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Abstract: Structural damage identification approaches relying on structural vibration 

shapes (VSs) have been widely developed. Among the approaches, the pseudo-force 

approach has attracted increasing attention during the recent decade owing to the fact that 

the damage-induced pseudo-force is concentrated within the damage region only and 

rapidly attenuates at undamaged locations. Transverse pseudo-forces (TPFs) relying on 

flexural VSs have been used for structural damage identification. However, the TPF 

approach is inapplicable to some structures governed mainly by tension and not bending, 

such as cables in a cable-stayed bridge, because bending effects on their flexural 

vibrations are much smaller compared to their tension effects. In contrast, longitudinal 

VSs can be useful for identifying such damages, although they are much more difficult to 

measure than flexural VSs. In this study, a new concept of axial pseudo-force (APF) is 

formulated using damage-induced perturbation in longitudinal vibration, which forms the 

basis of a novel damage identification approach for longitudinally vibrating structures. 

Unlike the TPF approach relying on transverse bending, the proposed APF approach 

relies on axial tension/compression. In particular, a damage index (DI) is established to 

indicate and locate structural damage. The multiscale analysis is integrated into the DI to 

enhance its robustness against environmental noise interference. A normalization strategy 

is further proposed to deal with unknown material and structural parameters in practical 

scenarios. The capability of the approach in identifying damage in longitudinally 

vibrating structures is analytically verified on bars with two-sided notches. The 

applicability of the approach is experimentally validated by identifying a two-sided notch 
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in an aluminum bar whose longitudinal VSs were acquired through non-contact vibration 

measurement using a three-dimensional (3D) scanning laser vibrometer (SLV). 

Key words: structural damage identification; longitudinally vibrating structure; vibration 

shape; axial pseudo-force; three-dimensional laser scanning measurement 
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1. Introduction 

Structural damage identification methods relying on vibration have been widely 

developed during the recent decades [1-5]. Structural vibration shapes (VSs), including 

mode shapes (MSs) and steady-state response shapes under harmonic excitation 

(SRSHEs), have been increasingly used for damage identification [6]. 

For damage in a beam with reduced cross-sectional dimensions, such as a notch or 

crack, it reduces both its bending stiffness and axial stiffness in the damage region, 

leading to discontinuities in derivatives of its flexural and longitudinal VSs, respectively 

[7]. Thereby, the damage can be identified by local discontinuities in derivatives of VSs. 

Derivatives of flexural VSs of beams have been commonly used for identification of 

local damages, examples of damage indicators being curvature [8-19], strain energy [20-

22], Teager-Kaiser energy [23-25], wavelet transform [26-29], in which damage-induced 

local discontinuities have been used to indicate and locate damage if there are no 

significant changes in global trends of the indicators. However, for initial damages whose 

locations are closely spaced, the structures need to be densely sampled with small 

intervals, which results in interference caused by noise components in VSs that can be 

significantly amplified due to numerical evaluation of differentiation in the damage 

indicators, the most common example being the second-order differentiation in 

curvatures [23]; on the other hand, as local stiffness and/or mass changes caused by 

initial damage are small [2], unobvious local discontinuities of derivatives of flexural 

VSs can be obscured by fluctuant global trends [10-13]. In those situations, local changes 

in derivatives of flexural VSs become ambiguous for damage identification and can 

provide misleading results. 
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In recent years, the pseudo-force approach is developed and has attracted increasing 

attention [30-38]. As the pseudo-force is generated only by the damage and is free of 

effects from fluctuant global trends, it is capable of identifying initial damage. By 

rearranging perturbation in an equation of motion that is induced by damage-caused 

changes in local stiffness/mass, effect of local damage can be regarded as an equivalent 

force applied on structural elements bearing damage, referred to as a “pseudo-force” or 

“pseudo-excitation”. Theoretically, the pseudo-force exists in the damage region only and 

vanishes at undamaged locations, in the form of a Heaviside step function whose 

expression for this study is given in Section 2.1. In practice, pseudo-forces cannot 

completely vanish at undamaged locations due to uncertainties during measurements; 

instead, they rapidly attenuate at undamaged locations. Thereby, the occurrence, location, 

and size of the initial damage can be characterized by peaks of pseudo-forces. 

Representative studies of damage identification of beams using transverse pseudo-forces 

(TPFs) are as follows. Inspired by the idea of reconstructing distribution of excitation 

forces applied on beams [39], Xu et al. [30] proposed a novel inverse approach for 

damage identification using local perturbation to equilibrium characteristics of beam 

components, whereby a through-width notch in an aluminum beam was identified. A 

low-pass wavenumber filtering was proposed for denoising, with an aim of dealing with 

noise contamination in measured MSs. With the same concern about noise interference, 

Cao et al. [31] proposed a new concept of multiscale pseudo-force by transforming the 

pseudo-force into the wavelet domain. The multiscale nature brought additional benefits 

to enhance robustness of the approach against noise interference. Furthermore, to make 

the approach suitable for beams with unknown material and structural parameters, an 
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optimization strategy for evaluating the constant related to the vibration frequency and 

material and structural parameters was integrated into the multi-scale pseudo-force [32]. 

