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ABSTRACT 21 

The Normalized Difference Vegetation Index (NDVI) is one of the mostly used 22 

vegetation index for ecosystem dynamics monitoring and biosphere process modeling. 23 

However, global NDVI products are usually provided with relatively coarse spatial 24 

resolutions, being short of important spatial details. Producing NDVI time-series data 25 

with a high spatiotemporal resolution is thus indispensable for monitoring land 26 

surface and ecosystem changes, especially in heterogeneous areas. An Improved 27 

Flexible Spatiotemporal DAta Fusion (IFSDAF) method is developed in this study to 28 

overcome the existing issues. In accordance with the distinctive characteristics of 29 

NDVI with large data variance and high spatial autocorrelation compared with raw 30 

reflectance bands, the IFSDAF method first produces temporal increment with linear 31 

unmixing and spatial-dependent increment by thin plate spline (TPS) interpolation, 32 

and then obtains final prediction from the optimal integration of two increments by 33 

Constrained Least Square (CLS) theory. Moreover, IFSDAF is developed with a 34 

capacity of employing all available and partially contaminated fine images. Coarse 35 

spatial resolution NDVI (MODIS) and fine spatial resolution NDVI images (Landsat 36 

and Sentinel) in areas with great spatial heterogeneity and significant land cover 37 

changes were used to test the performance of the new method. The promising results 38 

(RMSE 0.0884, rRMSE 22.12% in heterogeneous areas, RMSE 0.0546, rRMSE 25.77% 39 

in land cover change areas) demonstrate the strengths and robustness of the proposed 40 

method in providing reliable high spatial and temporal resolution NDVI datasets to 41 
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support research on land surface processes. The proposed IFSDAF method can be 42 

further simplified by only using spatial-dependent increment to improve the efficiency 43 

to a great extent. It will make IFSDAF a feasible method for applications in large 44 

geographical area and has the potential for global studies.  45 

 46 

Keywords: Normalized Difference Vegetation Index (NDVI), Spatiotemporal Data 47 

Fusion, High Spatial and Temporal Resolution, Constrained Least Square (CLS) 48 

method, Weighted Integration   49 
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1. Introduction  50 

The Normalized Difference Vegetation Index (NDVI) enhances the absorptive 51 

and reflective features of vegetation and provides a proxy for measuring canopy 52 

greenness and vigor (Rouse et al., 1974; Huete et al., 2002). Accordingly, NDVI 53 

time-series data derived from spaceborne sensors are widely employed in ecosystem 54 

dynamics monitoring and biosphere process modeling, helping to understand 55 

responses of ecosystems to climate change (Pettorelli et al., 2005). As the most 56 

significant constraint of the available NDVI time-series products (e.g., GIMMS, 57 

MODIS, SPOT VGT), coarse spatial resolutions ranging from 250 m to 8 km prevent 58 

these products from capturing spatial details necessary for monitoring land surface 59 

and ecosystem changes, especially in geographically heterogeneous areas (Gao et al., 60 

2006; Rao et al., 2015). Producing NDVI time-series data with both high spatial and 61 

high temporal resolutions is thus critically required for such applications, raising the 62 

need for developing spatiotemporal fusion methods by blending the high frequent but 63 

low spatial resolution images (e.g., MODIS images, hereinafter referred to as coarse 64 

images) with the high spatial resolution but low frequent images (e.g., Landsat images, 65 

hereinafter referred to as fine images) (Zhu et al., 2018). Recently with emerging 66 

constellations of CubeSats and new satellite systems (e.g. Sentinel 2 with 5 day NDVI 67 

at 10 m resolution observations), new opportunities to alleviate the issue of the 68 

classical trade-off between spatial and temporal resolution is becoming hoped, 69 

however, spatiotemporal fusion is still necessary for long time series analysis as such 70 
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data are unavailable before 2015.  71 

When using spatiotemporal fusion technology to produce NDVI data with high 72 

spatial and temporal resolutions, users need to solve the two puzzles: (Ι) selecting an 73 

appropriate blending strategy: Blend-then-Index (BI) or Index-then-Blend (IB), and 74 

(ΙΙ) selecting a suitable and accurate spatiotemporal fusion method. For the first 75 

puzzle, recent studies (Chen et al., 2018; Jarihani et al., 2014; Tian et al., 2013) have 76 

demonstrated that the IB strategy consistently yields better or comparable results than 77 

the BI, mainly because the IB method has these advantages compared with the BI: (i) 78 

less error propagation in the blending process; (ii) less computationally expensive; 79 

and (iii) easier to clean the noises (e.g., cloud effects) on NDVI than the raw 80 

reflectance bands by the advanced filters (e.g., Chen et al., 2004). Consequently, IB is 81 

generally recommended and becomes the dominant blending strategy for producing 82 

fused NDVI products.  83 

Regarding the second puzzle, a number of spatiotemporal fusion methods have 84 

been proposed and validated over past years (Zhu et al., 2018). These methods need at 85 

least one pair of cloud-free fine and coarse NDVI images at a base date and a series of 86 

coarse NDVI images at the prediction dates as the input. However, the consensus 87 

regarding the most suitable method for producing high spatiotemporal resolution 88 

NDVI data has not been reached. Generally, as a band combination index for feature 89 

enhancement, NDVI enlarges the contrast between vegetated and non-vegetated 90 

pixels and therefore displays larger spatial and temporal variance (i.e., larger 91 
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heterogeneity) than the raw reflectance in most satellite images. Accordingly, a 92 

suitable spatiotemporal fusion method for fusing NDVI product is supposed to satisfy 93 

the following criteria in practice: (i) obtaining good prediction in areas with large 94 

spatial and temporal variance; (ii) requiring only one pair of clear fine and coarse 95 

NDVI image at a base date, ensuring its applicability in areas with frequent cloud 96 

contamination; (iii) having a capacity to handle land cover change, such as 97 

urbanization, deforestation/reforestation, wildfires, floods and land cover transitions 98 

caused by other forces. Among the existing spatiotemporal fusion methods, the 99 

Flexible Spatiotemporal DAta Fusion method (FSDAF) (Zhu et al., 2016) is the one 100 

meeting these criteria and can be considered a potential candidate, while other 101 

existing methods fail in at least one criterion, especially the third criterion. For 102 

example, the spatial and temporal adaptive reflectance fusion model (STARFM, Gao 103 

et al., 2006), the enhanced STARFM (ESTARFM, Zhu et al., 2010), the spatial and 104 

temporal adaptive vegetation index fusion model (STAVFM, Meng et al., 2013), 105 

unmixing-based spatiotemporal reflectance fusion model (U-STFM, Huang and 106 

Zhang, 2014), NDVI linear mixing growth model (NDVI-LMGM, Rao et al., 2015), 107 

and spatial and temporal reflectance unmixing model (STRUM, Gevaert and 108 

Garcia-Haro, 2015) cannot handle land cover changes occurring between base date 109 

and prediction date. The learning-based methods, such as Sparse-representation-based 110 

spatiotemporal reflectance fusion model (SPSTFM, Huang and Song, 2012; Song and 111 

Huang, 2013), an error-bound-regularized semi-coupled dictionary learning model 112 
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(EBSCDM, Wu et al., 2015) and an extreme learning machine based fusion method 113 

(Liu et al., 2016) can better capture land cover change but their learning step is time 114 

consuming, and the accuracy decreases when the spatial heterogeneity is high and 115 

scale differences between coarse and fine images are large (Zhu et al., 2016).  116 

FSDAF is based on the spectral unmixing analysis and further introduces thin 117 

plate spline (TPS) interpolation to capture land cover change if the change is 118 

detectable in coarse images (Zhu et al., 2016). Compared with two widely used 119 

spatiotemporal fusion methods, STAFRM algorithm (Gao et al., 2006) and an 120 

unmixing-based data fusion (UBDF) algorithm (Zurita-Milla et al., 2008), FSDAF 121 

needs the same input data as these two methods but is superior in producing more 122 

accurate predictions especially in the NIR band of heterogeneous landscapes (Table 3 123 

and Table 4 in Zhu et al., 2016). Like NDVI, the NIR band has larger spatial and 124 

temporal variances than red band, because the reflectance in NIR band generally has 125 

larger difference among different land covers than red band, and it has more significant 126 

temporal changes than red band during vegetation growth cycles. Moreover, FSDAF 127 

can capture both the gradual and abrupt land cover changes, which is an existing issue 128 

with current spatiotemporal fusion methods. Considering many advantages of FSDAF, 129 

it could be the appropriate method for producing high spatiotemporal resolution 130 

