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Abstract 

A phase-field modeling of oxide roughening induced by outward growing oxide is proposed, 

which involves a reaction rate formula derived based on the detailed balance of a chemical 

system. The Allen-Cahn equation, in cooperation with the reaction-diffusion and mechanical 

equilibrium equations, are then established for describing the phase transformation, oxidation 

kinetics, elemental diffusion and mechanical deformation. The numerical simulations reveal 

that the oxide roughness is not only affected by chemical and mechanical properties but also 

the geometric features. By changing the initial surface morphology, the oxide roughness is 

significantly reduced, which would be a very effective and simple method in related 

industrial application. 
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Nomenclature 

c Concentration vector 

d Displacement vector 

ε Total strain 

εg Eigenstrain 

De Elastic stiffness matrix 

σ Stress tensor 

I Second-order identity tensor 

μ Chemical potential 

 Phase index

λ Scale factor of the interfacial energy density 

σ Interfacial energy density 

ζ Interfacial thickness 

γ Strength of interfacial anisotropy 

PBR Pilling-Bedworth ratio 

r Reaction rate 

Λ Dimensionless reaction driving force 

Lσ Coefficient of the contribution of interfacial energy 

Lκ Coefficient of the contribution of reaction kinetics 

D Diffusion coefficient 
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div Divergence operator 

 Gradient operator

∂ Partial differential symbol 

δ Variational symbol 

Introduction 

Evolutions of morphology of surface (or interface) play an important role in materials 

performance due to the significant effects on physical, chemical, and mechanical properties. 

Oxide formation, being one of the typical evolutions of surface morphology, has long been a 

research focus. The oxide scale, formed on the surfaces of alloys, protects the alloy 

components, such as the combustion chambers and the blades of gas turbine and aero-engine, 

from further degradation in the extremely high-temperature and oxidative environment [1]. 

The uncontrolled morphologies of surface (or interface) of oxide scale may also lead to 

irreversible failure. For instance, the non-uniform growth of oxide scale in thermal barrier 

coating (TBC) has been identified to be a detrimental factor to the TBC lifetime [2]. It would 

result in stress accumulation near oxide/substrate interface, which accelerates the damage 

development and leads to the premature spalling failure of TBC. Therefore, understanding 

surface morphology evolution mechanism of oxide scale would help in predicting the failure 

of materials or structures in complex service environment, and improve the material or 

structural design. 

Many theoretical, numerical, and experimental approaches have been implemented to 

study the oxide growth and probe the oxidation mechanism [3-22]. The existing 
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phenomenological model describes a parabolic relation between time and average thickness 

of oxide layer, with the parameters determined through a long-term experiment (usually 

several hundred hours). This kind of phenomenological model, however, cannot capture the 

oxidation mechanism. The numerical model based on the classical Fick’s first law could 

better predict the growth of an oxide. For example, the numerical studies conducted by Busso 

et al. [3] and Zhao et al. [4] demonstrated that the evolution of oxide scale was dependent on 

the concentration of reactants. Taking the consumption of reactants into account, Lin et al. [5, 

6] proposed a diffusion-reaction model, in which the Fick's law was modified by adding an 

oxidation term.  

 The effect of mechanical loading on oxidation has also been experimentally 

demonstrated by Calvarin-Amiri et al. [7]. To study the stress-oxidation interaction, 

Krishnamurthy et al. [8] formulated an one dimensional (1D) model, in which the chemical 

potential was expressed in the form of hydrostatic stress dependent by following Larché and 

Cahn et al. [9] and the effect of stress on diffusion and inward oxide growth rate were 

considered. Following Krishnamurthy et al.’s approach. Zhou et al. [10] and Wang et al. [11] 

developed the more complicated 1D models. In Zhou’s model [10], the chemical potential 

was dependent on both the hydrostatic and deviatoric stresses based on the formulae derived 

by Swaminathan et al. [12]. In Wang’s model [11], the inelastic deformation was considered. 

However, their approaches are difficult to be extended to be beyond the 1D scenario. Based 

on a thermodynamically consistent framework, a 2D chemical-mechanical coupled model 

was proposed by Loeffel and Anand et al. [13, 14], in which the effect of mechanical 
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deformation energy on inward oxidation rate was considered and the influence of stress on 

diffusion was ignored. Anand’s model [13, 14] has been further developed by Lin et al. [15], 

in which the hydrostatic stress dependent chemical potential [9] was employed and the effect 

of stress on diffusion was considered. The formulations of oxidation rate, however, might be 

unreasonable in Anand’s and Lin’s models, which lead to an unrealistic result that the 

oxidation rate is unaffected by mechanical deformation (see Fig. 15(a) in [14] and Fig 11 in 

[15]). 

The growth of an oxide scale is affected not only by diffusion and mechanical 

deformation but also by other factors including oxidation kinetics, surface (or interface) 

energy, phase transformation and the morphology of the oxide scale. These factors are 

generally coupled, bringing about the complexity in a theoretical treatment. The phase-field 

model (PFM), rapidly developed in the last two decades, is an effective method to deal with 

problems with many coupled factors. PFM employs the diffusive interface to deal with 

morphology change without any priori assumptions on the shape of interface or any 

interface-tracking algorithms. By coupling the effects of thermal conduction, elemental 

diffusion, mechanical deformation and electric potential, PFM has been extended and utilized 

across many fields of materials science. A few applications of phase-field approach in the 

oxidation have been proposed. By using the principles of thermodynamics of irreversible 

processes, Ammar et al. [16] proposed a finite-element formulation of PFM to describe 

oxidation, in which the migration of phase interface was completely driven by the elemental 

diffusion. Zaeem et al. [17] presented a PFM to study the oxidation of pure metals, in which 
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the effect of elastic deformation induced by interface mismatch was considered. Fang et al. 

[18] further developed Zaeem’s model to involve plastic deformation and creep. However,

the limitation in these PFMs is that the kinetics of chemical reaction is still not considered. 

Recently, Feng’ group experimentally studied the morphology evolution of oxide surface 

during high temperature oxidation [19-22]. The surface roughening process of an originally 

flat oxide scale has been observed by in situ full-field measurement using the high 

temperature scanning probe microscopy (SPM). They heated an Ni specimen with a 

well-polished surface and obtained the change of surface morphology with time [22]. Their 

main results are recapped in Fig. 1, which shows the increase of roughness with oxidation 

time. It is noted that the growth rate of oxide humps is highly nonuniform and that the 

maximum growth rate about 7.6 nm/min within the initial 10 min oxidation at 700 C  (see 

Fig. 1(b)). These results cannot be explained based on the existing numerical models, which 

poses the need of a more elaborated model of oxidation.  

