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Abstract

The present research reports on the use of data mining techniques for differentiating

between translated and non-translated original Chinese based on monolingual comparable

corpora. We operationalized seven entropy-based metrics including character, wordform

unigram, wordform bigram and wordform trigram, POS (Part-of-speech) unigram, POS

bigram and POS trigram entropy from two balanced Chinese comparable corpora (trans-

lated vs non-translated) for data mining and analysis. We then applied four data mining tech-

niques including Support Vector Machines (SVMs), Linear discriminant analysis (LDA),

Random Forest (RF) and Multilayer Perceptron (MLP) to distinguish translated Chinese

from original Chinese based on these seven features. Our results show that SVMs is the

most robust and effective classifier, yielding an AUC of 90.5% and an accuracy rate of

84.3%. Our results have affirmed the hypothesis that translational language is categorically

different from original language. Our research demonstrates that combining information-the-

oretic indicator of Shannon’s entropy together with machine learning techniques can provide

a novel approach for studying translation as a unique communicative activity. This study has

yielded new insights for corpus-based studies on the translationese phenomenon in the field

of translation studies.

Introduction

Translation plays an important role in this age of globalization and increased cross-cultural

communication and has therefore received increasing attention from researchers working in

various fields [1, 2]. As a by-product of cultural fusion and communication, translation is

under the influence of both source and target languages. It has often been assumed that trans-

lation is a unique language which is heterogeneous to both the source and target language.

Translation is in nature a type of mediated language which “has distinctive features that make

it perceptibly different from comparable target language” [3]. Such an assumption has led

translation to be seen as “derivative and of secondary quality and importance” [4] and “rarely

considered a form of literary scholarship” [5]. Viewed as a substandard language variety,
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translation has also been labelled as the “third code” [6] situated between source and target lan-

guages and “translationese” [7].

In the field of translation studies, scholars have been intrigued in identifying the uniqueness

of translational language that separates it from native writing. This line of research has largely

been conducted using corpus-based approaches spearheaded by Baker [8, 9]. As a pioneering

researcher, Baker [8] specifically pointed out that translated texts need not be compared vis-à-

vis their source texts. Instead, scholars can examine the peculiarities of translational language

using a comparable corpus approach, i.e., comparing a corpus of translated texts with one of

native writing of the same language which is comparable in genre and style. Instead of compar-

ing source text with translation, Baker contended [9] that scholars need to effect a shift in the

focus of theoretical research in the field of translation studies by “exploring how text produced

in relative freedom from an individual script in another language differs from text produced

under the normal conditions which pertain in translation, where a fully developed and coher-

ent text exists in language A and requires recoding in language B”. The use of comparable cor-

pora can fulfil such a purpose. Since Baker’s proposal, this field of research has quickly gained

momentum and is widely referred to as Corpus-Based Translation Studies (CBTS). Specifi-

cally, Baker [8] proposed the concept of translation universals claiming that translational lan-

guage is ontologically different from non-translational target language due to the translation

process irrespective of the influence from either language systems. The research agenda pro-

posed by Baker has continued to captivate the interest of CBTS researchers. A vast number of

studies have been devoted to the investigation of the unique features of translational language

including “simplification (translation tends to simplify language use compared to native writ-

ing)” [10], “explicitation (translation tends to spell out the information in a more explicit form

than the native writing” [11, 12], “normalization or conservatism (translation tends to con-

form to linguistic characteristics typical of the target language” [13], and “levelling out (transla-

tion tends to be more homogeneous than native texts)” [14]. Although these efforts have

yielded some new insights as to the nature of translational language, most of these studies have

confined their research to the study of manually-selected language features. On the other

hand, in the neighbouring field of computational linguistics, researchers have successfully

used machine learning techniques to conduct text classification tasks. Clearly, as an interdisci-

plinary field of study, translation studies needs to look across the disciplinary fence towards

computational linguistics for rejuvenating corpus-based investigations of translational

language.

Based on two balanced comparable corpora, the current study makes use of text classifica-

tion techniques to distinguish translated texts from non-translated original writings of the

same language (i.e., Chinese in this case). We first calculated Shannon’s entropy of seven lan-

guage features including character, wordform unigram, wordform bigram, wordform trigram,

POS unigram, POS bigram and POS trigram from two balanced comparable corpora (trans-

lated vs non-translated), and applied four data mining techniques including Support Vector

Machines (SVMs), Linear discriminant analysis (LDA), Random Forest (RF) and Multilayer

Perceptron (MLP) to distinguish translated Chinese from non-translated Chinese based on

these seven features.