NDVI data. However, there is still space to further improve the FSDAF method. It 131 

should be noted that the FSDAF method only relies on the result of TPS interpolation 132 

to distribute residuals (ε) between prediction and true values under an assumption that 133 
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errors mainly depend on the landscape homogeneity. Such an assumption is very 134 

empirical and has not been demonstrated by theoretical analysis. It may be not an 135 

optimal way to distribute residuals for different scenarios. Furthermore, in practice, 136 

many available fine images are partially contaminated by clouds. Clear pixels on 137 

these partially contaminated fine images can provide significant information of 138 

temporal changes, demonstrated by STAIR method proposed by Luo et al. (2018) 139 

with better result of producing daily surface reflectance than STARFM. Consequently, 140 

using cloud-free fine images together with partially contaminated fine images will 141 

benefit spatiotemporal NDVI fusion and expand its applicability to clouded regions. 142 

Unfortunately, the FSDAF method falls short in such a capacity and is not applicable 143 

in clouded regions.  144 

To address the abovementioned limitations, we propose an Improved Flexible 145 

Spatiotemporal DAta Fusion (IFSDAF) method for producing high spatiotemporal 146 

resolution NDVI time series. The IFSDAF incorporates Constrained Least Square 147 

(CLS) theory into FSDAF method, by which temporal prediction derived from 148 

unmixing procedure and spatial prediction derived from TPS interpolation are 149 

combined, thus ensuring final prediction obtained from the optimal integration of 150 

temporal and spatial predictions. Moreover, IFSDAF was developed with the capacity 151 

of employing all available and partially contaminated fine images (e.g. maximum 152 

cloud coverage is less than 70%). To validate the effectiveness of the proposed 153 

method, comparison with three popular NDVI fusion methods (i.e., NDVI-LMGM, 154 
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STARFM and FSDAF) under the IB strategy were performed in several experiment 155 

areas, including a site with a heterogeneous landscape, a site with abrupt land cover 156 

changes, and a site where satellite images contain a lot of clouds.  157 

2. Methodology  158 

Although the principles of existing spatiotemporal fusion methods have a great 159 

variety, the main idea can be framed by Eq. (1), in which the fine increment of NDVI 160 

(ΔF) between the predicting date (tp) and the base date (t0) is firstly estimated, and then 161 

fine NDVI values (Fp) on the predicting date (tp) are predicted as the sum of the base 162 

fine NDVI value (F0) and the increment (ΔF), plus the residuals ε.  163 

0pF F F = + +                            (1) 164 

Given that F0 is known, IFSDAF also follows this unified equation but estimates the 165 

increment in two ways: the temporal increments using (i) unmixing analysis and 166 

spatial-dependent increments using (ii) the Thin Plate Spline (TPS) interpolation 167 

method, and then combine the two increments to obtain final ΔF through a Constrained 168 

Least Square (CLS) method. The CLS method adopted here purifies the original 169 

FSDAF because it can adaptively combine the two increments, allowing the final ΔF 170 

approaching the one with higher accuracy.  171 

The flowchart of the proposed IFSDAF is shown in Fig. 1. The input data for 172 

IFSDAF include coarse NDVI time series images and all available fine NDVI images 173 

within the same period. In these images, coarse NDVI and fine NDVI images acquired 174 

at the same dates are named as one pair. The pair with minimal cloud contaminations is 175 
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selected as the base images (C0 and F0) and its acquisition date is the base date t0. The 176 

dates of other pairs are denoted as ···, p-3, p-2, p-1, p+1, p+2, p+3, ···. The coarse and 177 

fine NDVI images of these pairs are denoted as (···, Cp-3, Cp-2, Cp-1, Cp+1, Cp+2, Cp+3, ···) 178 

and (···, Fp-3, Fp-2, Fp-1, Fp+1, Fp+2, Fp+3, ···) respectively. The task of IFSDAF is to 179 

predict fine NDVI images at any dates whenever a course NDVI image is available, e.g., 180 

the date of tp. In IFSDAF, the input fine NDVI images are not required to be cloud free 181 

except F0. Like other spatiotemporal fusion methods, all the coarse and fine NDVI 182 

images need to be geo-registered and cropped to become the same image size. Besides, 183 

coarse NDVI time-series images need to be smoothed by an algorithm based on 184 

Savitzky-Golay filter (Chen et al., 2004), which was designed to reconstruct a 185 

high-quality NDVI time-series data by keeping the clear-sky values and interpolating 186 

clouded values. And cloud pixels in partially cloud-contaminated fine NDVI images 187 

are also masked by the Fmask algorithm (Zhu and Woodcock, 2012). A land cover 188 

classification map at a fine resolution, which can be derived from either existing land 189 

cover products (e.g. Globeland30, Chen et al., 2015) or the classification result of the 190 

input clear fine images, is needed to provide fractional cover for the unmixing process. 191 

The output of IFSDAF is synthetic fine NDVI images ( ˆ
pF ) on the prediction date tp 192 

(p=1, 2, 3, …). More detailed description for each implementation step of IFSDAF is 193 

given below and a list of notations and explanation is given in Appendix.  194 
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 195 

Fig.1. Flowchart of the Improved Flexible Spatiotemporal DAta Fusion method 196 

(IFSDAF) 197 

2.1 Generation of temporal increment by unmixing method 198 

Following the linear spectral mixing theory, the temporal NDVI change 199 

(increment) of a coarse pixel can be considered as the linear combination of NDVI 200 

increments of fine pixels within the coarse pixel during a short period (Rao et al., 201 

2015). Accordingly, a linear mixture model is used to unmix the increment of coarse 202 

pixels from the base date t0 to the prediction date tp, assuming that fine pixels 203 

belonging to the same land cover class have a similar increment within the local region 204 

(Busetto et al., 2008; Rao et al., 2015). Neighboring coarse pixels within a moving 205 

window centered by coarse pixel (x, y) are used to establish a linear equation system, as 206 

shown in Eq. (2).  207 
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 209 

window window window window. . min( ) std( ) max( )+std( )cwith s t C C F C C −        210 

where n is the number of coarse pixels and l is the number of land cover classes within 211 

the moving window. ΔC(x, y) is the NDVI increment of the coarse pixel (x, y) that can 212 

be obtained directly from coarse NDVI time series images. ΔFc is the fine NDVI 213 

increment of class c within the window. fl(x, y) is the fraction of class l within the coarse 214 

pixel (x, y), which can be obtained from the land cover map at a fine resolution. 215 

ΔCwindow is the set of all coarse NDVI increments in the window. min(ΔCwindow), 216 

max(ΔCwindow), and std(ΔCwindow) are the minimum value, maximum value and 217 

standard deviation of ΔCwindow, respectively. A moving window sized at a 7×7 coarse 218 

pixel is recommended because the number of coarse pixels in the window, 49, is 219 

commonly much larger than the number of land cover classes. This choice of window 220 

size ensures the abovementioned overdetermined linear equations less influenced by 221 

collinearity and land cover changes. By solving the linear equations, the temporal 222 

NDVI increment of each class (ΔFc) in the moving window can be acquired. Then, the 223 

fine temporal increment ΔT(xj, yj), where (xj, yj) devotes jth fine pixel in the coarse 224 

pixel (x, y), is defined by Eq. (3), as following,  225 

( , ) if fine pixel ( , ) belongs to classj j c j jT x y F x y c =  .    (3) 226 
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     The fine-resolution land cover map used to compute the class fractions can be 227 

an available land cover product or classification of a cloud-free fine image. In practice, 228 

to make the fusion process automatic, existing fusion methods often use unsupervised 229 

classifiers (e.g. K-means and ISODATA) to obtain spectral classes rather than real 230 

land cover classes (Rao et.al 2015, Zhu et.al, 2017). Users need to set the number of 231 

classes in unsupervised classification. According to previous studies, the number of 232 

classes ranging from 3 to 6 could get satisfied results for most situations (Rao et.al 233 