Fig.1 

In the present paper, we propose a PFM to investigate the evolution of surface 

morphology induced by oxidation. A formulation of oxidation rate, which is expressed in the 

form of chemical potentials of reactants and products and conforms to the detailed balance of 

reaction, is derived. The Gibbs free energy is established, in which contributions of chemical 

potential, mechanical deformation and interface are considered. Thus, the chemical potentials 

of reactants and products, which are the variational derivatives of the total free energy with 

respect to the corresponding concentration, can be derived. Noting that the formation of oxide 
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phase is only owing to the oxidation, the rate of oxidation and the rate of oxide phase 

transformation is equalized. Consequently, the general Allen-Cahn type equation is 

established to govern the evolution of oxide phase, which is convenient to capture the 

oxidation kinetics and the variations of elemental concentration and elastic energy. The model 

also formulates elemental diffusion and consumption as well as mechanical deformation and 

is applied to study formation of oxide on the pure metal Ni. With the model, we demonstrate 

that an originally flat oxide scale becomes increasingly roughened with time, which is in line 

with the experimental results of Li et al. [22] (See Fig. 1). 

Methodology 

 For a numerical treatment of the growth of oxide (MaOb) on the pure metal substrate (M), 

we assume1 that an infinitesimally thin oxide scale (MaOb) with perfect lattice structure has 

been on the metal substrate (M) and focus on the subsequent evolution of morphology of the 

growing oxide layer. 

Fig. 2 

 Figure 2 illustrates schematically the oxidation process, which starts with a surface 

adsorption step. The gaseous oxygen (O2) changes to the atomic oxygen (O) (O2 → 2O), which 

is then adsorbed onto the surface of the oxide scale [23]. If the adsorption is fast, the rate of the 

surface reaction is determined by the rate of the reaction with M in the oxide. The adsorbed 

oxygen atoms are then ionized by capturing the free electrons in the oxide layer, i.e. O + 2e- → 

O2-, meanwhile the easily oxidized free metal (M) atoms in the substrate are converted to ions 

                                                 
1 The onset stage of oxide formation is very complicated and is still lack of mechanism understanding [23, 24]. 
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at the MaOb/M interface, i.e. M → Mn+ + ne- [24]. Consequently, counter diffusion leads to both

the oxygen anion O2- and metal cation Mn+ diffuse into the oxide scale and then the oxidation 

takes place, i.e. aMn++bO2- → MaOb. Since the surface adsorption and ionizations are much

faster than the oxidation, we do not consider the details of the adsorption and sub-reactions O + 

2e- → O2-, M → Mn+ + ne- and aMn++bO2- → MaOb but formulate the schematic equation of

oxidation reaction [8] as: 

M O M Oa ba b  . (1) 

Due to the difference in the diffusion rates of reactants, newly formed oxide might grow on 

the MaOb/M interface, called inward growing oxide, or on the MaOb/O interface, called 

outward growing oxide. In a metal (M)–oxide (MaOb)–gas (O) three phases system, the inward 

and outward growing oxide can be regarded as the metal (M) → oxide (MaOb) and gas (O) → 

oxide (MaOb) phase transformations, respectively. In this paper, we focus on the mechanism of 

surface roughening of NiO as reported by Feng et al. [22]. Many experiments [22, 25-27] have 

demonstrated that the NiO growing is dominated by the outward diffusion of Ni rather than 

the inward diffusion of oxygen. Therefore, the surface roughening of NiO should be attributed 

to the outward growing rather than the inward growing of the oxide scale. And a binary 

phase-field model, describing the gas (O) → oxide (MaOb) phase transformation, can be 

adopted. 

Due to the lattice mismatch between oxide (MaOb) and metal substrate (M), considerable 

eigenstrains are resulted during oxidation. Owing to the constraint of metal substrate (M), these 

eigenstrains give rise to a significant in-plane compressive stress, as indicated in Fig. 2. The 
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contribution of mechanical energy induced by lattice mismatch must be included in the free 

energy of the system, so that the influence of mechanical deformation on the oxidation kinetics 

and phase transformation can be captured in governing equations.  

2.1. Gibbs free energy 

 Considering the set of elemental concentrations, c, participating in the oxidation, and the 

displacement field, d, induced by the mismatch of lattice parameters between the oxide (MaOb) 

and the metal substrate (M), the Gibbs free energy of the system can be expressed as: 

      chem grad mech ,F f f f dV


     c c c d , (2) 

where F is the total Gibbs free energy of a closed system,  ; fchem, fgrad, and fmech are the 

chemical potential, gradient, and mechanical energy densities, respectively. Herein the set of 

elemental concentrations can be expressed as c = (cox, cO, cmet), in which the superscripts ox, O, 

and met pertain to the oxide (MaOb), atomic oxygen (O) and metal (M). The concentration of 

electrons (e-) is ignored in our formula since it contributes very weekly to the free energy when 

the electric field is absent. However, in studying an electrochemical process, say in battery or 

fuel cell, the concentration of electrons (e-) should be involved. The concentrations can be 

further expressed in the dimensionless form, refc c c , where the subscript ref indicates the 

maximum concentration. 

