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Abstract 

Oil palm trees are important economic crops in tropical areas. Accurate knowledge of the 

number of oil palm trees in a plantation area is important to predict the yield of palm oil, 

manage the growing situation of the palm trees and maximise their productivity. In this 

study, we propose a novel automatic method for detection and enumeration of individual 

oil palm trees using images from unmanned aerial vehicles. This method required three 

major steps. First, images from unmanned aerial vehicles were classified as vegetation 

or non-vegetation by the support vector machine classifier. Second, a feature descriptor 

based on the histogram of oriented gradient was designed for palm trees and used to 

extract features for machine learning. Finally, a support vector machine classifier was 

trained and optimised using the histogram of oriented gradient features from positive 

(i.e., oil palm trees) and negative samples (i.e., objects other than oil palm trees). The 

trained classifier was then applied to detect individual oil palm trees using adaptive 

moving windows that allowed it to also return the crown size of each oil palm tree. The 

method was trained at one site and validated independently at four other sites with 

different situations. The overall accuracy of palm tree detection was 99.21% at the 

training site and 99.39%, 99.06%, 99.90% and 94.63% at the four validation sites; the 

last one was for the most challenging site, in which palm trees were mixed with other 

trees. These tests confirm the effectiveness of the proposed method. The simplicity and 

great efficiency of the proposed method allow it to support oil palm tree counting for 

large areas using imagery from unmanned aerial vehicles. 

Keywords: Oil palm trees; UAV photos; HOG; SVM; Object detection; Classification 
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1. Introduction  

 

Oil palm trees are important economic crops in tropical areas. Information 

regarding the locations, numbers and diameters of oil palm trees in a plantation area is 

important in many aspects. For example, it is vital for monitoring the growing situation 

of palm trees after planting, such as their age and survival rate. It is also essential to 

predict the yield of palm oil, which is one of the world’s most widely used vegetable oils. 

Information about oil palm trees is also important to plan future cultivation and for 

biodiversity conversation. According to Malaysian Palm Oil Council, the 4.49 million 

hectares of land in Malaysia under oil palm cultivation produce 17.73 million tonnes of 

palm oil each year. 

The large cultivation areas of palm trees have motivated the use of remote sensing 

to produce such data automatically. Previous studies of palm tree detection were usually 

based on commercial high-resolution satellite images (Jusoff and Pathan, 2009; Korom 

et al., 2014; Li et al., 2016; Srestasathiern and Rakwatin, 2014). However, satellite 

imagery has a relatively high cost, and data availability is often limited by weather and 

by the satellite revisit cycle. In recent years, unmanned aerial vehicles (UAVs) have been 

increasingly adopted as cost-effective remote-sensing data acquisition systems that allow 

the land surface to be mapped and monitored at an extremely high resolution and can 

reach the desired point of observation in just a few minutes, which permits interactive 

measurements according to a customer’s specific needs. Their flexibility and competitive 

prices have made UAVs a practical solution for many agricultural applications such as 

vegetation monitoring (Berni et al., 2009; Uto et al., 2013) and precision agriculture 

(Xiang and Tian, 2011; Zarco-Tejada et al., 2013). However, in contrast, the improved 

spatial resolutions of the UAV images can collect more detailed information about objects 
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on the ground, which renders many methods developed for traditional satellite images 

less applicable. 

In recent years, researchers have designed several methods of palm tree detection 

from UAV images. Malek et al. (2014) used a supervised extreme learning machine 

classifier to detect palm trees from UAV images. They used the extreme learning machine 

classifier to analyse the scale-invariant feature transform (SIFT) key points. The shape of 

each palm tree was detected by merging key points with an active contour method, 

followed by textural analysis of palm trees with local binary patterns (LBP) to distinguish 

palm trees from other vegetation. The accuracy of this method ranged from 89.4% to 

96.4% for various experimental areas. However, their experimental areas presented 

relatively easy cases for palm tree detection because the palm trees were sparsely 

distributed without canopy overlapping and differed significantly in appearance from the 

bare soil background. Manandhar et al. (2016) noted that in dense cultivation regions, the 

method proposed by Malek et al. (2014) would have difficulty finding the arbitrary 

boundaries between the overlapped palm trees. Therefore, they proposed a new method 

to detect and count palm trees. This method first uses circular autocorrelation of the polar 

shape matrix and the linear support vector machine (SVM) to extract image features and 

then uses a local maximum detection algorithm to detect palm trees. This method can 

achieve an overall accuracy ranging from 60.9% to 95.1% for eight images. The 

performance of this method is not desirable for tough scenarios, and the palm trees are 

recorded as points without including the diameter information for individual trees. 

