of the gut because of two reasons: (1) liver
and kidneys are metabolism and immune direct-related tissues with markedly elevated
protein-bound Se accumulation and (2) the variation in SeNPs gut samples implies the diet
residue contributes to the Se level inside the gut.

Overall, we found 1266 differentially expressed genes (DEGs) in the liver and 1146
DEGs in the kidneys comparing the control and SeNPs diet groups (Figure 5B, details in
Supplementary Table S2). As shown in the volcano plot, there were 836 upregulated DEGs
and 430 downregulated DEGs in the kidneys after dietary SeNPs (Figure 5C). There were
553 upregulated DEGs and 593 downregulated DEGs in the liver (Figure 5D). The Venn
diagram showed that only 77 DEGs were common in both tissues (Figure 5B). Through in-
putting the DEGs into the KEGG pathway, and enriched pathways in the kidneys and liver
tissues were identified (Figure 5E,G). The top five enriched KEGG pathways in the kidneys
by dietary SeNPs includes ECM–receptor interactions, cytokine–cytokine receptor interac-
tions, glyoxylate and dicarboxylate metabolism, glycerolipid metabolism and phagosome
(Figure 5F). Biological functions of these top five enriched KEGG pathways are related with
NP uptake (such as ECM–receptor interactions, cytokine–cytokine receptor interactions
and phagosomes) and energy metabolism (glyoxylate and dicarboxylate metabolism and
glycerolipid metabolism).

In the liver, the top five enriched KEGG pathways includes fatty acid metabolism,
phagosome, fatty acid biosynthesis, fatty acid degradation and the PPAR signaling pathway
(Figure 5H). Biological functions of these top five enriched KEGG pathways are also re-
lated with NP uptake (such as phagosome) and energy metabolism (fatty acid metabolism,
fatty acid biosynthesis, fatty acid degradation and PPAR signaling). One of the DEGs
related to the fatty acid metabolism pathways (such as fatty acid metabolism, fatty acid
biosynthesis and fatty acid degradation) was acaca (acetyl-CoA carboxylase alpha, ENS-
DARG00000078512) with a 1.44-fold changed decrease in the SeNP group compared to the
control. Two acyl-CoA synthetase-related genes (acsbg2 and acsl3b) increased 0.51- and
0.79-fold changed expression by SeNP.
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Figure 5. Transcriptome analysis of Se-enriched tissues (liver and kidney): (A) Se concentration in
seven tissues, including the brain, gill, gut, liver, kidney, gonad and muscle; (B) Venn diagram of
DEGs in the liver and kidneys; (C) Volcano plots of kidney DEGs; (D) Volcano plots of liver DEGs;
(E) Kidney DEG-enriched KEGG pathway; (F) Top 5 KEGG-enriched pathways in kidneys; (G) Liver
DEG-enriched KEGG pathway; (H) Top 5 KEGG enriched pathway in the liver. * p < 0.05.
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4. Discussion

SeNPs offered a protective effect against A. hydrophilla infection, resulting in slower
and fewer deaths from the disease. The protective effect of SeNP against bacterial infection
is supported by our previous study with the same SeNP5 and studies with other SeNPs [40].
Our findings are similar to previous reports of other SeNPs showing an immunomodula-
tion effect, such as SeNPs protected mice from 7,12-dimethylbenz(a)anthracene (DMBA)-
induced immunotoxicity and increased the number of leucocytes [41]. Our previous study
also demonstrated that SeNPs could increase immune responses, such as lysozyme activity,
phagocytic respiratory burst, and lymphocytes proliferation [5]. However, the underlying
mechanism is not yet understood.

Although the immunomodulation effect of SeNP appeared to relate to its antioxidant
activities, its effect was different from the exogenous antioxidant Trolox. Trolox showed
similar effects to SeNP on lysozyme activity and T-cell proliferation but were less effective.
Trolox also had no effect on intracellular and extracellular respiratory bursts. Interestingly,
both SeNP and Trolox offered similar magnitudes of protective effects the A. hydrophilla
challenge, suggesting that the increase in lysozyme activity alone may be sufficient to
counter bacterial infection. Regarding antioxidant regulation, SeNP also has positive effects
on more biomarkers than Trolox. In particular, SeNP is positive on the glutathione system,
while Trolox is not. Since key enzymes GPx and GR are both selenoenzymes, the positive
effect of SeNP on their activity might suggest that the animal is able to metabolize the
SeNP and utilize the Se to make more selenoproteins. If this is true, then SeNP will likely
have positive effects on other selenoprotein-related bioactivities. This should be verified in
future research.