 Ignoring the interaction of multiple species, the chemical potential energy density can be 

expressed as:  

        met met O O ox ox

chem chem chem chemf f c f c f c  c , (3.a) 

 
           met or O met or O met or O met or O met or O

chem 0ln 1f c RT c c    , (3.b) 
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     
2 2

ox ox ox ox

chem 1f Wg c W c c   , (3.c) 

where  met or O

chemf  is the chemical potential energy density owing to the existence of reactants 

(free metal or oxygen atoms) in the oxide lattice, which is established following Loeffel and 

Anand et al. [13], 
ox

chemf  is a double-well function to describe the energy barrier between gas 

and oxide phases, which is zero in both oxide and gas phases but varies continuously in the 

diffusive interface of a finite width. In Eqs. (3.b), R is the ideal gas constant, T is the 

thermodynamic temperature, μ0 is the chemical potential. In Eq. (3.c), W is the height of the 

energy barrier and is related to the interfacial energy (per unit area), σ, and the interfacial 

thickness, ζ, in the form of W = 18σ/ζ [16]. The phase index,  , corresponding to the 

dimensionless concentration of oxide (MaOb), is given as: 

oxc  . (4) 

In this case, the chemical potential energy density can be recast as: 

       met met met met O O O O

chem 0 0ln 1 ln 1f c RT c c c RT c c Wg           
   

. (5) 

With the diffusive interface, the gradient energy density, fgrad (c), can also be expressed in 

terms of the phase index,  , as: 

   
2

2

grad grad=
2

f f


  c , (6) 

where   is the gradient operator, and λ is the scale factor of the interfacial energy density. If 

the interface is isotropic with energy density (per unit area), σ, and interfacial thickness, ζ, it is 

known that λ2 = σζ [16]. The interface is usually considered to be anisotropic owing to the 

orientation of oxide lattice. The anisotropic interfacial energy and thickness are expressed as σ 
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= σ0η(θ) and ζ = ζ0η(θ), respectively, where η(θ) is the anisotropic function [28] and θ is the 

normal direction of interface, expressed as: 

 

 

 
 

 

 
 

 

 
 

  

m

0 m 0 m

m

m

0 m 0 m

m

m

0 m 0 m

m

0

1 cos 2
cos

cos

1 cos 2
cos

cos

1 cos 2
cos

cos

1 cos 2  ohter

 
     



 
       

 

 
       



  

 
    


 
        

 
 
      


 

, (7) 

where γ is the strength of interfacial anisotropy, θ0 represents the fastest growth direction, θm is 

constant which can be determined by solving the equation 

η(θm+θ0)sin(θm)+η′(θm+θ0)cos(θm)=0, where η′(θ) = dη(θ)/dθ. For more clarity, the evolution 

of anisotropic function, η(θ), with the intersection angle between normal direction of interface 

and the fastest growth direction, θ - θ0 , and the strength of interfacial anisotropy, γ, are 

illustrated in Fig. 3. 

Fig. 3 

For phase filed model, the mechanical energy density is defined as: 

            e e e

mech mech

1
, , = , ,

2

T

f f     c d d ε d D ε d , (8) 

where D
e and ε

e are the stiffness matrix and the elastic strain tensor, respectively. To allow for

a continuous description across the oxide-gas interface, they are expressed as [29]: 

 e e

oxp D D , (9.a) 

 e gp  ε ε ε , (9.b) 

where 
e

oxD is the stiffness matrix of oxide phase, ε is the total strain and ε
g is the anisotropic 
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eigenstrain tensor, describing the lattice mismatch between oxide and substrate, which can be 

obtained by the Pilling-Bedworth ratio (PBR) (See Appendix A).  p   is the interpolation 

function to mollify the discontinuity. It satisfies the conditions that  0 0p   and  1 1p   

and that  p   is extremum at 0   and  1  . Following Wang et al. [30], the 

appropriate choice of  p   can be given in the form:    3 210 15 6p       . 

Substituting Eqs. (9.a, 9.b) into Eq. (8) leads to the mechanical energy density: 

            g e g

mech ox

1
,

2

T

f p p p      d ε ε D ε ε , (10) 

 The total strain, ε, is derived from geometric relation under the assumption of small 

deformation: 

    
1

 1,2,3;  =1,2,3
2

ji
ij

j i

dd
i j

x x


   
          

ε ,  (11) 

where ∂ is the partial differential symbol. The stress tensor is then given as σ = D
e
ε

e, which 

satisfies the equilibrium equation: 

  div 0σ , (12) 

where div is the divergence operator and body force is neglected. Substituting Eqs. (9.a, 9.b 

and 11) into Eq. (12) leads to the governing equation of displacement field d: 

     e g1
div 0

2

ji

j i

dd
p p

x x
 

     
               

D ε , (13) 

Base on Eq. (13), the mechanical deformation induced by oxidation can be calculated. 

2.2. Evolution equation 

 During oxidation, the forward and backward reactions take place simultaneously. If the 

forward reaction is more favorable, there would be a net increase of the product (MaOb). To 
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describe the oxidation kinetics, the forward and backward reaction rates, satisfying the detailed 

balance of the chemical system [31], are given as: 

 TS 1

1 2 0=
RT

r k e
  


, (14.a) 

 TS 2

2 1 0=
RT

r k e
  


, (14.b) 

And the net reaction rate is: 

    TS 1 TS 2

net 1 2 2 1 0

RT RT
r r r k e e

      

     , (14.c) 

where r1→2, r2→1
 and rnet represent the forward, backward and net oxidation rate, respectively, 

μ1 and μ2 are the chemical potential of reactants and products, respectively, μTS is the chemical 

potential at the transition state, k0 is the coefficient of oxidation rate. The chemical potential of 

reactants, μ1, and products, μ2, can further be expressed as: 

met O

1 a b    , (15.a) 

and 
ox

2  , (15.b) 

where μmet, μO and μox are the chemical potential of atomic metal (M), atomic oxygen (O) and 

oxide (MaOb), respectively. They are the variational derivatives of the total free energy, F, with 

respect to the corresponding concentration [32], given as: 

     met or O met or Omet (or O)

0met (or O)
ln

F
RT c

c


 


   , (16.a) 

and 

 ox 0 0 2 2 mech

ox ox ox

ref ref

1 g fF
W

c c x y y x c

  
      

  

         
                      

. (16.b) 

where δ is the variational symbol. Substituting Eq. (16.a) into Eq. (15.a), the chemical 

potential of reactants can be given as: 
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     met O met O

1 0 0

diff ex

1 1

ln
a b

RT c c a b  

 

   
  

 

, (17) 

where    mediff

1

t Oln
a b

RT c c   
  

is the chemical potential that drives diffusion, and 

met O

0 0

ex

1 a b   is the excess chemical potential that originates from the contributions of

mechanical deformation and electrostatic field. The corresponding chemical potential of 

products can also be expressed in the form of 
diff ex

2 2 2    , where
f

2

dif and
ex

2 are,

respectively, expressed as: 

 diff 0 0 2 2

2 ox

ref

1 g
W

c x y y x

  
      



        
                   

, (18.a) 

and 

 
      

    
 

g e g

ox

ex mech
2 ox ox

ref ref g e g

ox

1

21

T

T

p
p p

f

c c p
p p


 




 
 

 

  
     

  
   

     
             

ε ε D ε ε

ε
ε ε D ε

. (18.b) 

The chemical potential at the transition state, μTS, is defined as: 

  

diff ex

TS TS TS

diff ex ex

TS 1 21

  

   

 

   
, (19) 

where the excess chemical potential for transition state, 
ex

TS , is the linear combination of

excess chemical potentials of the reactants and products with the asymmetry factor ρ (1 > ρ > 0) 

[30, 32]. 