2015, Zhu et.al, 2017). Accuracy assessment of the classification map is not included 234 

in the fusion process because: (1) aggregation of fine-scale class to coarse-scale 235 

fraction will average out some errors in classification so it may not cause large 236 

problem in solving Eq. (2); (2) temporal change assigned to a pixel with wrong class 237 

labels using Eq. (3) will be compensated by the spatial-dependent increment 238 

introduced in the next section; and (3) reference samples selection for accuracy 239 

assessment introduces more human-computer interaction. Although the proposed 240 

method is not sensitive to classification accuracy, including more accurate and robust 241 

classification methods in IFSDAF could further improve its performance.       242 
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2.2 Generation of spatial-dependent increment by TPS interpolation  243 

Coarse NDVI image on tp contains signals of land cover changes when changes 244 

are significant enough to be shown in coarse pixels. Therefore, spatial interpolation of 245 

coarse NDVI to fine resolution will retain useful information of land cover changes. 246 

Accordingly, coarse spatial resolution NDVI images on tp and t0 are interpolated to fine 247 

spatial resolution respectively, through Thin Plate Spline (TPS) interpolation method 248 

(Chen et al., 2014; Zhu et al., 2016). TPS as a spatial interpolation technique for point 249 

data based on spatial dependence (Dubrule, 1984), is employed to obtain interpolation 250 

result thanks to its high accuracy. Then, another increment from the difference between 251 

interpolation results on tp and t0 can be acquired. As this increment only uses spatial 252 

dependence among coarse pixels, it can be referred to as the spatial-dependent 253 

increment ΔS(xj, yj), as shown in Eq. (4), where Fp
TPS(xj, yj) and F0

TPS(xj, yj) are TPS 254 

interpolated values on tp and t0 respectively, and (xj, yj) is the jth fine pixel within the 255 

coarse pixel (x, y).  256 

TPS TPS

0( , ) ( , ) ( , )j j p j j j jS x y F x y F x y = −                 (4) 257 

Compared with the temporal increment, spatial-dependent increment has two 258 

advantages. First, coarse NDVI image on date tp contains signals of land cover changes 259 

if the changes are significant enough to be recorded. By TPS interpolation, such land 260 

cover change information can be directly captured at a fine resolution. Second, 261 

spatial-dependent increment is independent of classification map and unmixing 262 

procedure, thus it has the potential to justify errors in the temporal increment resulted 263 
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from classification or unmixing. In this study, TPS is used to estimate spatial-dependent 264 

increment rather than estimate the NDVI value on tp, a strategy used in FADAF, 265 

because the increment reveals the changes of NDVI directly. Zhang et al. (2015) also 266 

suggested that using increment yields higher accuracy than predicting the value directly 267 

at tp. The use of this spatial-dependent increment will be further discussed in Section 5.  268 

2.3 Combination of two increments by CLS 269 

The abovementioned two increments can be considered to be two independent 270 

predictions by two different models. Due to the distinct features used by the two 271 

predictions, the former uses the information of temporal changes of NDVI, and the later 272 

mainly utilizes the spatial dependence. Their prediction accuracies should be different 273 

under different scenarios and spatial-dependencies. Therefore, it is natural to expect 274 

that a reasonable combination of the two increments can improve the performance and 275 

robustness of the fusion method.  276 

The simplest and most effective way of combining temporal increment (ΔT) and 277 

spatial-dependent increment (ΔS) should be summing them by reasonable weights. 278 

Moreover, an ideal combination should be as close to the true fine NDVI increment (ΔF) 279 

as possible. Thus, an objective function of weighted combination can be written as,  280 

( )
S T

2

S T S T
( , ) (0,1)

ˆ ˆ( , ) arg min k k k
w w

k

w w w S w T F


=  +  − ,            (5) 281 

where ΔSk, ΔTk, and ΔFk are the spatial-dependent increment, the temporal increment, 282 

and the true increment of the kth fine pixel, respectively. wS and wT are weights of the 283 

spatial-dependent increment and the temporal increment, respectively. Eq. (5) can be 284 
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solved by the Constrained Least Square (CLS) method, with constraints of wS and wT 285 

being nonnegative and summing up to one.  286 

However, as fine NDVI values on tp are unknown, it is impossible to obtain the 287 

true fine increment (ΔF). Fortunately, a real NDVI increment of a coarse pixel (ΔC) 288 

from t0 to tp is available because coarse observations are available on two dates. 289 

Therefore, both the temporal increment and the spatial-dependent increment are 290 

up-scaled to the resolution of coarse pixel (ΔCT
 and ΔCS), as shown in Fig. 2. Then, 291 

wS and wT in Eq. (5) can be obtained by solving Eq. (6) alternatively:  292 

( )
S T

2
S T

S T S T
( , ) (0,1)

ˆ ˆ( , ) arg min k k k
w w

k

w w w C w C C


=  +  −           (6) 293 

where 
S

kC , 
T

kC  and ΔCk are up-scaled spatial-dependent increment, up-scaled 294 

temporal increment and true increment of kth coarse pixel, respectively. Here, the 295 

average value of all fine NDVI pixels within the coarse pixel are used to produce 296 

up-scaled spatial increment (ΔCS) and up-scaled temporal increment (ΔCT), and ΔCk is 297 

calculated as difference between coarse NDVI values on prediction date tp and t0. 298 

Considering that the weights wS and wT are spatially-dependent, Eq. (6) is solved in a 299 

7×7 moving window at a coarse resolution corresponding to the window size of the 300 

unmixing process. Then, with the estimated wS and wT, the final fine increment can be 301 

calculated as following:  302 

Com

S T( , ) ( , ) ( , )j j j j j jF x y w S x y w T x y =  +  ,   (7) 303 

where ΔFCom(xj, yj) is the combined increment of fine pixel (xj, yj). wS and wT are 304 

supposed to be scale-invariant and its rationality will be discussed Section 5.  305 
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 306 

Fig. 2. Illustration of weighted calibration based on Constrained Least Square (CLS) 307 

method.  308 

2.4 Distribution of residuals  309 

After CLS optimization, the combined increment can capture most of the fine 310 

NDVI increment. However, residuals are inevitable even though they are minimal. The 311 

residuals can be mathematically expressed as Eq. (8),  312 

Com

1

1
( , ) ( , ) ( , )

m

j j

j

R x y C x y F x y
m =

=  −  ,      (8) 313 

where R(x, y) is the residual within a coarse pixel (x, y) and m is the number of fine 314 

pixels within the coarse pixel. In order to further improve the accuracy of the combined 315 

increment, residual derived above needs to be allocated to each fine pixel (xj, yj) within 316 

the coarse pixel (x, y). Because the residuals are minimal after the weighted 317 

combination of two increments, they can be distributed equally (Chen et al., 2014) as 318 

Eq. (9).  319 

Com

0, 0
ˆ ( , ) ( , ) ( , ) ( , )p j j j j j jF x y F x y F x y R x y= + + ,     (9) 320 

where F0(xj, yj) is fine NDVI of pixel (xj, yj) on date t0 and 0,
ˆ ( , )p j jF x y  is the predicted 321 

fine NDVI on date tp. After the residuals distribution, a smoothing process based on 322 

Coarse 
increment(ΔC)

CLS

wS and wT

Spatial 
incerment(ΔS)

Temporal 
increment(ΔT)

Upscaled spatial 
increment(ΔCS)

Upscaled temporal 
increment(ΔCT)
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similar pixels (Zhu et al., 2016) is applied to remove block effects in the fused image.  323 

2.5 Combination of multi-time predictions  324 

Through Sections 2.1 to 2.4, a prediction 
0,

ˆ
pF  for date tp based on the fine 325 

NDVI on t0 can be acquired. In the same way, there will be several NDVI predictions, 326 

such as …, 
3,

ˆ
p pF −

, 
2,

ˆ
p pF −

, 
1,

ˆ
p pF −

, 
1,

ˆ
p pF +

, 
2,

ˆ
p pF +

, 
3,

ˆ
p pF +

, …, for date tp based on 327 

clear observations at p+i (i=…, -3, -2, -1, 1, 2, 3, …) in other partially clouded fine 328 