Instead of focusing on isolated language features to identify the uniqueness of translational

language, our study has integrated Shannon’s information theory and data mining techniques

to study translational language. It is demonstrated that the use of informational-theoretic indi-

cator of entropy together with automated machine learning can be an innovative approach for

the classification task. We believe that the research can be of interest to CBTS researchers from

a methodological point of view. In our study, we have also shown that the machine learning

methods have been more robust than statistical significance analysis methods. The following
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part of the article is structured as follows: Section 2 provides a brief review of related work on

the study of translationese and text classification. Section 3 introduces the two corpora, based

on which we calculated seven entropy-based features. Section 4 presents the different machine

learning techniques that we used in this study, and the results are reported in Section 5. The

discussion of results and conclusion are given in Section 6 and 7 respectively.

Related work

Previous studies on translation features

Scholars have long noticed that translation carries language features that are different from the

original writing of the target language [7]. Translation is thus conceived as an unrepresentative

variant of the target language system [15]. Newmark [16] believed that translationese is a result

from the translators’ inexperience and unawareness of the interference from the source lan-

guage. However, not many scholars hold a derogatory view towards translationese. For exam-

ple, Baker [8] pointed out that any translation output is inevitably characterized with unique

language features that are different from both the source and target languages. In fact, the

quest into translation universals (TU) proposed by Baker [8, 9] has sparked a new wave of cor-

pus-based research into the unique features of translational language and greatly enhanced the

status of translation studies as an independent field of research. With its capacity of handling

large amount of data, corpus has been used to explore various translation topics and increas-

ingly accepted by translation researchers. CBTS research has helped foster a transition from an

overreliance on source texts to a systematic investigation of how translation plays out in the

target language system [17].

Following Baker’s proposal, a plethora of studies investigating translationese specifically

adopted a monolingual comparable corpus consisting of translated texts and non-translated

original texts of the same language. Such studies are often exploratory in that the frequencies

of manually selected features in both translated and non-translated corpora are calculated to

show if significant differences exist between the two types of texts. Over the years, researchers

have found that translated texts tend to demonstrate a lexically and syntactically simpler [17,

18], more explicit [12, 19] and more conservative [20] trend than comparable non-translated

texts of the same language. In addition to these features, translated texts have been found to

underrepresent target language specific elements which do not have equivalents in the source

language [21, 22] and carry source text language features due to the source language shinning-

through influence [23].

In the past two decades, TU research has greatly advanced the development of translation

studies despite various controversies. Overall, research on TU has to a large extent been con-

fined to Indo-European target languages such as English [13, 18], Finnish [24], Italian [20],

Spanish [25], German [26] and French [11]. As has been argued by Xiao and Dai [3], it is

important to look into typologically distant languages such as English and Chinese to investi-

gate the translationese phenomenon as features derived from such a language pair might be

distinctively different from closely-related languages. Nevertheless, these TU studies in the

past two decades have been fruitful in identifying some disproportional representation of lexi-

cal, syntactic and stylistic features in translated and non-translated texts. The results have sup-

ported the claim that translation is distinct from non-translation in a number of linguistic

features. As research advances, notably with the maturity of corpus tools and technology,

researchers have begun to examine translational features in other languages than English. In

the Chinese context, Chen [27] found that translated Chinese overused connectives than non-

translated Chinese based on a parallel corpus of English-Chinese translation in the genre of

popular science writing. Xiao and Yue’s study [28] found that translated Chinese fiction
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contains a significantly greater mean sentence length than native Chinese fiction, which con-

tradicts the previous assumption [29] that the general tendency in translation is to adjust the

source text punctuations in order to conform to the target language norms, thus resulting in

similar sentence lengths between the source texts and comparable target texts. In a more

sophisticated study based on a corpus of translated Chinese and a comparable corpus of native

Chinese, Xiao [30] found that translated Chinese has a significantly lower lexical density and

uses conjunctions and passives more frequently than native Chinese, which corroborates the

simplification, explicitation and source language shinning-through hypotheses respectively. It

should be noted that the researcher has warned that some language features might be genre-

sensitive instead of translation-inherent (e.g., sentence length). It is worth noting that machine

learning algorithms have successfully been applied to the discrimination of different genres

[31, 32], indicating that genre can be an important variable in this regard. Research on transla-

tionese should also consider genre variation by carefully selecting the right text types [30]. In a

follow-up study, Xiao [12] also found that translated Chinese tends to use fixed and semi-fixed

recurring patterns than non-translated Chinese, presumably for the sake of improving fluency.

The researcher suspected that the higher frequency of word clusters in translated Chinese is a

result of interference from the English source language which is believed to contain more

word clusters than the native Chinese language. Again, this can be attributed to the source lan-

guage shining through influence. Building on Xiao’s investigations of translated Chinese fea-

tures [12, 30], Xiao and Dai [3] further found that translated Chinese differs from native

Chinese in various lexical and grammatical properties including the high-frequency words

and low-frequency words, mean word length, keywords, distribution of word classes, as well as

mean sentence segment length and several types of constructions. Their research further cor-

roborates that translated Chinese has possessed some uniqueness as “a mediated communica-

tive event” [8]. Using collocability and delexicalization as operators, Feng, Crezee and Grant

[33] verified and confirmed the simplification and explicitation hypotheses in a comparable

Chinese-to-English corpus of business texts. They found that translated texts are characterized

with more free language combinations and less bound collocations and idioms.

