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Abstract 

A novel Monte Carlo method is proposed to improve the computational accuracy and efficiency of 

Monte Carlo methods in examining the polydisperse micro- and nano-particle dynamics including 

deposition and coagulation processes in enclosed or vacuum chambers. In the original differentially 

weighted Monte Carlo (DWMC) method, the coagulation and deposition events are both treated by 

stochastic approaches. In the present study, the deposition event is solved by a deterministic method where 

a proportion of the deposited real particles inside a simulated particle is determined by a probability related 

to the deposition kernel. Furthermore, the operator splitting method is adopted to couple the stochastic and 

deterministic processes. This method is verified against both analytical solutions and experimental results 

for particle deposition and coagulation dynamics. The particle size distributions are obtained and the results 

exhibit excellent accordance with the corresponding analytical solutions and experimental results. 

Compared with the original DWMC method, the simulation results show that the proposed Monte Carlo 
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method can obtain very favorable improvement in both computational accuracy and efficiency. 

Keywords: Monte Carlo simulation, particle size distribution, deposition, coagulation, sodium chloride 

aerosols, paper ash particles 

1. Introduction

Particle dynamics including deposition and coagulation processes are quite common in both

engineering applications and natural phenomena, such as the precipitation of rain, snow and fog [1]; the 

removal process of fly ash particles in thermal power plant [2]; the migration process of smoke particles 

from exhaust pipe of the vehicle [3]; chemical vapor deposition and micro- or nano-particle synthesis in 

pharmaceutical and chemical industry [4,5], etc. In these areas, the particle deposition and coagulation 

processes are quite crucial in determining the particle size distributions which will affect the physical and 

chemical properties, such as, the toxicity, radioactivity, light scattering and so on [6,7]. Furthermore, the 

highly concentrated indoor micro- and nano-particles could cause great concerns about both environmental 

damage and human health and have attracted people’s attentions nowadays [8]. Thus, the dynamical 

behaviors including deposition and coagulation of the particles are of vital importance in the study of indoor 

ultrafine particles. Therefore, the understanding of the variation of particle size distributions resulting from 

deposition and coagulation processes appears to be particularly important.  

The micro- and nano-particles are either released directly into the atmosphere or produced by natural 

or human behaviors. In the formation and growth process, the particles undergo several chemical and 

physical transformations. In the first step of particle formation process, a critical size of nucleus is formed 
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from vapor and then the nucleus grows up gradually to form a larger size particle, during which a critical 

free energy is required to obtain stable particles with critical radius [9]. The nucleation process results in a 

decrease in both enthalpy and entropy. A free‐energy barrier needs to be overcome before the phase 

transition becomes spontaneous [10,11]. In the following particle growth process, particle will experience 

dynamical processes, such as, collision, coagulation, deposition and so on. And for a specific system with 

only coagulation and deposition, the thermodynamic theory also works in a qualitative understanding that 

stochastic processes increase the entropy and reduce Gibbs free energy. 

The particle dynamical mechanisms can be quite complicated in different applications. For example 

the deposition mechanisms include Brownian diffusion, gravitational sedimentation, turbulent impaction, 

interception and inertial impaction, wet removal and so on [1,12]; the coagulation mechanisms include 

Brownian diffusion, turbulent diffusion, thermal motion, electrical charges, preferential concentration and 

so on [13]. In different regimes, the mechanisms and importance of deposition and coagulation will be 

different. Okuyama et al. [14] investigated the aerosol dynamical behaviors experiencing Brownian 

coagulation, Brownian diffusive deposition and gravitational sedimentation numerically and 

experimentally and studied the controlling domain of these three factors. Hussein et al. [15] and Rim et al. 

[16] estimated the deposition rates of ultrafine particle size distributions considering the coagulation effect

and concluded that coagulation becomes significant for ultrafine particles when the total number 

concentration is higher than 104 cm-3. Yu et al. [17] investigated the evolution of ratio of coagulation to 

deposition in a ventilated chamber and found that the variation heavily depends on the particle size 
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distributions and vary in different regimes. Xiao et al. [18] investigated the deposition rate and coagulation 

coefficients of indoor particles and found that the deposition and coagulation rates both increase with the 

increase of air temperature and the enhancement of indoor air mixing intensity.  

Since it is quite difficult to derive the analytical solutions or to do experiments for describing particle 

dynamics considering such complicated factors, numerical simulation methods tend to be quite popular in 

predicting particle dynamical processes [19]. In the previously proposed numerical methods, the most 

widely used methods are the method of moment (MOM) [17–21], sectional method (SM) [25,26], and 

Monte Carlo (MC) method [1,27,28]. Both of the MOM and SM are deterministic methods [29,30], which 

are relatively accurate and efficient for describing the particle size distributions in single-component and 

monodispersed particle systems. Nevertheless, it is quite complicated or difficult to predict the particle size 

distributions in multicomponent and polydisperse particle systems using these two methods. 

