
Multimodal Transportation 1 (2022) 100028 

Contents lists available at ScienceDirect 

Multimodal Transportation 

journal homepage: www.elsevier.com/locate/multra 

Modeling and optimization for carsharing services: A literature 

review 

Ting Wu, Min Xu 

∗ 

Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, PR China 

a r t i c l e i n f o 

Keywords: 

Carsharing 

Decision-making 

Optimization model 

Algorithm 

Literature review 

a b s t r a c t 

This study conducts a holistic and in-depth review of the modeling and optimization problems 

arising from the carsharing service operations. The aims of this review are twofold. First, this 

review attempts to assist carsharing operators in (i) operating carsharing systems in a better way, 

and (ii) gaining a forward-looking understanding of the operation of the upcoming autonomous 

carsharing services. Second, this study seeks to provide the transportation and management sci- 

ence researchers with an overview of the literature on the optimization problems for the carshar- 

ing service operations and offer directions for future research. We classify the literature into three 

categories, i.e., strategic, tactical, and operational, according to the level of the decisions involved 

in the optimization problems. For each category, the optimization models and solution methods 

proposed in existing studies are surveyed. Finally, we conclude the literature review and discuss 

several possible future research directions for the carsharing service operation management. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The sustainable principles in urban mobility have prompted the emergence of many alternative transportation modes. A prominent 

one of them is carsharing, which allows users to access private cars without paying ownership costs ( Yang et al., 2021 ; Zhang et al.,

2019 ). By October 2014, more than 104,000 carsharing vehicles were accessible for about 4,800,000 registered users or members in

over 1531 cities of 33 countries ( Huang et al., 2018 ). Early carsharing operators provided round-trip services that require users to

return vehicles where they are picked up ( Boyac ı et al., 2015 ; Golalikhani et al., 2021a ; Nourinejad and Roorda, 2014 ). To attract

more users by offering more flexible services, many carsharing operators, e.g., Car2Go in Germany ( Car2Go, 2021 ) and Smove in

Singapore ( Smove, 2021 ), have allowed users to pick up and drop off vehicles at different stations by providing one-way services.

According to whether a vehicle is picked up and dropped off at designated stations or non-designated stations (i.e., operation areas

that allow parking), one-way carsharing services (CSSs) can be further divided into station-based services and free-floating services 

( Balac et al., 2017 ; Li et al., 2018 ; Weikl and Bogenberger, 2013 , 2015 ; Xu et al., 2018 ). 

Over the past few years, owing to the breakthroughs in battery technology and the incentive programs offered by the government,

some carsharing operators have adopted electric vehicles (EVs) in their services, e.g., EVCARD in China ( EVCARD, 2021 ) and Auto-

Bleue in France ( AutoBleue, 2021 ), and the traditional carsharing with gasoline vehicle (GV) fleet is undergoing electrification. In an

electric carsharing system, the users pick up and drop off vehicles at charging stations. They can only pick up vehicles with the battery

level that can cover their mileage, and they are usually required to connect the vehicles to chargers before they leave to ensure the

vehicles are recharged. In addition, the emerging autonomous driving technology in the new era is greatly revolutionizing the future

of transportation and the potential application of autonomous vehicles (AV) in CSSs has also received attention. In an autonomous
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Table 1 

The list of decisions involved in the reviewed studies. 

Levels Decisions 

Strategic Locations, amounts, and capacities of stations 

Tactical Fleet size & deployment and staff size & deployment 

Operational Vehicle relocation and trip price 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

carsharing system, the users no longer need to pick up and drop off vehicles at stations. Instead, AVs can drive to the user locations

and take the users directly to their destination. Vehicle electrification and autonomous driving further intensify the diversification of

carsharing systems. 

In order to seize the market in the highly competitive environment, the carsharing operator, a for-profit business organizer,

naturally needs to provide high-quality services while pursuing profit maximization. In fact, various optimization problems arising 

from the existing carsharing service operations, which generally seek to realize profit maximization, cost minimization, or service level 

maximization (i.e., the number of satisfied users) by optimizing service-related decisions, have been the subject of research and they

are considered significant in advancing the development of the carsharing market. For example, how to deploy charging stations for

the electric carsharing systems ( Brandstätter et al., 2017 ; Brandstätter et al., 2020 ; Deza et al., 2020 ), how to determine the fleet size

to be operated in a carsharing system ( Fan, 2014 ; Monteiro et al., 2021 ; Xu et al., 2018 ), and how to make relocation strategies to cope

with the vehicle imbalance problem in the one-way carsharing system ( Lu et al., 2021 ; Nourinejad and Roorda, 2015 ). In addition,

a number of studies have focused on the optimization problems of the autonomous CSSs over the past few years ( Iacobucci et al.,

2019 ; Levin, 2017 ; Li et al., 2021 ; Ma et al., 2017 ). This, to a certain degree, caters to the needs of operators to make adequate

forward-looking preparations for the smooth application of AVs to the CSSs in the visibly near future. An overview of the research

on the optimization problems arising from carsharing service operations is instructive for the operators to (i) achieve a win-win

situation by providing high-quality services while realizing profit maximization, and (ii) gain a forward-looking understanding about 

the operation of the upcoming autonomous CSSs. 

A few relevant works have attempted to review the literature on CSSs. For instance, Illgen and Höck (2019) performed a sys-

tematic review on the method-based solutions to the vehicle relocation problem in the one-way carsharing networks. Jorge and Cor-

reia (2013) conducted a literature review on demand modeling and the ways to balance the vehicle stocks in the one-way carsharing

systems. Both of the two studies only focused on a particular operation problem in the CSSs. Narayanan et al. (2020) comprehen-

sively consolidated studies in the shared autonomous vehicle services, i.e., the shared mobility services (including CSSs) with AVs.

