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Abstract: Information about tree species plays a pivotal role in sustainable forest management.
Light detection and ranging (LiDAR) technology has demonstrated its potential to obtain species
information using the structural features of trees. Several studies have explored the structural
properties of boreal or temperate trees from terrestrial laser scanning (TLS) data and applied them to
species classification, but the study of structural properties of tropical trees for species classification is
rare. Compared to conventional static TLS, handheld laser scanning (HLS) is able to effectively capture
point clouds of an individual tree with flexible movability. Therefore, in this study, we characterized
the structural features of tropical species from HLS data as 23 LiDAR structural parameters, involving
6 branch, 11 crown and 6 entire tree parameters, and used these parameters to classify the species
via 5 machine-learning (ML) models, respectively. The performance of each parameter was further
evaluated and compared. Classification results showed that the employed parameters can achieve a
classification accuracy of 84.09% using the support vector machine with a polynomial kernel. The
evaluation of parameters indicated that it is insufficient to classify four species with only one and two
parameters, but ten parameters were recommended in order to achieve satisfactory accuracy. The
combination of different types of parameters, such as branch and crown parameters, can significantly
improve classification accuracy. Finally, five sets of optimal parameters were suggested according
to their importance and performance. This study also showed that the time- and cost-efficient HLS
instrument could be a promising tool for tree-structure-related studies, such as structural parameter
estimation, species classification, forest inventory, as well as sustainable tree management.

Keywords: structural properties; tropical species; handheld laser scanning; machine-learning
classifiers; optimal parameter sets

1. Introduction

Urban trees play a vital role in ameliorating urban environment by reducing pol-
lution [1], mitigating urban heat islands [2,3]. However, the degree of beneficence to
environment is highly dependent on tree species [4]. The precise classification of tree
species is thus necessary for better understanding our ecosystem services and developing
strategies of urban sustainable development [5]. Recently, LiDAR technique, which uses
pulsed laser to measure the physical attributes of object surface by calculating the distance
between the objects and the laser sensor [6–9], is becoming increasingly popular in the
forest research field as it can capture the tree structure information which is helpful for
providing alternates for tree species classification [10–12]. According to the platform, the
LiDAR technology includes spaceborne, airborne and terrestrial LiDAR [13]. Compared to
spaceborne and airborne LiDAR, TLS offers a potential and efficient solution to acquire
accurate structural information [14]. However, traditional TLS collects point cloud on
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a static workstation, requiring much time for preparations and data preprocessing [13].
The HLS, equipped with lightweight laser scanner, could capture 3D data at a movable
platform. The structural information and changes of trees in urban and rural areas can
be easily and quickly acquired. For example, after typhoons or heavy rainstorms, HLS
can help to rapidly obtain and evaluate the potential structural damage of trees. Several
studies have verified that the point clouds captured by HLS was promising for basic tree
structural properties estimation, i.e., tree height (TH), crown spread (CS) and diameter at
the breast height (DBH) [15–17]. However, there is a lack of feasibility study on HLS for
species classification. The tropical forests cover about 45% of the world’s forest, comprising
a highly diverse ecosystem [18]. Many studies in the literature studied tree species in
tropical forests, and less focus has been paid to the classification of tropical tree species in
urban areas. Therefore, to bridge the research gap, a study about classification of tropical
species in a city using HLS was conducted.

Structural information of trees extracted from 3D point cloud is usually characterized
as LiDAR parameters for species classification according to previous studies, such as
explicit tree structure feature parameters [14], quantitative structural features [19] and
salient geometric features [20]. However, most existing parameters were designed for the
classification of boreal or temperate species and may not perform well on tropical species.
To bridge the gap, we propose to explore appropriate structural parameters for tropical
species classification and evaluate the effectiveness of these parameters extracted from HLS
point cloud.

Therefore, in this study, a series of LiDAR structural parameters that could represent
the differences between species were designed and extracted from individual tree point
clouds obtained by HLS of four tropical species, including 6 branch parameters, 11 crown
parameters and 6 entire tree parameters. Five ML models were developed for species
classification, respectively. The importance of each parameter and the performance of
different types of parameters were also evaluated, respectively. According to the classifi-
cation results, we recommended several optimal parameter sets. The rest of this paper is
organized as follows. Section 2 describes the research data collection and data processing.
Section 3 introduces research methodologies, including separation of tree components,
derivation of LiDAR structural parameters, classification of tropical species, as well as
assessment of classification results. Section 4 describes all results, and Section 5 analyses
the performance, influences, applicability, as well as potential improvements. Overall
conclusions are summarized in Section 6.

2. Research Site and Data and Methods
2.1. Research Area and Tree Species

Hong Kong, which is located south of the Tropic of Cancer, has a humid subtropical
climate. There were about 3300 species of plants [21], among which 12 species were noted
as dominant tropical species according to the number of trees [21–23]. To select appropriate
suitable species as research targets, we used three rationales: (1) tree shape. From the
aspect of tree structures, tropical trees are mainly tall and top heavy [24,25], i.e., most of the
leaves are at the top half of the tree. Thus, the crown length of selected species should be
about or less than half of tree height; (2) tree number. To ensure the quality of the captured
point cloud, the selected species needs to be sufficient so that enough target samples can be
obtained; (3) tree location. The target individual trees should be able to be well separated
for structural information extraction. Following these three rationales, four tropical species
were finally selected, i.e., Aleurites moluccana (L.) Willd. (AM), Ficus altissima Blume (FA),
Delonix regia (Boj. Ex Hook.) Raf. (DR) and Hibiscus tiliaceus L. (HT) [26].