In this study, zebrafish serum samples were analyzed in healthy and diseased con-
ditions with or without SeNP diet supplementation. Serum proteomics and Se-enriched
tissues of transcriptomics provide opportunities to understand the systemic response to
SeNP. Based on the canonical pathways and molecular network analysis by IPA, the en-
riched pathways and molecular networks confirmed that SeNPs exerted biological functions
through immune system regulation and antioxidant activities.

The top biological functions of SeNPs were consistent in healthy and diseased individ-
uals (Figure 3). The top canonical pathways in healthy and disease individuals were related
to immune functions (e.g., acute phase response signaling and complement system), redox
regulation (e.g., superoxide radicals degeneration) and pathways that were shown to relate
to nanoparticle exposure and uptake (e.g., endocytosis). Similar results were observed in
the molecular networks where the top three molecular networks in both conditions were
related to immune functions, lipid metabolism and redox regulations (Table 1).

The immunomodulation activity of SeNPs was observed under healthy conditions.
The top canonical pathway based on the DEP analysis was acute phase immune responses.
Acute phase response signaling is a prominent systemic reaction of the organism through
regulating serum concentrations of a class of proteins to local or systemic disturbances
caused by infection, tissue injury, trauma or surgery, neoplastic growth or immunological
disorders [42]. This is in agreement with the upregulation of a large number of complement
proteins (Table 1). The second and third canonical pathways (LXR/RXR activation and
FXR/RXR activation, respectively) are also related to acute phase responses. Studies on
human rectal mucosa showed that the Se status altered the inflammatory signaling and
cancer risk by the inhibition of LXR/RXR and FXR/RXR activation pathways [43]. While
an improved acute phase response could help the individual to respond to a pathogen
assault, it may also indicate inflammation. However, a molecular network analysis showed
that the NFkβ cascade is suppressed, suggesting that SeNP also has anti-inflammatory
properties [44].

Under disease conditions, SeNPs modulated the complement system pathway. The
complement system represents an efficient first line of defense against microbial infec-
tion [45]. IPA predicted the upregulation of C3 and C1q, which, in turn, would initiate
activation of the complement system via the alternative pathway and classical pathway,



Antioxidants 2022, 11, 964 18 of 22

respectively. The Se status was reported to relate to expression of the key factor of comple-
ment system C3 [46]. Activation of the complement system resulted in the upregulation of
downstream C5b, C6, C7 and C8 to trigger a membrane attack complex synthesis. We also
recorded the upregulation of the C6, C7 and C8 proteins, confirming the prediction of IPA.
The molecular network analysis also showed an increase of the ERK cascade expression
and decrease in the SOD expression. ERK is closely associated with NFkβ and the release
of other proinflammatory cytokines, suggesting that SeNP increased the inflammatory
response under diseased conditions.

The immunomodulation activity of chitosan SeNP could be closely related to its antiox-
idant activity, as shown by the top canonical pathways. This link was also demonstrated
on other Se species in a number of studies [47]. The antioxidant activity of Se was as-
sociated with recovering GPx activity, decreasing ROS-mediated lipid peroxidation and
regenerating the GSH [48]. In healthy individuals, the top molecular network of SeNP
treatment was related to free radical scavenging. This was confirmed by measurements
of biomarkers related to redox regulation in the individual. GPx and GR activities and
the GSH concentration in the liver were increased by the SeNP diet in both healthy and
diseased conditions. Such changes could improve the immune functions, as GSH was
required for the proliferation of cells (lymphocytes and interstitial epithelial cells) and
activation of T cells and polymorphonuclear leukocytes in vivo [49]. Similarly, we observed
an increased leukocyte count and improved T-cell activation. The glutathione system is
one of the most important antioxidant systems against ROS, with the central antioxidant
compound GSH [47].

Interestingly, SeNP caused the ROS concentration to decrease in healthy individuals
but increase in diseased individuals. A lower level of ROS in healthy individuals should be
considered beneficial, as a high ROS level was reported to relate to a number of chronic dis-
eases in humans. An overproduction of ROS can result in oxidative damage to biomolecules
such as lipids, proteins and DNA, which has been implicated in the development of aging,
as well as various ailments, including cancer, respiratory, cardiovascular, neurodegenerative
and digestive diseases [50]. In healthy individuals, enriched canonical pathways related
to ROS regulation include glutathione redox reactions I, superoxide radicals degradation,
NRF2-mediated oxidative stress response, Iron homeostasis signaling and the production
of nitric oxide and ROS in macrophage pathways. The top enriched molecular network also
predicted the activation of a number of key enzymes related to ROS regulation, including
SOD1, GPx1, 3 and 4, and various peroxidases. In the antioxidant system, SOD plays an
important role in catalyzing the dismutation of the superoxide radical (O2

−) into either
ordinary molecular oxygen (O2) or hydrogen peroxide (H2O2) and protects the cellular
components from being oxidized by ROS [51]. Many studies have also reported that SeNPs
increased the antioxidant defense, resulting in a decrease of ROS generation by studying
healthy individuals [52].