 Monte Carlo (MC) methods have become more and more preferred by researchers recently due to its 

advantages in describing the multicomponent and polydisperse particle systems. MC methods imitate the 

particle dynamical behaviors with a cluster of fictitious or simulated particles, thus the specific information 

of the particles can be included in the algorithm and it is also easy to obtain the history, trajectory and 

structural information of the particles using MC method [31]. However, one disadvantage of MC method 

is its high requirement of computational cost. Weighted Monte Carlo methods [32–34] were proposed to 

obtain higher precision and efficiency of MC methods. Herein, the further development and improvement 

of the differentially weighted operator splitting Monte Carlo (DWOSMC) method is presented for 
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describing polydisperse particle deposition and coagulation dynamics in enclosed chambers which is based 

on the differentially weighted Monte Carlo (DWMC) algorithm proposed by Zhao et al. [1,35,36].The 

DWOSMC method is proven capable of predicting the evolution of particle number concentrations, particle 

geometric mean size and particle size distributions (PSDs) considering particle deposition and coagulation 

dynamics. The results are validated through both analytical solutions and experimental results. 

2. Methods

2.1 Thermodynamic theory and dynamical equations 

2.1.1 Thermodynamic theory 

Thermodynamics studies equilibrium based on the second law of thermodynamics: in an isolated 

system, entropy increases in all spontaneous processes. In a thermodynamic process, the Gibbs free energy 

change is, ∆G=∆H-T∆S (where ∆H is the enthalpy change and ∆S is the entropy change). If ∆G<0, the 

thermodynamic process would happen spontaneously, which also works for the formation and growth of 

particles [10,37]. In the nucleation process of particles, the competition between the enthalpy release and 

the entropy decrease determines the energy barrier for nucleus formation and the Gibbs free energy change 

determines the critical cluster size [9–11]. Thus, the formation or the driving force of particle nucleation 

process could be explained by a thermodynamic process or the Gibbs free energy change. And for a specific 

particle system with only coagulation and deposition, the thermodynamic theory is implicitly included in 

the model formulation of coagulation and deposition kernels considering the stochastic processes that occur 
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in the system studied. The physical principles also work in a qualitative understanding that stochastic 

processes increase the entropy and reduce Gibbs free energy. 

2.1.2 Dynamical equations 

The variation of PSD considering deposition and coagulation processes is expressed by the general 

dynamic equation (GDE) [38], 

coag depo

( , ) ( , ) ( , )    
= +

  

   
      

n t n t n t
t t t

 (1) 

where υ is the size of particles, υ may refer to the volume, radius or the diameter, n is the particle number 

density with a size υ. Eq. (1) represents the variation of the number density of particles with size υ due to 

coagulation which is described in Eq. (6) and change of number density attributable to deposition processes 

which is described in Eq. (9), respectively. 

Coagulation refers to the process that two particles collide and stick together. Assuming Nij is the 

collision frequency between two spherical particles i and j per unit volume per unit time, then the collision 

frequency is [19], 

ij ij i jN = n n  (2) 

where βij is the particle collision frequency function. 

In case of coagulation, the rate of formation of particles with size υk is  

form
1
2

k i j

ij
= +

n = N
  

  (3) 

where υk= υi+ υj, and the factor of ½ is introduced because each collision is counted twice in the summation. 

the rate of loss of particles with size υk is, 
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loss 1 iki=
n = N

 (4) 

Therefore, the net rate of generation of particles with size υk is [19], 

form loss 1

1
2

k i j

k
ij iki=

= +

dn
=n n = N N

dt   


− −  (5) 

which can be further expressed as Eq. (6). 

' ' ' ' ' '

0 0
coag

( , ) 1
( ( , ) ( , )d ( , ) ( , ) ( , )d

2
, )

vn t
n t n t n t n t

t


             


− − −


  =  
  (6) 

where β(υ, υ′) is the particle coagulation kernel between particles with size υ and particles with size υ′. 

There are different expressions for the coagulation kernel with varying size regime. In the free 

molecular regime, the coagulation kernel is expressed as [19], 

( )
1/2

21/6 1/2 1/3 1/31 1
(3 / 4 ) (6 / )ij b i j

i j

k T v v
v v

  
 

= + +  
 

(7) 

In the continuum regime, the coagulation kernel is expressed as [19], 

( )1/3 1/3
1/3 1/3

2 1 1
3




 
 
 
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k T
= v +v +

v v
(8) 

The change of number density attributable to deposition processes is described as follows. 

depo

( , )
( ) ( , )


 


−



  = 
 

n t
R n t

t
(9) 

R(υ)  is the deposition rate which could result from Brownian diffusion, gravitational sedimentation, 

electrical and thermal forces. 