Aleurites moluccana is native of Malaysia and Polynesia and widely cultivated in
tropical and some subtropical areas [27]. It is an evergreen tree with wide spreading
and large tree height. The leaves are simply and alternately arranged with entire and
wave margins and 3–5 shallow lobes [28]. Ficus altissima native in southeastern Asia, and
mainly distributes in Andam Islands, Myanmar and Malesia [29]. It is a large evergreen
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tree with a spreading crown, often with aerial roots. The leaves are alternate, elliptic to
ovate, with entire margins. Delonix regia is native of Madagascar and widely distributes in
tropical and subtropical areas [30]. The leaf is even-bipinnately compound, and the canopy
spread horizontally. Hibiscus tiliaceus is native of eastern hemisphere tropics [31]. Its leaves
are heart shaped with finely serrated margins and the crown spread roundly with many
branches. In these four species, two types of shape that are the common crown shape of
tropical species [24,25] were included. AM and HT have a sphere-like crown with simple
and complex structures, respectively, while FA and DR have a funnel-like crown with
complex and simple structures, respectively. The trees of the selected species distribute in
parks or along roadsides in the Kwun Tong district and Hong Kong Island (Figure 1). The
basic structural information of trees used in this study was manually measured (Table 1).
Figure 2 shows some examples of point cloud of selected four species.
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Figure 1. Location of research area and distribution of trees of selected four species. The colored
icons in the dashed red circle indicate the general location of the selected four species. The icons in
the solid red circle are specific sample locations of each species.

Table 1. Basic structural information of trees of four species. Mean, Max and Min are average,
maximum and minimum values of TH, CS and DBH, respectively.

Species Number
Structure Information

Mean Max Min

AM 63
TH (m) 13.27 21.27 7.458
CS (m) 9.02 15.35 4.68
DBH (cm) 35.29 58.92 21.38

FA 53
TH (m) 12.96 19.53 5.31
CS (m) 10.79 18.72 4.74
DBH (cm) 31.16 65.80 26.01

DR 52
TH (m) 10.76 18.33 5.84
CS (m) 11.47 21.75 4.65
DBH (cm) 23.86 30.44 13.61

HT 57
TH (m) 9.55 13.12 4.74
CS (m) 7.37 13.71 3.48
DBH (cm) 28.46 46.50 22.31
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2.2. Data Collection and Preprocessing

The mobile equipment used for data collection was a lightweight (3.5 kg) personal
handheld laser scanner, ZEB HORIZON, developed by GeoSLAM Ltd. for outdoor use.
This equipment incorporates a Velodyne Puck VLP-16 laser scanner that emits 937 points
per scan line with 0.38◦ intervals at a wavelength of 903 nm (approximately 300,000 points
per second). Its scanning range is up to 100 m. HLS point clouds of sample trees were
collected during April and May of 2020, specifically, from 6 April to 29 May 2020. The
scanning was conducted around trees in circles twice while walking at the speed of about
1.5 km/h. To ensure the scanning of structural information, we scanned the tree at a close
distance (about 3 m) for the first circle and scanned the tree at a long distance (more than
10 m) for the second circle. For example, to the trees along the road, we firstly scanned the
tree on the same roadside and secondly scanned the tree on the opposite roadside. The
average scanning time for each tree was about 3–5 minutes.

Species classification was proposed to be conducted at the individual tree level in this
study. Before the segmentation of individual trees, noise points were filtered out using the
statistical outlier removal method, and ground points were removed by the cloth simulation
filtering algorithm [32]. Both noise filtering and ground removal were implemented in
CloudCompare 2.0 software. The individual tree point cloud was then initially segmented
through marker-controlled watershed segmentation [32,33]. The markers were determined
by the location of stems, which were detected through fitting cylinders with the least
square algorithm at tree height of between 1.3 m and 1.4 m [34]. Manual refinement was
subsequently executed on the initially segmented trees. Finally, the segmented individual
trees of four species were preserved for later classification procedures.

3. Research Methodology
3.1. Separation of Tree Components

It is essential to separate the points into branch, stem and crown points before deriva-
tion of structural parameters. In this study, the leaves and wood points (including stems
and branches) were first separated using a geometry-based algorithm that employs the
shortest path detection method to separate the tree network. All points of a tree were
regarded as nodes of the network. To each node, the neighbors were searched within a
given number of steps. The more frequently a node was searched, the higher the possi-
bility that a node could be a wood point. The conduction of leaf-wood separation was
initially implemented using open-source python tool TLSeparation developed by Ref. [35].
Afterward, the refinement was manually implemented to recorrect the wrong separation.

Then, from the separated wood points, the branch and stem points were further
classified based on the analysis of Euclidean distance ed [36]. The points whose ed between
the neighbors was less than the restriction value eds were gathered into a small subset
(a point can only belong to one subset). The certain restriction value and the number
of neighbors were separately determined for each tree by experiments. Afterward, the
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clustering procedure was conducted again on small subsets using a larger restriction value
until all points were classified. In this way, the stem and branch points could be separated
hierarchically. The conduction of separation of branch and stem points was implemented
using MATLAB tools TreeQSM developed by Refs [19,37,38].