In diseased individuals, SeNP led to a higher ROS concentration in the animal when
compared to those fed with normal fish feed. There are two possible explanations: (1)
increase in the injury associated with ROS increase and/or (2) increase in inflammation and
macrophage activity. It was reported that the upregulation of ROS generation and phagocy-
tosis during sepsis and bacterial infection [53] activated phagocytes that would release ROS
during a respiratory burst as an immune response to eliminate foreign particles and bacteria
to combat infections [5]. Ristow reviewed evidence of ROS benefits and suggested that a
hormesis effect is observed for ROS, where some level of ROS is beneficial to health [54]. In
the light of SeNP-protected individuals against a bacterial challenge, we argue that this
increase in ROS concentration under the disease was beneficial. The downregulation of 20
S proteasome and a number of proteasome subunit alpha types (PSMA) (Supplementary
Information Table S1) is also suggestive of a lower number of bacteria-infected cells in
SeNP-treated individuals. release of proteasomes has been suggested as a mechanism
through which components derived from intracellular pathogens may be presented to the
immune system, and their protein content can be modified under pathological or stress
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conditions [47]. Previous publications suggest that extracellular vesicles released from cells
infected with intracellular bacterial pathogens contain bacterial components [55]. A recent
study also reported that oseltamivir surface-modified SeNPs increased ROS generation
to inhibit the activity of influenza virus glycoproteins, thus preventing the H1N1 virus
from infecting kidney cells [56]. This new report supported our finding that SeNPs could
have a dual role in the regulation of ROS in the host, depending on their health condition.
Such regulation is likely through the up- and downregulation of SOD1 and NFκB cascades.
Under healthy conditions, SOD1 was upregulated while NFκB was downregulated, and
the opposite was observed under the diseased condition.

The transcriptome analysis showed that the phagosome pathway is enriched in both
the kidneys and liver after supplied with SeNPs (Figure 5). Compared with inorganic and
organic Se, the nano-scale elemental Se particles can easily enter the cells and translocate
across the cell, tissues and organs to exert their function [57]. Phagocytosis is one of the
active forms of endocytosis. During this process, the phagocytes, including monocytes,
macrophages and neutrophils, will stimulate the formation of a membrane-bound vesicle
called a phagosome to ingest the target material such as antigen or external materials into
the cells [58]. The natural positive charged chitosan cannot pass through the hydrophobic
plasma membrane; therefore, SeNPs are internalized by an active transportation called
endocytosis [59]. It implies that the chitosan-stabilized the SeNP can effectively enter
multiple tissues and exert its Se supplementary functions.

Further, according to our proteomic analysis, the transcriptome analysis also showed
that gene expressions in fatty acid metabolism are modulated by SeNPs. A previous study
also reported that Se supplementation induced ROS modulation of lipid synthesis in a
pig liver [27]. In the KEGG fatty acid metabolism pathway, acetyl-CoA carboxylase alpha
(acaca) was downregulated (1.44-fold change) in the SeNP liver. This suppressed the
activity of acetyl-CoA carboxylase (ACC) through phosphorylation, which can reduce the
inflammatory reaction to further protect innate immune cells [21]. This implies that lipid
metabolism can play an important role as a ‘buffer’ in SeNP immunomodulation against
over-inflammation-induced immune cell impairment. Taken together, the transcriptome
analysis suggested SeNP uptake was primarily through active phagosome transportation
in Se metabolic tissues and provided an explanation on how lipid metabolism neutralizes
the inflammatory response in immune cells. This finding echoes with serum proteomic
profiles and supports our hypotheses, which is that SeNPs modulate the immune system
in different directions, depending on the condition of the host. In the healthy condition,
uptaken SeNPs decrease ROS generation to inhibit inflammation and reduce oxidative
stress, while, in the diseased condition, SeNPs rapidly mobilize redox metabolisms to
increase in inflammation and macrophage activity.

5. Conclusions

In conclusion, chitosan-stabilized SeNPs showed benefits to an individual beyond
the effects of an antioxidant. It showed more broad-spectrum effects on the immune
system than exogenous antioxidants such as Trolox, and SeNPs have a positive effect
on the glutathione system via the promotion of activities and possibly even synthesis of
selenoenzymes. We studied the mechanism of immunomodulation of the activities of
chitosan-stabilized SeNPs under healthy and diseased conditions. We used a proteomic
analysis on the serum and transcriptome analysis on the kidneys and liver to identify
molecular pathways and biological functions SeNPs can influence under healthy and dis-
eased conditions. Antioxidant regulation, lipid metabolism and innate immune responses
were modulated in both healthy and diseased individuals. These activities appeared to be
intertwined to produce the observed immunomodulation benefits, especially important in
rapid switching in inflammatory responses between healthy and diseased conditions. Our
transcriptomic profiles in Se-enriched tissues (kidneys and the liver) showed that SeNP
provides immune responses that induce the energy requirements via lipid metabolism
behaviors. Overall, this study supports that chitosan-stabilized SeNPs have great poten-
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tial in immunomodulation function through systematic biological regulations, including
antioxidation, inflammation and lipid metabolism.