2.2 DWOSMC method for simulating deposition and coagulation dynamics 

2.2.1 The choice of time-step 

The characteristic timescale of coagulation process is the following [36,39] . 
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N
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where Ns and Vs are the number of simulated particles, and the volume of computational simulation system 

(the volume of the chamber in the present study), respectively. βij
  is the normalized coagulation kernel of 

simulated particles i and j taking the factors of “weight” into consideration, which is as follows. 

' 2 max , = ( ) / ( + )ij ij j i j i jw w w w w (11) 

For deposition processes, the characteristic timescale is expressed as: 

depo min | 1 /


= （ ）ii R (12) 

where Ri is the deposition kernel. 

A suitable time-step, τ should be used which is smaller than both the characteristic timescales of 

deposition and coagulation processes. Therefore, an empirical parameter, α is utilized herein, and τ is 

described as: 

coag depomin ,   =  （ ） (13) 

The empirical parameter, α is a multiplicative factor and is usually set as 0.01 or less to ensure that the 

particle dynamical events are uncoupled within a time step [32,34,40]. In the present study, α has a value 

of 0.001-0.01. 

2.2.2 The treatment of coagulation events 

The treatment of coagulation events is referring to the differentially weighted Monte Carlo (DWMC) 

method and is described as follows [35,39]. 

The DWMC method tracks each simulated particle to check whether coagulation takes place on 
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particle i based on the following equation. 

coag, 1 exp( / 2)= − −i s iP V C (14) 

s '
2

1,

1

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N
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j j i

s

iC
V

(15) 

Afterwards, a random number r1 is selected which is uniformly distributed between (0,1), if Eq. (16) 

is satisfied, particle i is regarded as the first partner participating in the coagulation event, otherwise, next 

simulation particle is tracked. 

1 coag, ir P (16) 

The second coagulation partner is chosen using the acceptance-rejection method, if Eq. (17) is satisfied, 

particle j is selected as the second coagulation partner. 

' '
2 ,/ max( ) | 

 
 ij mn m nr (17) 

where r2 is another random number selected between (0,1) which is also uniformly distributed. 

Once the coagulation pair i and j are determined, coagulation would be managed as Eq. (18) where 

the conservation of volume is considered. 
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where wi
' ,  wj

' , vi
'  and vj

'  denote the weight and volume of the produced numerical particles i and j after 

the treatment of coagulation process. 

2.2.3 The treatment of deposition events 
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In the DWMC method, the calculation of deposition event on particle i is also based on the 

probabilistic process and stochastic approach: the probability of simulated particle i depositing is defined 

as Pdepo,i, if Eq. (19) is satisfied, then particle i will be scavenged and will no longer be tracked. Instead, a 

stochastic process will be employed to select a random simulated particle j : the index of particle j would 

be determined by Eq. (20). In this selection process, it should be confirmed that the particle index j is not 

the same with i. Once j is selected, it will be split into two new simulated particles i' and j' [1] to maintain 

constant number of the simulated particles. Afterwards, the deposition event would be managed as Eq. (21).  

3 depo, ir P  (19) 

4integer[ ]=  sj r N  (20) 

' '

' '

/ 2

/ 2

= =

= =
i j j

i j j

w w w

v v v
 (21) 

In the present study, the treatment of deposition events is different from the DWMC method. The 

deposition event is solved by a deterministic method: if the probability of deposition taking place in 

simulated particle i is Pdepo,i, then it is assumed that the proportion of the deposited real particles inside 

simulated particle i is Pdepo,i. Therefore, after the deposition event, the weight of particle i, wi, will be 

changed according to the following equation. 

'
depo,i(1 )i iw w P=  −  (22) 

where the probability of particle i depositing within τ, Pdepo,i, is expressed as Eq. (23) [41]. 

depo,i 1 exp( )= − − iP R  (23) 
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where Ri is the deposition kernel of particle i. 

2.2.4 The flowchart of DWOSMC method 

Herein, a differentially weighted operator splitting Monte Carlo (DWOSMC) method is further 

developed for predicting the evolution of PSDs considering deposition and coagulation in polydisperse 

particle systems. In this method, the deposition event is solved by a deterministic approach, and the 

coagulation event is solved by a stochastic method. 

Fig. 1  Illustration of DWOSMC algorithm for simulating deposition and coagulation processes. 

The flowchart of the DWOSMC method for describing deposition and coagulation processes is 
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described as follows: 

(1) Start and predetermine the total MC loops, L. 