Based on the forgoing review on translated Chinese, we can see that researchers tend to

adopt a bottom-up exploratory approach by comparing translated texts against non-translated

texts using isolated features. Such a research design has some inherent limitations. For exam-

ple, the examination of translationese or translation universals is often confined to manually-

selected linguistic indicators. The use of such indicators runs the risks of “cherry picking” by

deliberately selecting those indicators to confirm the researcher’s perceptions or hypothesis

[17]. There is clearly a lack of global and holistic features in this line of research. Apart from

the selection of holistic language features, it should be seen that resorting only to descriptive

statistics to compare two sets of corpora is limited as the differences observed might not be sta-

tistically significant. We contend that information-theoretic indicators can be operationalized

to probe into the categorical differences between translated and non-translated original texts.

To address such an issue, more researchers have begun to turn to the neighbouring field of

computational linguistics to study translationese. For example, Fan and Jiang [34] used mean

dependency distances (MDD) and dependency direction as indicators to examine the differ-

ences between translated and non-translated English. Their results showed that translated

English uses longer MDD and more head-initial structures than non-translated English.

Besides, starting from Baroni and Bernardini [35], more researchers have turned to the use of

machine learning techniques to classify translation from original writing. Such an approach

has greatly overcome the subjectivity resulted from cherry-picked features. Their work, though

preliminary in terms of the use of isolated language features and specific text types (i.e., collec-

tion of articles from one single Italian geopolitics journal) and single machine learning model
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(i.e., use of Support Vector Machines or SVMs), represents one of the pioneering studies to

utilize machine learning to the investigation of translational language. In the next section, we

will review some relevant studies using machine learning.

Machine learning and classification of translational language

Based on a monolingual Italian corpus consisting of original and comparable translated arti-

cles of a geopolitics journal, Baroni and Bernardini [35] made use of machine learning to clas-

sify translated texts from non-translated ones using n-grams of different unit types (i.e.,

wordform, lemma, POS tags). They found that an ensemble of SVMs (Support Vector

Machines) reaches 86.7% accuracy with 89.3% precision and 83.3% recall on the classification

task, demonstrating that the translationese hypothesis can be verified through machine learn-

ing techniques. Their study further showed that SVMs-based algorithms performed much bet-

ter than experienced translation practitioners on the classification task. Following the

inspiring work of Baroni and Bernardini [35], Kurokawa et al. [36] used a mixed text feature

by replacing content words with their corresponding POS tags while retaining the function

words on a corpus of Canadian Hansard. By performing classification at both the document

and the sentence level, they found that translation models trained on English-translated-to-

French parallel texts performed much better than the ones trained on French-translated-to-

English, when the statistical machine translation (SMT) task was based on English-French

translation. Their research findings were further corroborated by latter studies [37, 38] that

found translation direction serves as an important variable for SMT and proposed to adapt

translation models in the investigation of the features of translational language.

All the studies mentioned above have shown that it is possible to characterize translational

language using machine learning techniques. Though all these studies were not aimed at con-

firming the existence of certain TU candidates, almost all these studies using machine learning

algorithms have made use of the language features previously identified by translation scholars

[10, 18, 39] in performing the classification. In this line of research, the study of Ilisei et al. [40]

represents one of the innovative studies utilizing machine learning methods to test and prove

the simplification hypothesis. They trained the classifier on POS unigrams together with the

preselected “simplification features” and then evaluated the success rate with different combi-

nations of features. Their study has found that lexical richness, together with sentence length

and the proportion of function words to content words, are the top three effective features for

characterizing translated Spanish from non-translated Spanish. The accuracy rate of 97.62%

shows that the simplification hypothesis is corroborated in translated Spanish (note that all

these three features are considered representative of the simplification hypothesis). Such a

methodology was further replicated in translated Romanian to confirm the simplification

hypothesis [41] and translated Spanish and translated Romanian to confirm the explicitation

hypothesis [42]. In the same vein, Volansky et al. [43] also investigated the features of transla-

tionese using supervised machine learning (i.e., SVMs classifiers) with ten-fold cross-valida-

tion evaluation and found that some language features serve as robust indicators to confirm

the translation universals hypotheses while some language features perform less than satisfac-

torily. The use of machine learning techniques to attest the translation universals have yielded

some new insights into the translationese phenomenon both methodologically and

empirically.