However, their main focus was on the foreseen impacts of the shared autonomous vehicle services without factoring in the service

optimization problems. Ferrero et al. (2018) introduced a taxonomy that can categorize the existing literature and by applying it,

they analyzed the different aspects of CSSs and derived some general trends and research perspectives. Gavalas et al. (2016) pre-

sented an extensive literature survey on models and algorithmic techniques for the design, operation, and management of vehicle 

(bikes or cars) sharing systems. In order to design an integrated conceptual decision-support framework for the carsharing systems, 

Golalikhani et al. (2021a) provided a holistic view of the current state of literature, the business practices, and the context. All of the

three studies made a review on the optimization problems in the human-driven CSSs without including the upcoming autonomous

CSSs. Very recently, Golalikhani et al. (2021b) proposed a detailed description of the current carsharing business practices by de-

scribing, conceptualizing, and analyzing 34 business-consumer carsharing organizations. Their main focus was to close the gap of 

understanding of the scientific community concerning the business practices and contexts. 

Different from the studies mentioned above, this paper conducts a more systematic and comprehensive review on particularly the 

optimization problems arising from the carsharing service operations by including the autonomous CSSs. The aims of this review are

twofold. First, this paper attempts to assist operators in operating carsharing systems in a better way such that they can obtain high

profit while offering good-quality services and obtaining a forward-looking understanding of the operations of autonomous CSSs. 

Second, this paper seeks to provide the transportation and management science researchers with an overview of the state-of-the-art 

mathematical modeling-based literature on CSS operations and to identify the gaps in the current literature that offer directions for

future research. To achieve these aims, a search in Google Scholar is conducted to identify the articles related to modeling-based

optimization problems arising from carsharing service operations. The search is confined to the articles published over the past

decade and particularly in the last five years. Since the conference papers are difficult to trace, we exclude them although they may

be good sources of knowledge about the considered topic. Specifically, we first locate the most relevant articles published in the

leading journals, such as Transportation Research Part B, Transportation Research Part C, and Transportation Research Part E. Then

we identify the key references cited in the most relevant articles. Finally, we find the key literature citing the articles identified in the

previous two steps. As a result, more than 70 articles were identified, which were deemed to be enough to cover the main body of

work to date on the considered topic. Since the decisions involved in CSSs can be classified into the long-term strategic, the mid-term

tactical, and the short-term operational depending on their impact scope on a carsharing system ( Boyac ı and Zografos, 2019 ; Boyac ı

et al., 2017 ), we group the selected papers into the corresponding three categories according to the level of the targeted decisions. To

be more specific, the first long-term strategic category refers to the station planning; the second mid-term tactical category includes

the fleet sizing & deploying and staff sizing & deploying; the third short-term operational category involves the vehicle relocation

and trip pricing ( Boyac ı et al., 2015 ; Xu et al., 2018 ; Zhao et al., 2018 ). Table 1 lists all the decisions involved in the studies we have
2 
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reviewed. It should be noted that a study may integrate the decisions at all of the above-mentioned three levels ( Boyac ı et al., 2015 ;

Golalikhani et al., 2021a ), we classified them according to their major focus. 

The remainder of this paper is organized as follows. Section 2 reviews the literature on the long-term strategic station planning,

followed by the summary of the literature on the mid-term tactical fleet sizing & deploying and staff sizing & deploying in Section 3 .

Section 4 summarizes the studies regarding the short-term operational vehicle relocation and trip pricing problems. Section 5 identifies 

research gaps and indicates the directions for future research. Finally, the conclusions are presented in Section 6 . 

2. Long-term strategic station planning 

As the top-level decision making, proper station planning for gasoline-powered carsharing systems or charging station planning for 

electric carsharing systems, which generally includes the determination of locations, amounts, and capacities, is crucial to struggle a

trade-off between enhancing service capability and reducing infrastructure construction cost. Table 2 summarizes the studies focusing 

on strategic station planning, which includes the type of service, the research objective, the formulated model, the solution method,

and the evaluation approach. In the following, we analyze these studies in more detail. 

2.1. Station planning for human-driven gasoline-powered CSSs 

A few studies have attempted to address the decision makings on station planning in the human-driven gasoline-powered CSSs. 

de Almeida Correia and Antunes (2012) developed an integer linear programming model to deal with the depot (i.e., station) location

problem in one-way carsharing systems under three trip selection schemes. A case study on the municipality of Lisbon, Portugal was

conducted to analyze the impact of depot location and trip selection schemes on the profitability of such systems. For the joint

determination of station capacity and fleet size, Hu and Liu (2016) formulated a mixed queueing network model and a non-convex

profit-maximization model. In the mixed queueing network model, they considered the road congestion and embedded the booking 

process to capture the vehicle idle time caused by the pick-up time window. A genetic algorithm was proposed to solve the non-

convex optimization problem and two algorithms that belong to the class of mean value analysis were used to solve the equilibrium

distribution of queuing network with a product-form solution. Huang et al. (2018) proposed a mixed-integer nonlinear programming 

model to address the station location and station capacity problem. They used a logit model that determines the potential demand for

CSSs to account for the competition with private cars and adopted a customized gradient algorithm to obtain near-optimal solutions

in a reasonable time. In order to determine the parking planning and vehicle allocation for the one-way (including station-based

and free-floating) CSSs, Lu et al. (2018) proposed a two-stage stochastic integer programming model and developed a branch-and- 

cut algorithm with mixed-integer, rounding-enhanced benders cuts to solve the model. Similarly, Zhang et al. (2021) introduced a 

two-stage risk-averse stochastic model for the determination of station location, station capacity, and fleet size. A branch-and-cut 

algorithm and a scenario decomposition algorithm were designed to solve the proposed model. 