(2) Initialize the particle system. The polydisperse particles are classified into several 

sections and the initial parameters of particle properties (size distribution, weight, etc.) is firstly 

assigned. The weights of simulated particle i, wi is defined as, 

real

simulated




=

( )

( )
i

N
w

N
 (24) 

(3) Determine a time-step τ according to Section 2.2.1. 

(4) Particle dynamical processes integration. Particle deposition and coagulation processes 

are calculated by deterministic and stochastic methods, respectively, and then the calculated results are 

integrated by applying the operator splitting method as the following [42]: 

2exp( ) exp( d) exp( s) ( )    = +  (25) 

where Ψ represents the total particle dynamical processes, Ψd represents the deposition process, and 

Ψs represents the coagulation process. 

Within τ, the deposition event is first calculated and then the coagulation event is treated.  

(5) Handle the deposition process according to Section 2.2.3. 

(6) Handle the coagulation process according to Section 2.2.2. 

(7) The properties and parameters of the simulated particles (size distribution, weight, etc.) 

will be updated. 

(8) Judgement of the status of the current MC loop: If the present simulation time, T reaches 
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the simulation end time Ts, exit the current MC loop. If not, repeat steps (3) to (7). 

(9) Judgement of the status of the numerical simulation: If the present MC loop number N is

smaller than L, start a new MC loop. If N equals to L, the mean value of the particle information should 

be calculated to output the properties of the particle system.  

The flowchart of the DWOSMC model scheme for simulating deposition and coagulation processes is 

presented in Fig. 1. 

3. Results and Discussion

In the present study, the capability of DWOSMC method is validated by seven cases considering

different particle dynamic processes in different mechanisms in enclosed chambers. In the first two cases, 

deposition processes considering the mechanisms of gravitational effect and Brownian diffusion are 

considered where analytical solutions exist [43]; in Case C, aerosol particle precipitation by raindrops is 

investigated where analytical solutions exist [44]; in Case D and Case E, deposition and coagulation 

processes are considered where analytical solutions also exist [45]. For the sake of comparing the 

computational precision and efficiency, the results of DWMC method are also presented for the purpose of 

comparison in the first five cases. Afterwards, the DWOSMC method is validated against the experimental 

results in two cases where sodium chloride aerosol dynamics [46] and paper ash particle dynamics [47] are 

considered, respectively. Lastly, the DWOSMC method is used to study the particle dynamics in a vacuum 

chamber for the first time. Herein, unless otherwise stated, the number of simulated particles used is 3000, 

and the particles are split into 200 sections for the purpose of describing the particle size distributions. 
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3.1 Case A and Case B: deposition processes 

In Cases A and B, the initial particles have a log-normal size distribution according to Eq. (26) [43]. 

2
g00

p 2
00

ln ( / )1
( , 0)= exp

2 ln2 ln

r rN
n r

r  
−
 
 
 

(26) 

where N0, rg0, σ0 are the initial particle number density, initial geometric mean radius and the geometric 

standard deviation, respectively. 

The initial conditions and numerical settings used for Cases A and B are summarized in Table 1. 

Table 1 Initial conditions and numerical settings for Cases A and B. 

Cases N0 (m-3) rg0 (μm) σ0 R (s-1) tstop (s) 

A 1×106 3 1.5 Rg 20000 

B 1×106 0.1 1.5 Rg + Rd 1560 

Rg is the deposition kernel in gravitational-dominant size range, and is expressed as the following 

equation. 

2
g ( , )R r t Br= (27) 

where B=2ρg/9μH, ρ=2000kg/m3, g=9.782m/s2, μ=3.14×10-5kg/(m·s), H=2.5m. 

Rd is deposition kernel in diffusion-dominant range, and is expressed as the following equation. 

2( 1)/
d ( , ) n nR r t Ar− −= (28) 

( 1)/ 2
2sin( / )1.7

6

n n nn
B

nS n k Lk T eA
V



 

− −

=
  
       

(29)
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2 =
Re

L
L (30) 

where λ=2×10-8 m, kB=1.38054×10-8 J·K, ke=36 s-1, T=433.15 K, L=1 m, Re=3000, V = 3m×5m×2.5m. 

In Case A, the deposition process in gravitational-dominant size range is considered as is shown in 

Table 1. Since for relatively large particles, the gravitational deposition effect will dominate the particle 

size distribution evolution. The change of normalized particle number density and normalized particle 

geometric mean radius over time for is shown in Fig. 2, and the evolution of PSDs for several time periods 

(t = 0 s, 700 s, 2000 s, 5000 s) is shown in Fig. 3. 

Fig. 2  Variation of N/N0 and r/rg0 for Case A. Fig. 3  Variation of PSDs for Case A. 