However, it should be noted that most of these studies are confined to texts from a homoge-

nous corpus or closely-related language pairs. The accuracy rate decreases considerably when

the classifiers are applied to texts of different genres or translations with a different source lan-

guage. Such issues were addressed in Koppel and Ordan’s study [44] that applied machine
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learning techniques on the Europarl Corpus which contains translated English from five

source languages. The accuracy rate of the classifiers was close to 100% when evaluated on the

language pair that the classifiers were trained on. However, the accuracy rate declined substan-

tially when evaluated on translated English with a different source language. The same situa-

tion occurred when the classifier was tested on a different genre other than the original

training corpus. The expanded version of Europarl Corpus was further used by Volansky et al.

[43] to study simplification, explicitation, normalization, and interference, which are the four

main translation universals frequently investigated by translation scholars. By operationalizing

different features of simplification, they found that TTR achieved slightly higher than 70%

accuracy, lexical density about 53% and sentence length only 65%. Based on the classification

results, the researchers concluded that the simplification hypothesis was rejected since transla-

tions from seven source languages including Italian, Portuguese and Spanish have longer sen-

tences than the non-translated English. The research further found that translations tend to

carry the affix features from the source languages, which corroborates the interference

hypothesis.

Overall, it can be seen from the foregoing review that translated texts are categorically dif-

ferent from original ones and machine learning classification algorithms are effective in differ-

entiating them with a rather high accuracy. Earlier works by CBTS scholars in the quest of

translationese features have laid out the groundwork for machine learning-based classification

research of translationese which has gradually developed into a prolific field of inquiry. As

research advances, we have also seen more studies using data mining techniques [45, 46]

which have advanced our understanding of the translationese phenomenon and translation as

a unique variant of language communication. However, it should be noted that like CBTS

studies on translationese features, the machine learning-based studies in this line of enquiry

are also predominantly based on European languages. There is clearly a lack of research on

Chinese or Asian languages in general. Of the few studies, Hu et al. [47] is one of the pioneer-

ing studies to characterize translated Chinese using machine learning methods. Based on a

comparable corpus of translated and original Chinese, they showed that using constituent

parse trees and dependency triples as features can attain a high accuracy rate in classifying

translated Chinese from original Chinese. In a follow-up study on translated Chinese, Hu and

Kübler [48] operationalized a number of language-related metrics related to different TU can-

didates including simplification, explicitation, normalization and interference and tested them

with machine learning algorithms. Their research shows that translations differ from non-

translations in various features, confirming the existence of some translation universals. Spe-

cifically, the interference-related features achieved a very high accuracy, indicating that trans-

lations are under the influence of the originals. This point can be attested by their research

findings that translations from Indo-European languages share more similarities while those

translated from Asian languages of Korean and Japanese are more similar to each other. In the

next, we will address the limitations of this research area and present a novel method integrat-

ing data mining techniques with entropy-based measures to differentiate translationese from

original writing.

Methodology

Research questions

As has been seen in the foregoing review of existing literature, the research using machine

learning algorithms to study translationese has attracted the attention from various fields of

researchers. However, this line of research has some methodological limitations. First, the use

of machine learning algorithms is not well justified in most studies and is often confined to the
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use of SVMs classifier [47, 48]. From a machine learning perspective, it is important to also try

other classifiers to assess the classification performance. Second, research in this area predomi-

nantly focuses on confirming the existence of translationese with the use of limited language

properties cherry-picked by the researchers. Almost all the studies based their investigations

on the features identified by CBTS researchers, for instance, simplification features such as

type token ratio, mean sentence length from Laviosa [18], explicitation features such as the use

of cohesive markers from Chen [27]. Notwithstanding its convenience in supplying research-

ers with an ensemble of language features or metrics, the use of cherry-picked features to con-

firm the existence of TU can be methodologically flawed, which has long been under criticism

by mainstream translation theorists [26]. Thirdly, a large number of studies are limited to the

use of single-genre corpus, e.g., the news genre from one single source [48]. In the field of

translation studies, researchers have warned that one major weakness of TU research is that

the assumed translationese features are considered to be independent of genre or language

pair which can actually make a big impact on the profiling of translational language [19, 30].

In view of these limitations, we believe there is clearly a need for adopting holistic informa-

tion-theoretic features to study translations based on a multi-genre corpus. The current study

uses entropy to examine if translation differs from non-translation from an information-theo-

retic perspective. It is believed that entropy, which has proved fruitful in numerous research

areas including informational technology, computational linguistics and biochemistry, can

overcome the limitations of cherry-picked features and shed light on translationese research.

The purpose of the study is to explore whether translated Chinese is categorically different

from non-translated original Chinese based on a multi-genre corpus using entropy-based indi-

cators. To achieve such a purpose, we will test a number of machine learning algorithms. The

following two research questions will be addressed:

1. Can machine learning techniques distinguish translated Chinese from non-translated Chi-

nese using entropy-based features?