Substituting Eqs. (18.a), (18.b) and (19) into Eq. (14.c), the oxidation rate can be expressed 

as: 

 
    diff ex ex diff ex ex

1 2 1 2 2 10
net diff

TS

1
= exp exp

exp

k
r

RT RTRT

       



        
    

    
    

. (20)
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Noting that the contribution of interfacial energy to oxidation is much smaller than the 

chemical and mechanical contribution, the oxidation rate can also be approximately rewritten 

as: 

 
    diff ex ex ex exdiff

1 2 1 2 10 2
net diff

TS

1
= exp 1 exp

exp

k
r

RT RT RTRT

      



        
               

. (21) 

It is apparent that the growth of oxide phase is only due to the oxidation. Thus, the relation 

between oxidation rate and oxide phase formation rate is given as nett r    [33]. By 

incorporating the expressions of 
diff

2  and 
ex

2 , the rate of oxide phase formation can be 

expressed as: 

 

 

      

0 0 2 2

1 met O

=-

        
a b

g
L W

t x y y x

L e c c e



 



  
     



   

         
                    



, (22) 

where Lσ and Lκ are coefficients to scale the contributions of the interfacial energy and the 

oxidation kinetics to the phase migration, respectively, and Λ is defined as the dimensionless 

reaction driving force. They are respectively expressed as: 

 
 

  ex ex

2 10

ox diff

ref TS

1
exp

exp

k
L

RTc RT RT


  



  
 
 
 

, (23.a) 

  
0

diff

TSexp

k
L

RT



 , (23.b) 

and 

 
 ex ox

1 mech reff c

RT

   
  . (23.c) 

 In the present model, Lσ and Lκ are assumed to be constant for simplicity. As expressed in 
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Eq. (22), the contribution to phase transformation is divided into two parts: one is the 

interfacial energy (the first term in the right-hand side); and the other is the oxidation kinetics 

(the second term in the right-hand side). The interfacial energy is spatially continuous, while 

the oxidation kinetics is spatially discontinuous, which is still not implementable in a 

numerical scheme. Considering the fact that the oxidation only occurs at the interface, the 

spatially continuous function,  p    , is used to mollify the discontinuity, which is zero at

1  (oxide phase) and 0  (gas phase) and is symmetric about 0.5  . Consequently, 

the rate of phase transformation can be expressed as follows: 

 

        

0 0 2 2

1 met O

=-

        
a b

g
L W

t x y y x

p
L e c c e



 



  
     







   

         
                    






. (24) 

It is obvious that Eq. (24) is consistent with the general Allen-Cahn type equation of the phase 

index,  , in PFM, which includes the additional contribution of oxidation kinetics. 

The evolution of concentration of reactants, considering reaction and diffusion, can be 

given as: 

   
met (or O)

met (or O) met (or O) ox

ref= or 
c

D c a b c
t t

 
  

 
. (25) 

In Eq. (25), the first term on the right-hand side describe the elemental diffusion and the second 

term on the right-hand side represents the elemental consumption (per unit time and unit 

volume). Apparently, the elemental consumption is related to the production of oxide (MaOb), 

i.e., the generation of one mole oxide (MaOb) requires the consumption of a mole metal atoms

and b mole oxygen atoms. D is the diffusion coefficient, expressed as 
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 
 
 

 1
met( or O) met (or O) met (or O)

ox gas

p p

D D D
 

 with 
met (or O)

oxD  and 
met (or O)

gasD  being the diffusion 

coefficients of metal (M) or oxygen (O) in the oxide and gas phase, respectively. Considering 

the effect of grain boundaries, the diffusion coefficients of metal (M) or oxygen (O) in the 

oxide can be further expressed in the form of [26]: 

   ox gb g gb gb g g2 1 2D w d D w d D   , (26) 

where Dgb and Dg represent the diffusion coefficients in grain boundary and grain, 

respectively, wgb and dg are the width of grain boundary and the grain diameter of oxide. 

By defining the reference length lref, reference time tref, and reference energy density fref, 

the non-dimensional evolution equations can be derived for numerical simulation. (See 

Appendix B) 

Numerical analysis 

3.1. One-dimension oxidation simulation 

Before the study of surface roughening, one-dimension (1D) numerical simulation is 

implemented for validating the proposed phase-field model and giving a preliminary 

understanding of the oxidation behavior. To have an analytical solution, the effect of elemental 

diffusion and mechanical deformation is ignored and the governing equations (Eqs. (13), (24) 

and (25)) can be reduced to: 

          
2

10 0 met O

2
=-  

a bg p
L W L e c c e

t x

 

 

  
 

 

   
   

   
    

, (27) 

where metc and Oc are set to be constants to remove the effect of elemental diffusion. The 

steady-state theoretical solution of Eq. (27) is in the form of a hyperbolic-tangent type [34],   
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= 0.5tanh(3(x-vt)/ζ0) + 0.5, where v is the velocity of phase migration. The 1D analytical 

solution of v can be derived as: 

       10 met O= 
a b

v L c c e e



    . (28) 

Fig. 4 

 Setting met O 1c c  , the velocity of phase migration, v, as the function of the 

dimensionless reaction driving force, Λ, and the asymmetry factor, ρ, can be numerically 

calculated and compared with the analytical result (Eq. (28)). Fig. 4(a) shows the consistence 

between analytical and numerical results, which validates the numerical code. If we set O 1c   

and v = 0, the critical elemental concentration, 
met

crc , can also be obtained from Eq. (28), 

which means that the oxidation could be restricted, if the local concentration of reactants is 

smaller than the critical value. The relation between critical elemental concentration, 
met

crc , 

and the reaction driving force, Λ, was obtained by solving Eq. (28). Thus, the accuracy of the 

numerical code can be further verified by the comparison between simulation results and the 

analytical results from Eq. (28), which is shown Fig. 4(b).  