2.2. Station planning for human-driven electric CSSs 

To cater to the needs of vehicle charging brought by the introduction of EVs with limited driving range into CSSs, some scholars

have made great efforts to investigate the charging station planning for human-driven electric CSSs. For the determination of the

service regions (i.e., non-designated stations) for a one-way free-floating carsharing system, He et al. (2017) established a mathemat- 

ical programming model that incorporates details of both customer adoption behavior and fleet management, i.e., EV repositioning 

and charging, under imbalanced travel patterns. To overcome the possible ambiguity of data brought by the uncertain adoption

patterns, they employed a distributionally robust optimization framework. With the demand uncertainty taken into account, both 

Brandstätter et al. (2017) and Çal ı k and Fortz (2019) dealt with a charging station location problem by a mixed-integer stochastic

programming model. Cocca et al. (2019) proposed a data-driven & simulation-based optimization approach to determine the optimal 

placement of charging stations, and the smart vehicle return policies. A case study on Turin showed that few charging stations were

enough to make the system self-sustainable. Deza et al. (2020) presented a mixed-integer linear programming model and adopted a

column generation approach to find the optimal locations of charging stations for one-way electric CSSs among a large number of

potential charging station locations. Taking the constraint of the limited cost of the company and the multiple influencing factors of

carsharing to meet the maximum user demand into consideration, Sai et al. (2020) built up a mixed-integer nonlinear programming

model and designed a genetic algorithm for the corresponding model to determine the location of charging stations. Using the number

of expected trips that can be accepted as a gauge of quality, Brandstätter et al. (2020) introduced a mixed-integer linear programming

model and heuristic algorithms for the determination of the optimal location and size of charging stations. Based on the survival anal-

ysis, Bi et al. (2021) constructed a bi-level optimization model that maximizes profit and service level, respectively, for the planning

of station location, parking spots, charging piles. To determine the number and location of fast chargers to be deployed in one-way

electric carsharing systems, Bekli et al. (2021) proposed an integer programming model based on a time-space-battery level network 

and introduced three heuristics to cope with the computational intractability. 

Different from the above studies, which focused only on the decision making of station planning, several studies attempted to

address the joint determination of station planning and fleet size and/or fleet management. Boyac ı et al. (2015) developed a multi-

objective mixed-integer linear programming model for the planning of one-way electric carsharing systems involving decision makings 

of station location, station capacity, and fleet size. To scale to the problem size, they transformed the proposed model into an aggregate

one using the concept of the virtual hub. Hua et al. (2019) proposed an innovative framework for the joint determination of charging
3 
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Table 2 

A summary of studies on the strategic station planning. 

(1) Station planning for human-driven gasoline-powered CSSs 

Literature Service type Objective Model Solution method Evaluation 

de Almeida Correia and 

Antunes (2012) 

Station-based Profit maximization Integer linear programming Solver Xpress Case study 

Hu and Liu (2016) Station-based Profit maximization Mixed queuing network model & mixed-integer 

linear programming 

Exact mean value analysis algorithm & 

Approximate 

Schweitzer-Bard mean value analysis algorithm 

Computational experiments 

Huang et al. (2018) Station-based Profit maximization Mixed-integer nonlinear programming Customized gradient algorithm Case study 

Lu et al. (2018) Station-based and 

free-floating 

Cost minimization Two-stage stochastic integer programming Branch-and-cut algorithm Computational experiments 

Zhang et al. (2021) Station-based Cost minimization Two-stage risk-averse stochastic programming Branch-and-cut algorithm & Scenario 

decomposition algorithm 

Computational experiments 

(2) Charging station planning for human-driven electric CSSs 

Literature Service type Objective Model Solution Method Evaluation 

He et al. (2017) Free-floating Profit maximization Mixed-integer second-order cone programming Mixed-integer second-order cone programming 

approximation 

Case study 

Brandstätter et al. (2017) Station-based Profit maximization Two-stage stochastic integer linear programming Heuristic algorithm Computational experiments 

& case study 

Çal ı k and Fortz (2019) Station-based Profit maximization Mixed-integer linear stochastic programming Benders decomposition algorithm Case study 

Cocca et al. (2019) Free-floating Service level 

maximization 

Data-driven optimization Heuristic algorithm & simulation-based approach Case study 

Deza et al. (2020) Station-based Service level 

maximization 

Mixed-integer linear programming Column generation approach Case study 

Sai et al. (2020) Station-based Service level 

maximization 

Integer nonlinear programming Genetic algorithm Case study 

Brandstätter et al. (2020) Station-based Profit maximization Integer linear programming Path-based heuristic & flow-based heuristic Computational experiments 

& case study 

Bi et al. (2021) Station-based Service level 

maximization & 

Profit maximization 

Mixed-integer nonlinear programming Bi-level heuristic algorithm Case study 

Bekli et al. (2021) Station-based Profit maximization Integer linear programming Heuristic algorithm Computational experiments 

& case study 

Boyac ı et al. (2015) Station-based Profit maximization Multi-objective mixed-integer linear programming Aggregate modeling method Case study 

Hua et al. (2019) Station-based Cost minimization Multi-stage nonlinear integer stochastic 

programming 

Accelerated solution algorithm Computational experiments 

& case study 

Huang et al. (2020a) Station-based Profit maximization Mixed-integer nonlinear programming Golden section line search method & shadow price 

algorithm 

Case study 

(3) Charging station planning for autonomous electric CSSs 

Literature Service type Objective Model Solution Method Evaluation 

Kang et al. (2017) Station-based Profit maximization Mixed-integer linear programming Genetic algorithm & sequential quadratic 

programming 

Case study 

Lee et al. (2020) Station-based Cost minimization Reliability-based design optimization model Reliability-based design optimization Computational experiments 

Ma et al. (2021b) Station-based Cost minimization Mixed-integer nonlinear programming Genetic algorithm Computational experiments 

Zhao et al. (2021) Station-based Cost minimization Dynamic, stochastic, and nonlinear programming Customized heuristic algorithm Case study 

4
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station location, fleet distribution, and real-time fleet operations considering demand uncertainty. A multi-stage stochastic model 

was built up to overcome the challenge brought by the demand uncertainty and an accelerated solution algorithm, which is based

on lagrangian relaxation and the stochastic dual dynamic programming method, was designed to obtain the operation policy while

checking the optimality gap to the optimum. Huang et al. (2020a) developed a mixed-integer nonlinear programming model and a

hybrid solution method of golden section line search approach and shadow price algorithm to optimize the station capacity and fleet

size of one-way electric CSSs. 

