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Abstract: Subject to coupled vibro-acoustic excitation, the opening–closing motion of 

a “breathing” delamination in a composite laminate can create nonlinear harmonics, i.e., 

higher and sideband harmonics, in its steady-state vibration responses. Nonlinear 

harmonics have attracted increasing attention in the field of nondestructive testing 

because they can be sensitive indicators of barely visible delamination that is difficult 

to detect by conventional linear approaches. Although vibro-acoustic modulation has 

been acknowledged as the cause of nonlinear harmonics, the intrinsic force in a 

delamination that generates harmonics is not yet clear. Addressing this problem, this 

study analytically formulates a novel concept of nonlinear pseudo-force (NPF) in 

“breathing” delamination of composite laminates, by which the mechanism for 

generating nonlinear harmonics by vibro-acoustic modulation can be explicitly 

expounded. In the application aspect, as the NPF in delamination can cause local 

changes in operating deflection shapes (ODSs), this study proposes a novel approach 

using ODSs at nonlinear harmonics for locating “breathing” delamination of composite 

laminates, which is superior to current approaches that can only manifest the occurrence 

of delamination by nonlinear harmonics. Numerical simulations using finite element 

method are used to validate the mechanism and explore the application potential of 

ODSs for locating delamination. In particular, an array of coupled vibro-acoustic 

excitation is proposed to avoid wave attenuation of acoustic excitations. Thereby, 

vibration and acoustics can interact in the “breathing” delamination to generate 

nonlinear harmonics. 
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1. Introduction 

The nonlinear vibration behavior of “breathing” delamination is a classical and 

interesting problem with applications in identifying delamination in composite 

laminates [1]. Superior to the “constrained mode” delamination theory [2], in which 

delaminated layers always have identical transverse vibration deflections, delaminated 

layers of “breathing” delamination are allowed to contact and separate to produce the 

opening–closing motion of the delamination as observed in experiments [3]. Contacts 

between delamination interfaces occur when “breathing” delaminations close [4-8] and 

vanish when “breathing” delaminations open. In the open state, “free mode” 

delamination theory [9] can be utilized to separately depict vibration of the delaminated 

layers. 

Subject to the coupled vibro-acoustic excitation that consists of low- and high-

frequency harmonic excitations, steady-state vibration responses of a composite 

laminate that bears a delamination can be nonlinear, owing to opening–closing motion 

of the delamination. For an open delamination that is always open during vibration, 

responses can be decomposed into corresponding low- and high-frequency harmonics 

(referred to as linear harmonics); in contrast, for a “breathing” delamination that 

periodically opens and closes during vibration, higher and sideband harmonics (referred 

to as nonlinear harmonics) appear, except for linear harmonics [10]. As delamination-

caused nonlinear harmonics can be sensitive indicators of barely visible delaminations 

that are difficult to detect by conventional linear approaches, increasing attention has 

been focused on nonlinear harmonics for nondestructive testing (NDT) of composite 

laminates. In the past two decades, research on delamination-caused nonlinear 

harmonics can be divided into three aspects, from phenomenon to mechanism and 

thence to application. 



Phenomenon aspect: Since the phenomenon of sideband harmonics accompanying 

forced nonlinear vibrations was reported in 1966 [11], increasing attention has been 

paid to nonlinear harmonics with applications in the field of NDT. In 1998, a new 

nonlinearity called contact acoustic nonlinearity (CAN) was observed, caused by 

normal stress in contact (nonbounded) interfaces for “clapping” and “rubbing” 

vibration patterns, by which higher and sideband harmonics could be produced [12]. In 

2000, the concept of nonlinear elastic wave spectroscopy (NEWS) associated with 

delamination-induced higher and sideband harmonics was established [13,14]. 

Mechanism aspect: Solodov et al. [15] proposed the theory that CAN is assumed to be 

concerned with stiffness asymmetry, forming a “bimodular” model: due to the 

weakening of the contact between the surfaces, the compression elasticity is higher than 

that for a tensile stress. Van Den Abeele et al. [13] proposed the theory of nonlinear 

mesoscopic elasticity to explain nonlinear behavior, using a simplified one-dimensional 

model with a nonlinear stress-strain relationship. Linear, nonlinear classical, and 

nonlinear hysteretic models were presented for comparisons. This theory and its models 

were applied to composite structures with impact damage [16]. Modulation of acoustics 

by vibration has been acknowledged as the mechanism for generating nonlinear 

harmonics. In Ref [17], it was assumed that the displacement response of a delaminated 

laminate is a linear combination of linear and nonlinear harmonics. Force components 

at corresponding frequencies were considered to produce such displacement 

components. Linear vibrations are linearly produced by external excitations, whereas 

nonlinear vibrations are produced by nonlinear forces in delamination [18,19]. 