2. If the answer to the first question is yes, then what are the top-performing entropy-based

features for the classification?

As an information-theoretic indicator, entropy has been successfully used to measure infor-

mation richness and text complexity [49, 50]. For this reason, entropy is directly relevant to a

number of translation universals including simplification and explicitation mentioned earlier.

In this study, we operationalized seven entropy-based indicators, including (1) character

entropy, (2) wordform unigram, (3) wordform bigram, (4) wordform trigram, (5) POS (Part

of Speech) unigram, (6) POS bigram, and (7) POS trigram. Wordforms are the morphological

realizations of grammar and the entropy of wordforms can help predict the average vocabulary

richness of a text. However, the wordform entropy cannot measure the syntactic complexity of

a text. For such a reason, researchers have instead turned to the use of POS forms as an indica-

tor of syntactic complexity as POS has “attained a certain degree of abstraction for words” [17,

27]. Note that this can be linked to the simplification universal that translated texts tend to be

simpler than non-translated texts [51, 52]. For this reason, it is deemed viable to use entropy-

based indicators to distinguish translated texts from non-translated ones. The study is based

on two comparable corpora, i.e., translated Chinese and non-translated Chinese. Details of the

two corpora are provided in the subsection below.

Corpora and data processing

We used two comparable corpora in this study, i.e., The ZJU Corpus of Translational Chinese

(ZCTC) which consists of Chinese texts translated from English and The Lancaster Corpus of
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Mandarin Chinese or LCMC consisting of original Chinese. The compilers deliberately

designed the corpora based on the structure of The Freiburg-LOB (FLOB) Corpus. Each cor-

pus has one million words sampled from four major genres in order to objectively reflect natu-

ral language use. The two corpora can be considered as the translated and original Chinese

counterparts of FLOB as they are comparable in sampling methods and period [53]. The four

macro genres of LCMC and ZCTC are news, general prose, academic prose, and fiction (see

Table 1). It is believed that the use of multi-genre balanced corpora can better represent trans-

lation and non-translation in the Chinese language in this study. The two corpora LCMC and

ZCTC have been fruitfully studied to generate some new insights regarding the translationese

phenomenon in Chinese [54].

Segmentation and data processing

Text segmentation and annotation is a necessary step in corpus linguistics and corpus-based

translation research, notably in the Chinese language. As a highly contextual language which

has no clear delimitation between words [55], Chinese has reported a lower accuracy rate in

segmentation and annotation compared to other languages. In this study, we used The Stan-

ford CoreNLP, which comprises The Stanford Parser [56] and the Stanford Chinese POS Tag-

ger [57], to conduct the segmentation and annotation. The software reports an overall

accuracy of 93.65% and has been applied to a number of corpus-based studies in Chinese. Pre-

vious research has identified that entropy value is subject to text length [58]. In order to ensure

that the text length is consistent across both corpora, we trimmed each corpus to 1500 Chinese

words per text to ensure consistency upon noticing that the original texts in the two corpora

are not comparable in length. After the processing, we were able to retain the same number of

files as per the original corpus design. In this study, all the punctuations were redacted to

ensure that the punctuation use does not affect the entropy values calculated on each text. We

then calculated seven entropy-based measures based on Formula (1).

SðpÞ ¼ �
X

x2X

pðxÞlog
2
pðxÞ ð1Þ

Table 1. Genres and Text types in LCMC and ZCTC.

Genres Text type Samples Proportion

Press Press reportage 44 8.8%

Press editorial 27 5.4%

Press reviews 17 3.4%

General Prose Religious writing 17 3.4%

Instructional Writing 38 7.6%

Popular lore 44 8.8%

Biographies and essays 77 15.4%

Reports and official documents 30 6%

Academic Academic prose 80 16%

Fiction General fiction 29 5.8%

Mystery and detective fiction 24 4.8%

Science fiction 6 1.2%

Adventure fiction 29 5.8%

Romantic fiction 29 5.8%

Humor 9 1.8%

Total 500 100%

https://doi.org/10.1371/journal.pone.0265633.t001

PLOS ONE Entropy-based discrimination between translated Chinese and original Chinese

PLOS ONE | https://doi.org/10.1371/journal.pone.0265633 March 24, 2022 8 / 18

https://doi.org/10.1371/journal.pone.0265633.t001
https://doi.org/10.1371/journal.pone.0265633


The entropy-based calculation has proved more advantageous than the traditional methods

such as type-token ratio (TTR) because it takes both frequencies and distribution of tokens

into consideration. Generally speaking, a larger entropy value can help predict that the text

contains more unique wordforms (or POS forms), and these words (or POS forms) are more

evenly distributed in the text.