NDVI images. Recognition of a pixel is either clear or clouded can be performed 329 

based on the Fmask algorithm (Zhu and Woodcock, 2012). Generally, the predictions 330 

with a base date too far from tp are excluded considering that the base NDVI images 331 

hold weak relationship with the NDVI image on date tp. Operationally, the maximum 332 

interval between the base date and the prediction date is set as two months. Then, the 333 

NDVI difference of coarse pixels between the base date and the prediction date is 334 

used to calculate the contribution of each prediction, as shown in Eq. (10).  335 

, 9

1

1
( , )

( , ) ( , )
q p

i i

q p

i

w x y

C x y C x y
=

=

−
       (10) 336 

where ( , )i

qC x y  and ( , )i

pC x y  are coarse NDVI values of the ith pixel on base date 337 

q and the prediction date tp in the 3×3 moving window centered by coarse pixel (x, y). 338 

wq,p(x, y) is the contribution coefficient of predicted fine NDVI value ,
ˆ ( , )q p j jF x y  339 

within the center coarse pixel (x, y). Based on the contribution coefficient, the 340 

combined prediction of a fine pixel (xj, yj) on date tp is,  341 

, , ,
ˆ ˆ( , ) [ ( , ) ( , )] ( , )p j j q p q p j j q p

q q

F x y w x y F x y w x y=   ,    (11) 342 

If ( , )i

qC x y  equals ( , )i

pC x y , ˆ ( , )p j jF x y  will be set as ,
ˆ ( , )q p j jF x y  since wq,p(x, y) is 343 
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infinite under this situation. Finally, for each prediction date in the time series, a final 344 

prediction in Eq. (11) can be obtained using the same routine described in Sections 345 

2.1 through 2.5.  346 

To assess the performance of the new method, four accuracy indices, Root Mean 347 

Square Error (RMSE), relative RMSE (RMSE divided by averaged observation value), 348 

Correlation Coefficient (r) and Average Difference (AD) were used. These indices have 349 

been widely used to assess the accuracy of fused images in previous studies (e.g. Gao et 350 

al., 2006; Rao et al., 2015; Zhu et al., 2016).  351 

3. Data 352 

3.1 Data for experiments using single cloud-free fine image 353 

We used Landsat images without clouded pixels to evaluate the performance of 354 

the proposed IFSDAF model at two sites with different land-cover characteristics. 355 

Considering that the performance of the existing spatiotemporal fusion methods 356 

generally perform well in homogeneous areas (Zhu et al., 2018), the study only tests 357 

the performance of the new method in cases with relative complexities (i.e., a 358 

heterogeneous site and a site with significant land cover changes.) The Landsat 359 

images covering the two sites were shared by Emelyanova et al. (2013) and were also 360 

used to test the NDVI-LMGM and FSDAF algorithms (Rao et al., 2015; Zhu et al., 361 

2016).  362 

This first site is located in the Coleambally irrigated area (34°54′S and 145°57′E), 363 

characterized by great heterogeneity in landscape with many small patches of farm 364 
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land and rapid phenological changes (Fig. 3). Two Landsat ETM+ images (800×800 365 

pixels), acquired on November 25th, 2001 (t0) and January 12th, 2002 (tp) during the 366 

growing season, were upscaled by the ratio of 8:1 to synthesize MODIS images. In 367 

this test, the synthesized MODIS image instead of the real MODIS image was used, 368 

because the synthesized MODIS image can exclude the co-registration error (Gevaert 369 

and Garcia-Haro, 2015; Wang and Atkinson, 2018; Zhu et al., 2016). This exclusion 370 

ensures a fair comparison of different algorithms. The NDVI data were then derived 371 

from corresponding reflectance images. Then, the land cover classification map was 372 

obtained by the Iterative Self-Organizing Data Analysis Technique (ISODATA) 373 

method based on the Landsat image acquired on November 25th, 2001 (t0).  374 

 375 

Fig.3. Test data of the heterogeneous site in Coleambally irrigation area: Landsat 376 
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NDVI on November 25th, 2001 (a) and January 12th, 2002 (b); false-color-composite 377 

Landsat image on November 25th, 2001 (c); MODIS NDVI on November 25th, 2001 378 

(d) and January 12th, 2002 (e); and land cover map on November 25th, 2001 by 379 

ISODATA (f).  380 

 381 

The second site is located in the Gwydir area (29°07′S and 149°04′E) with a 382 

flood event occurred in December 2004. Two Landsat TM images (800×800 pixels) 383 

on November 26th, 2004 (t0) and December 12th, 2004 (tp) were used at this site (Fig. 384 

4). Abrupt land cover changes can be observed in these two images due to the flood 385 

(Emelyanova et al., 2013). Two Landsat images were also upscaled by the ratio of 8:1 386 

to synthesize the MODIS images. Then, the NDVI data were derived from all the 387 

original images. A land cover classification map was obtained based on Landsat image 388 

on November 26th, 2004 (t0) by the ISODATA method.  389 
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 390 

Fig.4. Test data of a site experienced land cover change in Gwydir area: Landsat 391 

NDVI on November 26th, 2004 (a) and December 12th, 2004 (b); 392 

false-color-composite Landsat image on November 26th, 2004 (c); MODIS NDVI on 393 

November 26th, 2004 (d) and December 12th, 2004 (e); and classification map on 394 

November 26th, 2004 by ISODATA (f).  395 

For these two sites, NDVI-LMGM (Rao et al., 2015), STARFM (Gao et al., 2006) 396 

and FSDAF (Zhu et al., 2016) were also applied to the same data set for comparison.  397 

3.2 Data for experiments using multiple clouded fine images 398 

Experiments using multiple cloudy fine images were implemented to assess the 399 

performance of the proposed IFSDAF method for predicting the NDVI time series 400 

when the input fine images which were partially contaminated by clouds. To test the 401 
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applicability of IFSDAF for fusing images from diverse sensors, we fused both 402 

Landsat and Sentinel-2 images with MODIS in two cloudy sites respectively. 403 

The first site is Shennongjia Forestry District (109°59'–110°58' E, 31°15'–31°57' 404 

N) located in the western part of Hubei Province, central China (Fig. 5). This area 405 

belongs to subtropical monsoon climate; and its elevation ranges from 398 to 3105 m. 406 

The vegetation distribution of this area is very heterogeneous with the types of 407 

evergreen broadleaf forest, deciduous broadleaf forests, and evergreen coniferous 408 

forest. There are also farmlands and artificial surfaces in this area (Wang et al., 2018; 409 

Zhao et al., 2005). The 250 m (resampled to 240 m) 16-day composite MODIS NDVI 410 

products (MOD13Q1) covering this site in 2015 were acquired from NASA 411 

(https://ladsweb.nascom.nasa.gov/search/) and then resampled to the resolution of 240 412 

m. Landsat 8 level 2A surface reflectance products and their cloud masks by Fmasks 413 

in 2015 were downloaded from the USGS (https://espa.cr.usgs.gov/ordering/new/). 414 

All Landsat images were co-registered to MODIS images. M osaic of two adjacent 415 

Landsat-8 scenes can cover the whole area of this site. When mosaicking two Landsat 416 

8 images with close acquisition dates, pixels in the overlapped part have two NDVI 417 

values and the higher one is kept because higher NDVI is less likely affected by poor 418 

atmospheric condition. Those Landsat images with clouds, shadows, and snow more 419 

than 70% were discarded. Finally, one clear Landsat image (t0, on October 14th, 2015) 420 

and nine partially contaminated Landsat images (Fig. 6) were selected as the input of 421 

fine-resolution NDVI images for data fusion.  422 

https://ladsweb.nascom.nasa.gov/search/
https://espa.cr.usgs.gov/ordering/new/
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 423 

Fig. 5. Shennongjia Forestry District in Hubei Province, central China. The image is a 424 

true-color-composite Landsat 8 OLI image acquired on the day of year 287, October 425 