Application aspect: Solodov [12] used ultrasonic waves propagating on interfaces to 

exhibit the CAN, by which several modes of nonlinear NDT were proposed for the 

detection of small fractured defects that were almost “invisible” by linear NDT 



techniques. Solodov [20] excited delaminated composite laminates in the vicinity of 

higher harmonics to enhance nonlinear air-coupled emission, whereby delamination 

could be detected and imaged for nondestructive evaluation. Through observation of 

the occurrence of higher and sideband harmonics in the response spectrum subject to 

coupled vibro-acoustic excitation, NEWS techniques were widely developed to 

manifest the occurrence of delamination [13,14,16,21]. In the past decade, most 

attention has been focused on modern sensing techniques for identifying delamination 

in composite laminates [22-29]. It is noteworthy that the local defect resonance (LDR) 

discovered by Solodov [30] has been found useful for stimulating nonlinearities. 

Although intensive efforts have been made to investigate vibro-acoustic 

modulation of “breathing” delamination, the intrinsic force in a delamination that 

generates harmonics is not yet clear. Addressing this problem, this study analytically 

formulates a novel concept of nonlinear pseudo-force (NPF) in “breathing” 

delamination, by which the mechanism for generating nonlinear harmonics by vibro-

acoustic modulation is explicitly expounded. In the application aspect, as the NPF in 

delamination can cause local changes in operating deflection shapes (ODSs), this study 

proposes a novel approach using ODSs at nonlinear harmonics for locating “breathing” 

delamination of composite laminates, which is superior to current approaches that can 

only manifest the occurrence of delamination by nonlinear harmonics. 

The rest of this paper is organized as follows. Section 2 formulates the concept of 

NPF in a “breathing” delamination that drives vibro-acoustic modulation, by which the 

analytical mechanism of generating nonlinear harmonics is explicitly expounded. 

Section 3 numerically verifies the nonlinear harmonics generated by “breathing” 

delamination using the finite element (FE) method. Section 4 proposes a novel approach 



using ODSs at nonlinear harmonics to locate “breathing” delamination. Section 5 

presents concluding remarks. 

2. Mechanism for generating harmonics by NPF in “breathing” delamination 

2.1 NPF in “breathing” delamination 

The nonlinear constitutive (i.e., stress-strain) relations of “breathing” delamination in 

composite laminates have usually been represented using a simplified one-dimensional 

model. In this study, to model realistic “breathing” delamination in composite laminates, 

a fiber reinforced cross-ply laminate made of 0/90° orientations is considered, each thin 

ply of which can be regarded as homogeneous and orthotropic. The constitutive 

equations for an element in the dth ply can be expressed as [31] 
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where stresses ( x  , y  , and xy  ) and strains ( x  , y  , and xy  ) are in the global 

coordinate, and ij
Q   with 1,2,6i =   and 1,2,6j =   are the corresponding material 

constants, as can be found in Ref. [31].  

By integrating stresses over the cross-section of the laminate, one can obtain the 

bending moments xM  and yM  and the twisting moment xyM : 

11 12

12 22

66

0

0 ,

0 0 2

x x

y y

xy xy

M D D

M D D

M D







    
    

=    
        

               (2) 

where 
( )

3 3

1

1

1
( )

3

d

ij d dij

d

D Q z z −

=

= −  are stiffness coefficients integrated ply-wise over the 

thickness, and dz  is the distance from the middle surface to the surface of the dth ply 



having the furthest z-coordinate; 
2

2x

w

x



=


 and 

2

2y

w

y



=


 are the curvatures, and 

2

xy

w

x y



=

 
  is the twist in the midsurface, with ( , , )w x y t   being the out-of-plane 

displacement. 

For a laminate bearing an open delamination whose interfaces do not contact each 

other during vibration, the equation of motion subject to coupled vibro-acoustic 

excitation can be expressed as 
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= −  is the average mass density of the plate per unit area of 

the midsurface with 
( )d   the density of the dth lamina per unit volume, c   is the 

damping coefficient, ( )Lf t   and ( )Hf t   are low- and high-frequency harmonic 

excitations with angular frequencies L   and H  , respectively, to constitute the 

coupled vibro-acoustic excitation. Note that for a plate made of isotropic materials such 

as metallic materials, its stiffness coefficients become 11 22= =D D D , 12 =D D , and 
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, in which E , h , and   are 

the elastic modulus, plate thickness, and Poisson's ratio, respectively. Considering a 

composite laminate bearing an open delamination whose region is denoted as  , the 

stiffness coefficients ( , )ijD x y  of the laminate can be represented as 
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where 
I

ijD  and 
D

ijD  are the stiffness coefficients under the intact and delaminated 

statuses, respectively. By substituting Eq. (4) into Eq. (3) and rearranging Eq. (3), one 

can obtain 
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where ( , , )LPFf x y t  is the equivalent force caused by the open delamination, defined as 

the linear pseudo-force (LPF) because the vibration is linear: 

0 ,
,

( ) ,
LPF

x y
f

w x y

                 
= 

      D Θ
                     (6) 

with 11 11 12 66 12 66 22 22( , ( 2 ) ( 2 ), )I D I I D D I DD D D D D D D D = − + − + −D   denoting the stiffness 

change vector, and 
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Θ  . It is noted the LPF in Eq. (6) is 

equivalent to the concept of damage-caused force for delamination in the authors’ 

previous work [32]. 

