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Abstract 8 

A viscoelastic model is established to reveal the relation between α-β relaxation of glass and the 9 

double-peak phenomenon in the experiments of impulse excited vibration. In the modelling, the 10 

normal mode analysis (NMA) of potential energy landscape (PEL) picture is employed to describe 11 

mechanical α and β relaxations in a glassy material. The model indicates that a small β relaxation can 12 

lead to an apparent double-peak phenomenon resulted from the free vibration of a glass beam when 13 

the frequency of β relaxation peak is close to the natural frequency of specimen. The theoretical 14 

prediction is validated by the acoustic spectrum of a fluorosilicate glass beam excited by a mid-span 15 

impulse. Furthermore, the experimental results indicate a negative temperature-dependence of the 16 

frequency of β relaxation in the fluorosilicate glass S-FSL5 which can be explained based on the 17 

physical picture of fragmented oxide-network patches in liquid-like regions. 18 

19 
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1. Introduction22 

Properties of glass vary with the time due to the internal structural relaxation driven by thermal 23 

fluctuation [1]. Experiments have shown that the relaxation happens in almost all the timescales 24 

which can be roughly separated into three types when it is close to glass transition temperature (Tg) 25 

[2, 3]: (1) The primary one, named α-relaxation with the typical timescale >10
-3

s, is associated with26 

structural relaxation and play the main role in glass transition; (2) the secondary relaxation with the 27 

timescale of 10
-8

~10
-3

s, which is often called (slow) β relaxation, is related to localized atomic28 

motion though a mechanism that is still vague; (3) and the third relaxation with the timescale of 29 
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10
-8

~10
-12 

s, usually called fast β relaxation, could be related to the rattling motion of caged particles1 

[4]. At present, lots of efforts have been devoted to the understanding of β relaxation [3, 5-12] 2 

because it helps disclose the nature of glass transition [10] and adjust the properties of glass [13-15]. 3 

To reveal β relaxation, many experimental methods [3, 5-9] have been applied. Among others, 4 

dielectric spectroscopy (DS) is the most effective because of the wide frequency range [7, 8] that a 5 

DS can swap. Johari and Goldstein [16, 17] first revealed β relaxation in several molecular glasses by 6 

DS in 1970. Successively, β relaxation has been found in the dielectric spectra of polymers [18] and 7 

other molecular glass [19]. Based on the measurements of DS, β relaxation could further be 8 

categorized into two types [20]: a separated secondary relaxation peak or an excess wing of the 9 

α-relaxation peak. The temperature scaling law of the two manifestations of β relaxation seems 10 

disparate below Tg, that is the average relaxation time of a separated β peak strictly follows an 11 

Arrhenius behavior [20], whereas that of an excess wing follows a super-Arrhenius law (for example, 12 

a Vogel–Fulcher–Tammann (VFT) law) that is strongly coupled to the corresponding α-relaxation. 13 

When the temperature is close to or higher than Tg, the characteristic time of β relaxation of some 14 

glass formers increases with temperature, which disagrees with the intuition that higher temperature 15 

leads to shorter relaxation time [7, 21-23]. This counterintuitive relation has also been found in a 16 

water-absorbed porous glass [12], suggesting an intricate mechanism [21] that is still unclear.  17 

The mechanical response of glass has also been employed to study  relaxation in it, especially 18 

in the cases that DS is unsuitable, for example, metallic glasses [10]. Moreover, mechanical 19 

measurements could reveal more internal dynamics than DS because the stress relaxation of a glassy 20 

material is related to all diffusion modes, whereas the dielectric response was only related to the 21 

reorientation of dipoles [9]. For example, the rotational diffusion about the C2v axis in poly(methyl 22 

methacrylate) (PMMA) does not induce the change of dielectric properties; therefore, only 23 

mechanical approach can reveal the corresponding relaxation process [9]. For metallic glasses, the 24 

internal friction associated with β relaxation can only be observed through mechanical means [11] 25 

because there is no re-orientation of atomic dipoles. Johari [24] suggested that a mechanical β 26 

relaxation is essentially due to the translational motion of atoms in metallic and other glasses, which 27 

is consistent with the conception of “islands of mobility” proposed by Johari and Goldstein [16].  28 