3.2. Derivation of Structural Parameters

From the aspect of plant physiology and plant morphology, it is insufficient to classify
species based on one character, as each tree is a complex integrated system that includes
stem, branch, root and leaves [39]. The characters should include characters of individual
components and the whole tree [40,41]. Therefore, we proposed a series of structural
characteristics and characterized them as 23 LiDAR parameters quantitatively (Table 2),
involving parameters of individual components and parameters of the entire tree.

Table 2. The definition and formula of structural parameters.

Type No. Definition Formula

Branch

B1 Stem branch angle B1 = 1
NB1

NB1

∑
i=1

Ai

B2 Stem branch cluster size B2 = 1
hl

hl
∑

i=1
B1_hli

B3 Stem branch radius B3 = 1
NB1

NB1

∑
i=1

SRi_B1
TH

B4 Stem branch length B4 = 1
NB1

NB1

∑
i=1

Li_B1
TH

B5 Stem branch distance B5 = 1
2B1

NB1

∑
i=1,j=1

dbi_bj

B6 Average of ratio between angles of first branches and
second branches B6 = 1

NB1+NB2

NB1

∑
i=1

NB2

∑
j=1

Ab1i_b2j

Entire tree

T1 Ratio between DBH and tree height T1 = DBH
TH

T2 Ratio between DBH and tree volume T2 = DBH
TV

T3 Ratio between DBH and minimum stem radius T3 = DBH
SRmin

T4 Volume below 55% of the tree T4 = VC55
T5 Cylinder length/tree volume T5 = lc

TV
T6 Relative volume ratio T6 = VC80−90

VC0−10

Crown

C1 Crown lowest heights/tree height C1 = CHl_min
TH

C2 Height difference between the start and end heights of a
crown C2 = H − CHl_min

C3 Ratio between crown diameter and vertical height C3 = edcrown
C2

C4 Ratio between minimum and maximum height of the
crown bottom C4 =

CHlmin
CHlm ax

C5 Ratio between crown vertical length and tree height C5 = C2
TH

C6 Ratio between heights of the widest crown and the tree C6 =
Hspreadiest

TH
C7 Ratio between crown cover area and tree height C7 =

Axy
TH

C8 Ratio between crown horizontal and vertical areas C8 =
Axy

(Ayz+Axz)/2

C9 Ratio between the maximum diameters of crown
horizontal projection C9 = ds

dc

C10 Ratio between the maximum diameters of crown vertical
projection C10 =

dcrown_yz
dcrown_xz

C11 Ratio between heights of the crown and its widest part C11 = SHcrown
Hspreadiest

Where NB1 is the number of first branches, Ai is the angle between branch and trunk,
hl is the number of layers with a height of 0.4 m, B1_hli is the number of first branches in the
height layer i, SRi_B1 is the radius of stem at the height of first branch i, Li_B1 is the length
of the first branch i, dbi_bj is the vertical distance between the first branch bi and bj, Ab1i_b2j
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is the angle between the first branch b1i and second branch b2j, NB2 is the number of second
branches, TV is tree volume, SRmin is the minimum stem radius, lc is the total length of
all cylinders, VC80−90 is the volume of cylinders with heights between 80–90%, VC0−10
is the volume of cylinders with heights between 0–10%, CHl_min is the lowest height of
the crown, edcrown is the equal diameter of the crown, Hspreadiest is the height of the widest
crown spread, Axy is the projection area of the entire crown onto the x–y plane, Ayz is the
projection area of the entire crown onto the y–z plane, Axz is the projection area of the entire
crown onto the x–z plane, ds is the maximum diameter of a crown, dc is the maximum
cross diameter of a crown, dcrown_yz is the maximum diameter of the crown projecting on
the y–z plane, dcrown_xz is the maximum diameter of the crown projecting on the x–z plane,
SHcrown is the crown start height.

Branch and entire tree parameters were extracted based on the 3D tree model TreeQSM
developed by Refs [37,38]. The branch and stem points were first fitted by 3D cylinders using
the least square algorithm. All cylinders were then integrated as the branch and stem model.
The branch radius, branch length, branch angle, as well as DBH, could be extracted from
the branch and stem model. The design of specific branch and stem parameters refer to
Åkerblom et al. [19] and Terryn et al. [42]. Crown parameters were directly extracted from the
tree point cloud. Among them, the derivation of C1–C3 refers to Ref. [14]. C4 reflected the
flatness of the crown bottom and was calculated as the ratio between the minimum height
CHl_min and maximum height CHl_max of the low crown. C6 was hierarchically computed
with a layer height of 0.1 m referring to previous studies [14,38,43]. The spread area of each
layer was calculated by the α-shape algorithm based on the projection of layer points on the
x–y plane [44,45]. The ratio of the height with the largest projection area (Hspreadiest) to tree
height was set as C6. C7 was defined as the projection area of the entire crown (projected
onto the x–y plane), and C8 was the ratio of the crown projection area on the x–y plane to the
average projection areas on the y–z and x–z planes. C9 was generated from the maximum
diameters in two different directions (Dc and Ds; see Figure 3) of the crown projected onto the
x–y plane. C10 was generated by averaging the ratios between the maximum diameter of the
crown projected onto the y–z plane to that projected onto the x–z plane.
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Figure 3. Illustration of crown parameters. Hspreadiest is the height with the largest projection area. CHl_min
and CHl_max are the minimum and maximum height of low crown, respectively. SHcrown is crown start
height. Ds and Dc are the maximum crown spread and maximum crown cross-spread, respectively.