2.3. Station planning for autonomous electric CSSs 

With the advent of autonomous driving technology, it becomes possible for users to enjoy the autonomous CSSs in the foreseeable

future. According to what we have reviewed, only a few studies have been dedicated to the charging station planning for autonomous

electric CSSs. Kang et al. (2017) presented an integrated decision framework, which includes the decision makings of the charging

station location and fleet size, for the design of autonomous electric carsharing systems. A case study for an autonomous fleet operation

in Ann Arbor was conducted to compare autonomous electric CSSs and autonomous gasoline-powered CSSs in terms of profitability

and feasibility for a variety of market scenarios. Lee et al. (2020) designed an autonomous electric carsharing system including

charging station location and charging station capacity with the system uncertainty considered. A reliability-based design optimization 

approach was proposed to minimize the total cost of system design while satisfying the target reliability of the customer waiting time.

Ma et al. (2021b) formulated a mixed-integer nonlinear programming model to optimize the charging station location and vehicle 

routing for a location routing problem arising from the autonomous electric CSSs. Zhao et al. (2021) established a simulation-based

optimization model to seek a near-optimum design of charging station location and vehicle deployment for autonomous electric 

carsharing systems. 

In comparison to the human-driven CSSs, the vehicles in an autonomous carsharing system can relocate themselves to the users’

locations without any human operations ( Zhao et al., 2021 ). This provides users with more convenience and enables operators to save

labor and decision-making effort of staff movement. Nevertheless, the advanced autonomous driving technology would inevitably 

increase capital investment. In addition, the more flexible operation mode of autonomous CSSs, which allows remote parking and en-

route pick-up and drop-off, would induce more decision-making problems. Particularly, for electric autonomous CSSs, it additionally 

involves the decision making of which station to charge for a vehicle before the vehicle drives to a location for picking up a user.

In Section 3 and Section 4 , the studies on tactical and operational decision-making problems arising from autonomous CSSs will be

reviewed in detail. 

We can see from the summary in Table 2 that most of the studies focused on the human-driven station-based CSSs and it is quite

common for these studies to set the objective as maximizing profit or minimizing cost. Based on the specific context of the station

planning problem, the solution method can vary a lot from study to study. 

3. Mid-term tactical fleet sizing & deploying and staff sizing & deploying 

The determination of the number of vehicles put into use and their deployment among stations, i.e., fleet sizing & deploying, is an

important tactical decision-making problem for the CSSs. In particular, for the one-way CSSs, the carsharing operators may choose 

to hire staff to implement the vehicle relocation operations in order to deal with the vehicle imbalance issue across different stations,

which we will introduce in detail in Subsection 4.1 , and staff sizing & deploying is another tactical decision-making problem in the

CSSs. Table 3 summarizes the related studies, in which we additionally, in comparison to Table 2 , report modeling technique and the

involved specific tactical-level decisions for each study. 

Some studies have tried to tackle the tactical decision-making problems based on the time-space network ( Boyac ı et al., 2015 ;

Huang et al., 2020a ; Lu et al., 2018 ; Zhang et al., 2021 ). Specifically, Fan (2014) developed a multi-stage stochastic linear pro-

gramming model to optimize the tactical allocation (i.e., deployment) of vehicles for one-way station-based carsharing systems with 

the demand uncertainty taken into account. Zhou et al. (2017) proposed a data-driven metamodel simulation-based optimization 

approach to determine the profit-optimal deployment of vehicle fleet across a large-scale network of round-trip carsharing stations. 

Xu et al. (2018) formulated a mixed-integer nonlinear and nonconvex programming model to solve an electric vehicle fleet sizing

and trip pricing problem for one-way CSSs. An effective global optimization method with several outer-approximation schemes was 

employed to find the global optimal or 𝜀 -optimal solution to the considered problem. Zhao et al. (2018) established an integrated

framework to optimize the allocation plan of EVs and staff with the operational EV relocation and staff rebalancing decisions con- 

sidered. To solve the considered problem efficiently, they proposed a Lagrangian relaxation-based solution approach to decompose 

the primal problem into several sets of computationally efficient subproblems and design a three-phase implementation algorithm 

based on dynamic programming according to the values of Lagrangian multipliers. Monteiro et al. (2021) proposed a mixed-integer 

linear programming model to optimize the fleet size of a carsharing system for the one-way and round-trip modes while simulating

the clients’ interaction. Huang et al. (2021) developed a two-stage stochastic programming model for the demand-supply imbalance 

problem of one-way CSSs under demand uncertainty, with the fleet size and deployment determined at the first stage. 

In addition to the time-space network approach, some other modeling techniques were also adopted in the existing studies. These

modeling techniques include connection-based multi-commodity formulation ( Ma et al., 2017 ; Xu et al., 2021 ), mixed queuing net-

work approach ( Hu and Liu, 2016 ), set partitioning formulation ( Xu and Meng, 2019 ), and multi-state super-network approach ( Li and

Liao, 2020 ). Focusing on the human-driven autonomous carsharing systems, Ma et al. (2017) proposed a linear connection-based 

programming model to efficiently obtain the optimal solution to the fleet sizing problem. With the battery degradation considered, 
5 
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Table 3 

A summary of studies on the tactical-level decision-making problems. 

Literature Service type Fleet type Modeling technique Tactical-level 

decisions 

Objective Model Solution method Evaluation 

Fan (2014) Station-based Human-driven & 

gasoline-powered 

Time-space network 

approach 

Fleet sizing & 

deploying 

Profit maximization Multi-stage 

stochastic linear 

programming 

Scenario-tree-based approach Computational 

experiments 

Boyac ı et al. (2015) Station-based Human-driven & 

electric 

Time-space network 

approach 

Fleet sizing & 

deploying; Staff

sizing & deploying 

Profit maximization Multi-objective 

mixed-integer linear 

programming 

Aggregate modeling method Case study 

Zhou et al. (2017) Round-trip Human-driven & 

gasoline-powered 

Time-space network 

approach 

Fleet deploying Profit maximization Metamodel Data-driven metamodel 

simulation-based 

optimization approach 

Computational 

experiments & Case 

study 

Lu et al. (2018) Station-based and 

free-floating 

Human-driven & 

gasoline-powered 

Time-space network 

approach 

Fleet deploying Cost minimization Two-stage stochastic 

integer 

programming 

Branch-and-cut algorithm Computational 

experiments 

Xu et al. (2018) Station-based Human-driven & 

electric 

Time-space network 

approach 

Fleet sizing & 

deploying; Staff

sizing 

Profit maximization Mixed-integer 

nonlinear 

programming 

Outer-approximation method Case study 

Zhao et al. (2018) Station-based Human-driven & 

electric 

Time-space network 

approach 

Fleet deploying; 