However, the mechanical approach is much less used to detect the characteristic frequency of β 29 

relaxation because of the difficulties to achieve a measurement with a wide frequency range. When 30 
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the test frequency is lower than 10
3
 Hz, some forced vibration methods, for example, dynamic 1 

thermomechanical analysis (DMA), can be employed. When the test frequency is larger than 10
9
 Hz, 2 

some scatting methods, for example, inelastic light scatting, can be adopted [25]. But for the 3 

frequency between these two regimes, there is no standard approaches or commercialized facilities. 4 

To expand the frequency range in mechanical tests, Hecksher et al. [26] fused seven different 5 

methods with their self-developed facilities. In addition, the decayed free vibration based on the 6 

impulse excitation technique (IET) [27] can also be used to study the relaxation behaviors of glassy 7 

materials [15, 28, 29]. It should be noted that IET is based on the free vibration of samples, whereas 8 

DMA and the approach adopted by Hecksher et al. [26] are based on forced vibration. Comparing 9 

with forced-vibration approaches, IET cannot achieve a frequency scan because the natural 10 

frequencies of a sample are a series of discrete values. However, the simple and standardized [30, 31] 11 

setup of IET, the extended frequency into the ultrasound range (10
3
  10

6
 Hz), and the applicability 12 

at a temperature as high as 1750 °C [32] makes it an useful alternative to study relaxation behavior of 13 

glasses at the frequency outside the assessable range of DMA. Recently, Liu and Zhang [33] found 14 

two adjacent peaks in the acoustic spectrum of a PMMA beam excited by IET, which was ascribed to 15 

β relaxation. Their experimental results indicate that the Fourier spectrum of an excited beam also 16 

contains the information of β relaxation. 17 

The dynamic response of a structure subjected to an impulse may reflect the relaxation kinetics 18 

inside the material. However, this relation is implicit, which requires a physics-based constitutive 19 

model to bridge them. Therefore, in the following, we describe a physical model of β relaxation 20 

based on the conceptual picture of the potential energy landscape (PEL) and then establish a 21 

simplified viscoelastic model based on it. Experimentally, we obtained the double-peaked acoustic 22 

spectra of a fluorosilicate glass that validates the β relaxation phenomenon predicted by the 23 

theoretical model.  24 

 25 

2. Theoretical modeling 26 

2.1 The viscoelastic model based on the theory of normal mode analysis  27 

We follow the normal mode analysis(NMA) to study α-β relaxation [34]. In this model, α 28 

process is caused by the spontaneous hoping among local minima, also called inherent structures 29 

(ISs), of the potential energy landscape of glassy material, and β process originates from the 30 
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interaction of atomic oscillations in the basins associated with different ISs. To simplify the analysis, 1 

harmonic oscillation is assumed, which can be treated as a combination of the instantaneous normal 2 

modes (INM). Both processes lead to the relaxation of physical quantities. For example, Keyes [35] 3 

has applied NMA to model the α-β relaxation of polarizability dynamics in CS2 and achieved a good 4 

fit for his atomic simulation. In the present work, we extend the model to describe mechanical α-β 5 

relaxation. 6 

Formally, the constitutive relation of a linear viscoelastic material can be written in the form of 7 

hereditary integral: 8 
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      (1) 9 

where σ(t) and ε(t) are the stress and strain at time t; C(t) is the relaxation function; ε0 is the 10 

instantaneous strain at t = 0. This constitutive relation describes a microscale representative volume 11 

element (RVE), which can be divided into many atomic subsystems that can be treated as isolated 12 

atomic groups with different ISs. Based on the Green-Kubo relation, the relaxation function is 13 

proportional to the stress autocorrelation function (SAF):  14 

      0C t t  ,  (2) 15 

where  t  is the instantaneous stress of a subsystem, and “< >” means the average of all atomic 16 

subsystems. Following the NMA [35], the fluctuation within a PEL basin is assumed to be harmonic 17 

and the stress variation associated with a basin is given as: 18 
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where IS  is the stress contributed by an IS, qi is the mass-weighted normal coordinate of the ith 20 

vibration mode. The SAF can then be expressed as the average of different ISs [35]: 21 
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On the right-hand side of Eq. (4), the first term is the average contribution of ISs, and the second 23 

term is the contribution of the average harmonic fluctuations in different ISs. Note that 24 
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  have been employed [35, 36]. 25 
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In Eq. (4), the effect of hopping among ISs is not considered; therefore, 2