In Case A, a monodispersed particle system is also examined. It can be seen from Fig. 2 that for the 

gravitational-dominant deposition process, the particle number density reduces as time elapses because of 

the deposition effect; the particle geometric mean radius also decreases over time since the larger particles 

have a higher proportion among the deposited particles because of the gravitational effect. For the 

monodispersed particle system, the results calculated by the DWOSMC and DWMC methods both have 

perfect agreement with the analytical solutions. In the polydisperse particle system, the results calculated 

by DWOSMC method and DWMC method are also in accordance with the analytical solutions, and the 
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calculated particle number density and particle geometric mean radius from DWOSMC are closer to the 

analytical solutions than the DWMC method. 

From Fig. 3, as time elapses, the particle size distribution curves grow narrower and lower because the 

particle number concentrations at all particle radius become smaller due to the deposition effect. It can also 

be seen that the peak radius becomes smaller and the curve moves towards the direction of smaller radius, 

because the larger particles have a higher proportion among the deposited particles due to the gravitational 

effect, leaving relatively small size particles in the chamber. It can also be seen that the results calculated 

by the DWOSMC and DWMC methods accord well with analytical solutions, while DWOSMC exhibits 

much smaller fluctuations than the DWMC method, which shows the improvement in accuracy when 

predicting the particle size distributions. 

In Case B, the deposition process in intermediate size range is considered as is shown in Table 1. 

Under this condition, the gravitational deposition effect and the Brownian diffusion deposition effect both 

affect the particle size distribution evolution and neither should be neglected.  

The variation of the normalized particle number density and normalized particle geometric mean 

radius for Case B is shown in Fig. 4, and the evolution of PSDs for several time periods (t = 0 s, 50000 s, 

10000 s, 230000 s) is shown in Fig. 5. From Fig. 4, the particle number density reduces as time elapses 

because of the deposition effect as is expected. The particle geometric mean radius increases over time 

which is different from Case A, this is because although the larger particles have a higher proportion among 

the deposited particles due to the gravitational effect, the smaller particles have a higher proportion among 
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the deposited particles due to the Brownian diffusion effect. Therefore, the variation of the particle 

geometric mean radius is attributable to the combined effect of the gravitational and Brownian diffusion 

deposition process. And it can also be concluded that the Brownian diffusion effect dominate the particle 

size distribution evolution in Case B. From Fig. 5, it can be seen that the particle size distribution curve 

grows narrower and lower due to the deposition effect. It can also be seen that the peak radius becomes 

larger and the curve moves in the direction of larger radius, because the Brownian diffusion effect dominate 

the total deposition process. It can also be seen that the results calculated by the DWOSMC and DWMC 

methods are in accordance with the analytical solutions, while the DWMC method shows much more 

fluctuations which is the same with Case A. 

Fig. 4  Variation of N/N0 and r/rg0 for Case B. Fig. 5  Variation of PSDs for Case B. 

3.2 Case C: wet removal of aerosol particles by precipitation 

In case C, the variation of particle size distributions of aerosol particle precipitation by raindrops is 

investigated. Both the aerosol particles and raindrops are represented by numerical particles with their 

corresponding “weight”. The Brownian diffusion wet removal mechanism is considered. The scavenging 

coefficient Ri of simulated particle i is calculated by Eq. (31) [1]. 
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where the collection kernel Ck(da, dr) between aerosol particle a and raindrop r is calculated as Eq. (32), 

and the collection efficiency Ce(da, dr) is expressed as Eq. (33) [48] . 
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where u(dr) is the falling velocity of the raindrops with diameter of dr, and α is the volume fraction of the 

raindrop, Pe = 3πμadrurda
2/(3.328kbTλ), is the Peclet number, σ = μw/μa, J = 1-6α1/2/5+α2/5, 

K = 1-9α1/3/5+α+α2/5. 

In Case C, the initial aerosol particles and raindrops both have lognormal distributions according to 

Eq. (34). 
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(34) 

The numerical settings and initial conditions of Case C are detailed in Table 2. 

Table 2 Initial conditions and numerical settings for Case C. 

Particles N0 (m-3) dg0 (μm) σ0 tstop (s) 

Aerosols 1×106 0.001 1.5 

10000 

Raindrops 1×105 100 1.2 

The variation of normalized particle number density is shown in Fig. 6, and the variation of PSDs for 
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several time periods (t = 0 s, 600 s, 1200 s, 2400 s, 5400 s, 10000 s) is given in Fig. 7. Fig. 6 indicates that 

the particle number density decreases over time because of the precipitation process. From Fig. 7, the 

particle size distribution curves grow narrower and lower and the peak volume of the curve moves gradually 

towards the direction of larger diameter. The results calculated by the DWOSMC and DWMC methods 

both have good accordance with the analytical solutions [44]. 