 A slow diffusion can bring about insufficient reactants, thus inhibits oxidation. In 

addition, the lattice mismatch between oxide (MaOb) and the metal substrate (M) leads to the 

considerable eigenstrain, which induces the mechanical energy in the oxide layer. It elevates 

the chemical potential of oxide and reduces the reaction driving force, Λ, as expressed in Eq. 

(23. c). With the increase of eigenstrain, the reaction rate reduces. When the eigenstrain is 

larger than a critical value, oxidation could also be stopped. In the above discussion, both 

diffusion and mechanical deformation are ignored. In order to study their effects, we should 
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consider more general cases. 

Fig. 5 

Let us take the oxidation of pure metal Ni at 928K as an example. The simulation model 

is a 200 nm 300 nm box for the oxide-gas binary-phase system, as shown in Fig. 5, where 

the initial thickness of oxide layer is set to be 20nm with the flat interface to model the 1D 

oxidation behavior. The zero-flux boundary conditions are applied to all sides for phase 

evolution. The initial displacements are set to zero in the whole domain. The top side is 

unconstrained, while the other sides are constraint along their normal direction. The initial 

dimensionless Ni concentration is set to be 1 in the oxide phase and 0 in the gas phase. For 

boundary conditions, the Ni concentration at the bottom is metc = 1 to ensure that the 

oxidation can continue; the dimensionless concentration of atomic oxygen, Oc , at the oxide 

side of the oxide-gas interface is also set to be 1 since the adsorption is much faster than 

oxidation; and the zero-flux conditions are applied to other sides. Since many experiments 

[22, 25-27] have demonstrated that the growth of oxide (NiO) is dominated by the outward 

diffusion of Ni rather than the inward diffusion of oxygen, the only outward growing of oxide 

is simulated and no diffusion of oxygen in the oxide occurs and only the diffusion of Ni is 

assumed. 

Table 1 

The chemical potential of reactant, 
ex

1 , is set to be 2RT, so that the maximum

dimensionless reaction driving force, Λ, is 2. Judged from Fig. 1, the maximum growth rate 

of an oxide hump is about 76 nm within the initial 10 min at 928K (see Fig. 1(b)). Thus, in 
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simulation, the maximum interface migration velocity is set to be 8 nm/min. Based on the 

theoretical solution of interface migration velocity, the coefficient, Lκ, is obtained to be 

0.075/min with the parameters ζ0 = 10 nm, 
met O 1c c  , a = b = 1 and ρ = 0.8. The

oxidation is associated with volumetric expansion. For Ni, the average eigenstrain, obtained 

by PBR, is about 0.2 (See Appendix A). The eigenstrain, however, is not isotropic, i.e. the 

in-plane transverse strain, 
g

11 , is usually smaller than the out-of-plane strain,
g

22 , for a 2D

scenario. The ratio, 
g g

11 22  , could be as small as 1/87 from the results of Huntz et al. [36].

Evans et al. [37] indicate that the in-plane transverse strain, 
g

11 , rather than the out-of-plane

strain, 
g

22 , is the main cause of the compressive stress and the elastic energy in the oxide layer.

Thus, in the simulation, the out-of-plane strain, 
g

22 , is set to be 0 and only the in-plane

transverse strain, 
g

11 , is considered, which is varied in the range of (0 ~ 0.1). The diffusion

coefficient, 
met

oxD , is calculated under the condition that the grain diameter, dg, is 0.2 μm and

the gas pressure is 1bar. A.M. Huntz et al. [25] have experimentally measured the grain 

diameter of the oxide NiO, which would vary with oxidation time from 0.2 μm to 1 μm, 

leading to the decreasing of diffusion coefficient, 
met

oxD , from 1.85×10-16 to 3.7×10-17 m2/s. In

addition, many experiments [25-27] have demonstrated that the magnitude of applied gas 

pressure also affects the diffusion coefficient, 
met

oxD . Thus, in present simulation, the 
met

oxD

also varies in the wider range of (1.85×10-17 ~ 1.85×10-15 m2/s). In simulation, the reference 

length, lref, and reference time, tref, are is 10 nm and 2 min, respectively. The commercial 

finite element package, COMSOL Multiphasic [38], is employed to solve governing 

equations. To guarantee the convergence of the solution, the calculation domain is discretized 
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by uniform square mesh with the size of 2 nm, i.e., lref/5 and the initial and maximum time 

step are both tref/100 for temporal integration. 

Fig. 6 

 The increment of oxide layer thickness, ∆hox, after 30-min oxidation against the variation 

of eigenstrain, 
g

11 , and diffusion coefficient, 
met

oxD , is plotted in Fig. 6(a), where 

met -16 2

ox, ref 1.85 10 m sD    and 
g

ref  = 0.055 are the reference diffusion coefficient and eigenstrain, 

respectively. It is observed that the thickness, ∆hox, is approximately logarithmically 

dependent on the diffusion coefficient, 
met

oxD , meaning that the slower diffusion leads to the 

more significant restraint on the growth of oxide layer. In contrast, the larger eigenstrain leads 

to the smaller ∆hox. The relation between the thickness, ∆hox, and the value  
2

11

g  is 

approximately exponential as observed in Fig. 6(a), which is consistent with the exponential 

relation given in Eq. (27). The zero increment of thickness for oxide layer can be obtained, 

when the eigenstrain is as large as 0.055.  

 Since both the reduction of diffusion and the elevation of the eigenstrain could suppress 

the oxidation, a quantitative analysis is necessary to distinguish the major and secondary 

influencing factors. The contour of Fig, 5(a), in terms of relations between diffusion 

coefficient, 
met

oxD , and eigenstrain, 
g

11 , for constant values of ∆hox, is plotted in Fig. 6(b). It 

is noted that the curves relating 
met

oxD  and 
g

11  are quite flat, when 
met

oxD  is small. The 

curves then gradually inflect and become almost vertical. It indicates that when 
g

11  is large, 

the effect of elemental diffusion is suppressed. The curvature of the curves, which describes 

the inflection, can be used to quantitatively assess the relative importance of diffusion 
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coefficient, 
met

oxD , and eigenstrain, 
g

11 . If the curvature is small, diffusion is important. The

influence of diffusion then gradually fades out with the increase of 
g

11 . When the curvature

is sufficient large, the diffusion rate has almost no effect on the growth speed of the oxide 

layer. 