IS  is not a 1 

function of time [35] and represents a pure elastic effect. The involvement of structural relaxation 2 

brings about memory loss of previous stresses, which can be described by a relaxation function [29, 3 

37]. For simplification, we assume the barrier crossing is an Arrhenius process with a constant 4 

barrier height, then an exponential decay can be obtained [36]. Therefore, 2

IS  should be 5 

multiplied by exp(t/τα) with τα being the structural relaxation time. This is also because the stress 6 

relaxation induced by α relaxation in silicate glass is nearly exponential at the temperature higher 7 

than Tg [29]. The second term on the right-hand side of Eq. (4) represents the relaxation induced by 8 

harmonic fluctuations, i.e., the relaxation owing to the dephasing induced by the broad distribution of 9 

INM frequencies [35]. Though the harmonic term in Eq. (4) is affected by barrier crossing, Cho et al. 10 

[38] suggested that the additional effect of barrier crossing is not necessary because the dephasing 11 

suffices to lead to a reasonable decaying time correlation function. Therefore, the modified SAF 12 

involving basin hoping is expressed as: 13 

          2

0
0 exp cos dISt t G t      



      (5) 14 

where    2= B ISG k T     is a weighted density of states (WDOS). In principle, G() can be 15 

determined from the eigenvalues of the Hessian matrix of a well-defined atomic model. For example, 16 

in the study of the polarity fluctuation of CS2 [35],     was found to possess several peaks 17 

and G()   2

    should enhance the contribution of lower-frequency peaks. Following 18 

Moore and Space [39], one may assume that G() describes a bell-shaped distribution, approximated 19 

by a Gaussian or Lorentzian function, at a certain frequency range of concern. Assuming that G(ω) is 20 

a Lorentzian function: 21 
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a
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,  (6) 22 

and submitting it into Eq. (5), the relaxation function is recast as: 23 

          1 exp exp cosC t x t x t t         (7) 24 

where μ is the central angular frequency of the Lorentzian distribution, γ is the half-width at half 25 

maximum (HWHM) of a peak,  2

ISa ax      , and a is a constant. Naturally, x can be 26 
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considered as the proportion of the relaxation contributed by β process. It is noted that if  = 0, Eq. 1 

(7) reduces to the scenario of two-step exponential relaxation. In addition, it can be further modified 2 

to involve a distribution of relaxation time so that the non-exponential relaxations can also be 3 

involved. It is noted that the two-step relaxation function has been used to fit the experimental results 4 

of mechanical - relaxation [40, 41]. However, in the following, we shall focus on the case that  is 5 

nonzero. This makes the relaxation process more complex than a two-step scenario and is indeed 6 

necessary to explain our experimental results. 7 

 8 

    9 
Fig. 1 Examples of stress relaxation (a) and loss spectrum (b) calculated from NMA with Cauchy distribution of G(ω). 10 

 11 

To exemplify the -β processes revealed by Eq. (7), we plot the relaxation function in Fig. 1(a) 12 

with x = 0.0002, μτα=38000, and amplify the relaxation in initial 0.001 in the insets of Fig. 1(a) 13 

with different . With the timescale of τα, the relaxation function is seemingly a straightforward 14 

exponential decay. However, at the very beginning, the stress relaxation could exhibit a plateau if the 15 

distribution G(ω) is very broad (τα = 15000) or oscillate if G(ω) is sharp (τα = 200~6000). It is 16 

noted that the initial oscillations are captured in molecular dynamics simulations. For example, based 17 

on a bead-spring polymer model, Vladkov and Barrat [42] showed that the short time SAF oscillated 18 

and could be fitted with a function identical to the form of Eq. (7). Agrawal et al. [43] conducted 19 

full-atom molecular dynamics simulations of a polyurea system and clearly showed the transition 20 

from initial fast decayed oscillation to long-time decay. 21 

In Fig. 1(b), we covert the stress relaxation into the normalized loss modulus spectrum 22 
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   Im i iE E C  
     , where i is the imaginary unit,  C s  is the Laplace transform of C(t) with 1 

s being the Laplace variable, and Im[z] gives the imaginary part of complex number z. It is noted that 2 

 peaks appear right at the frequency 
2 2       with the width determined by ~2. In the 3 

scenario of two-step relaxation(μ=0), the frequency of  relaxation peaks at  [40, 41]. For a 4 

mechanical β relaxation, this small  peak could locate at a frequency range not accessible by a 5 