Machine learning models

In this study, we used four machine learning classifiers, i.e., SVMs, LDA, RF, and MLP, to

build the classification models, and then we compared the AUC value and accuracy rate of the

four classifiers to identify the optimal one. We selected the two top-performed classifiers and

ranked the feature importance based on AUC values. Through comparing the output feature

importance of the two top-performed classifiers, we were able to identify the features that have

excellent predictability in differentiating translation from non-translation. The feature data

were then visualized in density scatter plots based on SHAP values to show their predictive

ability and contribution in the differentiation task. Note that SHAP (SHapley Additive exPla-

nations) is a game theoretic framework to assess the output of machine learning models [59].

Similar to Shapley values in game theory which compute the contribution that each player

brings to the game, SHAP values compute the contribution that each feature brings to the pre-

diction made by the model. Because SHAP values are in nature additive, individual (local)

SHAP values can be aggregated for global explanations. SHAP can be used as a foundation

for machine learning analysis such as model monitoring, fairness and cohort analysis in addi-

tion to accuracy rate. In the next, we briefly introduce the four classifiers used in the current

study.

Support vector machines (SVMs)

SVMs work by maximizing the distance between borderline cases and a decision boundary.

Like logistic regression, SVMs have also been used in a wide range of scientific fields. SVMs

were originally developed in the 1990s and have since been used in supervised learning in

various areas as diverse as detecting malware and spam [60], financial fraud [61], and classify-

ing neurological scans [62]. Prior to the new deep learning era (2012), SVMs were a mainstay

for computer vision tasks such as facial recognition [63] and image classification [64]. SVMs

have also been used in NLP tasks, such as document classification, named entity recognition,

sentiment analysis, and argument mining. A few attempts have even been made to use SVMs

to distinguish between translated and native-language texts [35, 45, 48]. Therefore, SVMs is

also adopted in this study on merit of its successful performance in various classification

studies.

Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) seeks an optimal linear transformation by which the origi-

nal data is transformed to a much lower dimensional space, with the goal of finding a linear

transformation that maximizes class separability in the reduced dimensional space [65]. As

one of the most important supervised linear dimensional reduction techniques, LDA seeks to

use low-dimensional representation from the original high-dimensional data through a trans-

formation formula by maximizing the between-class scatter and minimizing the within-class

scatter. LDA has been successfully used in various applications including face recognition [66],

speech recognition [67] and text classification [65, 68].
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Random forests (RF)

Decision trees are a supervised classification technique that chooses features on which to clas-

sify data, with the goal of finding the features that best predict outcomes. Random forests work

by generating many decision trees from random samples of the data and selecting the features

which reliably best predict the outcomes. Random forests have, like the other classification

algorithms, been used across a wide range of fields and for many very distinct tasks, from pre-

dicting how sensitive tumors are to drugs [69], to predicting the onset of civil wars [70], to pre-

dicting the role of nuclear proliferation on interstate conflict [71].

Again, as with the other classifiers, random forests have been applied to prediction and clas-

sification problems in natural language. A few of the more novel applications are sarcasm

detection [72], predicting the severity of mental symptoms [73], and argument mining on

Twitter [74].

Multilayer perceptron (MLP)

MLP is a neural network model inspired by the biological nervous system that works as global

approximators to implement any given nonlinear input-output mapping. MLP makes use of a

supervised learning technique (i.e. backpropagation) for machine learning. MLPs performs

computational tasks by processing neurons called perceptions. The neurons are grouped in

multiple layers that are connected through weights [75]. In the field of machine learning, clas-

sifiers based on artificial neural network have proved to be effective tools in classification

tasks. As one of the artificial neural network classifiers, Multilayer perceptron (MLP) has suc-

cessfully been applied in many applications including pattern recognition [76], signal process-

ing [77] and text classification [78] on merit of its fast convergence and easy implementation.

This study uses the sigmoid functions as the activation functions of the MLP model.

While these classifiers have been applied to NLP (Natural Language Processing) tasks, they

have not been widely applied to the task of distinguishing translational from native language.

Only a few papers have used SVMs (see Section 3 for a detailed review) to distinguish between

translations and native language texts, and the algorithms which have proved successful in

related classification tasks are yet to be applied in this area. Our application of these machine

learning classifiers, therefore, offers a novel contribution to this line of enquiry.

Results

The dataset includes 500 original texts (i.e., LCMC) and 500 translated texts (i.e., ZCTC) with

a total of 1000 samples. The data were randomly divided into a training set (70% of the data)

and a test set (30% of the data). In order to distinguish between original texts and translated

texts, this study trained four classifiers (i.e., SVMs, LDA, RF, and MLP) in the training set for

classification. The four classifiers were implemented in Python. After training, we evaluated

the performance of these classifiers in the test set with two evaluation indicators (i.e., AUC and

Accuracy). Table 2 shows the results of the four classifiers. We observed that SVMs (linear) has

an AUC of 90.49% and an accuracy rate of 84.33%, which performed better than other

Table 2. Performance evaluation of the four classifiers on the test set.