Parameters that differ significantly from each other usually perform better in classifi-
cation problems than similar parameters [19]. Therefore, a correlation analysis between
the parameters and the selection of appropriate parameters become important [46]. In this
study, the Pearson correlation coefficient algorithm [47] was used to evaluate the relation-
ship between all proposed parameters. The threshold 0.8 of correlation coefficient rvalue
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was employed to differentiate high or low correlated parameters, i.e., the parameters whose
|r| > 0.8 were regarded to have a high correlation.

3.3. Species Classification Approach

Various algorithms employed in previous studies of species classification generated
various results [20,48]. For example, Xi et al. [49], Terryn et al. [42] and Åkerblom et al. [19]
obtained classification accuracy of 87.9%, 79.29% and 82.0% using the K-nearest neigh-
bor (KNN) algorithm and classification accuracy of 88.7%, 81.4% and 75.2% using the
support vector machine (SVM) algorithm. In addition, these classification algorithms
were implemented in different environments and were used to classify different species.
Terryn et al. [42] and Åkerblom et al. [19] classify two understory and three temperate
species, as well as three temperate species in mixed forests, respectively. Lin and Herold [14]
classified four boreal species in the park with SVM and obtained robust accuracy of 77.5%.
In this study, five ML algorithms were employed to classify four species, i.e., artificial
neural network (ANN) [50], decision tree (DT) [51], KNN [52], random forest (RF) [53],
SVM [54]. Three kernels of SVM (i.e., radial basis function kernel (SVMrbf) [55], polynomial
kernel (SVMpoly) [55] and sigmoid kernel (SVMsig) [56,57] were evaluated separately
because they map variables onto diverse spaces and can obtain different classification
results [58]. The performance of the five ML models on tropical species classification was
compared subsequently.

For the training and testing of ML models, 70% of trees of each species were ran-
domly selected as the training dataset T composed of parameter–species pairs (xt, st),
where xt ∈ RM (M being the number of parameters) was a list of parameter values and
st ∈ Species = {st1, st2, st3, st4}. The remaining 30% of trees were reserved as the testing
dataset P. Each algorithm was trained with five-fold cross-validation. T was split into
five parts, with one part being the validation data for turning the ML algorithm, and the
remaining four parts being the training data (Figure 4). The algorithm was required to be
trained and validated on all five folds, ensuring that all parts can be utilized as validation
data. The species classification ability of the trained algorithms was tested by predicting
the tree species in the testing dataset.
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Figure 4. Workflow of the classification method. Vali in each fold of train data means validation data.
The classification model is trained on the Train of each fold and is validated on Vali. After training
on each fold, the parameter of the trained model is saved and used as the initial parameter of the
classification model of next fold. The final trained model is evaluated using Test (30%).

Previous studies demonstrated that parameter sets that contain various types and num-
bers of parameters produce different classification results [14]. For example, Othmani et al. [59]
obtained classification accuracy of 80.62% using three stem geometric texture features. Lin
and Herold [14] employed 10 explicit structural features to classify four species and gained
a classification accuracy of 77.5%. Wei et al. [43] achieved classification accuracy of 71.93%
using 14 stem-related feature parameters. To explore the effectiveness of the parameter sets,
the classification model was implemented with individual parameters and parameter sets
with counts ranging from 1 to 21, respectively. All combinations of parameters were evaluated
in this study. For example, when the parameter count was one, the species were classified
using one parameter. When the parameter count equaled two, the species were classified
using two parameters (all combinations of two parameters were tested).
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3.4. Assessment of Classification Results and Structural Parameters Importance

Assuming that frequently appearing parameters in parameter sets used for species
classification play a more significant role than low-frequency parameters, we evaluated the
importance of each parameter through the following steps: (i) filter out the top 200 parame-
ter sets with the highest Wac and measure the frequency of each parameter; (ii) the ratio of
the frequency to 200 is regarded as the importance value of each parameter; the higher the
ratio, the more important the parameter. The more important the parameter, the closer to 1
the importance value.

To reduce the influence of unbalanced datasets on classification results, the general
classification performances of the ML algorithms for the four tree species were evaluated
based on their weighted-average accuracies (Wac). The ratio of the sample count in each
species to the total number of samples was regarded as their corresponding weights. Then,
Wac was generated by summing the weighted accuracies of each species as

Wac =
NAM

N
× ACAM +

NFA
N
× ACFA +

NDR
N
× ACDR +

NHT
N
× ACHT , (1)

where N denotes the total number of trees, and NAM, NFA, NDR and NHT indicate the
number of trees of species AM, FA, DR and HT, respectively. ACAM, ACFA, ACDR, ACHT
denote the accuracy of each species.

For specific species, the performances of the ML algorithms were measured based on
their user accuracies (AC). For each species, AC was calculated as the ratio of the number of
correct classifications to the number of all trees of the corresponding species. For example,
the AC value of species AM (ACAM) was calculated as

ACAM =
Nc_AM
NAM

, (2)

where Nc_AM is the number of correctly classified AM trees, and NAM is the total number
of AM trees.