conventional DMA system and/or too small (due to small x) to be discernible considering 6 

experimental accuracy. Therefore, we introduce the IET experiment and apply the established 7 

viscoelasticity model of -β relaxation to the response function of excited vibration to examine the 8 

possible result of β relaxation.   9 

 10 

2.2 Theoretical results of the vibration spectrum of a free-standing beam with -β relaxation  11 

Based on the Euler-Bernoulli beam theory, the response function of a free-standing beam can be 12 

expressed as[29]: 13 
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,  (8) 14 

where    H s sE C s  is the dynamic Young’s modulus in the Laplacian domain, A is a variable 15 

scaling with the impulse, I is the second moment of inertia of the beam’s cross-section, λn is the 16 

modal constant for the nth flexural vibration mode, L is the length of the beam, and ρ is the linear 17 

density. Substituting s=iω into Eq. (8), the Fourier spectrum of the beam vibration can be obtained 18 

as: 19 
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is the natural frequency. M(s) is a quartic function with four roots. If these roots are all complex, i.e.,  1 
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the Fourier spectrum F() have double peaks near ωj with 
2 2

dj j jk   (j=1, 2). To demonstrate, 3 

Fig. 2 shows the theoretical double-peaked spectra based on the material parameters used in Fig. 1. 4 

and the natural frequency 0 in the range of 0.98μ to 1.02μ. When 0 is very close to μ, double peaks 5 

are observed and both peak maxima deviate from 0. For example, for the cases of 0 =0.998μ, μ 6 

and 1.002μ. It is interesting to note that μ corresponds to the minimum point between the two peaks. 7 

This observation can be confirmed based on poles of the reciprocal response function Γ
-1 

n8 

(s)=M(s)/N(s) at γ±iμ, which indicates that one of the minima of  F   should be found at 9 

2 2   if double peaks are found. Therefore, the frequency at the minimum point between double 10 

peaks can be considered as the frequency of β process when   . When 0 is not so close to μ, as 11 

exhibited by the cases of 0=0.98μ and 1.02μ, only one peak can be discerned. It should be noted 12 

that even for a single peak case, the frequency at the maximum of the peak could still departure from 13 

the natural frequency 0 because of the influence of  relaxation. This deviation is demonstrated to 14 

be about 2% for the cases of 0=0.98μ and 1.02μ. When 0 is further deviated from μ, e.g., by 15 

changing the dimensions of a sample, the determination of 0 using the peak maximum becomes 16 

more accurate.  17 

 18 

 19 
Fig. 2 Examples of double peaks predicted by the viscoelastic model from NMA.  20 

The results shown in Fig. 2 indicate that the excited vibration of a free-standing glassy beam 21 
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can amplify the  process even though it is very subtle in a stress relaxation curve or a loss spectrum, 1 

as shown in Fig. 1. However, to capture the double-peaked Fourier spectrum, 0 must be very close 2 

to μ. This condition is difficult to meet if μ is not known a prior for a glassy material. In the 3 

following, we present a series of clear double-peaked spectrum obtained in examining a 4 

fluorosilicate glass.  5 

 6 

3. Experimental results  7 

 8 

Fig. 3 Sketch of the impulse excitation technique (a) the setup and (b) typical signal and the Fourier transform 9 

 10 

In the present work, the IET system HT1600 from IMCE, Belgium, was employed. In the IET 11 

stand, a sample is tied by ∅0.2mm PtRh wires, which locates at the two nodal points that have no 12 

displacement according to the first flexural vibration mode, as illustrated in Fig. 3(a). The use of the 13 

thin metal wire is to approximate to the free-free boundary condition and inhibit higher-order 14 

flexural modes. After impacted by a small bar, the sample generates a sound wave corresponding to 15 

its decaying vibration, which transmits along a ceramic bar inside the furnace and is sensed by a 16 

microphone outside the furnace. The acoustic signal is then transformed to the corresponding Fourier 17 

spectrum to analyze the elastic or viscoelastic properties of a material [44], as shown in Fig. 3(b).  18 

The IET setup was employed to examine a fluoride-borosilicate glass S-FSL5 19 

(SiO2(60-70)-B2O3(10-20)-F2(2-10)-Al2O3(0-2)-Sb2O3(0-2), wt.%) procured from OHARA Inc., 20 

Japan. The sample exhibited double peaks has the dimensions of 40.08×7.95×1.98 mm
3
 with mass of 21 