3.2. Two-dimension oxidation simulation (Oxide layer roughening) 

3.2.1 Oxide layer roughening affected by chemical, mechanical, and interfacial properties 

To study the surface roughening behavior during oxidation, the 2D phase-field model is 

implemented. The geometry and boundary conditions used in the simulation are shown in Fig. 

5. The oxide-gas interface is assumed to be initially rough with a sinusoidal hump. Because

of symmetry, only a half of the hump is used in the numerical simulation. The height of the 

sinusoidal hump is to represent the initial surface roughness, which is set to be Raini = 30 nm 

based on the experimental measurement [22]. And the initial half width of the hump is also 

set to be bini = 30 nm. The diffusion coefficient and eigenstrain are varied from 1.85×10-17 to

1.85×10-15 m2/s and from 0.004 to 0.055, respectively. The interfacial anisotropy is also 

considered, though there is no evidence to show that the oxide has strong orientation at the 

interphase boundary. The interfacial anisotropic parameter is chosen to be γ = 0.2, which is 

small comparing to other studies. For example, γ is usually chosen to be 0.3 ~ 0.6 in the study 

of the Widmanstätten Ferrite (WF) formation [28]. 

Fig. 7 

The contour plots of the elastic energy, the concentration of Ni, and the reaction rate are 

shown in Fig. 7. It is observed that different magnitudes of diffusion coefficient and 
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eigenstrain lead to different surface patterns of the oxide layer. When the eigenstrain is 0.004 

(Fig. 7(a ~ c)), the elemental diffusion is the main factor affecting the morphology evolution 

of the oxide layer. The homogeneous diffusion makes the initially rough surface become 

flatter. When the eigenstrain is 0.02 (Fig. 7(d ~ f)), the high elastic energy concentration can 

be observed around the flat part of the oxide scale which slows down the growth of the oxide 

layer. Since the convex part is much less deformed, the oxidation in the convex region is 

hardly affect by the eigenstrain. Thus, the inhomogeneous growth of oxide layer is observed 

in Fig. 7(d ~ f). In addition, the surface wrinkling, resembling those induced by surface 

instability, is observed. This is owing to the inhomogeneous distribution of elastic energy, 

which concentrates at the intersection of the flat and the humped surfaces, triggering the 

formation of a new hump adjacent to the original one. With the formation of humps, the 

redistribution of elastic energy leads to the more humps. Consequently, the corrugated surface 

is resulted. The further increase of the eigenstrain to 0.055 leads to the suppression of the 

oxide growth from the flat surface. The initial hump becomes bigger, leading to the dome-like 

surface morphology (Fig. 7(g ~ i)). 

Fig. 8 

While this eigenstrain plays the dominant role in forming the morphology of the oxide 

surface, the effect of diffusion coefficient cannot be completely ignored. In the map with the 

abscissa of 
g

11 and the ordinate of
met

oxD , the observed three different surface morphologies 

occurs at three different regions. We conducted simulations to identify the boundaries of the 

three regions and gives fitting equation for plotting the boundary curves, as shown in Fig. 8. 
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It is observed that the pattern of oxide layer is mainly affected by the eigenstrain and that the 

boundaries bend towards the smaller eigenstrain when the diffusion coefficient is small. 

Fig. 9 

As above mentioned, when the eigenstrain is large than 0.055, the oxidation could be 

completely suppressed at the flat region of the oxide surface while the hump grows larger, 

leading to the higher roughness. In case of 
g

11 = 0.055, the effects of elemental diffusion

and the interfacial anisotropy are worthy of further study. To elaborate their effects, numerical 

studies using different diffusion coefficient, 
met

oxD , and anisotropic parameter, γ, were carried 

out. We change 
met

oxD and γ in the wide ranges of 1.85×10-17 ~ 1.85×10-15 m2/s and 0 ~ 0.6, 

respectively. Fig. 9(a) shows the variation of the roughness of the oxide layer after 30-min 

oxidation against the change of 
met

oxD and γ. It is observed that the roughness is almost 

linearly dependent on γ, when 
met

oxD is large. While 
met

oxD is small, the increase of roughness 

is also slowed down with the increase of γ, because the higher roughness of the oxide layer 

leads to the lower concentration of metal atoms at the vertices of asperities, leading to the 

reduction of the reaction rate. Fig. 9(b) is the 2D contour plot of Fig. 9(a), which can be used to 

study the relative effect of the two parameters based on the curvatures of contour curves. 

The aspect ratio (height to width) of an asperity, Ψ, is another important measurable 

parameter to characterize the morphology of rough surface. Its variation with parameters γ 

and 
met

oxD is plotted in Fig. 9(c). It is observed that the aspect ratio increases with the 

increase of γ or 
met

oxD . The maximum aspect ratio, Ψ = 1.38, however, is much smaller than 

the measured aspect ratio for Widmanstätten Ferrite which is in the range of (10 ~ 100). This 
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is because that the growth of Widmanstätten Ferrite is mainly promoted by elemental 

diffusion which is inhomogeneous, i.e. the elemental diffusion is extremely faster at the tip of 

Widmanstätten Ferrite than that at the sides of Widmanstätten Ferrite [28]. The corresponding 

contour plot is shown in Fig. 9(d) to study the relative importance of 
met

oxD  and γ. 

3.2.2 Oxide layer roughening affected by initial geometric features 

Fig. 10 

 The oxide roughening is affected not only by the chemical, mechanical, and interfacial 

properties but also initial geometric features. In the above studies, only one initial surface 

hump is considered. However, there are usually many surface humps in a realistic oxide scale. 

To study the interference of the neighboring surface humps, the periodic humps as shown in 

Fig. 10 is adopted in the simulation, where Raini = 30 nm [22], δini = 60 ~ 160 nm and bini = 

30 ~ 90 nm. The oxidation duration is set to be 160 min which is twice of the experimental 

setting by Li et al. [22]. To be more realistic, the variation of the grain diameter of oxide 

(NiO), dg, with oxidation time is also considered. Based on the experimental results of Huntz 

et al. [25], we linearly increase the grain diameter, dg, from 0.2 μm to 1 μm within 160-min 

oxidation, expressed in the form of  g 0.2 0.01 μmrefd t t   . Thus, the time dependent 

diffusion coefficient, 
met

oxD , can be obtained by substituting the expression of dg in Eq. (26). 