Classifier AUC (%) Accuracy (%)

SVMs (linear) 90.49 84.33

LDA 90.03 81.33

MLP 89.97 83.33

RF 88.15 82.00

https://doi.org/10.1371/journal.pone.0265633.t002
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classifiers (shown in bold numbers in Table 2). We also observed that LDA ranks second with

an AUC of 90.03%.

In our study, the size of the feature importance coefficient is used as the index to evaluate

the importance of the feature. The feature with a positive feature importance coefficient is

more likely for the classifier to predict as original language (i.e., LCMC), and the feature with a

negative feature importance coefficient is more likely for the classifier to predict as translated

language (i.e., ZCTC). The larger the absolute value of the feature importance coefficient, the

more important the feature is to the classification. In view of the highest AUC value obtained

from SVMs and LDA, we show the feature importance coefficient and ranking of SVMs model

and LDA model in Tables 3 and 4. It can be seen from Table 3 that POS trigram is an impor-

tant feature for the classifiers to predict as original text, and POS bigram is an important fea-

ture for the classifier to predict as translated text. Table 3 shows that POS bigram is the most

important feature with an importance coefficient of -7.962, the second-ranked POS trigram

coefficient is 5.4895, and the third-ranked wordform trigram coefficient is -5.3873. In addition,

it can be seen from Table 4 that POS bigram is the most important feature with a coefficient of

-22.7247, the second-ranked POS trigram coefficient is 16.4629, and the coefficient of the

third-ranked wordform trigram is -12.2450. Clearly, the ranking of the top three features

remain relatively the same across SVMs and LDA classifiers.

SHAP values can be effectively used to explain the decision-making process of various

machine learning models [59]. As mentioned earlier, SHAP has the advantage of reflecting the

positive and negative effects of each sample. Based on the results of the best performing classi-

fier SVMs in this study, we used the SHAP values to illustrate the various features of the SVMs

model. In Fig 1, each row represents a feature, the colours from blue to red represent the

entropy values of the feature, with blue representing the low and red the high values. We can

tell from Fig 1 that smaller SHAP value leads to a higher probability of predicting the text to be

a translated one. We can observe that the higher POS bigram value corresponds to a smaller

SHAP value, indicating that it is more likely for a text with higher POS bigram entropy value

Table 3. Importance coefficient and ranking of features in SVMs model.

Feature Coef Important Rank

POS bigram -7.9062 1

POS trigram 5.4895 2

Wordform trigram -5.3873 3

Wordform unigram 3.5080 4

Wordform bigram 3.0918 5

POS unigram -2.9562 6

Character -2.5134 7

https://doi.org/10.1371/journal.pone.0265633.t003

Table 4. Importance coefficient and ranking of features in LDA model.

Feature Coef Important Rank

POS bigram -22.7247 1

POS trigram 16.4629 2

Wordform trigram -12.2450 3

Wordform bigram 7.5781 4

Wordform unigram 4.3513 5

Character -3.6422 6

POS unigram -0.4390 7

https://doi.org/10.1371/journal.pone.0265633.t004
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to be a translated one. On the other hand, a higher wordform unigram entropy value is corre-

spondent to a higher SHAP value, meaning that the text is more likely to be an original one.

In order to study how the between-feature interaction affects the performance of the classi-

fier, we used a partial dependence plot to explore the interactive effect. Based on the top three

features of SVMs and LDA (POS bigram, POS trigram, Wordform trigram), we created con-

tour plots depicting effects of interaction between every two features in the SVMs model (Fig

2). When the interaction between POS bigram and POS trigram is examined while other fea-

tures remain constant, it can be observed that both have a certain degree of influence on the

final classification result (see Fig 2(A)). When POS bigram is small (e.g., POS bigram< 6.15),

the change of POS trigram value has little effect on the final classification result, and it is more

likely for the classifier to predict the text to be an original one. When POS trigram is small

(e.g., POS trigram< 7.96), POS bigram has little influence on the final classification result, and

it is more likely for the classifier to judge the text to be a translated one. When we examine the

interaction between POS bigram and POS trigram while other features remain constant, it can

be observed that both have a certain degree of influence on the final classification result (see

Fig 2(B)). When POS bigram is small (e.g., POS bigram< 6.15), we can see that the change of

POS trigram has little effect on the final classification result, and it is more likely for the classi-

fier to predict the text to be an original one. When POS trigram is small (e.g., POS trigram<

7.96), we can see that POS bigram has little influence on the final classification result, and it is

more likely for the classifier to judge the text to be a translated one. Finally, in Fig 2(C), when

the POS trigram is about 8.8 and the Wordform trigram is about 10, it is most likely for the

classifier to predict the text to be original.