In contrast to an open delamination, a “breathing” delamination opens and closes 

periodically subject to harmonic excitations, and contact between the delamination 

interfaces occurs during the closing process. The frequency of the periodical opening-

closing motion of the “breathing” delamination is defined as the “breathing” frequency 

in this study, denoted as B . As per linear vibration theory, Lf  and Hf  produce 

periodical tension and compression in the delamination at L  and H , respectively, 

therefore both L  and H  can be the potential “breathing” frequency B . 

The constitutive relation in the delamination region has usually been simplified in 

a one-dimensional form to represent the nonlinearity [13]:  

= ( , )d ,K                              (7) 



in which   is the strain rate and K  is the nonlinear and hysteretic modulus given by 

2
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where 0K   is the linear modulus,    and    are classical nonlinear perturbation 

coefficients,   is a measure of the material hysteresis, and   is the local strain 

amplitude over the previous period. For the 1st order classical nonlinearity with 0 =  

and 0 =  , the modulus K   becomes asymmetric for tension and compression, 

periodically changing from CK   when the delamination is totally closed to OK  

when the delamination is totally open (illustrated in Fig. 1 with the “breathing” period 

2 / BT  = ).  

 

Fig. 1. Modulus of “breathing” delamination versus time over a “breathing” period (the 

modulus reaches its maximum and minimum when the delamination is totally closed and 

open, respectively). 

 

Similar to “breathing” cracks [33-43], modulus K  in “breathing” delamination 

can be assumed as a cosine function with respect to time [43]. Thereby, the stiffness 

coefficients in a composite laminate can be expressed as 
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where ( , )C

ijD x y   and ( , )O

ijD x y   represent the stiffness coefficients under the fully 

closed and open statuses of the delamination, respectively. Note that under the fully 

closed status, the laminate can be regarded as intact, leading to ( , )C I

ij ijD x y D= ; under 

the fully open status, the laminate can be regarded as delaminated, leading to 

( , ) ( , )O D

ij ijD x y D x y= . By substituting Eq. (9) into Eq. (3) and rearranging Eq. (3), one 

can obtain 
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where ( , , )NPFf x y t  is the equivalent force caused by the “breathing” delamination, 

defined as the NPF: 
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For elements in the laminate bearing no transverse excitation, Lf   and Hf   in 

Eqs. (5) and (10) vanish, regardless of delamination; on the other hand, the LPF and 

NPF appear in delamination regions only, reflecting local perturbations in equilibrium 

caused by the open and “breathing” delamination, respectively. 

2.2 Nonlinear harmonics generated by nonlinear pseudo-force 

For linear vibration, it is well known that the out-of-plane displacement w  is linearly 

determined by Lf   and Hf   to produce linear harmonics at L   and H   with 

amplitudes ( LW  and HW ) and phases ( L  and H ), respectively: 

) ).( , ) ( )cos( ( )cos(
L HL L H Hw x t W x t W x t  = + + +         (12) 



By substituting Eq. (12) into Eq. (6), the LPF in the delamination region consists of two 

components at L  and H : 

[ ( )cos( ) ( )cos( )].LPF L L L H H Hf W t W t   =   + + +D Θ Θ      (13) 

In contrast to the linear vibration of open delamination, the nonlinear vibration of 

“breathing” delamination becomes much more complex, due to the periodically varying 

stiffness expressed in Eq. (9). As observed in experiments, besides linear harmonics at 

,1L   and ,1H  , displacement responses contain higher harmonics at ,L m   and 

,H n  ( 2, , ,m M= 2, ,n N= ) and sideband harmonics at ,Sn m   ( 1, , ,m M=

1, ,n N=  ) with respective amplitudes ( ,L mW  , ,H nW  , and ,Sn m
W

  ), angular 
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It is noteworthy that the frequencies of linear harmonics correspond to excitation 

frequencies as per linear vibration theory, i.e., ,1L L
 =   and ,1H H

 =  . 

Nevertheless, the theoretical frequencies of the nonlinear harmonics in Eq. (14) are 

unknown. By substituting Eq. (14) into Eq. (11), the NPF in the delamination region 

consists of three corresponding components: 
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In Eq. (15), ,NPF Lf  is generated by ,L m
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where , , ,cos( )L m L m L mX t = + , 
, , ,
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, , ,

1
cos(( ) )

2
L m L m B L mX t  − = − +  . It can be seen from Eq. (16) that the 

components of the NPF at ,L m  are modulated by B . When B  is L , extra 

components at ,L m L    are generated. Conversely, such extra components must 

generate displacements at corresponding frequencies as per linear vibration theory, 

leading to the relationship: 
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where , , ,cos( )H n H n H nX t = +  , 
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H n H n L H nY t  − = − +  for B  being L . It can be clearly seen from 

Eq. (18) that the components of the NPF at ,H n  are modulated by B , whereby 

extra components at ,H n H    and ,H n L    are generated respectively. 