Supplementary Materials: The following supporting information can be downloaded at https:
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condition.

Author Contributions: Conceptualization, funding acquisition and funding acquisition K.W.H.K.;
methodology and writing—original draft preparation, I.F.X.; resources, Y.L. and K.-H.W. and method-
ology and writing—review and editing, H.-K.K. and M.M.H.W. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was partially funded by the Shenzhen Ministry of Science and Technology
Funding, grant number JCYJ20160531185058661.

Institutional Review Board Statement: The animal study protocol was approved by the Ethics Com-
mittee of the Hong Kong Polytechnic University (protocol code 19–20/70-ABCT-R-GRF, approved 24
December 2020).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and supplementary material.

Acknowledgments: The authors want to express their gratitude to the instrumental support of the
University Research Facility in Life Sciences (ULS) and the University Research Facility in Chemical
and Environmental Analysis (UCEA) of Hong Kong Polytechnic University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Short, S.P.; Williams, C.S. Selenoproteins in tumorigenesis and cancer progression. Adv. Cancer Res. 2017, 136, 49–83. [PubMed]
2. Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and

treatment of disease. Chem. Soc. Rev. 2013, 42, 8870–8894. [CrossRef] [PubMed]
3. Shi, M.; Zhang, C.; Xia, I.F.; Cheung, S.T.; Wong, K.S.; Wong, K.H.; Au, D.W.T.; Hinton, D.E.; Kwok, K.W.H. Maternal dietary

exposure to selenium nanoparticle led to malformation in offspring. Ecotoxicol. Environ. Saf. 2018, 156, 34–40. [CrossRef]
[PubMed]

4. Wu, H.L.; Li, X.L.; Liu, W.; Chen, T.F.; Li, Y.H.; Zheng, W.J.; Man, C.W.Y.; Wong, M.K.; Wong, K.H. Surface decoration of selenium
nanoparticles by mushroom polysaccharides-protein complexes to achieve enhanced cellular uptake and antiproliferative activity.
J. Mater. Chem. 2012, 22, 9602–9610. [CrossRef]

5. Xia, I.F.; Cheung, J.S.; Wu, M.; Wong, K.S.; Kong, H.K.; Zheng, X.T.; Wong, K.H.; Kwok, K.W. Dietary chitosan-selenium
nanoparticle (CTS-SeNP) enhance immunity and disease resistance in zebrafish. Fish Shellfish Immunol. 2019, 87, 449–459.
[CrossRef]

6. Mahmoudi, M.; Azadmanesh, K.; Shokrgozar, M.A.; Journeay, W.S.; Laurent, S. Effect of nanoparticles on the cell life cycle. Chem.
Rev. 2011, 111, 3407–3432. [CrossRef]

7. Shamsi, M.M.; Chekachak, S.; Soudi, S.; Gharakhanlou, R.; Quinn, L.S.; Ranjbar, K.; Rezaei, S.; Shirazi, F.J.; Allahmoradi, B.; Yazdi,
M.H.; et al. Effects of exercise training and supplementation with selenium nanoparticle on T-helper 1 and 2 and cytokine levels
in tumor tissue of mice bearing the 4 T1 mammary carcinoma. Nutrition 2019, 57, 141–147. [CrossRef]

8. Dawood, M.A.O.; Koshio, S.; Zaineldin, A.I.; Van Doan, H.; Moustafa, E.M.; Abdel-Daim, M.M.; Esteban, M.A.; Hassaan, M.S.
Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red
sea bream (Pagrus major). Fish Physiol. Biochem. 2019, 45, 219–230. [CrossRef]

9. Mahdavi, M.; Mavandadnejad, F.; Yazdi, M.H.; Faghfuri, E.; Hashemi, H.; Homayouni-Oreh, S.; Farhoudi, R.; Shahverdi, A.R.
Oral administration of synthetic selenium nanoparticles induced robust Th1 cytokine pattern after HBs antigen vaccination in
mouse model. J. Infect. Public Health 2017, 10, 102–109. [CrossRef]

10. Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V. Selenium nanoparticles as a nutritional supplement.
Nutrition 2017, 33, 83–90. [CrossRef]