Fig. 11 

 The variation of oxide thickness, hox (see the definition in Fig. 10), with time is plotted in 

Fig. 11(a). It is obvious that if the increase of grain diameter is considered, the numerical 

results agree much better with experimental results [22]. In this case the oxide growth is not 
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be a conventional parabolic law but sub-parabolic, which has also been report by Huntz et al. 

[25]. The variation of roughness, Ra (see the definition in Fig. 10), with time for different 

initial spacing, δini, and half width, bini, are plotted in Fig. 11(b). It is noted that the roughness 

increases in the early stage of scale growth and then decreases in the later stage, which has 

also been observed in the experiments by Li et al. [22] and Huntz et al. [25]. This is caused 

by the mutual interference of the growth between the neighboring humps as schematically 

shown in Fig. 10. In addition, the decrease of roughness slows down with time and the 

roughness approaches an constant magnitude, Ra*, after a longtime oxidation.  

In Fig. 12(a ~ c), the maximum roughness, Ramax, the critical time to reach it tc, and the 

final roughness, Ra* (using the roughness magnitude after 160-min oxidation), are plots 

against initial spacing, δini, from 60 ~ 160 nm, and half width, bini, from 30 ~ 90 nm, 

respectively. The NiO scale, reaching the maximum roughness, with two different initial 

geometry ( (i) δini = 160 nm, bini = 90 nm and (ii) δini = 60 nm, bini = 30 nm) are also shown in 

Fig. (a). These three figures illustrate that the roughness of oxide scale can be effectively 

reduced by changing the geometric features of the initial oxide scale. It is observed that 

reduction of either δini or bini leads to the decreases of Ramax, tc, and Ra*. Comparing with the

reduction of bini, the reduction of δini, is more effective in decreasing the roughness of oxide 

scale. These results suggest a very effective and simple method to suppress the surface 

roughening of oxide layer and reduce the oxidation-induced failure in industrial applications. 

Fig. 12 
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4. Conclusions

A new phase-field model to study the mechanism of morphology evolution of oxide layer

during oxidation is proposed, in which the formula of reaction rate, based on the picture of 

detailed balance in chemical reaction, is derived and incorporated to describe the migration of 

phase boundary. The Gibbs free energy density involves the contributions of chemical 

potential, mechanical deformation, and interfacial anisotropy. And the chemical potentials of 

reactants and products are the variational derivatives of the total free energy with respect to the 

corresponding concentration, which are then substituted into the reaction rate formula. The 

Allen-Cahn type equation, governing the evolution of oxide phase, thus captures the 

influences of oxidation kinetics, elemental concentration, and mechanical deformation. 

Associated with the reaction-diffusion equation and the mechanical equilibrium equation, the 

complete set of phase-field equations were implemented in a computational code based on 

COMSOL. 

The accuracy of the code is first validated by comparing the simulation results with the 

1D analytical solutions. For a preliminary understanding of parametric effects, the influence 

of elemental diffusion and mechanical deformation on the growth of oxide layer is also 

studied by 1D simulation. It is found that both the reduction of diffusion and the elevation of 

the eigenstrain can suppress the oxide growth, which is approximately logarithmically 

dependent on the diffusion coefficient and exponentially scaled with the square of eigenstrain 

 
2

11

g . And the map for distinguishing their dominant roles is established based on the

curvature of the contour plot. 
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 Based on the 2D simulation, it is found that the surface morphology depends not only on 

the diffusion rate and eigenstrain but also on the initial morphology of metal surface. When 

the eigenstrain is larger than the critical value, the oxidation could be suppressed at the flat 

region of oxide surface while the less constraint convex region grows. Thus, the oxide surface 

could be extremely rough. In this case, elemental diffusion and the interfacial anisotropy 

should be the major factors affecting surface roughening. The elevations of the diffusion 

coefficient and the interfacial anisotropy lead to a taller and sharper surface asperities. By 

reducing the spacing and the width of surface humps, a significant suppression of surface 

roughening for oxide scale could be obtained, which might be a very effective and simple 

method to suppress the surface roughening of oxide layer in industrial application. 
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Appendix A 

   Following the experimental measurement [26], the diffusion of Ni in the grain of NiO and 

the grain boundary of NiO at one bar pressure are, respectively, in the form of: 

     6 2

g B2.2 10 exp 2.56 eV  m sD k T   , (A.1) 
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    5 2

gb B4.3 10 exp 1.78 eV m sD k T   , (A.2) 

where eV and kB are, respectively, the electron volt and Boltzmann constant, which are listed 

in table 1. The width of grain boundary, wgb, and the grain diameter of NiO, dg are 

107 10 m [26] and 72 10 m [25], respectively. Considering the Eq. (26), the diffusion of 

Ni in NiO at 973K is 
met 16

ox 1.85 10D   m2/s. 

For the oxidation aM+bO → MaOb the Pilling-Bedworth ratio (PBR) can be expressed as 

M O

M

a b
V

PBR
aV

 , (A.3) 

where M Oa b
V and MV are, respectively, the molar volumes of the oxide (MaOb) and the pure 

metal (M). The mean eigenstrain 
g

v due to the transformation from metal to oxide is given as:

 g

v

1
ln

3
PBR  , (A.4) 

In the simulation, the oxidation of pure metal Ni is adopted. The corresponding oxidation can 

be expressed in the form of Ni+O → NiO. Thus, using NiOV = 11.2 cm3/mol and NiV = 6.5 

cm3/mol, the PBR = NiO NiV V is obtained to be 1.72. The mean eigenstrain 
g

v is then 0.2.

The molar concentration of oxide (NiO) is NiO NiO1c V = 89933 mol/m3. Following Ref. 

[10], the mole fraction of the diffusible metal (Ni) atom in oxide (NiO) is set to be 1.8% in the 

present paper. Thus, the reference concentration of oxide (NiO) and free metal (Ni) atom are 

ox

refc = 89933 mol/m3 and 
met

refc = 
ox

ref0.018 / (1 0.018)c  = 1630 mol/m3, respectively.