Staff deploying 

Cost minimization Mixed-integer linear 

programming 

Lagrangian relaxation-based 

solution approach 

Computational 

experiments & Case 

study 

Huang et al. (2020a) Station-based Human-driven & 

electric 

Time-space network 

approach 

Fleet sizing & 

deploying 

Profit maximization Mixed-integer 

nonlinear 

programming 

Golden section line search 

method & shadow price 

algorithm 

Case study 

Monteiro et al. (2021) 

Round-trip and 

one-way 

Human-driven & 

gasoline-powered 

Time-space network 

approach 

Fleet sizing & 

deploying 

Service level 

maximization 

Mixed-integer linear 

programming 

Simulation-based 

optimization 

Computational 

experiments 

Zhang et al. (2021) Station-based Human-driven & 

gasoline-powered 

Time-space network 

approach 

Fleet sizing & 

deploying 

Cost minimization Two-stage 

risk-averse stochastic 

programming 

Branch-and-cut algorithm & 

Scenario decomposition 

algorithm 

Computational 

experiments 

Huang et al. (2021) Station-based Human-driven & 

gasoline-powered 

Time-space network 

approach 

Fleet sizing & 

deploying 

Profit maximization A two-stage 

stochastic 

programming 

Dedicated gradient search 

algorithm 

Case study 

Ma et al. (2017) Free-floating Autonomous & 

gasoline-powered 

Connection-based 

formulation 

Fleet sizing Cost minimization Linear programming A linear programming 

approach 

Case study 

Xu et al. (2021) Station-based Human-driven & 

electric 

Connection-based 

formulation 

Fleet sizing Profit maximization Mixed-integer 

nonlinear 

programming 

Piecewise linear 

approximation & 

outer-approximation 

Case study 

Hu and Liu (2016) Station-based Human-driven & 

gasoline-powered 

Mixed queuing 

network approach 

Fleet sizing & 

deploying 

Profit maximization Mixed queuing 

network model & 

mixed-integer linear 

programming 

Exact mean value analysis 

algorithm & Approximate 

Schweitzer-Bard mean value 

analysis algorithm 

Computational 

experiments 

Xu and Meng (2019) Station-based Human-driven & 

electric 

Set partitioning 

formulation 

Fleet sizing Profit maximization Set partitioning 

model 

Branch and price Computational 

experiments & Case 

study 

Li and Liao (2020) Free-floating Autonomous & 

gasoline-powered 

Multi-state 

super-network 

representation 

Fleet sizing & 

deploying 

Profit maximization Integer, 

time-dependent 

nonlinear 

programming with 

equilibrium 

constraints 

Lagrangian relaxation-based 

heuristic 

Computational 

experiments 
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Xu et al. (2021) developed a connection-based mixed-integer nonlinear programming model with concave and convex terms in the ob-

jective function to address the tactical electric vehicle fleet sizing problem faced by the carsharing service providers. Piecewise linear

approximation approach and outer-approximation method were employed to linearize the proposed model. As we have reviewed in 

Subsection 2.1 , Hu and Liu (2016) formulated one-way station-based carsharing systems as a mixed queueing network model and built

up a profit-maximization model for the joint design of fleet size and station capacity. Xu and Meng (2019) formulated a set partition-

ing model to determine the electric vehicle fleet size for one-way CSSs by maximizing the profit of carsharing operators while taking

into account the vehicle relocation operations and nonlinear electric vehicle charging profile. By taking into account the interplays

among vehicle relocations, supply-demand dynamics, and travelers’ multi-modal multiactivity schedules, Li and Liao (2020) proposed 

a bi-level system optimal model for the deployment of autonomous vehicles in the free-floating CSSs. A heuristic algorithm based on

Lagrangian relaxation was developed to solve the considered problem. 

From Table 3 we can conclude that researchers are more interested in the fleet sizing & deploying problems in the one-way CSSs

and the time-space network approach is mostly adopted. 

4. Short-term operational vehicle relocation and trip pricing 

At the operational level, vehicle relocation and trip pricing are the two most frequently encountered decision-making problems 

in CSSs. In the following, we will first review the studies on the vehicle relocation problem, and then the trip pricing problem. 

4.1. Vehicle relocation 

In comparison to round-trip carsharing service, one-way carsharing service provides users with more flexibility since it allows 

users to pick up and drop off vehicles at different stations. However, this flexibility would inevitably induce the vehicle imbalance

issue among stations, i.e., the number of vehicles/parking spots available at a specific station cannot well match users’ demand over

a particular period. To solve this issue, vehicle relocation operations among stations are imperative for the carsharing operators

( Boyac ı et al., 2015 ; Nourinejad and Roorda, 2015 ; Xu and Meng, 2019 ). According to the relocation strategies concerned, two

approaches are identified in the literature, i.e., the operator-based approach and the user-based approach ( Gambella et al., 2018 ). As

we have mentioned in Section 3 , to deal with the vehicle imbalance problem, the carsharing operators may choose to hire staff to

implement the vehicle relocation operations by driving vehicles from saturated stations to the ones that suffer from vehicle shortage,

which belongs to the operator-based approach. The user-based approach mainly incentivizes users to change their trips such that

the carsharing systems can restore a balanced distribution of vehicles in the network. Tables 4 and 5 summarize the studies on the

operator-based vehicle relocation problem and the user-based vehicle relocation problem, respectively. 