Conversely, such extra components must generate displacements at corresponding 

frequencies, leading to the relationship: 
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Considering that ,1H H
 = , ,H n  can be expressed as 
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On the other hand, the 1st and -1st sideband harmonics occur on both sides of ,H n : 

, 1 , .Sn H n L   =                       (19c) 

Finally, ,NPF Sf  is generated by ,Sn mW  : 

, , ,

1 1

, , , ,

1 1

, ( )cos( )

( )( )

1
(1 cos )

2

1
,

2

N M

Sn m Sn m Sn m

n m

N M

Sn m Sn m Sn m Sn m

n m

NPF S B W t

W Y Y Y

f t  
  

= =

+ −

   

= =

  +

  + +

= +

           =





D Θ

D Θ

   (20) 

where , , ,cos( )Sn m Sn m Sn mY t   = +  , 
, , ,

1
cos(( ) )

2
Sn m Sn m L Sn mY t  +

  = + +  , 

, , ,

1
cos(( ) )

2
Sn m Sn m L Sn mY t  −

  = − +   for B   being L  . From Eq. (20), it 

can be seen that the components of the NPF at ,Sn m    are modulated by B   to 



generate extra components at ,Sn m L   . Conversely, such extra components must 

generate displacements at corresponding frequencies, leading to the relationship: 
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considering , 1 ,Sn H n L   =   in Eq. (19c), ,Sn m   can be expressed as 
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Actually, the NPF can degenerate into the LPF (expressed in Eq. (13)) when the 

“breathing” delamination becomes the open delamination: 
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= ) ).cos( cos(
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Subject to coupled vibro-acoustic excitation, linear harmonics of a composite laminate 

bearing a “breathing” delamination are generated by the external excitations and the 

components of the NPF at linear harmonics, whereas its nonlinear harmonics are 

totally generated by the NPF at nonlinear harmonics. 

Theoretical solutions to the nonlinear harmonics in Eqs. (17b), (19b), and (21b) 

correspond to the results observed in experiments [21-29]. By means of the above 

modulation, components of the NPF are coupled with displacement components to 

reach a steady state, whereby nonlinear harmonics are generated. Thereby, the 

analytical mechanism for the generation of nonlinear harmonics by vibro-acoustic 

modulation in “breathing” delamination is explicitly expounded. It should be noted that, 



with the aim of revealing the mechanism for generating nonlinear harmonics, Eqs. (16), 

(18), and (20) are used to expound the coupled relationship between components of the 

NPF and displacement, whose closed-form solution is not given in this study. The 

simplified one-dimensional model of a “breathing” delamination, the solutions of 

nonlinear harmonics can also be obtained using series expansion of displacements [29].  

3. Numerical verification 

Nonlinear harmonics generated by “breathing” delamination have usually been 

observed through experiments. To comprehensively investigate such nonlinear 

harmonics in various scenarios of composite laminates, numerical simulations using the 

FE method are undertaken to model delaminated composite laminates and calculate 

their nonlinear vibro-acoustic responses. In this section, 8-layer carbon fiber reinforced 

polymer (CFRP) antisymmetric cross-ply 0/90° laminates bearing “breathing” 

delamination are considered as numerical specimens. 

3.1 Finite element modeling 

Four edges of the composite laminate are clamped. As illustrated in Fig. 2, dimensions 

of the laminate are 200 mm × 200 mm × 5 mm in the x-, y-, and z-directions, respectively. 

The elastic moduli in 0º and 90º are 11E  92 GPa and 22E  8 GPa, respectively; in-

plane shear modulus, Poisson’s ratio, and material density are 12E   2.9 GPa, 12  

0.33, and   1400 Kgm-3, respectively. A square “breathing” delamination is modeled 

between the interfaces of the first and second plies (0.625 mm in depth from the upper 

surface of the laminate). The delamination is centered at x=50 mm and y=150 mm. The 

area of the delamination is 40 mm × 40 mm, that amounts to 4% of the surface area of 

the laminate. 



 

Fig. 2. FE model of delaminated CFRP laminate with dimensions in millimeters (the 

delamination is modeled between the interfaces of the first and second plies). 

 

Note that, although delaminations are usually numerically and experimentally 

simulated in ellipse or circle shapes [44,45] to simulate practical delamination caused 

by external effects such as impacts and heats, in this study the delaminations are 

modeled in rectangular shapes, merely to simulate human-made delamination defects 

that were caused when the laminates were fabricated, which correspond to the 

delaminations manufactured by inserting square Teflon sheets between plies [46,47]. 