4. Results
4.1. Derived Structural Parameters

To evaluate the capability and effectiveness of HLS for structural parameter derivation,
the basic tree structural information extracted from HLS data was compared with field-
measured values (Figure 5). The results showed that the errors of tree height and crown
spread of four species between field-measured and extracted parameters are small, but
DBH has relatively large biases, especially the DBH of FA. This may be because some aerial
root points of FA were wrongly classified as stem points, thus increasing the differences.
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A large diversity between species can be observed (Figure 6), for example, the value
range of parameter C1 is significantly different between AM and HT. B5 can split AM and
FA but is of limited use for the separation of DR and HT. Similarly, C8 can split FA and
DR, but it could not be used for the separation of AM and HT. This also demonstrates that
one parameter is hard to classify all four species. This is consistent with the illustration of
Refs [40,41] that it is difficult to identify tree species according to individual characters.
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of each species, respectively. The bold line and square in each box are the median and mean value of
each parameter of each species, respectively.
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However, when taking the crown shape and structural complexity into consideration, the
performance of individual parameters can be grouped. In this study, AM and HT are species
that have the sphere-like crown with a simple and complex structure, respectively, while
DR and FA are species that have the funnel-like crown with simple and complex structures,
respectively. From the aspect of the crown shape, to the sphere-like and funnel-like crown
with simple structure, C7, C8, T3, T4, T6 can classify most trees of AM and DR, and with
the sphere-like and funnel-like crown with complex structure, B3, C3, C7, T2 perform better.
From the aspect of structural complexity, B2, B3, B5, C1, C3, C5, C7, T3 show great ability in
distinguishing trees that have the sphere-like crown with simple or complex structures, and
to trees that have the funnel-like crown with simple or complex structures, C2, C5, C8, T4
perform better in distinguishing the species.

4.2. Correlations Analysis Results

In three types of parameters, the branch parameters have relatively lower correlation
coefficients with crown and entire tree parameters. In six branch parameters, B1 and B6
have relatively higher correlation coefficients. The rest |r| values are all smaller than 0.5.
Compared with branch parameters, crown parameters have higher correlation coefficient
values. Ten |r| values are higher than 0.5, i.e., C1 and C2, C2 and T4, C3 and C7, C3 and T2,
C4 and C5, C5 and T4, C5 and C11, C6 and C11, C7 and C8, C8 and C10, C11 and T4. The
entire tree parameters have higher correlation coefficient values with crown parameters
than with branch parameters.

For individual parameters, most of the parameters were weakly related to each other,
except for two pairs (Figure 7): C1 and C2, as well as C5 and C11. Significantly strong
negative relationships were observed between these two pairs (r value between C1 and C2
is equal to −0.8 and that between C5 and C11 is −0.85). In addition, r values between these
four parameters and other parameters were considered for parameter selection. C2 and T2
had a moderately high positive relationship with an r value of 0.6, and C11 and C6 had an
r value of 0.68. Compared with C2 and C11, C5 and C1 had lower relationships with other
features. Therefore, C2 and C11 were filtered. A total of 21 parameters finally remained for
the classification of four species: B1–B6, C1, C3–C10 and T1–T6.
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4.3. Species Classification Results
4.3.1. Ability of Single Parameters for Species Classification

From the classification results, we can further observe the ability of individual pa-
rameters in tropical species classification. The univariate analysis indicated that two or
three species can be separated by some proposed structural parameters, but it was difficult
for each parameter to distinguish all species effectively (Table 3). Wac values of structural
parameters varied from 19.7% to 45.45%. This is consistent with our analysis of derived
structural parameters in Section 4.1. The low capacity of individual parameters for the
classification of four species has also been verified in previous research [60–62]. Besides, the
performance on crown shape and structural complexity was similar with above analysis.
For example, C8 was sensitive to the structural complexity between sphere-like crown and
the crown shape with complex structure; the classification accuracy of DR using C8 was
the highest. C3 was sensitive to the crown shape with complex structure and the structural
complexity of the crown shape; the classification accuracy of HT using C3 was the highest.

Table 3. Overall weighted accuracy (Wac) of four species using each parameter and the classification
accuracy of four species (ACAM, ACFA, ACDR, ACHT) using each parameter. Par indicates the name
of structural parameters. Type demonstrates the group of structural parameters.

Type Par ACAM ACFA ACDR ACHT Wac

Branch

B1 28.57 42.31 41.67 35.71 37.88
B2 7.14 30.43 41.94 66.67 36.36
B3 18.18 50.00 15.79 8.33 27.27
B4 23.08 26.67 40.00 16.67 27.27
B5 40.00 28.57 30.00 26.67 30.30
B6 33.33 22.73 17.65 13.33 21.21

Average 25.05 25.05 31.17 27.89 30.04

Crown

C1 26.67 9.09 47.37 20.00 25.76
C3 42.86 47.06 43.75 47.37 45.45
C4 20.00 20.00 23.81 50.00 25.76
C5 33.33 35.29 27.27 26.67 30.30
C6 7.14 25.00 26.09 26.67 22.73
C7 35.71 33.33 31.25 28.57 31.82
C8 11.76 30.00 57.89 45.00 37.88
C9 22.22 27.27 5.56 23.53 19.70
C10 33.33 47.06 32.00 20.00 33.33
C11 34.21 33.33 40.31 29.57 36.18

Average 26.72 30.74 33.53 31.74 30.89

Entire tree

T1 50.00 10.53 22.22 35.29 27.27
T2 25.00 57.14 13.33 11.11 28.79
T3 20.00 38.46 32.00 27.78 30.30
T4 22.22 16.67 45.00 21.05 27.27
T5 33.33 35.00 27.78 12.50 27.27
T6 43.75 26.67 40.00 35.00 36.36