  

Fig. 6  Variation of N/N0 for Case C. Fig. 7  Variation of PSDs for Case C. 

3.3 Case D and Case E: deposition and coagulation processes  

In Cases D and E, the initial particles have an exponential size distribution according to Eq. (35). 

/ g0
p 0 g0( , 0)=( / ) e

v v
n v N v

−  (35) 

where N0 and vg0 are the initial number density and geometric mean volume of the particles, respectively. 

The numerical settings and initial conditions of Cases D and E are detailed in Table 3. 

Table 3 Initial conditions and numerical settings for Cases D and E. 

Cases N0 (cm-3) vg0 (μm3) β (cm3·s-1) R (s-1) tstop (s) 

D 1×106 0.027 6.405×10-10 3.2025×10-4 1560 
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E 1×106 0.027 6.405×10-10 3.3928×10-3×v2/3 1560 

In Case D, the coagulation and deposition kernels are both constant as shown in Table 3. The variation 

of normalized particle number density and normalized geometric mean volume are shown in Fig. 8, and the 

variation of PSDs (t = 0 s, 750 s, 1500 s) is given in Fig. 9.  

  

Fig. 8  Variation of N/N0 and v/vg0 for Case D. Fig. 9  Variation of PSDs for Case D. 

From Fig. 8, as time elapses, the particle number density decreases since both the coagulation process 

and deposition process will reduce the particle number. The particle geometric mean volume increases due 

to the coagulation and deposition processes. From Fig. 9, the particle size distribution curves grow narrower 

and lower due to the coagulation and deposition processes. It can also be seen that the peak volume of the 

curve almost maintains at the same position which is the combined effect of coagulation and deposition. 

The PSDs calculated by the DWOSMC and DWMC methods both have good accordance with the analytical 

solutions [45], and the results calculated by DWOSMC are closer to analytical solutions than the DWMC 

method when predicting the variation of particle number density and geometric mean volume. For 

predicting the particle size distributions, it can be seen that the DWOSMC also experience somewhat 
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fluctuations as the same with the DWOMC method because it also uses stochastic method when dealing 

with the coagulation process. 

For Case E, a coagulation kernel with constant value is adopted and the deposition kernel in 

gravitational-dominant size range is adopted as shown in Table 3. The variation of normalized particle 

number density and geometric mean volume are shown in Fig. 10, and the variation of particle size 

distributions (t = 0 s, 750 s, 1500 s) is shown in Fig. 11.  

From Fig. 10, as time elapses, the particle number concentration decreases as is the same with Case 

D. The particle geometric mean volume does not vary monotonically which is different from Case D. It can 

be seen that the particle geometric mean volume firstly increases and then decreases over time, which is 

the combined effect of the coagulation process and deposition process. The coagulation events will make 

the particle size larger while the gravitational-dominant deposition event will make the particle size smaller. 

Therefore, it can be concluded that the coagulation dynamics firstly mainly governs the particle dynamical 

process and then the deposition process dominates the particle dynamical process at the second simulation 

period. From Fig. 11, the evolution of the particle size distributions shares the same tendency with Case D. 

The results calculated by the DWOSMC and DWMC methods both have good consistency with the 

analytical solutions [45]. 
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Fig. 10  Variation of N/N0 and v/vg0 for Case E. Fig. 11  Variation of PSDs for Case E. 

3.4 Case F: polydisperse sodium chloride aerosol dynamics 

In Case F, the variation of polydisperse sodium chloride aerosols in a closed chamber is observed, the 

results obtained from DWOSMC are validated against the experimental results provided by Kim et al. [46]. 

The case where the fan rotation speed is 0 rpm indicates that no turbulence effect should be considered. 

Particles are initially log-normally distributed with diameter ranging from 30 to 100 nm where Brownian 

coagulation kernel [49] which is shown in Eq. (7) and constant deposition kernel are considered. The initial 

conditions and numerical settings are detailed in Table 4. 

Table 4 Initial conditions and numerical settings for Case F. 

Case N0 (m-3) dg0 (nm) σ0 β (m3·s-1) R (s-1) tstop (s) 

F 1×1012 50 1.6 Eq. (7) 2.4×10-5 2000 

The variations of normalized particle number density and geometric mean diameter are shown in Fig. 

12, and the variation of particle size distributions (t = 0 s, 1000 s, 2000 s) is shown in Fig. 13. It can be seen 

that under this experimental condition, the particle number density decreases over time and the particle 

diameter increases over time where the coagulation process is dominant. The calculated results from 
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DWOSMC have good consistency with the experimental results with the maximum relative error of 1.7% 

and 4% for the particle number density and geometric particle mean diameter, respectively. From Fig. 13, 

the PSD curves become lower and narrower rapidly over time due to the coagulation and deposition effects, 

and the peak value of the PSD moves in the direction of larger diameters. The calculated PSD from 

DWOSMC is consistent with the results from the method of moment (MOM) [50]. 