1.5477 g, with the measurement errors <0.01mm and <0.0001g, respectively. S-FSL5 glass has the 22 

room-temperature Young’s modulus of 62.3 GPa and Tg of 500 C based on dilatometry 23 

measurement. The sample was heated from room temperature to Tg+50C with the prescribed heating 24 

rate of 2 C/min. It was noted that the actual heating rate was 2 C/min when the temperature was 25 
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below 547 C. After that, the heating rate decreased automatically due to the limited controllability 1 

of the heating system, i.e., the temperature controller must slowly approach the target temperature for 2 

high accuracy and small fluctuations. Consequently, from 549 C to 550 C it took 7.5 minutes 3 

instead of 0.5 minute. In the tests, only one peak was found when the temperature was lower than 4 

Tg+10 C. But after that, a small bump associated with the peak gradually grew to a remarkable 5 

secondary peak with the temperature increased, leading the double-peak phenomenon. Fig. 4 shows 6 

some typical Fourier spectra. Since the IET system adopted is based on acoustic measurement, the 7 

environmental noises were also recorded, leading to small intensity fluctuations (less than 10) at the 8 

base of the spectra. These noises does not affect the discernment of a secondary peak. Fig. 4 (a) and 9 

(b) shows the cases with a small hump at 511C and 526C, respectively, which can be clearly 10 

observed after zooming in, as shown in the insets. With the temperature increase, two clear peaks are 11 

observed at 531 C, as shown in Fig. 4(c), whereas only an excess wing associated with the main 12 

peak can be found at 540 C, as shown in Fig. 4(d). In the experiment, these two manifestations 13 

appear alternately after 530 C, which are further exhibited in Fig. 4(e) and Fig. 4(f) for T = 549 C 14 

to 550 C, respectively. It is noted that the difference between the spectra at 549 C and 550 C is 15 

substantial, although the temperature difference is only one degree. This could be attributed to the 16 

long aging time between the two temperatures, as explained above. The experimental results shown 17 

in Fig. 4 has all been well fitted by Eq. (9) using Levenberg-Marquardt arithmetic (The fitting 18 

parameters will be discussed later). The adjusted determine coefficient (R
2
) are also shown in the 19 

plots. One may notice that there are still some small humps at both sides of the double peaks as 20 

shown in Fig. 4. We call them “shoulder peaks” since they locate on the “shoulders” of the main 21 

peaks. The shoulder peaks are owing to the vibration of supporting wires (see the explanation in 22 

Appendix). 23 

In Fig. 5, the two frequencies pertaining to the two peak maxima are collected. The lower 24 

frequency corresponds to left peak maximum and the higher one corresponds to the right one. All the 25 

spectra have been fitted using Eq. (9), which leads to the determination of the natural frequency 0 26 

that is also shown in the figure. Obviously, the actual natural frequency ω0, determined from the 27 

instantaneous Young’s modulus and dimensions of the beam (Eq. (10)), differs from two apparent 28 

frequencies obtained from the two peak maxima. It is noted that the natural frequency is close to the 29 

lower frequency, suggesting that 0 < . When the temperature is higher than 530C, the natural 30 
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frequency has a weaker temperature dependence and departure more from the lower frequency. This 1 

slop change of natural frequency around 530 C suggests there may be some complex structural 2 

change in the glass, which needs more investigations.  3 

 4 

 5 

Fig. 4 The double-peak phenomena in Fourier spectra of the free vibration signal of S-FSL5 at different temperature. In 6 

the insets of (a) and (b), the solid lines are used to connect the experimental points, while the dashed curves are used to 7 

show the tendency of left peak without humps. In the main plot of all figures, the circles are experimental data, and the 8 

solid curves are theoretical predictions. R
2
 is the adjusted determination coefficient representing fitting quality. 9 

 10 

 11 
Fig. 5 The temperature dependence of higher/lower frequency from the spectrum, and the calculated natural frequency 12 

and relaxation frequency. The lines are artificial trendlines.   13 
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 1 