In this study, we present a novel automatic method for palm tree detection in UAV 

images based on histogram of oriented gradient (HOG) features and the SVM classifier 

(HOG-SVM). The HOG-SVM method has proved effective in object detection. It was 

first introduced for pedestrian detection (Dalal and Triggs, 2005) and has since been 
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applied to detect many different objects, such as vehicle logos (Llorca et al., 2013) and 

traffic signs (Yao et al., 2014). In this study, the HOG-SVM method was extended to 

detect oil palm trees in various scenarios, including the most challenging cases in which 

palm trees overlap and are mixed with other tree species. 

The remainder of this paper is organised as follows. Section 2 describes the study 

area and datasets used in this study. Section 3 presents the details of the proposed HOG-

SVM method for palm tree detection in UAV images. Section 4 shows the detection 

results in five areas and presents the accuracy assessment. Section 5 concludes this study 

and discusses directions for future study. 

 

2. Study Area and Data 

 

The study area was in Jeram, a city on the west coast of Malaysia. The images 

were acquired on sunny days during 2017 with a commercial camera mounted on a UAV 

system. The camera had red, green, and blue bands with a spatial resolution of 0.04 m. 

As Figure 1 shows, five pilot areas with various scenarios were selected for training and 

validation. Figure 1 (a) is the site from which the training samples were selected. Figures 

1 (b-e) show various situations for validation purposes. Figure 1 (b) shows both large 

mature trees and small young trees. Figure 1 (c) shows palm trees planted in diverse 

spatial patterns. Figure 1 (d) shows very crowded palm trees whose crowns overlap. 

Figure 1 (e) shows palm trees mixed with other tree species. Each of these situations 

presents different challenges for automatic detection of individual palm trees. 
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Figure 1. UAV images acquired in Malaysia. (a) Training area from which the manually 

interpreted training samples were collected. (b), (c), (d) and (e) Four areas used for 

independent validation of the performance of the proposed method. 
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3. HOG-SVM Method for Palm Tree Detection from UAV Images 

3.1.  Overview of the approach 

 

Figure 2 presents a flowchart of the proposed approach. It is a hierarchical method. 

In the first hierarchy, images are classified into vegetation and non-vegetation classes at 

the pixel level using a supervised classifier, SVM. In the second hierarchy, individual 

palm trees are detected in the vegetation areas at the image-patch level. Both hierarchies 

use a supervised classifier, which requires reference samples for training. Palm tree 

detection begins with manual selection of positive and negative samples (i.e., palm tree 

and background image patches, respectively). The HOG method is then applied to extract 

the image features for all samples. The extracted features are used to train the SVM to 

classify palm tree and background patches. In the detection process, the SVM classifier 

moves across all vegetation areas in the image. To detect palm trees of various sizes, the 

image patch size changes in the detection process. In the final detection results, each 

detected palm tree is recorded with a circle that describes its centre and canopy diameter. 

Accuracy assessment is conducted with manually labelled results. 

 

Figure 2. Flowchart of the proposed method for detection of oil palm trees. 
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3.2. Vegetation and non-vegetation classification 

 

To increase efficiency and avoid the disturbance of non-vegetation pixels in palm 

tree detection, only the vegetation areas should be processed. Therefore, a classification 

of vegetation and non-vegetation is needed. An SVM classifier is used for this 

classification task in this study. Initially conceived by Cortes and Vapnik (1995), SVM is 

used to solve binary classification problems. Their goal is to determine an optimal 

hyperplane ℎ(𝑥); they can not only separate two class labels of training samples, but also 

determine this hyperplane in a way that would make it as far as possible from the closest 

members of both classes. SVMs are particularly appealing in the remote sensing field due 

to their ability to generalise well, even with limited training samples, which is a common 

limitation of remote sensing applications (Adelson et al., 1984). They have been widely 

used in land cover classification studies (Pouteau and Collin, 2013; Zhu and Liu, 2014). 

C-support vector classification with a radial basis function kernel is used in this step. The 

parameters C, P and gamma are set to 100, 0 and 1, respectively, after optimisation. 