Average 32.38 30.75 30.05 23.78 29.54

Furthermore, the classification accuracy also shows the ability of each parameter. In
all parameters, C3 shows the best performance with the highest weighted accuracy Wac of
45%. To distinguish crown shape and structural complexity, T6, B1 and B2, T1 and T6, C8
indicate great ability in the identification of crown shape with a simple structure, crown
shape with a complex structure, structural complexity of sphere-like crown, structural
complexity of funnel-like crown, respectively. It is also noted that the performance of
individual parameters on specific species varied dramatically. For instance, B1 and B2 both
have great performance in the identification of the crown shape with a complex structure,
but B1 prefer FA, while B2 prefer HT.
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As observed from the average weighted accuracy, the ability to distinguish four species
of crown parameters is slightly higher than branch parameters. Entire tree parameters have
the lowest distinguishing ability. From the average classification accuracy of four species,
the species with sphere-like crown, branch and crown parameters have better ability in
distinguishing complex structure than simple structure, while entire tree parameters have
better ability in distinguishing simple structure. In contrast with species with the funnel-
like crown, branch and crown parameters have a better ability in distinguishing simple
structure than complex structure, while entire tree parameters have a better ability in
distinguishing the complex structure.

4.3.2. Ability of Parameter Sets in Species Classification

Combining parameters of the same type achieved a relatively lower accuracy (Table 4).
Among the three types, structural parameters representing the branch characteristics
showed the smallest power in species classification. Crown and entire tree parameters had
similar classification accuracy (Wac of the combined crown parameters was slightly larger
than the combined entire tree parameters). The combination of two types of parameters
significantly improved the classification results. Among them, the combination of crown
and entire tree parameters achieved excellent performance, with an overall accuracy of up
to 80.64%. The highest accuracy (84.09%) was achieved by integrating the parameters of all
three types.

Table 4. Overall weighted accuracy of four species achieved using all structural parameters in each
group, each two groups and all three groups, respectively.

Branch Crown Entire Tree Wac
√

57.86√
61.27√
60.34√ √
73.14√ √
79.59√ √
80.64√ √ √
84.09

In five classification models, the SVM classifier obtained generally better classification
results, and the SVMpoly classifier achieved the highest Wac value of 84.09% (Table 5). This
may be because compared with other classifiers, SVM is better at dealing with classification
problems with a small sample size [63]. The AC values of AM and DR achieved by all
classification algorithms were higher than those of FA and HT, indicating that the structures
of AM and DR were more easily identified than those of FA and HT. A possible explanation
is that the complexity of structures of AM and DR is less than FA and HT from the aspect
of plant morphology. The performance of the other two kernels of SVM classification was
more unstable. Although all AM trees were correctly identified by SVMrbf and SVMsig,
the classification abilities of these two classifiers with the other three species were seriously
imbalanced. To understand the classification ability of the employed structural parameters
for each species, we listed the number of correctly classified trees of each species (Table 6).
As seen in the table, about 75% of the incorrectly classified FA trees were identified as HT,
and half of the incorrectly classified HT trees were identified as FA. This may be because
the crowns of HT and FA are both funnel shape, resulting in similar ranges of many of their
structural parameters.



Remote Sens. 2022, 14, 1948 13 of 19

Table 5. Overall weighted accuracy of four species and the classification accuracy of each species
achieved by all classification models.

Classification Results ANN DT KNN RF SVMpoly SVMrbf SVMsig

ACAM 78.57 58.82 80.00 90.00 92.86 100.00 100.00
ACFA 66.67 68.42 63.16 66.67 72.22 61.90 63.64
ACDR 90.48 70.00 88.89 78.95 89.48 78.89 85.00
ACHT 62.50 80.00 57.89 68.75 73.33 61.90 70.59
Wac 75.10 69.47 72.94 75.63 84.09 77.75 79.08

Table 6. Confusion matrix of classification results with the highest weighted accuracy. The value
indicates the ratio of samples that were correctly predicted to reference samples.

Prediction

AM FA DR HT Total

Reference

AM 58.82 80.00 90.00 92.86 100.00
FA 68.42 63.16 66.67 72.22 61.90
DR 70.00 88.89 78.95 89.48 78.89
HT 80.00 57.89 68.75 73.33 61.90

Total 69.47 72.94 75.63 84.09 77.75

Furthermore, we discussed the effect of varying the parameter counts for tropical species
classification using HLS point clouds. A gradual improvement in classification accuracy can
be observed with the increase in parameters (Figure 8). The highest classification accuracy
was achieved when 10 parameters were fed into the classifiers. Subsequently, the classification
accuracy steadily decreased with increasing parameter counts, demonstrating that including
more parameters does not necessarily lead to better classification. The appropriate number of
structural parameters may be about 10 for tropical species classification.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 20 
 

 

Table 6. Confusion matrix of classification results with the highest weighted accuracy. The value 

indicates the ratio of samples that were correctly predicted to reference samples. 

 
Prediction 

AM FA DR HT Total 

Reference 

AM 58.82 80.00 90.00 92.86 100.00 

FA 68.42 63.16 66.67 72.22 61.90 

DR 70.00 88.89 78.95 89.48 78.89 

HT 80.00 57.89 68.75 73.33 61.90 

Total 69.47 72.94 75.63 84.09 77.75 

Furthermore, we discussed the effect of varying the parameter counts for tropical 

species classification using HLS point clouds. A gradual improvement in classification 

accuracy can be observed with the increase in parameters (Figure 8). The highest classifi-

cation accuracy was achieved when 10 parameters were fed into the classifiers. Subse-

quently, the classification accuracy steadily decreased with increasing parameter counts, 

demonstrating that including more parameters does not necessarily lead to better classi-

fication. The appropriate number of structural parameters may be about 10 for tropical 

species classification. 