4.1.1. Operator-based vehicle relocation 

The operator-based vehicle relocation problem has been investigated extensively by scholars. The early studies focused on human- 

driven gasoline-powered CSSs. By incorporating a discrete choice model that depicts users’ mode choice, Jian et al. (2018) proposed

a mixed-integer nonlinear programming model linking the supply and the demand to solve the vehicle relocation problem for station-

based CSSs. Zakaria et al. (2018) presented a multi-objective integer linear programming model for solving the one-way carsharing 

relocation problem. In order to allow substantially longer reservation times while keeping the system profitable and achieving high 

service quality, Molnar and de Almeida Correia (2019) proposed a relocation-based reservation enforcement method combining 

vehicle locking and relocation movements. By this method, a variable quality of service model was developed and an iterated local

search metaheuristic based on simulation was used to solve the model. Lu et al. (2021) constructed a mathematical programming

model that minimizes the sum of relocation distance and travel distance of vehicles for the vehicle relocation problem with operation

teams. To solve the model efficiently, an adaptive large neighbourhood search algorithm was developed. 

The introduction of EVs in CSSs creates additional managerial problems due to the limited driving range per battery charge

( Brandstätter et al., 2016 ), and a large number of researchers have worked hard to deal with the vehicle relocation problem in

the one-way electric CSSs by taking the battery-related restrictions into account. Bruglieri et al. (2014) established a mixed-integer 

linear programming model to solve the vehicle relocation problem in the electric CSSs. Boyac ı et al. (2017) developed an integrated

multi-objective mixed-integer linear programming model and a discrete event simulation framework for the optimization of vehicle 

relocation and personnel rebalancing in a carsharing system with reservations. A clustering procedure was adopted to deal with

the dimensionality of the considered problem without compromising on the solution quality. Bruglieri et al. (2018) proposed a 

three-objective mixed-integer linear programming model for the vehicle relocation problem to struggle a trade-off among the users’ 

satisfaction, the staff’s workload balance, and the carsharing provider’s pursuit of profit. Gambella et al. (2018) introduced an exact

relocation model to manage the daily relocation operations of an electric carsharing system. This model was also extended for the

overnight relocations. Boyac ı and Zografos (2019) presented an integrated modeling and computational framework, which consists 

of preprocessing, optimization, and simulation modules, for analyzing the effect of spatial and/or temporal flexibility and reservation 

processing type on the performance of one-way electric carsharing systems. To tackle the electric vehicle relocation problem in

one-way carsharing systems, Bruglieri et al. (2019) specially developed an adaptive large neighbourhood search and a tabu search 

metaheuristic. In order to circumvent battery constraints and to improve vehicle utilization rates in one-way electric carsharing 

systems, Zhang et al. (2019) proposed a novel space-time-battery network flow model to determine the optimal assignment and relay

decisions. Folkestad et al. (2020) developed a mathematical model to optimize the charging and repositioning of a fleet of electric

vehicles for CSSs. By considering a time-of-use charging pricing mechanism, Lai et al. (2020) established a framework to minimize
7 
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Table 4 

A summary of studies on the operator-based vehicle relocation problem. 

Literature Fleet type Objective Model Solution method Evaluation 

Jian et al. (2018) Human-driven & 

gasoline-powered 

Profit maximization Mixed-integer nonlinear 

programming 

Model linearization Case study 

Zakaria et al. (2018) Human-driven & 

gasoline-powered 

Service level maximization; 

Staff size minimization; 

Relocation time minimization 

Multi-objective integer linear 

programming 

Genetic algorithms Computational experiments 

Molnar and de Almeida 

Correia (2019) 

Human-driven & 

gasoline-powered 

Operators’ preference 

maximization 

Variable quality of service model Iterated local search metaheuristic Computational experiments 

& case study 

Lu et al. (2021) Human-driven & 

gasoline-powered 

Distance minimization Mixed-integer linear programming Adaptive large neighbourhood 

search algorithm 

Computational experiments 

& case study 

Bruglieri et al. (2014) Human-driven & electric Service level maximization Mixed-integer linear programming Heuristic algorithm Computational experiments 

Boyac ı et al. (2017) Human-driven & electric Service level maximization; 

Cost minimization 

Multi-objective mixed-integer linear 

programming 

Clustering algorithm Case study 

Bruglieri et al. (2018) Human-driven & electric Staff size minimization; 

Relocation needs satisfaction 

maximization; Route 

duration minimization 

Multi-objective mixed-integer linear 

programming 

Randomized search heuristics Computational experiments 

Gambella et al. (2018) Human-driven & electric Profit maximization & 

battery level maximization 

Mixed-integer linear programming Heuristic algorithms Computational experiments 

Boyac ı and Zografos (2019) Human-driven & electric Cost minimization Integer programming Discrete-event simulation approach Case study 

Bruglieri et al. (2019) Human-driven & electric Profit maximization Mixed-integer linear programming Adaptive large neighbourhood 

search & tabu search metaheuristic 

Computational experiments 

Zhang et al. (2019) Human-driven & electric Profit maximization Integer programming Diving heuristic Case study 

Folkestad et al. (2020) Human-driven & electric Cost minimization Integer programming Genetic algorithm Computational experiments 

Lai et al. (2020) Human-driven & electric Sum of cost and time 

minimization 

Mixed-integer linear programming Solver CPLEX Case study 

Lu et al. (2020) Human-driven & electric Profit maximization Stochastic sequential decision 

programming 

Event-based strategy improvement 

approach 

Computational experiments 

Pantelidis et al. (2021) Human-driven & electric Cost minimization Mixed-integer linear programming Heuristic algorithm Computational experiments 

& case study 

Fan (2013) Human-driven & 

gasoline-powered 

Cost minimization Multi-stage stochastic mixed-integer 

linear programming 

Simplex method/Interior point 

methods/Decomposition methods 

Computational experiments 

Wang et al. (2019) Human-driven & electric Relocation needs satisfaction 

maximization 

Integer linear programming Ruin-probability-based predictive 

approach & zoning scheme 

Case study 

Huo et al. (2020) Human-driven & electric Profit maximization Mixed-integer nonlinear 

programming 

Data-driving approach Case study 

Yang et al. (2021) Human-driven & 

gasoline-powered 

Cost minimization Integer linear programming Decomposition algorithm Computational experiments 

& case study 

Huang et al. (2021) Human-driven & 

gasoline-powered 

Profit maximization A two-stage stochastic programming Gradient search algorithm Case study 

Iacobucci et al. (2019) Autonomous & electric Cost minimization Mixed-integer linear programming Model-predictive control 

optimization algorithms 

Case study 

Ma et al. (2021a) Autonomous & electric Weighted sum of distance, 

time, and energy 

minimization 

Mixed-integer linear programming Adaptive large neighbourhood 

search 

Computational experiments 

Hyland and 

Mahmassani (2018) 

Autonomous & 

gasoline-powered 

Distance minimization Integer linear programming Agent-based simulation approach Computational experiments 

Li et al. (2021) Autonomous & electric Cost minimization Integer linear programming Minimum drift plus penalty 

approach 

Case study 
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Table 5 

A summary of studies on the user-based vehicle relocation problem. 