11. Torres, S.K.; Campos, V.L.; Leon, C.G.; Rodriguez-Llamazares, S.M.; Rojas, S.M.; Gonzalez, M.; Smith, C.; Mondaca, M.A.
Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanoparticle Res. 2012, 14,
1236–1245. [CrossRef]

https://www.mdpi.com/article/10.3390/antiox11050964/s1
https://www.mdpi.com/article/10.3390/antiox11050964/s1
http://www.ncbi.nlm.nih.gov/pubmed/29054422
http://doi.org/10.1039/c3cs60272a
http://www.ncbi.nlm.nih.gov/pubmed/24030774
http://doi.org/10.1016/j.ecoenv.2018.02.073
http://www.ncbi.nlm.nih.gov/pubmed/29525683
http://doi.org/10.1039/c2jm16828f
http://doi.org/10.1016/j.fsi.2019.01.042
http://doi.org/10.1021/cr1003166
http://doi.org/10.1016/j.nut.2018.05.022
http://doi.org/10.1007/s10695-018-0556-3
http://doi.org/10.1016/j.jiph.2016.02.006
http://doi.org/10.1016/j.nut.2016.05.001
http://doi.org/10.1007/s11051-012-1236-3


Antioxidants 2022, 11, 964 21 of 22

12. Amin, K.A.; Hashem, K.S.; Alshehri, F.S.; Awad, S.T.; Hassan, M.S. Antioxidant and hepatoprotective efficiency of selenium
nanoparticles against acetaminophen-induced hepatic damage. Biol. Trace Elem. Res. 2017, 175, 136–145. [CrossRef] [PubMed]

13. Puertollano, M.A.; Puertollano, E.; de Cienfuegos, G.A.; de Pablo, M.A. Dietary Antioxidants: Immunity and Host Defense. Curr.
Top. Med. Chem. 2011, 11, 1752–1766. [CrossRef] [PubMed]

14. Pattison, D.J.; Winyard, P.G. Dietary antioxidants in inflammatory arthritis: Do they have any role in etiology or therapy? Nat.
Clin. Pract. Rheum. 2008, 4, 590–596. [CrossRef]

15. Bennike, T.B.; Bellin, M.D.; Xuan, Y.; Stensballe, A.; Moller, F.T.; Beilman, G.J.; Leyy, O.; Cruz-Monserrate, Z.; Andersen, V.; Steen,
J.; et al. A cost-effective high-throughput plasma and serum proteomics workflow enables mapping of the molecular impact of
total pancreatectomy with islet autotransplantation. J. Proteome Res. 2018, 17, 1983–1992. [CrossRef]

16. Nayak, S.; Portugal, I.; Zilberg, D. Analyzing complement activity in the serum and body homogenates of different fish species,
using rabbit and sheep red blood cells. Vet. Immunol. Immunopathol. 2018, 199, 39–42. [CrossRef]

17. Kopp, A.; Hebecker, M.; Svobodova, E.; Jozsi, M. Factor H: A complement regulator in health and disease, and a mediator of
cellular interactions. Biomolecules 2012, 2, 46–75. [CrossRef]

18. Lin, S.; Sun, Q.Q.; Mao, W.L.; Chen, Y. Serum immunoglobulin A (IgA) level is a potential biomarker indicating cirrhosis during
chronic hepatitis B infection. Gastroent. Res. Pract. 2016, 2016, 2495073. [CrossRef]

19. Hajishengallis, G.; Reis, E.S.; Mastellos, D.C.; Ricklin, D.; Lambris, J.D. Novel mechanisms and functions of complement. Nat.
Immunol. 2017, 18, 1288–1298. [CrossRef]

20. Perssonmoschos, M.; Huang, W.; Srikumar, T.S.; Akesson, B.; Lindeberg, S. Selenoprotein-P in serum as a biochemical marker of
selenium status. Analyst 1995, 120, 833–836. [CrossRef]

21. Hubler, M.J.; Kennedy, A.J. Role of lipids in the metabolism and activation of immune cells. J. Nutr. Biochem. 2016, 34, 1–7.
[CrossRef] [PubMed]

22. Huang, Z.; Rose, A.H.; Hoffmann, P.R. The role of selenium in inflammation and immunity: From molecular mechanisms to
therapeutic opportunities. Antioxid. Redox Signal. 2012, 16, 705–743. [CrossRef] [PubMed]

23. Han, J.; Liang, H.; Yi, J.; Tan, W.; He, S.; Wang, S.; Li, F.; Wu, X.; Ma, J.; Shi, X. Long-term selenium-deficient diet induces liver
damage by altering hepatocyte ultrastructure and MMP1/3 and TIMP1/3 expression in growing rats. Biol. Trace Elem. Res. 2017,
175, 396–404. [CrossRef]

24. Akahoshi, N.; Anan, Y.; Hashimoto, Y.; Tokoro, N.; Mizuno, R.; Hayashi, S.; Yamamoto, S.; Shimada, K.I.; Kamata, S.; Ishii, I.
Dietary selenium deficiency or selenomethionine excess drastically alters organ selenium contents without altering the expression
of most selenoproteins in mice. J. Nutr. Biochem. 2019, 69, 120–129. [CrossRef] [PubMed]