14th, 2015.  426 

 427 

Fig. 6. Cloud masks of nine partially contaminated Landsat 8 images in Shennongjia 428 

Forestry District by Fmask method, where gray color indicates pixels contaminated by 429 

clouds and cloud shadows, and black color represents clear pixels.  430 
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 431 

The second site is in Southeast Asia which has complex landscapes with 432 

croplands, water, forest and urbans. This site is covered by one Sentinel-2A scene 433 

(size 10980×10980 10m pixels) with the tile number of T48QUD. We acquired 434 

Sentinel-2A satellite level 1C products from EarthExplorer 435 

(https://earthexplorer.usgs.gov/) and 8-day composite MODIS surface reflectance 436 

products (MOD09Q1) from NASA. Both images were acquired in 2017. Atmospheric 437 

correction of Sentinel-2A images was done with the tool provided by European Space 438 

Agency, Sen2Cor (http://step.esa.int/main/third-party-plugins-2/sen2cor/). Cloud 439 

masks of sentinel-2A images were produced by the Fmask software 440 

(https://github.com/gersl/fmask) and images with cloud cover more than 70% were 441 

discarded. Finally, we obtained three clear Sentinel-2A images on Feb. 13th, Mar. 5th 442 

and Dec. 20th in 2017 respectively (Fig. 7), and 21 partially cloud contaminated 443 

images (Fig. 8). Sentinel-2A NDVI and MODIS NDVI images were then calculated 444 

from the surface reflectance data.  445 

 446 

Fig. 7. False-color-composite of clear Sentinel 2A images on Feb. 13th, Mar. 05th and 447 

Nov. 20th in 2017 with the tile number of T48QUD, respectively.  448 

https://earthexplorer.usgs.gov/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
https://github.com/gersl/fmask)%20and
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 449 

Fig. 8. Cloud masks of 21 partially cloud contaminated Sentinel-2A images with the 450 

tile number of T48QUD by Fmask method, where black color is clear pixel and gray 451 

color is cloudy pixel.  452 

4. Results 453 

4.1 Fusion using single cloud-free fine image 454 

Fig. 9 shows the visual comparison of predicted Landsat NDVI by IFSDAF and 455 

the three existing methods with observed Landsat NDVI on January 12th, 2002 (tp) for 456 

the farmland site with great heterogeneity and rapid phenological changes. Compared 457 

with the other three methods, the fused image by IFSDAF (Fig. 9d) is more similar to 458 

the actual NDVI image (Fig. 9e) (e.g., the zoomed-in sub-region). On the contrary, the 459 

NDVI-LMGM (Fig.9a) and FSDAF (Fig.9c) methods yield large errors in some 460 

pixels leading to discontinuity in the fused images; and STARFM (Fig.9b) leads to an 461 
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unsatisfactory blurring effect for small objects. Scatter plots (Fig. 10) and quantitative 462 

assessment also confirms that the proposed method obtains the highest accuracy (Table 463 

1). The IFSDAF has the lowest RMSE (0.0884), lowest rRMSE (22.12%) and highest r 464 

(0.9376) for the whole image. Furthermore, the AD (-0.0001) of the newly proposed 465 

method is closer to zero, indicating less biased. In addition, the accuracies of the 466 

NDVI-LMGM (RMSE= 0.1300 and rRMSE= 32.54%) and STARFM (RMSE= 0.1646 467 

and rRMSE= 41.19%) are much lower for the whole image compared with the FSDAF 468 

(RMSE= 0.1002 and rRMSE= 25.06%).  469 

As we mentioned, the NDVI normally has a larger variance than raw reflectance 470 

bands. Fig. 11a shows histogram distributions of bands Red, NIR, and corresponding 471 

NDVI from Landsat image on January 12th, 2002 (tp). The NDVI displays two peaks 472 

with significantly a greater variance than that of band Red or band NIR due to the 473 

amplification of vegetation signals and the suppression of non-vegetation signals. To 474 

further investigate the performance of the proposed method in sub-regions with 475 

different NDVI magnitudes, based on histogram distribution of NDVI (Fig.11a), the 476 

whole image is thus divided into three parts: low NDVI (< 0.4), medium NDVI 477 

(0.4-0.7), and high NDVI (>0.7). It can be seen that NDVI-LMGM and STARFM have 478 

relatively lower accuracies compared with IFSDAF and FSDAF. And IFSDAF has a 479 

better performance than FSDAF in medium NDVI and high NDVI sections.  480 



28 

 

 481 

Fig. 9. Landsat NDVI on January 12th, 2002: predictions by NDVI-LMGM (a), 482 

STARFM (b), FSDAF (c), IFSDAF (d) and the actual NDVI (e).  483 
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 484 

Fig. 10. Scatter plots of estimated results compared with observed value of Landsat 485 

NDVI on January 12th, 2002: NDVI-LMGM (a), STARFM (b), FSDAF (c) and 486 

IFSDAF (d).  487 

 488 

Fig. 11. Histograms of band Red, band NIR and NDVI in Coleambally irrigation area 489 

on January 12th, 2002 (a) and the Gwydir area on December 12th, 2004 (b).  490 
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Table.1. RMSE, rRMSE, r and AD between predicted NDVI and observed NDVI of NDVI-LMGM, STARFM, FSDAF and the IFSDAF method in the 491 

Coleambally irrigation area.  492 

Method 

NDVI-LMGM  STARFM 

 

FSDAF 

 

IFSDAF 

RMSE rRMSE r AD  RMSE rRMSE r AD RMSE rRMSE r AD RMSE rRMSE r AD 

Low NDVI 0.0916 38.85% 0.4476 0.0148  0.1068 45.29% 0.5214 0.0564  0.0669 28.36% 0.5576 0.0160  0.0664*** 28.16% 0.6334 0.0170 

Medium 

NDVI 

0.2415 45.11% 0.2917 -0.0476  0.1482 27.69% 0.2805 -0.0175  0.1962 36.64% 0.3740 -0.0205  0.1473*** 27.51% 0.4328 -0.0060 

High NDVI 0.1589 19.03% 0.3171 -0.0477  0.2130 25.52% 0.2983 -0.1656  0.1221 14.62% 0.3926 -0.0426  0.1116*** 13.36% 0.4493 -0.0408 

Whole image 0.1300 32.54% 0.8744 -0.0053  0.1646 41.19% 0.7778 -0.0295  0.1002 25.06% 0.9238 -0.0012  0.0884*** 22.12% 0.9376 -0.0001 

Note: for t test, * means p < 0.05; ** means p < 0.01; *** means p < 0.001 compared with results of FSDAF.   493 
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For the Gwydir site where a flood event occurred, as shown in Fig. 12, the fusion 494 

result of IFSDAF (RMSE = 0.0546) captures the change (Fig. 12d), being more 495 

similar to the actual NDVI pattern than the other three methods. NDVI-LMGM gets 496 

fused image (RMSE = 0.0794) with significant block effects (Fig. 12a). The result of 497 

STARFM (RMSE = 0.0686) is generally similar to the actual NDVI image as shown 498 

in Fig. 12b. FSDAF also has high accuracy (RMSE= 0.0617) in fusion but it has 499 

abnormal predictions for some pixels shown in the selected area (Fig. 12c). The blue 500 

arrow in Fig. 12c indicates the error edges produced by FSDAF. In fact, before the big 501 

flood, there is a small river in the zoomed-in area, resulting in the edge (marked by 502 

the blue arrow) between water and barren land. However, after the flood, the river 503 

overflowed and covered nearby farmland. Thus, the original edge of the river 504 

disappeared as shown in the actual Landsat NDVI image of Fig. 12e. IFSDAF is the 505 

only among the four methods which can capture this phenomenon. Scatter plots in Fig. 506 

13a-d show no obvious bias of these four methods; but points of FSDAF and 507 

IFSDAF are closer to the 1:1 line than the other two methods which reveal the 508 

comparable capacity of both IFSDAF and FSDAF in capturing land cover changes.   509 
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 510 

Fig. 12. Landsat NDVI on December 12th, 2004: predictions by NDVI-LMGM (a), 511 

STARFM (b), FSDAF (c), IFSDAF (d) and the actual NDVI (e). 512 



33 

 