Appendix B 

The dimensionless government equation is: 
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 

        

0 0 2 2

1 met O

=-

        
a b

g
L W

t x y y x

p
L e c c e



 



  
     







   

         
                    






, (B.1) 

   
oxmet (or O)

met (or O) met ref

met (or O)

ref

= or 
cc

D c a b
t c t

 
  

 
(B.2) 

and 

    e g1
div 0

2

ji

j i

dd
p p

x x
 

     
               

D ε , (B.3) 

respectively, where the variables and parameters with the over-head bar are defined as L  = 

Lσfreftref, L  = Lκtref, 
0 = σ0/(freflref),

0 = ζ0/lref, W  = W/fref,
2

ref refD Dt l and e
D = 

D
e/fref.
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List of figures 

Fig.1 (a) In situ scanning probe microscope images for the surface topography during 

oxidation (b) roughness change and (c) average oxide film thickness with oxidation time [22]. 

Fig. 2 Diagrammatic sketch of the oxidation of the pure metal. It starts with a surface 

adsorption step. The gaseous oxygen changes to the atomic oxygen (O2 → 2O), which is then 

adsorbed onto the oxide surface. The adsorbed oxygen atoms are then ionized (O + 2e- → O2-), 

meanwhile the easily oxidized free metal (M) atoms in the substrate are converted to ions at the 
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MaOb/M interface (M → Mn+ + ne-). Consequently, counter diffusion leads to both the oxygen

anion O2- and metal cation Mn+ diffuse into the oxide scale and then the oxidation takes place 

(aMn++bO2- → MaOb). Due to the difference in the diffusion rates of reactants, newly formed

oxide might grow on the MaOb/M interface, called inward growing oxide, or on the MaOb/O 

interface, called outward growing oxide. 

Fig. 3 The plot of anisotropic function, η(θ), against the intersection angle between normal 

direction of interface and the fastest growth direction, θ - θ0 , and the strength of interfacial 

anisotropy, γ. 

Fig. 4 (a) Variation of the interface migration speed v with the dimensionless reaction driving 

force Λ and the asymmetry factor ρ, and (b) the relationships between the reaction driving 

force Λ and the critical elemental concentration 
met

crc . 
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Fig. 5 The schematic of the geometry and boundary conditions in simulation, where the flat 

and humped interfaces are adopted in 1D and 2D simulations, respectively. bini is the half 

width of one hump, and Raini is the initial roughness of hump. 

Fig. 6 The variation of thickness of the oxide layer, ∆hox, after 30-min oxidation with the 

eigenstrain, 
g

11 , and the diffusion coefficient,
met

oxD , and (b) Relationship between diffusion 

coefficient, 
met

oxD , and eigenstrain, 
g

11 , for constant values, ∆hox.
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Fig. 7 Counter plots of the elastic energy, the concentration of atomic metal (Ni) and the 

reaction rate with 
met 17 15

ox 1.85 10 ~  1.85 10D     m2/s and 
g

11 = 0.004 ~ 0.055, where

mech mech reff f f is the dimensionless elastic energy and reft t t is the dimensionless time. 

Fig. 8 Phase morphology diagram with the x-axis of eigenstrain and the y-axis of diffusion 

coefficient, which leads to the three different surface morphologies occurs at three different 

regions: flat surface in the region I, corrugated surface in the region II and dome-like surface 
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in the region III. 

Fig. 9 A initially sinusoidal hump surface of oxide scale adopted in simulation which leads to 

the numerical results that (a) variation of hump roughness with the diffusion coefficients, 

met

oxD , and the interfacial anisotropy parameter, γ, (b) roughness diagram with the x-axis of

strength of interfacial anisotropy, γ, and the y-axis of diffusion coefficient, 
met

oxD , (c)

Evolution of aspect ratio of hump, Ψ, with the diffusion coefficients, 
met

oxD , and the strengths 

of interfacial anisotropy, γ, and (d) aspect ratio, Ψ, diagram with the x-axis of strength of 

interfacial anisotropy, γ, and the y-axis of diffusion coefficient, 
met

oxD . 
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Fig. 10 Diagrammatic sketch of periodic humps, which is adopted to study the interference of 

the neighboring surface humps. δini is the initial spacing between neighboring surface humps, 

bini is the half width of one hump, Ra is the roughness of hump and hox is the oxide thickness. 

Fig. 11 Plots of (a) Oxide thickness, hox, with time and (b) roughness, Ra, with time for 

different initial spacing, δini, and half width, bini, where the experiment results are obtained 

from Ref. [22]. 
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Fig. 12 The initial oxide surface with periodic humps is adopted in simulation, which leads to 

the numerical results that the variations of (a) maximum roughness, Ramax, (b) critical time, tc, 

and (c) final roughness, Ra* (using the roughness magnitude after 160-min oxidation), against 

initial spacing, δini, from 60 ~ 160 nm, and half width, bini, from 30 ~ 90 nm.
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List of Tables 

Table 1 Material properties used in present phase-field model. 
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Table 1. 

Parameter Value 

Interfacial energy density σ0 (J/ m2) 1 [28] 

Interface thickness ζ0 (nm) 10 [28] 

Young’s Module for oxide phase E (GPa) 130 

Poisson ratio for oxide phase v 0.3 

Coefficients to scale the contributions 

of the interfacial energy 

Lσ (m3/J/min) 10-9

Coefficients to scale the contributions 

of the oxidation kinetics 

Lκ (1/min) 0.075 

Excess chemical potential of reactant 
ex

1 2RT 

Asymmetry factor ρ 0.8 

Diffusion coefficient of atomic metal 

(Ni) in the oxide 

met

oxD (m2/s) 

1.85×10-16 

(See Appendix A) 

Diffusion coefficient of atomic metal 

(M) in the gas phase2

met

gasD (m2/s) 10-22

Strength of interfacial anisotropy γ 0 ~ 0.6 [28] 

The fastest growth direction θ0 π/2 [28] 

Reference length lref (nm) 10 

2 met

gasD is not a realistic physical parameter. We set the small value 10-21 m2/s to avoid singularity in simulation.
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Reference time tref (min) 2 

Reference energy density fref (GJ/m3) 1 

Reference concentration of oxide 

(NiO) 

ox

refc (mol/m3) 

89933 

(See Appendix A) 

Reference concentration of free metal 

atom (Ni) 

met

refc (mol/m3) 

1630 

(See Appendix A) 

Boltzmann constant kB (J/K) 1.38×10-23 

electron volt eV (J) 1.6×10-19 

Ideal gas constant R (J/mol/K) 8.314 