4. Discussions: temperature dependence of the mechanical β relaxation in the fluorosilicate 2 

glass  3 

Based on the proposed model, the temperature dependence of β relaxation in the fluorosilicate 4 

glass is exhibited in Fig. 6. The central frequency μ and the HWHM γ are plotted in Fig. 6(a) and (b), 5 

respectively, and the proportion x is plotted in Fig. 6(c). Owing to the experimental noise and also 6 

because the proposed model could be still simplistic to describe real physics, all the obtained 7 

parameters fluctuates with temperature. However, the general trends of these parameters are clear. It 8 

is noted that the frequency associated with the  relaxation decreases with temperature, as shown in 9 

Fig. 6(a), and that γ is weakly dependent on (or slightly decreases with) temperature when T < 540C 10 

and then increase with temperature when T > 540 C, as shown in Fig. 6(b). This indicates the 11 

distribution of INM frequencies becomes broader after 540 C, which could be ascribed to the 12 

increase of the disorderliness of the atomic system. The fraction of β relaxation x is smaller than 13 

0.0025, which agrees with previous investigations on the strength of β relaxations [16, 17, 45]. In 14 

addition, x increases with temperature, especially when the temperature is larger than 530 C, as 15 

shown in Fig. 6(c).    16 

 17 

 18 
Fig. 6 The temperature dependence of central frequency μ, the HWHM γ, and proportion x. The points are from the 19 

theoretical calculation based on experimental data, and the curves are artificial trendlines. 20 

 21 

The frequency μ does not follow Arrhenius or super-Arrhenius law. Such a result is seemingly 22 

consistent with the recent experimental work of Hecksher et. al [41] who used their self-developed 23 
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device to reveal that the mechanical β peak frequency may also decreases with temperature in 1 

squalane. The positive temperature dependence of β frequency may be comprehensible [20] if the 2 

reciprocal of β frequency is considered to be a relaxation time, but the negative temperature 3 

dependence of  frequency is anomalous. However, the latter is not unusual and also found in DS 4 

measurements of various glass formers [7, 12, 21-23]. The existing explanation is phenomenological 5 

based on a minimal model (MM) of asymmetric double-well potential [7] or a nonmonotonic 6 

relaxation kinetic model (NRKM) [12]. In MM, the two energy wells have different temperature 7 

dependence, thus the relaxation time may show anomalous temperature dependence. In NRKM, a 8 

rather counterintuitive physical picture is proposed. That is, with temperature increase the total 9 

volume of the system changes at a rate smaller than the rate of defect increase. Therefore, the 10 

average free volume associated with every defect becomes smaller and then reduce the space of β 11 

relaxation, leading to the negative temperature dependence of  relaxation frequency.  12 

 13 

 14 
Fig. 7 The sketch of the solid-like and liquid-like region of glass near the glass transition. The grey regions are 15 

solid-like and the while regions are liquid-like. 16 

 17 

Based on the NMA used in the present work, another view may be provided for 18 

comprehending negative temperature dependence of the β frequency. Based on our model, the 19 

oscillation frequency of β process is because the WDOS G() has a peak at the corresponding 20 

frequency range. This requires very weak interactions and large atomic clusters. It is presumed that 21 

only in weak bonded regions β relaxation could take place [46], thus the negative temperature 22 

dependence of β relaxation is owing naturally to the weaker interactions when temperature increases 23 
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and volume expands. In S-FSL5, the atoms are bonded by ionic-covalent interaction in structural 1 

polyhedron and connected by the long-range interactions (for example, Coulombic interactions [47]) 2 

between polyhedrons. Moreover, the introduction of the network modifier fluorine increases the 3 

possibility of isolated polyhedrons. The β relaxation is found in the experiment at the temperature 4 

higher than Tg but much lower than the melting point. In this temperature regime, the materials 5 

experience a transition from solid-like to liquid-like state, which can be described by the picture of 6 

Orowan [48], as illustrated in Fig. 7. When the temperature is low, the material must have local 7 

mobile regions surrounded by a rigid matrix that did not permit viscous flow. With temperature 8 

increase, the sizes and numbers of such regions grow until they are connected, and viscous flow 9 

becomes possible. These liquid-like regions are reminiscent of Johari and Goldstein’s picture of 10 

“islands of mobility” (or “loosely packed isolated regions”) [16, 24] which has also been employed 11 

by Nemilov [47] to explain  relaxation in silicate-based glasses. When the temperature is lower than 12 