25. Tang, C.; Li, S.; Zhang, K.; Li, J.; Han, Y.; Zhan, T.; Zhao, Q.; Guo, X.; Zhang, J. Selenium deficiency-induced redox imbalance
leads to metabolic reprogramming and inflammation in the liver. Redox Biol. 2020, 36, 101519. [CrossRef] [PubMed]

26. Zhang, K.; Han, Y.; Zhao, Q.; Zhan, T.; Li, Y.; Sun, W.; Li, S.; Sun, D.; Si, X.; Yu, X. Targeted metabolomics analysis reveals that
dietary supranutritional selenium regulates sugar and acylcarnitine metabolism homeostasis in pig liver. J. Nutr. 2020, 150,
704–711. [CrossRef] [PubMed]

27. Currie, E.; Schulze, A.; Zechner, R.; Walther, T.C.; Farese Jr, R.V. Cellular fatty acid metabolism and cancer. Cell Metab. 2013, 18,
153–161. [CrossRef] [PubMed]

28. Carlberg, I.; Mannervik, B. Reduction of 2,4,6-trinitrobenzenesulfonate by glutathione reductase and the effect of NADP+ on the
electron transfer. J. Biol. Chem. 1986, 261, 1629–1635. [CrossRef]

29. Babaei, F.; Ramalingam, R.; Tavendale, A.; Liang, Y.; Yan, L.S.; Ajuh, P.; Cheng, S.H.; Lam, Y.W. Novel blood collection method
allows plasma proteome analysis from single zebrafish. J. Proteome Res. 2013, 12, 1580–1590. [CrossRef]

30. Sherrod, S.D.; Myers, M.V.; Li, M.; Myers, J.S.; Carpenter, K.L.; MacLean, B.; MacCoss, M.J.; Liebler, D.C.; Ham, A.J.L. Label-free
quantitation of protein modifications by pseudo selected reaction monitoring with internal reference peptides. J. Proteome Res.
2012, 11, 3467–3479. [CrossRef]

31. Kong, H.K.; Wong, M.H.; Chan, H.M.; Lo, S.C.L. Chronic exposure of adult rats to low doses of methylmercury induced a state of
metabolic deficit in the somatosensory cortex. J. Proteome Res. 2013, 12, 5233–5245. [CrossRef] [PubMed]

32. Trinh, H.V.; Grossmann, J.; Gehrig, P.; Roschitzki, B.; Schlapbach, R.; Greber, U.F.; Hemmi, S. iTRAQ-based and label-free
proteomics approaches for studies of human adenovirus infections. Int. J. Proteom. 2013, 2013, 581862. [CrossRef] [PubMed]

33. Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-
wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [CrossRef] [PubMed]

34. Wang, Y.; Wong, C.W.; Yan, M.; Li, L.; Liu, T.; Or, P.M.-Y.; Tsui, S.K.-W.; Waye, M.M.-Y.; Chan, A.M.-L. Differential regulation of the
pro-inflammatory biomarker, YKL-40/CHI3L1, by PTEN/Phosphoinositide 3-kinase and JAK2/STAT3 pathways in glioblastoma.
Cancer Lett. 2018, 429, 54–65. [CrossRef]

35. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R.
Stat. Soc. B Met. 1995, 57, 289–300. [CrossRef]

36. Storey, J.D.; Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 2003, 100, 9440–9445.
[CrossRef]

37. Ye, J.; Fang, L.; Zheng, H.K.; Zhang, Y.; Chen, J.; Zhang, Z.J.; Wang, J.; Li, S.T.; Li, R.Q.; Bolund, L.; et al. WEGO: A web tool for
plotting GO annotations. Nucleic Acids Res. 2006, 34, W293–W297. [CrossRef]