 

Figure 8. Boxplot of overall weighted accuracy achieved by all classification models using different 

number of structural parameters. The bold line means the median value of all weighted accuracy 

achieved by the corresponding number of parameters. The individual black points are the outliers 

of all weighted accuracy. The bottom line and top line of the box are the median of lower half and 

upper half of all weighted accuracy achieved by the corresponding number of parameters. 

4.4. Optimal Parameter Sets 

Among 21 parameters, 8 have importance values exceeding 0.5 (Figure 9), involving 

3 branch parameters (B3, B5, and B6), 2 crown parameters (C1 and C4) and 3 entire tree 

parameters (T3, T4 and T6). The most important parameter was T3 (with an importance 

value close to 1), followed by C4 and T6 with importance values of approximately 0.75. 

The changing trend of the stem radius of our four species is the opposite. As seen in Figure 

2, the stem of AM and DR grows straightly, and the stem becomes thinner as the tree 

grows taller. However, the aerial root points of FA were likely to be misclassified as stem 

points, leading to the stem radius becoming larger as the tree grows. This may be the 

reason why T3 plays the most important role in species classification. C4 reflects the flat-

ness of the crown bottom; it is also an illustration of the crown shape. The four species 

have four different crown shapes. T6 reflects the tree shape using the volume ratio of the 

crown top and stem. Taking DR and HT as examples, when they have similar stem radius, 

the crown top of DR has a larger volume than HT, as its crown spread is larger than HT. 

Figure 8. Boxplot of overall weighted accuracy achieved by all classification models using different
number of structural parameters. The bold line means the median value of all weighted accuracy
achieved by the corresponding number of parameters. The individual black points are the outliers
of all weighted accuracy. The bottom line and top line of the box are the median of lower half and
upper half of all weighted accuracy achieved by the corresponding number of parameters.

4.4. Optimal Parameter Sets

Among 21 parameters, 8 have importance values exceeding 0.5 (Figure 9), involving
3 branch parameters (B3, B5, and B6), 2 crown parameters (C1 and C4) and 3 entire tree
parameters (T3, T4 and T6). The most important parameter was T3 (with an importance
value close to 1), followed by C4 and T6 with importance values of approximately 0.75. The
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changing trend of the stem radius of our four species is the opposite. As seen in Figure 2, the
stem of AM and DR grows straightly, and the stem becomes thinner as the tree grows taller.
However, the aerial root points of FA were likely to be misclassified as stem points, leading
to the stem radius becoming larger as the tree grows. This may be the reason why T3 plays
the most important role in species classification. C4 reflects the flatness of the crown bottom;
it is also an illustration of the crown shape. The four species have four different crown
shapes. T6 reflects the tree shape using the volume ratio of the crown top and stem. Taking
DR and HT as examples, when they have similar stem radius, the crown top of DR has a
larger volume than HT, as its crown spread is larger than HT. Correspondingly, T6 values of
DR tend to be smaller than HT. The three important branch parameters mainly describe the
properties of angle, interval and radius of first branches. These three parameters have been
confirmed and applied in many previous studies [19,42,43,49,64]. Five optimal parameter
sets were finally suggested based on the important assessment and classification results
(Table 7). The classification accuracies achieved with these optimal parameter sets were also
listed in the table. The Wac values ranged from 83.70% to 84.09%. The best parameter set,
which had the highest accuracy value, was composed of three branches, three crowns and
four entire tree parameters, agreeing with the illustration mentioned in the above section
that integrates all three types of parameters to obtain the best result.
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Table 7. The overall weighted accuracy (Wac) and classification accuracy of each species
(ACAM, ACFA, ACDR, ACHT) achieved by optimal structural parameter sets using the best classifi-
cation model.

Optimal Parameter Sets ACAM ACFA ACDR ACHT Wac

B3, B5, B6, C4, C5, C6, T3, T4, T5, T6 92.86 72.22 89.48 73.33 84.09
B3, B6, T1, T2, T3, T4, C7, C8 90.48 70.67 88.89 72.73 83.96
B6, C1, C3, C4, C5, C6, C8, T1, T2, T3, T4 90.48 66.67 88.89 70.59 83.83
B2, B4, B6, C4, C7, T1, T2, T3 90.00 66.67 85.00 70.59 83.70
B2, B3, B5, C3, C5, C7, C10, T1, T2, T3, T4, T5, T6 90.00 68.42 85.00 68.75 83.70

5. Discussion
5.1. Influences and Limitations

Although positive classification results were obtained, there are some limitations
in this study. Four tropical species employed in this study have the sphere-like or the
funnel-like crown with different structural complexity. Although many tropical species
have these two crown shapes [24,25], a number of natural and human factors can affect
the crown shape and structural complexity. This means that there may be limitations
when applying the proposed method on other crown shapes or species in the forests.
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Tree samples used in this study were in the park or along the roadsides. The structural
properties of other trees in the surroundings may be similar. Some trees can optimize their
traits during growth to face the light in local conditions, resulting in neighborhood-induced
convergence cross-species [65]. The structural features of these trees thus differ from the
common structural pattern [66–69], affecting the accurate expression of LiDAR parameters
for structural characteristics. Another influence is that the internal structures, such as small
branches between leaves, are difficult to capture by LiDAR techniques, either HLS or TLS,
resulting in few differences in internal structures between the species. LiDAR technique
catches the 3D information of objects by emitting pulsed lasers to objects and receiving
returned lasers from objects. The information on small branches that are covered by leaves
cannot be captured by LiDAR.