Tg, they provide the room for β relaxation of some small atomic clusters. When the temperature is 13 

higher than Tg, the mobility and size of liquid-like regions increase significantly, and some bigger 14 

atomic clusters (mainly oxide-network patches in S-FSL5) fall off from the matrix and take part in 15 

the activities of β relaxation. Besides, the long-range interactions become also weaker with 16 

temperature increase. Therefore, the β relaxation can be found at a relatively low frequency which 17 

decreases with temperature, as shown in Fig. 6(a). In addition, the fraction of  relaxation, namely x, 18 

should increase with temperature, which is also corroborated by Fig. 6(c). 19 

 20 

5. Conclusions and remarks 21 

We established a viscoelastic model based on the normal mode analysis of potential energy 22 

landscape to describe mechanical  and β relaxations in a glassy material. Based on the model, it is 23 

predicted that an apparent double-peak phenomenon in the Fourier spectrum of a free beam vibration 24 

can be generated by a very weak β process when the frequency of β relaxation peak is close to the 25 

natural frequency of the specimen. This result has been validated by the acoustic spectrum of a 26 

fluorosilicate glass (S-FSL5) beam excited by a mid-span impulse. By analyzing the experimental 27 

results with the proposed model, it is found that there is a negative temperature-dependence of the β 28 

frequency in the fluorosilicate glass, which can be explained based on the picture of fragmented 29 

oxide-network patches in liquid-like regions.   30 
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Appendix: On the “shoulder peaks” 1 

     2 

Fig. A1 The vibrations of the detected system 3 

 4 

 Fig. A1(a) and (b) show how a beam specimen is tied using metal wires in our experiment 5 

and the schematic of the testing system in a side view, respectively. After the beam specimen is 6 

excited by a tapper, the supporting wires also vibrate, making the beam move up and down and 7 

changing the distance between the beam and the microphone. The sound intensity signal collected by 8 

the microphone can be expressed as: 9 

 s sS     (A1) 10 

where    exp coss s s sS A k t t   represents the vibration of a point in the beam sample, s is the 11 

sound intensity and χ is the conversion coefficient from the beam displacement to the sound 12 

intensity. Considering that in Eq. (A1) χ is related to the distance L0 between the beam and the 13 

microphone, and the vibration of wires,    w w w wexp cosS A k t t  , will slightly change the 14 

distance, we thus write χ as a function of (Sw+L0). The parameters S, A, k, and ω used above 15 

represent the displacement, amplitude, decay rate, and angular frequency of the specified vibration, 16 

respectively, with subscripts “s” and “w” pertaining to specimen and wire, respectively. Since 17 

Sw<<L0, expressing  w 0S L  by Tayler’s serials at L0 leads to 18 

    w 0 0 w1S L S        (A2) 19 

where  0 0L  and    0 0L L   . Substituting Eq. (A2) into Eq. (A1) and neglecting 20 

the higher-order items, we have  21 
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  (A3) 1 

where *

0M sA A  and *

0

1

2
S s wA A A   are the amplitudes of sound signal at the frequencies s 2 

and sw respectively, and subscripts M and S pertain to the main peak and the shoulder peaks, 3 

respectively. 4 

 5 

 6 
Fig. A2 The Fourier spectrum of the specimen at room temperature. In the plot (a) fs = 6820.68Hz and Δ1=Δ2=320.44Hz; 7 

the Fourier frequency resolutions is 7.63Hz. (b) fs = 3097.50Hz and Δ1=Δ2=57.22Hz; the frequency resolutions is 8 

3.815Hz 9 

 10 

Eq. (A3) indicates that there is a set of symmetric shoulder peaks at 1,2=s±w in the Fourier 11 

spectrum of the detected signal. Shoulder peaks are generally very weak and only discernable at a 12 

high temperature, at which the main peak of beam vibration would have been severely depressed due 13 

to viscous response, as shown in Fig. 4(e) and (f). For a high-quality acoustic signal, shoulder peaks 14 

can also be observed even at even at a room temperature. Fig. A2(a) and A2(b) exemplify the Fourier 15 

spectra of some glass samples at room temperature (20C). These glasses are borosilicate (L-BAL42, 16 

40.08×7.98×1.97 mm
3
, 1.9471g, from OHARA Inc., Japan) and chalcogenide glass (IRG206, 17 

40.03×8.04×2.45mm
3
, 3.6396g, obtained from Hubei New Hua-Guang Information Materials Co., 18 

Ltd, China). Using the logarithmic scale in the ordinate, the shoulder peaks are clearly observed, 19 

though they are almost two order lower than the main peak.  20 
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