The composite laminate is modeled by the FE software ANSYS with 8-node 

hexahedron elements having the dimensions of 5 mm × 5 mm × 0.625 mm in the x-, y-, 

and z-directions, respectively. On the upper and lower delamination interfaces, 

coincident nodes in adjacent but separated elements are distributed. Note that contact 

elements are introduced between the upper and lower delamination interfaces [44,46], 

whereby the upper and lower delaminated layers are allowed to separate but not to 

penetrate into each other. Contact forces in the delamination are generated by virtual 

springs between the delamination interfaces using the penalty algorithm in ANSYS. For 



this lightly-damped laminate, the damping ratio 0.1 =  is considered according to the 

Rayleigh damping: 

,
2 2

 



= +                           (24) 

where   and   are stiffness and mass damping parameters, respectively. 

3.2 Nonlinear vibration subject to coupled vibro-acoustic excitation 

To simulate the high-frequency acoustic excitation generated by a lead-zirconate-

titanate (PZT) actuator, a harmonic concentrated force at 20 kHz is applied close to the 

middle of the upper edge of the upper surface; simultaneously, to simulate low-

frequency vibration excitation generated by an electromechanical shaker, a harmonic 

concentrated force at 4500 Hz is applied in the geometrical center of the upper surface 

(labeled as excitation pattern I and illustrated in Fig. 3(a)).  

   

             (a)                      (b)                      (c) 

Fig. 3. Coupled vibro-acoustic excitation patterns (a) I (the delamination region is close to the 

acoustic excitation location), (b) II (the delamination region is distant from the acoustic 

excitation location), and (c) III (the array of coupled vibro-acoustic excitation applies to the 

laminate). 

 

The amplitudes of the acoustic excitations are 1 N and the amplitude of the 

vibration excitation is 5 N. The time step is set to be one-tenth of the acoustic excitation 



period for a wide range of frequency spectra, i.e., five times H . Subject to coupled 

vibro-acoustic excitation, time histories of the steady-state displacement, velocity, and 

acceleration responses are extracted from the nodes on the lower surface of the laminate, 

as shown in Fig. 4. Correspondingly, their counterparts in the frequency domain are 

obtained by the fast Fourier transform (FFT), shown in Fig. 5 (abscissas are normalized 

by dividing by H ). It can be seen from Fig. 5 that the harmonic at L  dominates 

the displacement, whereas the harmonic at H   can be barely perceived. For the 

velocity response, weak nonlinear harmonics at H  with small amplitudes appear in 

the frequency domain. In the acceleration response, besides the harmonic at L  , 

evident harmonics appear at higher frequencies. The reason for the enhancement of 

harmonics can clearly be seen from differentiating relationships as follows: 
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Equation (25a) indicates that each harmonic component in v   is amplified by its 

frequency from w  and Eq. (25b) indicates that each harmonic component in a  is 

amplified by its frequency from v , which means that harmonics at higher frequencies 

can be amplified with larger amplitudes. 



 

Fig. 4. Time histories of steady-state displacement (w), velocity (v), and acceleration (a) 

responses (time histories of only 2.5 milliseconds are displayed). 

 

 

Fig. 5. Frequency spectra of steady-state displacement (w), velocity (v), and acceleration (a) 

responses (abscissas are normalized by dividing by 
H

 ). 

3.3 Array of coupled vibro-acoustic excitation 

In the foregoing scenario with excitation pattern I, the delamination region is close to 

the acoustic excitation location (illustrated in Fig. 3(a)), such that high-frequency 

acoustic waves at H  (indicated by the blue arrow) can propagate and interact with 



the low-frequency vibration (indicated by the red arrow) in the delamination region, 

from the center of which the acceleration response in the frequency domain is shown 

in Fig. 6(a). However, when the delamination region is distant from the acoustic 

excitation location (labeled as excitation pattern II and illustrated in Fig. 3(b)), the 

harmonic at H  and the nonlinear harmonics in the frequency domain are weakened 

with smaller amplitudes, as shown in Fig. 6(b). The mechanism of this phenomenon 

can be explained by Eqs. (18) and (20): higher harmonics at ,H n   and sideband 

harmonics at ,Sn m   are associated with linear harmonics at H  whose amplitude 

HW  is determined mainly by the acoustic excitation. High-frequency acoustic waves 

attenuate when they propagate along the distance (indicated by the dashed arrow in Fig. 

3(b)) from the acoustic excitation location to the delamination region. Accordingly, 

decreases in HW   lead to weakening in modulation between linear and nonlinear 

harmonics. Therefore, the differences of intensities of nonlinear harmonics occur 

between the frequency spectra in Fig. 6(a) and (b). By addressing the situation that prior 

knowledge of the delamination region is usually absent in practical scenarios, this study 

proposes an array of coupled vibro-acoustic excitation to avoid wave attenuation of 

acoustic excitations. Thereby, vibration and acoustics can interact in the “breathing” 

delamination to generate nonlinear harmonics. Four acoustic excitation actuators are 

placed in the four corners of the surface and four other actuators are placed in the centers 

of four edges [48] (labeled as excitation pattern III and illustrated in Fig. 3(c)), such 

that there are always some acoustic sources near the delamination region, with the result 

that high-frequency acoustic waves at H  can steadily propagate to the delamination 

region. In this condition, the acceleration response in the frequency domain is shown in 

Fig. 6(c), where the nonlinear harmonics are enhanced with amplified amplitudes. 