Fig. 12  Variation of N/N0 and d/dg0 for Case F. Fig. 13  Variation of PSDs for Case F. 

3.5 Case G: paper ash particle deposition and coagulation dynamics 

In case G, the variation of PSDs of polydisperse paper ash particles in an enclosed chamber is 

investigated, the calculated results from DWOSMC are validated against the experimental results provided 

by Schnell et al. [47]. The particles are initially log-normally distributed where constant coagulation and 

deposition kernels are considered. The initial conditions and numerical settings are detailed in Table 5. 

Table 5 Initial conditions and numerical settings for Case G. 

Case N0 (m-3) dg0 (μm) σ0 β (m3·s-1) R (s-1) tstop (s) 

G 1.36×1012 0.079 1.57 1.22×10-15 2.68×10-4 3600 

The evolution of particle geometric mean diameter for Case G is shown in Fig. 14. The particle 
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geometric mean diameter after 2100s provided by Schnell et al. [47] is 0.133 μm, and the calculated result 

by DWOSMC method is 0.135 μm, the relative error is 1.5% which is quite small, so it can be concluded 

that the numerically calculated results obtain quite high consistency with the experimental results for paper 

ash particles in an enclosed chamber considering constant coagulation and deposition processes. 

The variation of particle size distributions (t = 0 s, 600 s, 2100 s) for Case G is shown in Fig. 15. It 

can be seen that in this experimental condition, the particle size distribution curves become lower and 

narrower over time due to the coagulation and deposition effects, and the peak value of the PSD moves 

gradually in the direction of larger diameters. The results calculated by the DWOSMC method accord well 

with the experimental results expect for some fluctuations.  

3.6 Case H: nanoparticle deposition and coagulation dynamics in a vacuum chamber 

In case H, the evolution of nanoparticles in a vacuum chamber is investigated. The particles are 

initially uniformly distributed with a diameter of 5 nm where coagulation kernel in free molecular regime 

and deposition kernel in diffusion-dominant range are considered. The results from vacuum condition 

Fig. 14  Variation of particle geometric diameter 

for Case G. 

Fig. 15  Variation of PSDs for Case G. 
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(p=0.5 atm) are compared with that from standard atmospheric condition. The calculated results from the 

DWOSMC method is compared with a sectional method (SM) [25] for the purpose of validation and 

comparison. The initial conditions and numerical settings are detailed in Table 6. 

Table 6 Initial conditions and numerical settings for Case H. 

Cases N0 (m-3) d0 (nm) β (m3·s-1) R (s-1) tstop (s) 

H 1×1014 5 Eq. (7) Eq.(28) 4000 

The variations of normalized particle number density and total particle volume are shown in Fig. 16, 

and the variation of particle size distributions (t = 1000 s, 2000 s) is shown in Fig. 17.  

It can be seen that the particle number density under vacuum condition is slightly smaller than that in 

atmospheric condition, and the total particle volume under vacuum condition is much smaller than that in 

atmospheric condition, which indicates that the deposition rate is larger under vacuum condition than that 

in atmospheric condition. The particle size distribution curves obtained from vacuum condition are lower 

and narrower than that from the atmospheric condition. And it can also be seen that the peak diameter 

becomes slightly smaller in vacuum condition. Since the Brownian diffusion deposition events and the 

Fig. 16  Variation of N/N0 and V/V0 for Case H. Fig. 17  Variation of PSDs for Case H. 
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coagulation events will both make the mean particle diameter larger, and the deposition rate is larger in the 

vacuum condition, it can be concluded that the coagulation rate is smaller in vacuum condition than that in 

atmospheric condition under the initial condition of Case H. It can also be seen from Figs. 16 and 17 that 

the calculated results from DWOSMC method agree well with the sectional method. 

3.7 Accuracy and Efficiency Discussion and Assessment 

To further assess the simulation precision and efficiency of this further developed DWOSMC model 

for predicting particle deposition and coagulation processes, the maximum relative error εmax and the non-

dimensional computational time ζ are used and expressed as Eq. (36) and Eq. (37), respectively. 

max

max

( ) ( )
100%

( )
a

a

X t X t

X t


−
=  (36) 

s

A

t

t
 = (37) 

where Xa(t) is the analytical solution, X(t) is the calculated result from the numerical simulation method 

(i.e., DWOSMC and DWMC methods), tA is the simulation time needed for DWOSMC method for Case 

A, and ts is the simulation time needed for different cases and methods. 
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Fig. 18  Comparison of maximum relative error 

εmax derived from Cases A to E using the 

DWOSMC and DWMC methods. 