 513 

Fig. 13. Scatter plots of estimated results compared with observed value of Landsat 514 

NDVI on December 12th, 2004: NDVI-LMGM (a), STARFM (b), FSDAF (c) and 515 

IFSDAF (d).   516 

Fig. 11b shows histogram distributions of band Red, band NIR, and NDVI on 517 

December 12th, 2004 (tp) respectively. The variance of NDVI is also significantly 518 

higher than that of band Red or band NIR. Moreover, due to the flood event, there are 519 

many negative values in NDVI, causing three peaks around NDVI = -0.2, NDVI = 0.2 520 

and NDVI = 0.4 in the histogram distribution of NDVI. The whole image is divided 521 

into three parts (low NDVI < 0, medium NDVI 0-0.3, and high NDVI > 0.3) to 522 

quantitatively assess the accuracy (Table 2). It is clear that the new method yields 523 

higher accuracy with lower RMSE of 0.0546, higher r of 0.9527 among the whole 524 

image than the other three methods. In the three separate NDVI parts, the new method 525 

also displays higher accuracy with RMSE = 0.0798, 0.0467, and 0.0584, respectively.  526 
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Table.2. RMSE, rRMSE, r and AD between predicted NDVI and observed NDVI of NDVI-LMGM, STARFM, FSDAF and the IFSDAF method in the Gwydir 527 

area.  528 

Methods 

NDVI-LMGM  STARFM 

 

FSDAF 

 

IFSDAF 

RMSE rRMSE r AD  RMSE rRMSE r AD RMSE rRMSE r AD RMSE rRMSE r AD 

Low 

NDVI 

0.1267 -89.59% 0.6406 0.0708  0.0964 -68.16% 0.7364 0.0497  0.0906 -64.03% 0.7521 0.0431  0.0798*** -56.42% 0.7821 0.0337 

Medium 

NDVI 

0.0636 33.46% 0.4872 0.0061  0.0526 27.65% 0.5794 0.0042  0.0516 27.11% 0.6040 0.0066  0.0467*** 24.55% 0.6524 0.0045 

High 

NDVI 

0.0858 19.67% 0.7425 -0.0442  0.0654 15.00% 0.8410 -0.0341  0.0679 15.55% 0.8302 -0.0368  0.0584*** 13.38% 0.8658 -0.0270 

Whole 

image 

0.0794 37.45% 0.8970 0.0013  0.0686 29.53% 0.9250 0.0028  0.0617 29.09% 0.9395 0.0002  0.0546 25.77% 0.9527 0.0001 

Note: for t test, * means p < 0.05; ** means p < 0.01; *** means p < 0.001 compared with results of FSDAF.         529 
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4.2 Fusion using multiple fine images partially covered by clouds  530 

In the site of Shennongjia, each of the four Landsat NDVI images captured on 531 

Apr 14th, Jul 3th, Sep 5th, and Dec 10th in 2015 serves as reference data for the 532 

independent validation. For example, Apr 14th was predicted by IFSDAF using all 533 

other eight partially contaminated fine NDVI images as input, and then clear pixels in 534 

the true Apr 14th image were used to assess the accuracy of predicted Apr 14th image. 535 

For the comparison, FSDAF only used one clear Landsat NDVI image on Oct. 14th of 536 

2015 to predict the above four Landsat NDVI images. The accuracies of fusion results 537 

of the four images are summarized in Table 3 and the predictions are shown in Fig. 14. 538 

For the purpose of simplification, results of NDVI-LMGM and STARFM are not 539 

shown in this experiment because they yielded lower accurate results than FSDAF. 540 

 It is evident from Fig. 14 that IFSDAF can produce fused images more similar 541 

with real Landsat NDVI than FSDAF. In Table 3, RMSE values of IFSDAF on all 542 

dates are lower than that of FSDAF. These improvements of accuracy are mainly 543 

attributed to the extra information provided by the partially contaminated Landsat 544 

images, which can be well used in IFSDAF but not in FSDAF. On the contrary, 545 

FSDAF only used one fine image on Oct 14th in 2015 which is far away from some 546 

prediction dates, leading to low accuracy on these prediction dates. More important, 547 

the improvement of IFSDAF on Jul 3th and Sep 5th during the peak stage of vegetation 548 

growth is more significant than other two dates, indicating that IFSDAF may be more 549 

effective for fusing images with medium to high NDVI values. This result is similar to 550 
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the experiment in the Coleambally irrigation area.  551 

Table.3. RMSE, rRMSE, r and AD between the predicted NDVI and observed 552 

partially contaminated fine NDVI on Apr 14th, Jul 3th, Sep 5th and Dec 10th in year 553 

2015, in the Shennongjia Forestry District.  554 

Date Methods RMSE rRMSE r AD 

Apr 14th 

FSDAF 0.0873 13.33% 0.6319 -0.0481 

IFSDAF 0.0819*** 12.51% 0.6620 -0.0475 

Jul 3th 

FSDAF 0.0578 6.44% 0.6504 -0.0138 

IFSDAF 0.0368*** 4.09% 0.8508 -0.0137 

Sep 5th 

FSDAF 0.0671 7.86% 0.7279 -0.0306 

IFSDAF 0.0393*** 4.61% 0.8615 -0.0173 

Dec 10th 

FSDAF 0.1246 21.24% 0.6516 -0.0729 

IFSDAF 0.0913*** 15.57% 0.7768 -0.0366 

Note: for t test, * means p < 0.05; ** means p < 0.01; *** means p < 0.001 compared 555 

with results of FSDAF. 556 
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 557 

Fig. 14. Landsat 8 NDVI in Shennongjia Forestry District on Apr 14th, Jul 3th, Sep 5th, 558 

and Dec 10th in year 2015 predicted by FSDAF and IFSDAF, respectively.  559 

In the South Asia site, clear Sentinel-2A NDVI image on Mar 5th, 2017 was 560 

selected as the base image. The other two clear Sentinel NDVI images (Feb. 12th and 561 

Dec. 20th) were used as reference data to assess the accuracy of IFSDAF and FSDAF. 562 

The base fine spatial resolution NDVI image and the 21 partially cloud contaminated 563 

fine NDVI images were used as input for IFSDAF, while only the base fine NDVI 564 

image was input to FSDAF. Results in Table. 4 shows that IFSDAF produces more 565 

accurate predictions with lower RMSE in both dates (0.0863 and 0.0740) compared 566 

with the results by using FSDAF (0.0999 and 0.1469).   567 

Table. 4. RMSE, rRMSE, r and AD between the predicted NDVI and observed fine 568 

NDVI on Feb. 12th and Dec. 20th, 2017 with Sentinel-2A data.  569 

Date Methods RMSE rRMSE r AD 
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Feb 13th 

FSDAF 0.0999 24.04% 0.8885 -0.0463 

IFSDAF 0.0863*** 20.76% 0.9305 -0.0427 

Dec 20th 

FSDAF 0.1469 33.69% 0.7401 -0.0082 

IFSDAF 0.0740*** 17.69% 0.9584 -0.0141 

Note: for t test, * means p < 0.05; ** means p < 0.01; *** means p < 0.001 compared 570 

with results of FSDAF.  571 

 572 

Fig. 15. Sentinel-2A NDVI images on Feb. 13th and Dec. 20th (left) and the results 573 

predicted by FSDAF (middle) and IFSDAF (right), respectively.  574 

5. Discussion 575 

5.1 The way of deriving spatial-dependent increment 576 

In this study, the spatial-dependent increment (ΔS) is acquired based on 577 

difference between interpolation results of coarse NDVI on date tp and date t0, 578 
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respectively, as shown in Eq. (4). However, there is also another way of obtaining ΔS 579 

in Eq. (12), since the F0 is available on date t0.  580 

TPS

0( , ) ( , ) ( , )j j p j j j jS x y F x y F x y = −              (12) 581 

where F0(xj, yj) is fine NDVI value of pixel (xj, yj) on date t0. However, ΔS derived from 582 

Eq. (4) is a better indicator than that from Eq. (12). A theoretical comparison of these 583 

two types of ΔS is explained as below. Eq. (9) can be simplified as shown in Equation 584 