 

Fig. 6. Frequency spectra of steady-state acceleration responses with coupled vibro-acoustic 

excitation patterns (a) I (the delamination region is close to the acoustic excitation location), 

(b) II (the delamination region is distant from the acoustic excitation location), and (c) III (the 

array of coupled vibro-acoustic excitation is used). 

 

To clearly demonstrate the nonlinear harmonics, higher harmonics are marked by 

circles and sideband harmonics are marked by triangles in Fig. 7, whose frequencies 

correspond to the theoretical values obtained by Eqs. (17b), (19b), and (21b), 

respectively. Figure 8 shows time histories of the steady-state displacement from the 

coincident nodes in the center of the upper (blue) and lower (red) delamination 

interfaces, in which “breathing” periods marked between dashed lines are found to be 

2 / L    and 2 / H   , in agreement with the assumption in Section 2 that the 

“breathing” frequency can be L  and H . 



 

Fig. 7. Frequency spectrum of steady-state acceleration response with the array of coupled 

vibro-acoustic excitation (higher harmonics are marked by circles and sideband harmonics are 

marked by triangles). 

 

 

Fig. 8. Time histories of steady-state displacement responses from nodes in the middle of the 

upper (blue) and lower (red) delamination interface (“breathing” periods 2 /
L

   and 

2 /
H

   are marked by dashed lines). 

 

To show the differences between responses of laminates with respective “breathing” 

and open delamination, contact elements between the delamination interfaces are 



removed from the FE model, whereby the “breathing” delamination degenerates into 

the open delamination. The nonlinear and linear steady-state acceleration responses of 

laminates with respective “breathing” (blue) and open (red) delamination are shown in 

Fig. 9(a). It can be seen from Fig. 9(a) that periodical differences appear between time 

histories, indicating that nonlinear and linear vibration responses gradually coincide 

during the process of delamination closing (marked by dashed ellipses), whereas they 

gradually separate during the process of delamination opening (marked by dotted 

ellipses). With transformation into the frequency domain by FFT, it can be seen from 

Fig. 9(b) that in nonlinear and linear responses, the amplitudes of linear harmonics at 

L   and H   almost coincide, whereas extra nonlinear harmonics appear for the 

nonlinear vibration. In a physical sense, it is reasonable to infer that the contact force 

between the “breathing” delamination interfaces is the intrinsic factor to cause 

nonlinear harmonics, in accord with the CAN theory [15]. 

 

(a) 



 

(b) 

Fig. 9. (a) Time histories of nonlinear (blue) and linear (red) steady-state acceleration 

responses, where closing and opening states of delamination are marked by dashed and dotted 

ellipses, respectively; (b) frequency spectra of nonlinear and linear steady-state acceleration 

responses (note that for nonlinear and linear responses, their amplitudes of linear harmonics at 

L
  and H

  almost coincide). 

4. Application in localization of “breathing” delamination 

Recently, novel approaches relying on dynamic characteristics such as natural 

frequencies and mode shapes have been developed for locating structural damage, by 

which barely invisible delamination in composite laminates can be located [49-60]. 

Superior to nonlinear harmonics in frequency spectra that can manifest only the 

occurrence of delamination, ODSs of composite laminates used in this study are capable 

of locating delamination. 

4.1 Localization of “breathing” delamination using ODSs 

ODSs can be defined in both time and frequency domains [61]. In the time domain, 

( , ) ( )p qw t  denotes the steady-state acceleration response from the measurement point 

( ,p q ) at the specific time t ; correspondingly, in the frequency domain, ( , )
ˆ ( )p qw   

is the acceleration at the specific frequency  . As expressed in Eq. (26a), an ODS in 



the time domain, denoted as ( )s t , is constituted by ( , ) ( )p qw t  with 1, 2, ,p P=  

and 1, 2, ,q Q=  ; correspondingly, an ODS in the frequency domain, denoted as 

( )S  , is constituted by ( , )
ˆ ( )p qw  . It is noteworthy that because ( )S   is complex 

due to the FFT, its real or imaginary parts with larger amplitudes can be used to 

represent the ODS for a higher signal-to-noise ratio (SNR) [62,63]. 
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By Eq. (26a), the ODSs in the time domain are extracted from the displacements 

of the nodes on the lower surface of the laminate. Figure 10(a) to (j) show ODSs at ten 

successive time steps in a period of 2 / H  . The results show that external excitations 

cause local deformations of the laminate; meanwhile, the NPF leads to local changes in 

the delamination region. 

  



(a)                                   (b) 

  

(c)                                   (d) 

  

(e)                                   (f) 

  

(g)                                   (h) 



  

(i)                                   (j) 

Fig. 10. ODSs in ten successive time steps (from (a) to (j)) in a period 2 /
H

  . 