http://doi.org/10.1007/s12011-016-0748-6
http://www.ncbi.nlm.nih.gov/pubmed/27220627
http://doi.org/10.2174/156802611796235107
http://www.ncbi.nlm.nih.gov/pubmed/21506934
http://doi.org/10.1038/ncprheum0920
http://doi.org/10.1021/acs.jproteome.8b00111
http://doi.org/10.1016/j.vetimm.2018.03.008
http://doi.org/10.3390/biom2010046
http://doi.org/10.1155/2016/2495073
http://doi.org/10.1038/ni.3858
http://doi.org/10.1039/AN9952000833
http://doi.org/10.1016/j.jnutbio.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/27424223
http://doi.org/10.1089/ars.2011.4145
http://www.ncbi.nlm.nih.gov/pubmed/21955027
http://doi.org/10.1007/s12011-016-0781-5
http://doi.org/10.1016/j.jnutbio.2019.03.020
http://www.ncbi.nlm.nih.gov/pubmed/31078905
http://doi.org/10.1016/j.redox.2020.101519
http://www.ncbi.nlm.nih.gov/pubmed/32531544
http://doi.org/10.1093/jn/nxz317
http://www.ncbi.nlm.nih.gov/pubmed/32060554
http://doi.org/10.1016/j.cmet.2013.05.017
http://www.ncbi.nlm.nih.gov/pubmed/23791484
http://doi.org/10.1016/S0021-9258(17)35986-0
http://doi.org/10.1021/pr3009226
http://doi.org/10.1021/pr201240a
http://doi.org/10.1021/pr400356v
http://www.ncbi.nlm.nih.gov/pubmed/23984759
http://doi.org/10.1155/2013/581862
http://www.ncbi.nlm.nih.gov/pubmed/23555056
http://doi.org/10.1038/nbt.1511
http://www.ncbi.nlm.nih.gov/pubmed/19029910
http://doi.org/10.1016/j.canlet.2018.04.040
http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
http://doi.org/10.1073/pnas.1530509100
http://doi.org/10.1093/nar/gkl031


Antioxidants 2022, 11, 964 22 of 22

38. Chernick, M.; Ware, M.; Albright, E.; Kwok, K.W.H.; Dong, W.; Zheng, N.; Hinton, D.E. Parental dietary seleno-L-methionine
exposure and resultant offspring developmental toxicity. Aquat. Toxicol. 2016, 170, 187–198. [CrossRef]

39. Li, C.; Tan, X.F.; Lim, T.K.; Lin, Q.; Gong, Z. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals
conserved protein profiles between genders and between zebrafish and human. Sci. Rep. 2016, 6, 24329. [CrossRef]

40. Xu, C.L.; Guo, Y.; Qiao, L.; Ma, L.; Cheng, Y.Y.; Roman, A. Biogenic synthesis of novel functionalized selenium nanoparticles by
Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia
coli K88. Front. Microbiol. 2018, 9, 1129. [CrossRef]

41. Ungvari, E.; Monori, I.; Megyeri, A.; Csiki, Z.; Prokisch, J.; Sztrik, A.; Javor, A.; Benko, I. Protective effects of meat from lambs on
selenium nanoparticle supplemented diet in a mouse model of polycyclic aromatic hydrocarbon-induced immunotoxicity. Food
Chem. Toxicol. 2014, 64, 298–306. [CrossRef] [PubMed]

42. Cray, C.; Zaias, J.; Altman, N.H. Acute phase response in animals: A review. Comp. Med. 2009, 59, 517–526. [PubMed]
43. Méplan, C.; Johnson, I.T.; Polley, A.C.; Cockell, S.; Bradburn, D.M.; Commane, D.M.; Arasaradnam, R.P.; Mulholland, F.; Zupanic,

A.; Mathers, J.C. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in
human rectal biopsies. FASEB J. 2016, 30, 2812–2825. [CrossRef]

44. Pillai, S.S.; Sugathan, J.K.; Indira, M. Selenium downregulates RAGE and NFκB expression in diabetic rats. Biol. Trace Elem. Res.
2012, 149, 71–77. [CrossRef] [PubMed]

45. Francian, A.; Mann, K.; Kullberg, M. Complement C3-dependent uptake of targeted liposomes into human macrophages, B cells,
dendritic cells, neutrophils, and MDSCs. Int. J. Nanomed. 2017, 12, 5149–5161. [CrossRef]

46. Puchau, B.; Zulet, M.A.; de Echavarri, A.G.; Navarro-Blasco, I.; Martinez, J.A. Selenium intake reduces serum C3, an early marker
of metabolic syndrome manifestations, in healthy young adults. Eur. J. Clin. Nutr. 2009, 63, 858–864. [CrossRef] [PubMed]

47. Avery, J.C.; Hoffmann, P.R. Selenium, selenoproteins, and immunity. Nutrients 2018, 10, 1203. [CrossRef]
48. Gan, L.; Liu, Q.O.; Xu, H.B.; Zhu, Y.S.; Yang, X.L. Effects of selenium overexposure on glutathione peroxidase and thioredoxin

reductase gene expressions and activities. Biol. Trace Elem. Res. 2002, 89, 165–175. [CrossRef]
49. Wu, G.Y.; Fang, Y.Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione metabolism and its implications for health. J. Nutr. 2004, 134,

489–492. [CrossRef]
50. Liu, Z.; Ren, Z.; Zhang, J.; Chuang, C.C.; Kandaswamy, E.; Zhou, T.; Zuo, L. Role of ROS and nutritional antioxidants in human

diseases. Front. Physiol. 2018, 9, 477. [CrossRef]
51. Azadmanesh, J.; Borgstahl, G.E.O. A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants

2018, 7, 25. [CrossRef] [PubMed]
52. Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.M.; Baron, M.; Melcova, M.; Opatrilova,

R.; Zidkova, J.; et al. Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomed. 2018, 13, 2107–2128.
[CrossRef] [PubMed]

53. Di Meo, S.; Napolitano, G.; Venditti, P. Physiological and pathological role of ROS: Benefits and limitations of antioxidant
treatment. Int. J. Mol. Sci. 2019, 20, 4810. [CrossRef]

54. Ristow, M. Unraveling the truth about antioxidants: Mitohormesis explains ROS-induced health benefits. Nat. Med. 2014, 20,
709–711. [CrossRef]

55. Wowk, P.F.; Zardo, M.L.; Miot, H.T.; Goldenberg, S.; Carvalho, P.C.; Morking, P.A. Proteomic profiling of extracellular vesicles
secreted from Toxoplasma gondii. Proteomics 2017, 17, 15–16. [CrossRef]

56. Li, Y.H.; Lin, Z.F.; Guo, M.; Xia, Y.; Zhao, M.Q.; Wang, C.B.; Xu, T.T.; Chen, T.F.; Zhu, B. Inhibitory activity of selenium
nanoparticles functionalized with oseltamivir on H1N1 influenza virus. Int. J. Nanomed. 2017, 12, 5733–5743. [CrossRef] [PubMed]

57. Ferro, C.; Florindo, H.F.; Santos, H.A. Selenium Nanoparticles for Biomedical Applications: From Development and Characteriza-
tion to Therapeutics. Adv. Healthc. Mater. 2021, 10, 2100598. [CrossRef]

58. Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett. 2018, 13,
339. [CrossRef]

59. de Salamanca, A.E.; Diebold, Y.; Calonge, M.; Garcia-Vazquez, C.; Callejo, S.; Vila, A.; Alonso, M.J. Chitosan nanoparticles as a
potential drug delivery system for the ocular surface: Toxicity, uptake mechanism and in vivo tolerance. Investig. Ophthalmol. Vis.
Sci. 2006, 47, 1416–1425. [CrossRef]

http://doi.org/10.1016/j.aquatox.2015.11.004
http://doi.org/10.1038/srep24329
http://doi.org/10.3389/fmicb.2018.01129
http://doi.org/10.1016/j.fct.2013.12.004
http://www.ncbi.nlm.nih.gov/pubmed/24315870
http://www.ncbi.nlm.nih.gov/pubmed/20034426
http://doi.org/10.1096/fj.201600251R
http://doi.org/10.1007/s12011-012-9401-1
http://www.ncbi.nlm.nih.gov/pubmed/22476978
http://doi.org/10.2147/IJN.S138787
http://doi.org/10.1038/ejcn.2008.48
http://www.ncbi.nlm.nih.gov/pubmed/18985060
http://doi.org/10.3390/nu10091203
http://doi.org/10.1385/BTER:89:2:165
http://doi.org/10.1093/jn/134.3.489
http://doi.org/10.3389/fphys.2018.00477
http://doi.org/10.3390/antiox7020025
http://www.ncbi.nlm.nih.gov/pubmed/29385710
http://doi.org/10.2147/IJN.S157541
http://www.ncbi.nlm.nih.gov/pubmed/29692609
http://doi.org/10.3390/ijms20194810
http://doi.org/10.1038/nm.3624
http://doi.org/10.1002/pmic.201600477
http://doi.org/10.2147/IJN.S140939
http://www.ncbi.nlm.nih.gov/pubmed/28848350
http://doi.org/10.1002/adhm.202100598
http://doi.org/10.1186/s11671-018-2728-6
http://doi.org/10.1167/iovs.05-0495

	Introduction 
	Materials and Methods 
	Selenium Nanoparticles (SeNPs) Preparation and Characterization 
	SeNPs Diet and Trolox Diet Preparation 
	Fish Maintenance 
	Comparison of Immunomodulation Effects with SeNP and Trolox Diet 
	Comparison of Antioxidation Effects with SeNP and Trolox Diet 
	Serum Collection and Proteomic Sample Preparation 
	Serum Proteomics Analysis 
	Transcriptome Analysis 
	ICP-MS Analysis 
	Statistical Analyses 

	Results 
	SeNPs and SeNP Diet Characterization 
	Comparison of Immunomodulation Effects with SeNP and Trolox Diet 
	Comparison of Antioxidation Effects with SeNP and Trolox Diet 
	Serum Proteomic Analysis 
	Canonical Pathway and Molecular Network Analyses from Serum Proteomics 
	Uptake of Se and Transcriptomic Response of Kidney and Liver 

	Discussion 
	Conclusions 
	References