(13), where residuals R are ignored as they are small.   585 

Com

0, 0 0 S T
ˆ

pF F F F w S w T= + = +  +              (13) 586 

For simplification, the notation (xi, yi) is removed by replacing Eq. (9) with Eq. (13). 587 

And then, replacing F0 by wSF0+wTF0, as wS+wT = 1, specifically,  588 

0, S 0 T 0
ˆ ( ) ( )pF w F S w F T= + + +                (14) 589 

Based on ΔS in IFSDAF as Eq. (4), Eq. (14) can be written as below,  590 

TPS TPS

0, S 0 0 T 0
ˆ ( ) ( )p pF w F F F w F T= + − + +            (15) 591 

Based on ΔS in Eq. (12), Eq. (14) can also be written as below,  592 

TPS

0, S 0 0 T 0

TPS

S T 0

ˆ ( ) ( )

( ) ( )

p p

p

F w F F F w F T

w F w F T

= + − + + 

= + + 
            (16) 593 

Difference between Eq. (15) and Eq. (16) is the term 0F -
TPS

0F  in Eq. (15). TPS 594 

prediction is a spatially smoothed prediction which loses spatial details to some 595 

degree. As a result, 0F -
TPS

0F  functions similarly as a high-pass modulation to model 596 

the spatial contrast at t0. This spatial contrast is assumed relatively stable from the t0 597 

to tp in several fusion models (Song and Huang, 2013; Luo et al., 2018), so 0F -
TPS

0F  598 

in Eq. (15) can better capture spatial details in the fused image. To demonstrate the 599 
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abovementioned theoretical analysis, an experiment based on these two types of ΔS 600 

was conducted in the Gwydir area. Result shows that the prediction based on ΔS 601 

derived from Eq. (4) (Fig. 16a) is more accurate than that from Eq. (12) with RMSEs 602 

being 0.0546 and 0.0596, respectively. Moreover, as the zoomed-in pictures in Fig. 16 603 

illustrate, the prediction result using Eq. (4) (Fig. 16a) contains more spatial details 604 

(e.g., the road marked by blue arrows), providing corroborative support to the 605 

analysis.  606 

 607 

Fig. 16. Comparison of NDVI value on tp in the Gwydir area predicted from Eq. (4) (a) 608 

Eq. (12) (b), and the real Landsat NDVI image(c).  609 

5.2 The weights scale-invariant assumption  610 

In the proposed IFSDAF method, spatial-dependent increment and temporal 611 

increment are combined by optimized weights. As the fine NDVI image on tp is 612 

unknown in the real-world application, coarse NDVI increment (ΔC), upscaled 613 
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spatial-dependent increment (ΔCS), and upscaled temporal increment (ΔCT) are used 614 

to derive wS and wT in Eq. (5). Such operation assumes that weight is scale-invariant. 615 

To verify the assumption, an experiment was conducted in the Coleambally irrigation 616 

area, a moving window of 7×7 at a coarse resolution was used to calculate the weights 617 

(wS and wT) for two increments for the center coarse pixel. Because the fine NDVI 618 

image Fp actually exists at the site, the two weights at a fine resolution can also be 619 

derived based on fine increment (ΔF=Fp-F0) using the CLS method. Fig. 17a displays 620 

the scatter plot of weights derived from the two approaches. All points are close to the 621 

1:1 line, where x-axis represents the weight of the spatial-dependent increment at the 622 

fine resolution and y-axis represents the same weight at the coarse resolution, 623 

suggesting that the weights derived from both the coarse and fine images are 624 

substitutable. Then, combined increments calculated using the two types of weight are 625 

very similar (Fig. 17b). RMSE values of combined increments based on weights from 626 

the coarse resolution and fine resolution are 0.0941 and 0.0934, respectively. t-test 627 

shows that there is no significant difference between the two combined increments. 628 

Consequently, it can be concluded that the scale effect on the derived weights is 629 

minimal, and it will not cause significant errors on the combined increment. Thus, the 630 

assumption that weights (wS and wT) are scale-invariant is reasonable.  631 
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 632 

Fig.17. Scatter plot of weights of spatial-dependent increment based on (a) coarse 633 

resolution increment (ΔC) and fine resolution increment (ΔF); (b) comparison of 634 

combined increments using weights derived from coarse and fine images.  635 

5.3 Combination of temporal and spatial-dependent increments  636 

Temporal increment and spatial-dependent increment are combined in IFSDAF 637 

by CLS method in moving windows. Such a combination is based on the assumption 638 

that the accuracies of two increment estimations are different under different scenarios; 639 

thus the weighted combination is able to improve the accuracy of NDVI prediction 640 

through balancing biases in the estimate of two increments. We verified the 641 

assumption by comparing the temporal increment, the spatial-dependent increment 642 

and the combined increment with the real increment (Fig.18), in which RMSE was 643 

used to represent the error of estimation. Theoretically, a good combination is 644 

expected to obtain smaller RMSE value than either of the two increment estimations. 645 

As shown in Fig.18, the performance of CLS-based combination agrees with our 646 

expectation with decreased RMSE values at both study sites, demonstrating the 647 

necessity of combining two increments. Moreover, the residual of spatial-dependent 648 
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increment (ΔS-ΔF) is much more similar to the residual of the combined increment 649 

(ΔFCom-ΔF) than that of the temporal increment (ΔT-ΔF), suggesting that the 650 

spatial-dependent increment contributes more to the combined increment than the 651 

temporal increment at these two sites.  652 

 653 

Fig. 18. Difference between predicted increment and observed increment: difference 654 

between (a) temporal increment ΔT, (b) spatial-dependent increment ΔS, (c) combined 655 

increment ΔFCom and the observed increment ΔF in the Coleambally irrigation area; 656 

difference between (d) temporal increment ΔT, (e) spatial-dependent increment ΔS, (f) 657 

combined increment ΔFCom and the observed increment ΔF in the Gwydir area.   658 

 659 
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5.4 Improvements of IFSDAF compared with FSDAF  660 

Compared with FSDAF, IFSDAF has improved in the following aspects. First, 661 

the increment estimation in FSDAF mainly produced by the unmixing process, and 662 

the TPS interpolation result is only used to guide the distribution of residuals rather 663 

than producing spatial-dependent increment. However, as shown in Fig.18, the 664 

spatial-dependent increment estimated by the TPS interpolation may be more accurate 665 

than the temporal increment by the unmixing process. FSDAF underestimates the 666 

contribution of the TPS interpolation to some extent. The reason why the 667 

spatial-dependent increment is superior to the temporal increment can be found from 668 

Table 5, where we calculated the global Moran’s I index of the coarse images for band 669 

Red, band NIR, and NDVI on the base date t0 and prediction date tp, respectively. The 670 

global Moran’s I index was used here to measure the spatial autocorrelation of the 671 

image, i.e., the relationship of pixel values between neighboring pixels. Larger 672 

Moran’s I index indicates higher spatial autocorrelation. Table 5 shows that the spatial 673 

autocorrelation of NDVI represented by Moran’s I index is greater than both the Red 674 

and NIR bands, because NDVI, as a feature-enhancing index, can enlarge the data 675 

variance compared with the Red and NIR bands (Fig.11a-b). As well known, greater 676 

spatial autocorrelation can yield more accurate result in spatial interpolation. 677 

Accordingly, the spatial-dependent increment estimated by the TPS interpolation for 678 

NDVI should be more accurate than that of Red and NIR bands. Therefore, 679 

spatial-dependent increment is more important for fusing NDVI than the raw bands, 680 
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which greatly benefits the NDVI fusion in IFSDAF. This study implies that without 681 

combined with temporal increment, spatial-dependent increment itself may obtain 682 

acceptable fusion results. This solution can greatly simplify the fusion process and 683 

reduce the computing cost. The simplified fusion model is more effective for the 684 

applications in larger areas and when the scale difference between coarse and fine 685 

images are not too large, which ensures adequate number of sample points (the center 686 

of coarse pixel) to obtain accurate prediction of the fine image by TPS interpolation.  687 