 

ODSs at linear harmonics are dominated by external excitations and local changes 

in the delamination region are likely to be obscured by the fluctuant trends produced by 

the external excitations. Contrastively, ODSs at nonlinear harmonics are totally 

determined by NPF that applies in the delamination region only. Therefore, local 

changes in the delamination region can be evidence for localization of delamination. 

By Eq. (26b), the ODSs in the frequency domain are extracted from the displacements 

of the nodes on the lower surface of the laminate. The ODSs associated with the low-

frequency excitation ( ,1L  ) and its 2nd ( ,2L  ), 3rd ( ,3L  ), and 4th ( ,4L  ) higher 

harmonics are shown in Fig. 11(a), (b), (c), and (d), respectively. It can be seen from 

Fig. 11(a) that the ODS at ,1L  is dominated by the low-frequency excitation at L  

and the local change in the delamination region can be barely observed; in Fig. 11(b), 

the change in the delamination region stands out in the ODS at higher harmonic ,2L , 

manifesting the occurrence of the delamination, and local changes in the excitation 

locations also appear, because the ODS at ,2L  is affected by linear harmonics at both 



,1L  and ,1H  (as can be seen in Fig. 6); in Fig. 11(c) and (d), the changes in the 

delamination region become less pronounced because the ODSs are affected by the 

high-frequency excitation at H . Figure 12(a), (b), (c), and (d) show ODSs associated 

with high-frequency excitation at H  and its 2nd ( ,2H ), 3rd ( ,3H ), and 4th ( ,4H ) 

higher harmonics, respectively. In Fig. 12(a), the ODS at ,1H  is dominated by the 

high-frequency excitation at H  and the local change in the delamination region can 

be barely observed, similar to the result shown in Fig. 11(a). However, in the ODSs at 

higher harmonics ,2H , ,3H , and ,4H , the changes in the delamination region rise 

sharply, whereas deformations of the laminate outside the delamination region almost 

vanish. In practical applications, however, such high frequencies are likely to exceed 

the sampling frequency limitations of most conventional sensors such as accelerometers. 

  

(a)                                   (b) 



  

(c)                                   (d) 

Fig. 11. ODSs at (a) ,1L
  and its (b) 2nd, (c) 3rd, and (d) 4th higher harmonics at ,2L

 , 

,3L
 , and ,4L

 , respectively. 

 

    

(a)                                   (b) 

  

(c)                                   (d) 



Fig. 12. ODSs at (a) ,1H
  and its (b) 2nd, (c) 3rd, and (d) 4th higher harmonics at ,2H

 , 

,3H
 , and ,4H

 , respectively. 

 

ODSs at the -2nd (at 1, 2S − ), -1st (at 1, 1S − ), 1st (at 1,1S ), and 2nd (at 1,2S ) 

sideband harmonics of the harmonic at ,1H  are shown in Fig. 13(a), (b), (c), and (d), 

respectively. In Fig. 13(a), the ODS at the -2nd sideband harmonic is largely affected 

by the external excitations at L  and H , with the result that the local change in the 

delamination region become less pronounced; in Fig. 13(b), the -1st sideband harmonic 

is not close to either L  or H , and evident local change appears in the delamination 

region; in Fig. 13(c) and (d), the 1st and 2nd sideband harmonics are affected by the 

high-frequency excitation at H  . Thereby, ODSs at sideband harmonics of the 

harmonic at ,1H  can be affected by linear harmonics. With this concern, sideband 

harmonics of the harmonic at ,2H  are selected to remove this effect; in addition, 

,2H  can be within the sampling frequency limitations of sensors. It can be seen from 

Fig. 14 that ODSs at the -2nd (at 2, 2S − ), -1st (at 2, 1S − ), 1st (at 2,1S ), and 2nd (at 

2,2S  ) sideband harmonics of the harmonic at ,2H   show evident peaks in the 

delamination region, whereas deformations in other places are much less pronounced. 

Thus, ODSs at sideband harmonics of the harmonic at ,2H  have the capability for 

locating delamination of composite laminates. It is noteworthy that with the aid of 

advanced non-contact measurement technologies through non-contact vibration 

measurement techniques such as digital imaging and laser scanning, high accuracy and 



spatial resolution of ODSs can become available for locating small “breathing” 

delamination. 

  

(a)                                   (b) 

  

(c)                                   (d) 

Fig. 13. ODSs at the (a) -2nd, (b) -1st, (c) 1st, and (d) 2nd sideband harmonics at 1, 2S


− , 

1, 1S


− , 1,1S
 , and 1,2S

 , respectively. 

 



    

(a)                                   (b) 

  

(c)                                   (d) 

Fig. 14. ODSs at the (a) -2nd, (b) -1st, (c) 1st, and (d) 2nd sideband harmonics at 2, 2S


− , 

2, 1S


− , 2,1S
 , and 2,2S

 , respectively. 