Fig. 19  Comparison of normalized 

computational time ζ from Cases A to E using the 

DWOSMC and DWMC methods. 

The εmax calculated from Cases A to E is shown in Fig. 18 (for Cases A and B, the εmax was calculated 

from the particle geometric mean radius; for Case C, the εmax was calculated from the particle number 

density; for Cases D and E, the εmax was calculated from the particle geometric mean volume). The 

computation time used for different cases is given in Fig. 19. It can be seen that for Cases A to E, the 

maximum relative error calculated by the DWOSMC method is smaller than the DWMC method and the 

computation time used for DWOSMC method is also less than the DWMC method, which proves that the 

further developed DWOSMC method exhibits higher computational accuracy and efficiency than the 

DWMC method when predicting particle deposition and coagulation processes. Furthermore, from Sections 

3.4 and 3.5, when comparing with the experimental results, the relative error based on the particle geometric 

mean volume or diameter is only 4% and 1.5% when using the DWOSMC method for predicting sodium 

chloride aerosol dynamics and paper ash particle dynamics, respectively. So it can be concluded that the 

developed DWOSMC method has quite high accuracy and efficiency for predicting particle dynamics 

considering coagulation and deposition processes. 

4. Conclusions

In this study, the particle size distributions (PSDs) evolution of polydisperse particle systems

experiencing deposition and coagulation dynamics in enclosed chambers are investigated. A differentially 

weighted operator splitting Monte Carlo (DWOSMC) method is further developed for predicting particle 
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dynamics including deposition and coagulation processes. In this DWOSMC method, the deposition event 

is solved by a deterministic method where a proportion of the deposited real particles inside a simulated 

particle is determined by a probability related to the deposition kernel. The calculated results are validated 

against the analytical solutions and experimental results. The conclusions of the present study are as follows. 

(1) In the size range of particles studied herein, particle deposition and coagulation processes would

happen spontaneously and the thermodynamics associated with the particle dynamical behaviours are

implicitly included in the model formulation of coagulation and deposition kernels, and these two

stochastic processes increase the entropy and reduce the Gibbs free energy.

(2) In the first five cases, deposition and coagulation processes or particle precipitation process are

examined and the results calculated from DWOSMC method have good accordance with the analytical

solutions, and the DWOSMC method exhibits higher accuracy and efficiency than the DWMC method.

In the sixth and seventh cases, the results calculated from DWOSMC have good consistency with the

experimental data for predicting the particle size distributions of sodium chloride aerosol particles and

paper ash particles.

(3) Compared with the case in standard atmospheric condition, the particle deposition rate is larger under

vacuum condition.

Therefore, this further developed and fully validated DWOSMC method turns out to be a good

candidate for solving particle deposition and coagulation dynamics with satisfactory improvement in both 

computational accuracy and efficiency. 
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Figure Caption: 

Fig. 1 Illustration of DWOSMC algorithm for simulating deposition and coagulation 

processes. 

Fig. 2 Variation of N/N0 and r/rg0 for Case A 

Fig. 3 Variation of PSDs for Case A 

Fig. 4 Variation of N/N0 and r/rg0 for Case B 

Fig. 5 Variation of PSDs for Case B 

Fig. 6 Variation of N/N0 for Case C 

Fig. 7 Variation of PSDs for Case C 

Fig. 8 Variation of N/N0 and v/vg0 for Case D 

Fig. 9   Variation of PSDs for Case D 

Fig. 10  Variation of N/N0 and v/vg0 for Case E 

Fig. 11  Variation of PSDs for Case E 

Fig. 12 Variation of N/N0 and d/dg0 for Case F 

Fig. 13 Variation of PSDs for Case F 

Fig. 14 Variation of particle geometric diameter for Case G 

Fig. 15 Variation of PSDs for Case G 

Fig.16  Variation of N/N0 and V/V0 for Case H 
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Fig. 17  Variation of PSDs for Case H 

Fig. 18  Comparison of maximum relative error εmax derived from Cases A to E using 

the DWOSMC and DWMC methods 

Fig. 19  Comparison of normalized computational time ζ from Cases A to E using the 

DWOSMC and DWMC methods 

Table Caption: 

Table 1 Initial conditions and numerical settings for Cases A and B 

Table 2 Initial conditions and numerical settings for Case C 

Table 3  Initial conditions and numerical settings for Cases D and E 

Table 4  Initial conditions and numerical settings for Case F 

Table 5 Initial conditions and numerical settings for Case G 

Table 6 Initial conditions and numerical settings for Case H 