Table. 5. Moran’s I of band Red, band NIR, and NDVI on the base date t0 and 688 

prediction date tp in both the Coleambally irrigation area and Gwydir area at the 689 

coarse resolution.  690 

Band 

Base date t0  Prediction date tp 

Red NIR NDVI Red NIR NDVI 

Coleambally irrigation area 0.5048 0.5225 0.6439  0.5677 0.4764 0.6840 

Gwydir area 0.5867 0.7069 0.7881  0.6401 0.7568 0.8584 

 691 

Second, IFSDAF uses a better way to combine two increments while FSDAF 692 

uses only one increment. As we know, the collinearity effect impacts the accuracy of 693 

unmixing for temporal increment estimation. Moreover, errors in the classification 694 

map and change of land cover also cause uncertainties of temporal increment. In order 695 

to correct the potential errors in the temporal increment, FSDAF introduces a 696 

homogeneity index HI(xj, yj) (over the range of 0-1, derived from the classification 697 
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map at t0) to help allocate residuals R(x, y) within the coarse pixel. However, when 698 

there are land cover changes and misclassification, HI(xj, yj) calculated from the 699 

classification map at t0 will not be suitable for allocating residuals on date tp. Under 700 

this circumstance, the effectiveness of residuals distribution in FSDAF is restricted. 701 

Unlike FSDAF, the IFSDAF employs CLS method in moving windows and avoids 702 

the use of the homogeneity index; moreover, it allows the final increment estimation 703 

with local and adaptive capacity to better combine temporal and spatial-dependent 704 

increment.  705 

The third improvement of IFSDAF is that it can employ fine NDVI images 706 

partially contaminated by clouds, in which clear pixels also provide valuable 707 

information. In IFSDAF, the clear pixels in those fine images are also used as base 708 

date to estimate the fine NDVI values at the prediction date respectively, and all 709 

predictions on date tp are finally integrated by weights based on the temporal change 710 

magnitude in NDVI between base and prediction dates. This weighted prediction can 711 

reduce the critical dependency to the clear fine NDVI image and alleviate prediction 712 

uncertainties if date of the clear fine NDVI image is far from the prediction date. Of 713 

course, the better use of partially contaminated images needs accurate cloud labeling 714 

method (e.g., Fmask method). If there are mistakes in cloud labels, estimation results 715 

of IFSDAF will be impacted. For instance, land surface with high reflectance (e.g., 716 

sand or snow) is possibly misidentified as clouds (Chen et al., 2016). Moreover, 717 

Fmask sometimes omits thin clouds, resulting in cloudy pixels being used in the 718 
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process of data fusion. Fortunately, effect of the errors in cloud mask can be 719 

minimized in IFSDAF because of the weighted combination of predictions from 720 

multiple dates. Moreover, with the advance of cloud screening methods (Zhu and 721 

Helmer, 2018), the issue can be greatly alleviated. Besides, like other existing 722 

spatiotemporal fusion methods, a pure clear image guarantees all pixels to be 723 

predicted by IFSDAF. However, in some areas such as tropical areas (e.g., Amazonia), 724 

it is difficult to obtain such clear fine image during a long period. Under this condition, 725 

using all partially contaminated fine images instead of a purely clear image is a 726 

practical choice in IFSDAF although it may leave some pixels not predicted in the 727 

fused images if these pixels do not have any one cloud-free observation in the time 728 

series.  729 

5.5 Applications to other remote sensing products 730 

Although IFSDAF is designed for the spatiotemporal fusion of NDVI time series, 731 

it can also be applied to fuse other vegetation indices like Enhanced Vegetation Index 732 

(EVI) and other products such as surface reflectance. To test the applicability of 733 

IFSDAF to other products, we assess the performance of IFSDAF in fusion of EVI, 734 

Red and NIR bands in Coleambally Irrigation area where have great heterogeneity. 735 

RMSEs of the fused images on Jan. 12th, 2002 (Table. 6) suggest that IFSDAF 736 

produces higher accuracy that FSDAF when fusing EVI, while when predicting 737 

surface reflectance (Red and NIR bands) the accuracy of IFSDAF and FSDAF does 738 

not differ too much. These results confirm that IFSDAF is more suitable than the 739 
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original FSDAF model for fusing remote sensing products with high spatial 740 

autocorrelation.  741 

Table. 6. RMSE (rRMSE) of predictions by IFSDAF and FSDAF on EVI, Red and 742 

NIR bands.  743 

index/surface reflectance EVI Red NIR 

FSDAF 0.0755 (29.11%) 0.0271 (19.03%) 0.0341 (11.02%) 

IFSDAF 0.0650 (25.09%) 0.0245 (17.21%) 0.0337 (10.91%) 

6. Conclusions 744 

In this study, we proposed an improved FSDAF method specifically for 745 

producing NDVI time series with a high spatiotemporal resolution. Coarse NDVI 746 

(MODIS) and fine NDVI images (Landsat and Sentinel) were used to test the 747 

performance of the new method for different sensors. Experiments show that the 748 

fused NDVI images by IFSDAF is more accurate than FSDAF as well as other two 749 

existing methods (NDVI-LMGM and STARFM) in areas with a great degree of 750 

spatial heterogeneity and with significant land cover changes. The better performance 751 

of IFSDAF can be attributed to producing spatial-dependent increment by the TPS 752 

interpolation, employing CLS method in moving windows to adaptively combine the 753 

temporal increment and the spatial-dependent increment, as well as the better use of 754 

partially contaminated fine images. Such significant improvements are made in 755 

accordance with the characteristics of NDVI with larger data variance and spatial 756 

autocorrelation compared with raw reflectance bands. Considering the significant 757 
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contribution of spatial-dependent increment by the TPS interpolation, when the scale 758 

difference between coarse and fine images is not very large, the proposed IFSDAF 759 

method can be further simplified by only using spatial-dependent increment to 760 

improve the efficiency. This result of the study also supports the IFSDAF to be a 761 

feasible method for applications in a large area and different sensors. Moreover, it is 762 

also applicable to other vegetation index data. We call for more testing of the new 763 

method by using other satellite data (e.g. Sentinel and VIIRS data) and in other areas.  764 
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Appendix 886 

Useful notations.  887 

t0 Base date fl(x, y) Fraction of class l within coarse 

pixel (x, y) 

tp Prediction date ΔFc Fine spatial resolution increment of 

class c within the moving window 

(x, y) Location of coarse spatial resolution 

pixel (x, y) 

TPS

0F  Result of TPS interpolation based 

on coarse NDVI on t0 

(xj, yj) Location of jth fine spatial resolution 

pixel within coarse pixel (x, y) 

TPS

pF  Result of TPS interpolation based 

on coarse NDVI on tp 

F0 Fine spatial resolution NDVI on t0 ws Weight of spatial-dependent 

increment 

Fp Fine spatial resolution NDVI on tp wT Weight of temporal increment 

C0 Coarse spatial resolution NDVI on t0 ˆ
pF  Fine spatial resolution prediction on 

date tp 

Cp Coarse spatial resolution NDVI on tp 0,
ˆ

pF  Fine spatial resolution prediction on 

date tp based on fine NDVI on date 

t0  

ΔF Fine spatial resolution NDVI 

increment 

1,
ˆ

p pF +
 Fine spatial resolution prediction on 

date tp based on fine NDVI on date 

p+1 
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ΔC Coarse spatial resolution NDVI 

increment 

ΔFCom Combined fine spatial resolution 

increment based on ΔT and ΔS 

ΔT Fine spatial resolution temporal 

increment 

R(x, y) Residual within the coarse pixel (x, 

y) 

ΔS Fine spatial resolution 

spatial-dependent increment 

( , )i

qC x y  ith coarse pixel in the moving 

window centered by coarse pixel (x, 

y) on date q 

ΔCT Upscaled fine spatial resolution 

temporal increment 

( , )i

pC x y  ith coarse pixel in the moving 

window centered by coarse pixel (x, 

y) on date tp 

ΔCS Upscaled fine spatial resolution 

spatial-dependent increment 

wq,p(x, y) Contribution coefficient of fine 

spatial resolution pixels on date q to 

the final prediction on tp within 

coarse pixel (x, y) 
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