Literature Fleet type Objective Model Solution method Evaluation 

Di Febbraro et al. (2018) Gasoline-powered Profit maximization Integer linear programming Simulation-based approach Case study 

Schiffer et al. (2021) Gasoline-powered Profit maximization Integer linear programming Polynomial algorithm Case study 

Stokkink and Geroliminis (2021) Gasoline-powered Profit maximization Predictive model Learning algorithm Case study 

Wang et al. (2021a) Gasoline-powered Profit maximization Mixed-integer nonlinear 

programming 

Approximate algorithm Case study 

Huang et al. (2020b) Electric Profit maximization Mixed-integer nonlinear 

programming 

Rolling horizon method & 

𝜀 -optimal algorithm & 

iterated local search 

algorithm 

Case study 

Wang et al. (2021b) Electric Profit maximization Integer linear programming Solver Gurobi Case study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the delivery time of customers and charging cost simultaneously while satisfying customer demands and working hour requirements. 

Lu et al. (2020) formulated a stochastic sequential decision programming model to investigate the charging and relocation problem

for an electric carsharing system. Based on a static node-charge graph structure, Pantelidis et al. (2021) developed non-myopic idle

vehicle rebalancing model, which considers queueing constraints applicable to EV charging, to jointly determine the relocation and 

routing decisions of vehicles under available charging capacity. 

All the above studies assumed that the user demand is known a priori or can be estimated beforehand. In order to take the inherent

uncertainty of user demand into account, several studies have attempted to develop vehicle relocation strategies in a dynamic fashion

or by a stochastic programming approach. Fan (2013) developed a multi-stage stochastic mixed-integer linear programming model 

that can take the system uncertainty into account to address the dynamic vehicle allocation problem for CSSs. Wang et al. (2019) devel-

oped a new model, which consists of relocation needs computation and execution plan generation, for the relocation operations of one-

way electric carsharing systems without advanced reservation information. Huo et al. (2020) constructed a data-driven optimization 

model considering demand uncertainty to improve the efficiency and profitability of CSSs. Yang et al. (2021) proposed an integrated

model for the determination of the operations of vehicle relocation and dispatcher rebalancing. A hybrid solution method combining

a rolling horizon algorithm with a customized decomposition algorithm was designed to solve the model. Huang et al. (2021) es-

tablished a two-stage stochastic programming model for the demand-supply imbalance problem of one-way CSSs under demand 

uncertainty, with the vehicle relocation optimized at the second stage. Very recently, Xu and Wu (2022) developed column gener-

ation based algrotihm to guide dynamic vehicle relocation and charging operations for electric carsharing systems under demand 

uncertainty. 

As the era of autonomous driving is upcoming, the potential application of AVs in the CSSs would enable the vehicles to be

relocated without staff. Several studies have pioneered the investigation of vehicle relocation problem for the autonomous CSSs in

either static or dynamic setting. Iacobucci et al. (2019) proposed a mixed-integer linear programming model to optimize charging 

schedules with vehicle-to-grid and vehicle routing & relocation at two different time scales by running two model-predictive control

optimization algorithms. Ma et al. (2021a) developed a mixed-integer linear programming model for the service optimization of 

autonomous carsharing systems, in which the objective was expressed by the weighted sum of the total travel distance, the total

travel time, and the total energy consumption. Hyland and Mahmassani (2018) presented and compared six AV-traveler assignment 

strategies for the operational problem associated with the on-demand autonomous CSSs. Li et al. (2021) proposed a minimum drift

plus penalty scheduling policy for real-time vehicle dispatching in large-scale autonomous electric carsharing systems. 

It can be observed from the summary in Table 4 that several studies proposed a multi-objective model for the operator-based

relocation problem. This seems to be in line with the reality, as the carsharing operators, when providing services, may take multiple

objectives into account instead of pursuing only profit. 

4.1.2. User-based vehicle relocation 

Regarding the user-based vehicle relocation problem, it has received much less attention compared with the operator-based vehicle 

relocation problem. In a user-based relocation problem setting where the users may accept to leave the car in a different location

in exchange for fare discounts, Di Febbraro et al. (2018) formulated a two-stage optimization model for the determination of the

alternative destinations proposed to users. Schiffer et al. (2021) introduced an integer programming model to optimize the assignment 

of user-based relocation strategies for the fleets in free-floating carsharing systems. Through the incentivization of customers and a

predictive model for the state of the system, Stokkink and Geroliminis (2021) developed a user-based vehicle relocation approach to

determine the optimal incentive as a trade-off between the cost of an incentive and the expected omitted demand loss. To mitigate

the demand and supply imbalance problem and increase profits by means of combinatorial monetary incentives and surcharges, 

Wang et al. (2021a) proposed an optimization framework for the determination of the incentives and surcharges at different stations

and times of day in one-way CSSs. 

Instead of focusing on either the operator-based vehicle relocation or the user-based vehicle relocation, two studies have tried to

factor in both of the two vehicle relocation strategies. With the time-varying SOC of vehicles tracked, Huang et al. (2020b) compared

the efficiency of the operator-based and the user-based vehicle relocation strategies in a one-way station-based electric carsharing 

system. By combining operator-based and user-based relocation strategies, Wang et al. (2021b) developed an integer programming 

model to solve the vehicle imbalance problem in one-way electric CSSs. 
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Table 6 

A summary of studies on the trip pricing problem. 