The performance of the separation approach for tree components also impacts the
parameter extraction and classification results. The structures of AM and DR are relatively
simple, and their branch, stem and crown points can be identified more easily. As a
result, the branch points separated from a tree point cloud may be more accurate, and the
corresponding branch parameters can represent the structural difference more precisely.
However, it is a little bit difficult to completely split the components of FA and HT. Some FA
trees had aerial roots that developed from branches, affecting the identification of branch
points and extraction of branch parameters. The branches of HT were usually covered by
its broad leaves, leading to difficulty in capturing the detailed structures and inaccurate
parameter extraction.

5.2. Applicability Analysis

With high flexibility and properties of acquiring data remotely, the HLS technique
may not only be suitable for capturing tree structural information but also appropriate
for forest biomass assessment, forest structure transformation, as well as forest inventory
and management. Specifically, HLS, which provides a competitive approach for precise
structural parameter estimation, can improve the accuracy of forest biomass mapping
and forest inventory evaluation via effectively capturing complete individual tree point
clouds. The change of basic structural parameters caused by storms, snow, drought or
insect hazards can thus be detected without contact using HLS, which not only reduces the
possibility of secondary damage to trees but also protects the safety of surveying workers.
The proposed structural parameters may be employed as indices to measure damage by
comparing the difference in structures before and after natural disasters, such as changes
in first-order branch angles and branch length, reduction in crown size, crown volume and
crown length, as well as variation of stem leaning degree. Trees in Hong Kong usually
suffer typhoons. It is essential to explore the impacts of typhoons and evaluate the ability
of trees to resist wind, especially valuable trees, such as old trees and stonewall trees. In
addition, the relationship between the surrounding environments and tree structures can
be explored through studying the changes in these parameters.

The proposed structural parameters that were proved to be effective for representing
differences in structural characteristics between four tropical species can also provide an
important reference for the classification of other species. Our structural parameters and
corresponding classification results can be good references and resource materials for the
classification of more tropical species. Additionally, these parameters were considered
to be built as a library for species classification. In this way, the importance of structural
parameters for different species is able to be ranked easily.

5.3. Potential Improvements

Four tropical species were researched as examples, which may lead to potential
instability and uncertainty during the widely practical application of proposed parameters
in the classification of other species. Therefore, in the future, we will include more species
to further explore the potential of the proposed approach in the field of tropical species
classification. Considering some restrictions may appear when classifying trees growing in
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seriously crowded forests due to different environments, more samples of each species in
diverse neighboring environments are expected to be included to minimize the influence
of neighborhood-induced convergence, such as crowded or sparse road-side plots, single-
species or mixed-species plots, urban forest or suburban forest.

The satisfactory classification results suggest that HLS is a promising tool for species
classification in urban areas. Given its flexibility, HLS can detect more details of trees,
thus boosting the species separation with the extracted features. Nevertheless, to achieve
better results, the combination of HLS data and other remote sensing sources, such as
multispectral or hyperspectral images, is worth consideration. Spectral information is a
robust tool for species recognition, as proven by Ref. [70]. The combination of structural
and spectral features is potentially an excellent approach and is worthy of our further
focus in the future. The combination of HLS data and UAV LiDAR point cloud is also
worth considering for achieving better results. UAV LiDAR can provide dense point
clouds of the upper crown at low costs, and HLS can provide an extensive point cloud
on the ground level. Based on further exploration, a 3D point cloud library of tropical
species, containing species information, various structural parameters, as well as growth
environment conditions, is proposed to be developed for later research. This library will
provide references for quick species classification.

6. Conclusions

In this study, we proposed 23 structural parameters that represent structural properties
from HLS individual tree point clouds for tropical species classification. Five classification
models were employed to classify trees of the four species growing in urban areas. In
addition, the performance of each parameter and optimal parameter sets were evaluated.
The validation of basic parameters between the derived and manually measured data
demonstrates that the structural information of trees can be accurately captured by HLS
in a time- and cost-saving way. The comparison between the classification results of five
models reveals that SVM is more suitable for parameter-based tropical species classification,
and the highest accuracy of 84.09% is achieved by SVM with a polynomial kernel. Besides,
the classification results affected by tree structure, generally, species with relatively simple
structures have higher classification accuracy.

The investigation of the optimal parameter sets reveals that including all three types
of structural parameters (i.e., branch, crown and entire tree parameters) can achieve higher
accuracy than using single parameters or a single type of parameter. When optimizing the
parameter count, it was also found that (a) including more parameters does not always
provide better results and (b) a set of 10 parameters (three branch, three crown and four
entire tree parameters) yielded the best results.

In summary, HLS was verified as a promising alternative to traditional static TLS for
species classification. Our proposed parameters can effectively classify the four tropical
species, providing an important reference for species mapping based on HLS technology. In
future work, the application of the proposed parameters to classification tasks that involve
more tree species, such as boreal and temperate species, will be further explored. Besides, a
tropical tree point cloud library can be built using captured data for other research of all
institutions in the world.
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