The vegetation and non-vegetation training samples for SVM were selected by 

visual interpretation of the UAV image. The trained SVM classifier identifies non-

vegetation pixels well (see example in Figure 3). The classification maps of the five pilot 

areas are shown in Figures 6 through 10. The classification result works as a binary mask 

in the subsequent detection process. The rule to exclude non-vegetation pixels is defined 

as follows. When the image patch moves through the entire scene, a small circle is drawn 

in the centre with a diameter of one third the length of the image patch. If the circle has a 

non-vegetation area of more than 20%, the image patch is skipped during the detection 

process. 
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Figure 3. (a) Original UAV image with RGB bands. (b) Classification result. Regions in 

white indicate vegetation areas, and those in black denote non-vegetation areas. 

3.3. Training sample selection for palm tree detection 

 

Positive samples (i.e., image patches that contain a complete palm tree) and 

negative samples (i.e., image patches that do not contain an entire palm tree or other 

vegetation) are manually selected. Figure 4 shows some examples of positive and 

negative samples. The palm tree samples manually selected from the UAV images are 

cropped and adjusted to the same size (i.e., 64×64 pixels, an appropriate size to reveal the 

texture of palm trees, as shown in Figure 4 (a), and a favourable size for efficient 

extraction of features in the next step). In our approach, positive samples are carefully 

selected as a square which just contains one complete palm tree. The strict cropping of 

palm trees in positive samples can bring two benefits: 1) the extracted features in the 

image patch completely represent individual palm trees, and 2) the size of the image patch 

represents the crown size of the palm trees. For the negative samples, the size of the image 

patch is the same with positive samples. 500 positive samples and 1000 negative samples 

were manually selected from the site in Figure 1 (a). To increase the number of samples, 

both positive and negative samples were rotated and mirrored to generate new samples. 

Finally, a total of 2,500 positive and 5,000 negative samples were generated for this study. 

The HOG algorithm was then applied to extract features for the training samples.  
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 (a)  (b) 

Figure 4. (a) Positive samples (i.e., image patches that contain a complete palm tree) and 

(b) negative samples (i.e., image patches that do not contain an entire palm tree or other 

vegetation). Each image patch is 64×64 pixels. 

 

3.4. HOG feature descriptor for palm trees 

 

Dalal and Triggs (2005) proposed the HOG algorithm as an image feature 

descriptor based on gradient direction. The basic idea of HOG is to calculate the 

histogram of the oriented gradient in local image patches. The steps of the HOG algorithm 

are explained as follows. First, the colour images with RGB bands are converted into one-

band grey images. The gradient components of the images can then be calculated using 

the one-dimensional centred method in horizontal and vertical directions. The formula for 

the calculation is:  

 

𝐺𝑥(𝑥, 𝑦) = 𝐻(𝑥 + 1, 𝑦) − 𝐻(𝑥 − 1, 𝑦) (1) 

𝐺𝑦(𝑥, 𝑦) = 𝐻(𝑥, 𝑦 + 1) − 𝐻(𝑥, 𝑦 − 1) (2) 

where  𝐻(𝑥, 𝑦)  is the pixel value and 𝐺𝑥(𝑥, 𝑦)  and 𝐺𝑦(𝑥, 𝑦) denote gradients in the 

vertical and horizontal directions of pixel (𝑥, 𝑦), respectively. The gradient magnitude 

G(x, y) and the gradient direction α(x, y) of pixel (x, y) can then be calculated as follows: 
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𝐺(𝑥, 𝑦) = √𝐺𝑥(𝑥, 𝑦)2 + 𝐺𝑦(𝑥, 𝑦)2 (3) 

α(x, y) = 𝑡𝑎𝑛−1(
𝐺𝑦(𝑥,𝑦)

𝐺𝑥(𝑥,𝑦)
) (4) 

We first divide the image patch of the samples (64×64 pixels) into small cells of 

equal size (8×8 pixels) and then calculate the gradient histogram of the pixels in each cell 

by dividing the orientations (0 to 180 degrees) into nine bins. Instead of using the gradient 

of each pixel as a feature, calculation of a nine-bin histogram for each cell makes the 

representation more compact and more robust to noise. A 9×1 vector can be used to 

describe the histogram for each cell. Figure 5 shows the extracted HOG features in small 

cells for positive and negative samples. The gradient histogram for each cell is shown by 

white lines whose length and angle indicate the gradient magnitude and direction, 

respectively. In the positive sample, it shows that the direction of the largest gradient is 

generally perpendicular to the edge of the leaves and thus forms an obvious pattern of 

concentric circles. The negative sample shows an irregular distribution of gradient 

histograms. 