Discussion

In this paper, we have proposed using machine learning methods to classify translated Chinese

from non-translated Chinese. We have demonstrated that the differences between translation

Fig 1. SHAP value in the SVMs model.

https://doi.org/10.1371/journal.pone.0265633.g001
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and non-translation can be learned by machine learning algorithms irrespective of the genres

using entropy-based features. The seven entropy-based features we extracted include charac-

ter, wordform and POS entropies which were computed from two multi-genre balanced cor-

pora (translated and non-translated). Four machine learning classifiers, i.e., SVMs, LDA, RF

and MLP, were utilized to conduct the classification tasks based on the features. Our research

shows that the translationese phenomenon in Chinese can be approached from an informa-

tion-theoretic perspective using machine learning methods.

Different from previous research which was based on specific language features, our

research has shown that using information-theoretic indicator of entropy can also achieve a

Fig 2. Two-feature Interaction effect in contour plot. (where (a) is the interaction between POS bigram POS trigram, (b) is the interaction between POS

bigram and Wordform trigram, (c) is the interaction between POS trigram and Wordform trigram).

https://doi.org/10.1371/journal.pone.0265633.g002
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very high success rate in classification. Our study of using entropy-based features was mainly

inspired by the assumptions that translation tends to be simpler and more explicit than non-

translation [8, 9]. We believe that the simplification and explicitation assumptions can be

extrapolated from entropy-based measures which calculate information richness. As entropy

is a measure of randomness and chaos [79], the information contained in a text can be mea-

sured for its regularity and certainty. Therefore, we can interpret the information regularity of

a text as basically the negative of its entropy. That is, the more probable the text message, the

less information it carries. Based on our research, we found that translation differs from non-

translation in lexical and syntactic complexity as measured by the wordform and POS entropy.

In sum, it is believed that the use of entropy can be a promising avenue for corpus-based trans-

lationese research and our study has shown that machine learning methods can distinguish the

translated Chinese from original Chinese with a rather high accuracy.

As has been noted in previous machine learning-based research, apart from the influence of

language-pairs, translationese can also be subject to the variables of genres and registers [43].

Although this issue has long been noted by translation researchers [12], they seemed slow in using

balanced corpora to address such an issue. Previous studies in this line of inquiry were often con-

fined to one single genre such as geopolitical texts [35], news and the proceedings of the European

Parliament [43]. Being vigilant of the limitations, Volansky et al. [43] have called for similar

research to be done in a well-balanced comparable corpus based on typologically distant languages.

Our research echoes their call by using two comparable multi-genre balanced corpora to examine

translationese in Chinese. Our research demonstrates that Chinese translations with source texts

from a typologically distant language (i.e., English) also differ to a large extent from non-translated

original Chinese and such differences can be identified by machine learning algorithms.

As to the second research question, we have shown that SVMs is the best-performing classi-

fier in the predicting task, followed by LDA and MLP. RF is the least performing in terms of

accuracy. Our results that SVMs is the best-performing classifier corroborated the findings of

previous studies [35, 48]. A high success rate (AUC: 90.5% and Accuracy: 84.3%) was achieved

with SVMs using entropy-based features. As the two corpora contain four different genres

with a total of 500 files respectively, the high accuracy rate achieved in our machine learning

models shows that translational language is categorically different from original language irre-

spective of genre influences. By comparing the performance of a number of classifiers, we are

also able to show that different classifiers perform unequally in differentiating translation from

non-translation.

Conclusion

This study was aimed at identifying whether translated Chinese can be distinguished from

non-translated original Chinese using entropy measures. By comparing seven types of entropy

values in four major genres between translated and non-translated Chinese texts, our study

has revealed that translation as a mediated language is categorically different from non-transla-

tion in the Chinese language, thus confirming previous hypotheses that translation is unique

in its own way [6, 7]. Our study has provided support to this line of inquiry from a Chinese

perspective, which is a language relatively underexplored in the existing research. Our study

has shown that informational-theoretic indicators such as entropy can be successfully applied

to the classification between translational and non-translational languages. Besides, the use of

advanced methods such as machine learning techniques have also proved their strengths for

the classification tasks than traditional statistical measures.

Although we have added new empirical evidence and understanding to the translationese

issue, the research findings are limited to translated Chinese and the use of particular entropy
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measures. Like similar caveats explicitly stated in previous research [43], the use of comparable

corpora might not be an ideal form for investigating the translationese phenomenon as the

findings can be difficult to relate to the different translation universals. For example, a lower

wordform entropy can either be attributed to a lower lexical richness inherent in the target lan-

guage or to the interference from the source language. For this reason, future research can

explore the use of other corpora of different languages or operationalize other indicators to

enable an in-depth research. Similarly, future research can also be conducted by testing the

performance of other machine learning algorithms.
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