Literature Service type Fleet type Objective Model Solution method Evaluation 

Jorge et al. (2015) Station-based Human-driven & 

gasoline-powered 

Profit maximization Mixed-integer nonlinear 

programming 

Iterated local search 

metaheuristic 

Case study 

Xu et al. (2018) Station-based Human-driven & 

electric 

Profit maximization Mixed-integer nonlinear 

programming 

Outer-approximation 

algorithm 

Case study 

Xie et al. (2019) Station-based Human-driven & 

electric 

Profit maximization Mixed-integer nonlinear 

programming 

Outer polyhedral 

approximation 

Case study 

Huang et al. (2021) Station-based Human-driven & 

gasoline-powered 

Profit maximization A two-stage stochastic 

programming 

Gradient search 

algorithm 

Case study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As summarized in Table 5 , in total, only six studies factored the user-based vehicle relocation problem for CSSs. This may indicate

that there is a lot of room for future research on this problem. 

Trip pricing Table 6 summarizes the studies on the trip pricing problem in the CSSs. We can see that the trip pricing problem

has received little attention, in sharp contrast to the vehicle relocation problem. Specifically, Jorge et al. (2015) developed a mixed-

integer nonlinear programming model for the pricing problem of the one-way carsharing systems. As we have reviewed in Section 3 ,

Xu et al. (2018) formulated a mixed-integer nonlinear and nonconvex programming model to solve the electric vehicle fleet sizing

and trip pricing problem for one-way CSSs. To determine the optimal pricing and operation strategy for a one-way electric car-

sharing system, Xie et al. (2019) established a bi-level model and reformulated it as a mixed-integer quadratic programming model

through a global polyhedral approximation of second-order cones, primal-dual optimality condition, and product term linearization. 

Huang et al. (2021) proposed a two-stage stochastic programming model for the demand-supply imbalance problem of one-way CSSs 

under demand uncertainty, with the trip price optimized at the first stage. 

5. Future research directions 

Based on the reviewed papers, we identify the significant gaps that remain in the field of research and highlight several possible

future research directions as follows. 

From the reviewed literature, we can see that a few studies have pioneered dealing with the decision-making problems arising from

the autonomous CSSs. In comparison to the traditional CSSs with human-driven vehicles, CSSs with autonomous vehicles automize 

users’ walking to vehicles and driving for parking or refueling and thus provide users with more convenience. The convenience,

however, makes it impossible to solve the decision-making problems arising from the autonomous CSSs directly by utilizing the 

models and methods for the decision making of human-driven CSSs. This is because the operation mode of autonomous CSSs allows

remote parking and en-route pick-up and drop-off, which would induce more decision makings. Particularly, in an electric autonomous

carsharing system, we need to additionally decide which station to charge for a vehicle before the vehicle drives to a location for

picking up a user. Furthermore, our literature review reveals that only four studies have been dedicated to the long-term charging

station planning of autonomous electric CSSs, two studies to the mid-term fleet sizing & deploying of autonomous gasoline-powered

CSSs, and three studies to the short-term vehicle relocation of autonomous electric CSSs. Therefore, for the smooth and efficient

operation of the autonomous CSSs in the near future, considerable efforts need to be made for the decision-making problems of

autonomous CSSs 

Another phenomenon existed in the reviewed literature is that almost all the studies considered carsharing systems with a single

fleet type, e.g., human-driven gasoline vehicles, human-driven electric vehicles, and autonomous electric vehicles. In reality, however, 

a carsharing system may contain both gasoline vehicles and electric vehicles. Moreover, it is highly likely that the autonomous vehicles

will be applied in the CSSs by replacing part of the human-driven vehicles. The investigation on the operations of CSSs with hybrid

fleet type will be more in line with the reality. On the other hand, the optimization models formulated for the carsharing service

operations in the existing literature largely ignored the user behavior. In fact, in the carsharing systems, the users, as the enjoyers

of the service, usually show their subjective behavior. For example, in human-driven electric carsharing systems, users may select 

vehicles with certain battery levels according to their mileage and preferences. The users may also choose to advance or postpone

the pick-up/drop-off time based on their own needs. Incorporating these subjective user behaviors into the model formulation would 

be a challenging research direction in the future. 

For the vehicle relocation problem, little attention has been paid to the user-based strategy, although it is a practically effective

approach to tackle the vehicle imbalance problem in one-way CSSs. Hence, in the future, more efforts should be made on the user-

based vehicle relocation problem. In addition, the joint implementation of the operator-based vehicle relocation and the user-based 

vehicle relocation strategies may also be a potential good way to cope with the vehicle imbalance problem. For the trip pricing

problem, the investigation on it in the existing literature is also insufficient, although it is an important operational decision-making

problem for the CSSs. The decision making of trip pricing deserves more attention in the future. Furthermore, based on the reviewed

papers, we can see that several pioneering studies have adopted the data-driven approach to solve the carsharing service operation

problems by making use of the massive historical data. In the era of big data, utilizing the historical data to assist the decision making

of the optimization problems arising from the CSSs would be an inevitable trend. 
10 
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6. Conclusions 

In this study, we conducted a comprehensive review of the state-of-the-art mathematical modeling-based literature on CSS op- 

erations. According to the level of the decisions targeted by the studies, we classified the literature into three categories: strategic,

tactical, operational. Studies at the strategic level focused on the long-term planning of locations, amounts, and parking capacities

of stations, whereas studies at the tactical level determined the mid-term fleet size & deployment and staff size & deployment. Apart

from the studies at the strategic and tactical levels, the remaining studies mainly optimized the daily operator-based vehicle reloca-

tion, user-based vehicle relocation, and trip pricing. Comparatively speaking, the strategic station planning, the tactical fleet sizing 

& deploying, and the operational operator-based vehicle relocation have been investigated extensively, while the tactical staff sizing 

& deploying and the operational user-based vehicle relocation and trip pricing have received little attention. Overall, most of the

reviewed studies considered a station-based carsharing system with human-driven vehicles and developed a mixed-integer linear or 

nonlinear programming model for the investigated problem. The objective of models generally maximized the system profit or the 

service level or minimized the related cost. The solution method for solving the model varied a lot from study to study depending on

the specific model characteristics. Based on these reviewed studies, we identified research gaps and indicated several directions for

future research. 
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