Meanwhile, to make the descriptor independent of illuminative variation, the 

HOG algorithm takes a plurality of cells to compose a block of 16×16 pixels. A 16×16 

block has four histograms that can be concatenated to form a 36×1 element vector. The 

block window is then moved by steps (8 pixels per step) to normalise the histograms, 

which generates a normalised 36×1 vector for each movement. The normalised 36×1 

vectors of all movements are then concatenated into one giant vector as the final HOG 

features for each image patch. 
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Figure 5. Extracted HOG features for positive samples and negative samples 

 

3.5. Multiscale detection of palm trees by SVM  

 

An SVM classifier is then trained using the HOG features of the positive and 

negative samples. In this study, C-support vector classification with linear kernel, as 

suggested in a previous study for object detection (Llorca et al., 2013), was used to detect 

palm trees. The parameters C, P and gamma were set to 2.5, 0 and 1.0 after optimisation. 

To detect the palm trees in the unlabelled UAV images, the search window (i.e., 

image patch) was moved across the image, and each search window was checked by the 

trained SVM classifier. To avoid processing the non-vegetation areas, the vegetation 

classification map (described in Section 3.2) was used as a binary mask. Areas marked as 

non-vegetation were skipped during the moving window classification. To detect palm 

trees of various sizes, the image pyramid method (Adelson et al., 1984) was used for 

multiple-scale detection. The original UAV images were up-scaled to a sequence of layers 

with various spatial resolutions. The scale difference between two neighbouring layers in 

this sequence was 1.1. Each layer of the image pyramid was then traversed by a square 

searching window of 64×64 pixels, the same size as the training samples. One palm tree 

might be detected by SVM in multiple layers, and the average scale of these layers was 

used to decide the size of the palm tree. For example, if a palm tree was detected in two 
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layers with scales of 1.13 and 1.14 to the original image, the diameter of this palm tree 

was 64×0.04×(1.13+1.14)/2 m, where 0.04 refers to the pixel resolution in metres per 

pixel. The output of the detection was a set of circles that described the location and size 

of individual palm trees. The inscribed circle of the squares described the crown of the 

detected palm trees. Considering the reasonable range of palm tree diameters in the study 

area, detection results that included diameters larger than 14 m or smaller than 4.5 m were 

filtered out. 

3.6. Accuracy assessment 

The actual palm trees in the UAV images were manually labelled by visual 

inspection. The producer’s accuracy (𝑃𝑎𝑐𝑐), user’s accuracy (𝑈𝑎𝑐𝑐) and overall accuracy 

are used to evaluate the performance of the proposed method:  

𝑃𝑎𝑐𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

𝑇𝑃

𝑁𝑝𝑎𝑙𝑚
 (8) 

𝑈𝑎𝑐𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (9) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑃𝑎𝑐𝑐+𝑈𝑎𝑐𝑐

2
 (10) 

where 𝑁𝑝𝑎𝑙𝑚 is the total number of palm trees in the image; 𝑇𝑃 is the total number of 

palm trees correctly detected; 𝐹𝑁 is the false-negative detections, indicating the number 

of palm trees not detected (i.e., omission errors); and 𝐹𝑃 is the false-positive detections, 

indicating the number of non-palm tree objects that were detected as palm trees (i.e., 

commission errors). 

 

4.  Experimental Results 

 

For the site where the proposed method was trained (Figure 1 a), the palm trees 

were successfully detected (Figure 6). The producer’s, user’s and overall accuracy rates 
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reached 99.25%, 99.16% and 99.21%, respectively. To test the effectiveness and 

adaptability of the proposed method for palm tree detection, the classifier trained was 

directly applied to four validation sites (Figures 1 (b-e)). Figures 7, 8, 9 and 10 show the 

detection results of these four validating sites. Yellow circles indicate correct detection 

(i.e., the detected palm trees are actual palm trees), blue circles indicate missed detection 

(i.e., undetected palm trees) and red circles indicate false detection (i.e., detection of other 

objects as palm trees). In these figures, the enlarged regions highlight some missed and 

false detection. For the training site and four testing sites, the vegetation classification 

successfully distinguished vegetation and bare soil. Manual checking of the detection 

results shows that most of the palm trees were successfully detected and that their 

diameters are also accurate. Few false-positive detections occurred on the grassland or in 

the gaps between palm trees (see the enlarged regions in Figures 6 through 9). This might 

have occurred when a portion of the palm tree’s leaves formed a star-shaped object in the 

search window, which had a gradient histogram similar to that of individual palm trees. 