4.2 Boundary effect on ODSs 

In the foregoing scenarios, only the C-C-C-C (C for clamped) boundary condition 

was discussed. To validate the feasibility of ODSs in locating delamination with other 

boundary conditions, another three common boundary conditions are considered, F-F-

F-F, S-S-S-S, and C-F-F-F (F for free and S for simply supported). Subject to the 

coupled vibro-acoustic excitation, time histories of the steady-state acceleration 

responses with F-F-F-F, S-S-S-S, and C-F-F-F boundary conditions are obtained, and 

shown in Fig. 15(a), (b), and (c), respectively. It can be seen from Fig. 15 that the 



distributions of harmonics in frequency spectra are clearly affected by boundary 

conditions. 

 

Fig. 15. Time histories of steady-state acceleration responses with (a) F-F-F-F, (b) S-S-S-S, 

and (c) C-F-F-F boundary conditions, respectively (time histories of only 2.5 milliseconds are 

displayed). 

 

 

Fig. 16. Steady-state acceleration responses in frequency spectra with (a) F-F-F-F, (b) S-S-S-

S, and (c) C-F-F-F boundary conditions, respectively. 

 



The ODSs at the sideband harmonics of the harmonic at ,2H  with F-F-F-F, S-S-

S-S, and C-F-F-F boundary conditions are obtained and are shown in Figs. 17, 18, and 

19, respectively. It can be seen from the figures that fluctuant changes in the ODSs 

appear near free boundaries of the laminates, whereas such fluctuant changes vanish 

near the clamped or simply-supported edges, a finding that corresponds with the results 

in Fig. 14 with clamped boundaries. Therefore, clamped or simply-supported 

boundaries benefit locating “breathing” delamination. 

    

(a)                                   (b) 

  

(c)                                   (d) 

Fig. 17. ODSs (with F-F-F-F boundary conditions) at the (a) -2nd, (b) -1st, (c) 1st, and (d) 

2nd sideband harmonics at 2, 2S


− , 2, 1S


− , 2,1S
 , and 2,2S

 , respectively. 

 



    

(a)                                   (b) 

  

(c)                                   (d) 

Fig. 18. ODSs (with S-S-S-S boundary conditions) at the (a) -2nd, (b) -1st, (c) 1st, and (d) 

2nd sideband harmonics at 2, 2S


− , 2, 1S


− , 2,1S
 , and 2,2S

 , respectively. 

 

    

(a)                                   (b) 



  

(c)                                   (d) 

Fig. 19. ODSs (with C-F-F-F boundary conditions) at the (a) -2nd, (b) -1st, (c) 1st, and (d) 

2nd sideband harmonics at 2, 2S


− , 2, 1S


− , 2,1S
 , and 2,2S

 , respectively. 

 

From the findings in this study, it is noteworthy that with the aid of non-contact 

vibration measurement techniques such as digital imaging and laser scanning, vibration 

responses from measurement points on composite laminates can be acquired to 

formulate the ODSs in time and frequency domains by Eq. (26a) and (26b), respectively. 

As suggested by the numerical results, ODSs at sideband harmonics of the harmonic at 

,2H  can be sensitive to “breathing” delamination, local changes of which can be used 

to locate the delamination. Nevertheless, this study focuses on the mechanism for 

generating nonlinear harmonics in “breathing” delamination. Numerical simulations 

using FE method are used to validate the mechanism and explore the application 

potential of the ODSs for locating delamination. Experimental tests in detection, 

localization, and quantitative evaluation of “breathing” delamination, as well as 

applications in real-world composite structures, can be addressed in a future study. 

5. Concluding remarks  

This study analytically formulates a new concept of NPF in “breathing” delaminations 

of composite laminates, by which the mechanism for generating nonlinear harmonics 



by vibro-acoustic modulation is explicitly expounded. The nonlinear harmonics 

generated by “breathing” delaminations are numerically verified using the FE method. 

A novel approach using ODSs at nonlinear harmonics is proposed for locating 

“breathing” delaminations of composite laminates. Some conclusions are drawn as 

follows. 

(1) The local stiffness in the delamination region changes periodically with the 

“breathing” motion of the delamination, which leads to the generation of the NPF in 

the delamination due to vibro-acoustic modulation. Components of the NPF are coupled 

with displacement components to reach a steady state, whereby nonlinear harmonics 

are generated. 

(2) Subject to coupled vibro-acoustic excitation, the linear harmonics of a composite 

laminate bearing a “breathing” delamination are generated by the external excitations 

and the components of the NPF at linear harmonics, whereas nonlinear harmonics are 

totally generated by the NPF at nonlinear harmonics.  

(3) High-frequency acoustic waves attenuate when they propagate in composite 

laminates. Addressing this problem, an array of coupled vibro-acoustic excitation is 

proposed to avoid wave attenuation of acoustic excitations. Thereby, vibration and 

acoustics can interact in “breathing” delaminations to generate nonlinear harmonics. 

(4) ODSs at linear harmonics are dominated by external excitations and local changes 

in the delamination region are likely to be obscured by the fluctuant trends produced by 

the external excitations. In contrast, ODSs at nonlinear harmonics are totally 

determined by NPF that applies in the delamination region only. Therefore, local 

changes in the delamination region can be evidence of the localization of delamination. 
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