Most false-negative detections occurred when the palm trees had a different shape than 

typical palm trees (see the enlarged region in Figure 6) or were partly covered by other 

trees (see the enlarged region in Figure 10). In some extreme cases, the size of a palm tree 

was overestimated, as shown in the enlarged region of Figure 8. 

From these detection results, we also obtained the distribution of tree size (see the 

histograms in Figures 6 through 10), which helped us to determine the trees’ growing 

stages. For example, site 3 had more small palm trees than the other sites, suggesting that 

most of the palm trees at this site were young trees that required more attention from the 

grower in fertilisation and weed removal (Corley et al., 2008). 
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Figure 6. Palm tree detection at the training site. (a) Original UAV image. (b) Vegetation 

and non-vegetation classification results. (c) Palm tree detection results. (d) Histogram of 

diameter distribution. 
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Figure 7. Palm tree detection at validation site 1. (a) Original UAV image. (b) Vegetation 

and non-vegetation classification results. (c) Palm tree detection results. (d) Histogram of 

diameter distribution. 
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Figure 8. Palm tree detection at validation site 2. (a) Original UAV image. (b) Vegetation 

and non-vegetation classification results. (c) Palm tree detection results. (d) Histogram of 

diameter distribution. 
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Figure 9. Palm tree detection at validation site 3. (a) Original UAV image. (b) Vegetation 

and non-vegetation classification results. (c) Palm tree detection results. (d) Histogram of 

diameter distribution. 
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Figure 10. Palm tree detection at validation site 4. (a) Original UAV image. (b) Vegetation 

and non-vegetation classification results. (c) Palm tree detection results. (d) Histogram of 

diameter distribution. 

 

Table 1 shows the accuracy assessment of the training site and four validation 

sites. Overall, 2,590 palm trees were detected by the proposed method. The overall 

accuracy rate was 99.21% for the training site and 99.39%, 99.06%, 99.90% and 94.63% 

for the four testing sites, respectively. This proposed method performed well in various 

scenarios from relatively easy to tough cases. Validation site 4 was particularly 

challenging for palm tree detection because the palm trees were mixed with or even partly 

covered by other tree species. Although the accuracy rate of 94.63% was not as good as 

those at the other three sites, it was still satisfactory and higher than the accuracy rates 

reported in previous studies (Malek et al., 2014; Manandhar et al., 2016). This 
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complicated situation is not very common and exists only on the boundaries between 

palm tree farmland and natural forestland. 

 

Table 1. Accuracy assessment of training site and four testing sites for palm tree detection. 

  TP FN FP      Overall 

accuracy 

Training 1,063 8 9 99.25% 99.16% 99.21% 

Site1 404 0 5 100.00% 98.78% 99.39% 

Site2 421 1 7 99.76% 98.36% 99.06% 

Site3 509 0 1 100.00% 99.80% 99.90% 

Site4 193 14 8 93.24% 96.02% 94.63% 

 

5. Conclusions and Discussion 

 

In this study, we proposed a novel automatic method for detection of individual 

oil palm trees from UAV imagery. Considering the unique texture of palm trees, this 

method used the HOG algorithm to extract features that were capable of describing the 

texture of palm trees and then used an SVM classifier to implement the binary 

classification task. The proposed method was trained with images from one site and was 

then applied to four other representative sites for independent accuracy assessment. The 

results show the effectiveness and robustness of our proposed method for detection and 

counting of palm trees. The overall accuracy rates were 99.21% for the training site and 

99.39%, 99.06%, 99.90% and 94.63% for the four testing sites, respectively. Even for the 

most challenging site, the accuracy of palm tree detection was still higher than that 

reported for the two methods proposed by Malek et al. (2014) and Manandhar et al. 

(2016), respectively. The principle of this method is relatively simple, so it has great 

potential for palm tree detection over large areas. 
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For future development, detection accuracy could be further improved by 

enlarging the training sample datasets to obtain more representative images, which is a 

critical factor in machine-learning-based classification. In addition, we believe this 

approach can be applied to the detection of other types of trees (e.g., pine trees or some 

broadleaf trees) because the HOG-SVM algorithm is able to automatically select 

meaningful features for classification problems. 
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