Xu et al. [33] established a debonding index by reconstructing distribution of interfacial 

forces of a steel-reinforced concrete slab, whereby debonding-induced local perturbation 

to the structural dynamic equilibrium can be canvassed. Furthermore, a hybrid data fusion 

algorithm was proposed for identification of multiple debonding. Xu et al. [34] 

established the “weak formulation” of the pseudo-excitation approach by introducing 

weighted integration, whereby noise immunity of the pseudo-excitation approach can be 

enhanced. Multiple cracks were localized in an aluminum beam-type structure in a noisy 

condition using the enhanced pseudo-excitation approach. To locate damage in sub-

regions that are divided from an entire beam component, “virtual vibration deflections” 

of sub-structures undergoing independent vibration were used for damage identification 

[35]. The enhanced pseudo-excitation approach was further developed, which is suitable 

for damage identification using curvature/strain signals [36]. In particular, a 

reconstruction strategy was proposed to derive vibration displacements through 

integration in the spatial domain. By means of the weak formulation, Zhang et al. [37] 

proposed a damage detection method based on virtual element boundary measurements. 

A novel local specific stiffness identification method was proposed based on a multiscale 

weak formulation [38]. Influences of key parameters, such as measurement interval, scale 

factor, and derivative order of measured vibration displacements, were investigated. 

Experimental validation was carried out on a beam with local reduction in thickness. 

Although the TPF approach relying on flexural VSs has been developed, it is 

inapplicable to some structures governed mainly by tension and not bending, such as 
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cables in a cable-stayed bridge, because bending effects on their flexural vibrations are 

much smaller compared to their tension effects. In contrast, longitudinal VSs can be 

useful for identifying such damages, although they are much more difficult to measure 

than flexural VSs. In the recent decade, the non-contact vibration measurement technique 

using a three-dimensional (3D) scanning laser vibrometer (SLV) has been developed to 

accurately acquire densely sampled longitudinal VSs [6]. By addressing the 

inapplicability of the TPF approach to tension-governed structures, a new concept of 

axial pseudo-force (APF) is formulated in this study using damage-induced perturbation 

in longitudinal vibration, which forms the basis of a novel damage identification 

approach for longitudinally vibrating structures. Unlike the TPF approach relying on 

transverse bending, the proposed APF approach relies on axial tension/compression. The 

APF approach is applied in this study to bar-type structures for damage identification. It 

can be extended to other longitudinally vibrating structures such as cables in a cable-

stayed bridge in some future study. 

The rest of this paper is organized as follows. Section 2 formulates a new concept of 

APF, by which a damage index (DI) is established to indicate and locate damage in 

longitudinally vibrating structures. Superior to the existing TPF approach, the proposed 

APF approach is useful for damage identification in tension-governed structures. In 

particular, the multiscale analysis is integrated into the DI to enhance its robustness 

against environmental noise interference. A normalization strategy is further proposed to 

deal with unknown material and structural parameters in practical scenarios. Section 3 

analytically verifies the capability of the APF approach on bars with two-sided notches 

and single-sided cracks. Section 4 experimentally validates the applicability of the 
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approach by identifying a two-sided notch in an aluminum bar. The bar is excited by an 

electromagnetic shaker, and its longitudinal VSs are acquired through non-contact 

vibration measurement using a 3D SLV. Section 5 presents concluding remarks. 

2. Damage identification of bars using APFs 

2.1 APFs in bars 

For a uniform intact bar under axial excitation, its equation of longitudinal motion can be 

expressed as [40] 

2 2

2 2

( , ) ( , )
( , ),

u x t u x t
AE A f x t

x t


 
− =

 
                                      (1) 

where ( , )u x t  is the longitudinal displacement of the bar, x  is the spatial position along 

its length, t  is time, E  is the elastic modulus, A  is the cross-sectional area,   is the 

mass density, and ( , )f x t  is the distributed axial excitation force. By assuming that a 

damage, e.g., a notch, crack, or inner defect, is introduced into the uniform intact bar, 

spanning from 1x x=  to 2x x=  along its length, its elastic modulus and cross-sectional 

area can be represented as 
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respectively, where IE  and ( )DE x  are elastic moduli at the intact and damaged locations, 

respectively, and IA  and ( )DA x  are cross-sectional areas at intact and damaged locations, 

respectively. Note that IE , IA , and 
I  are assumed to be constant in the intact bar. 

Substituting Eq. (2) into Eq. (1) yields 
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2 2

2 2

( , ) ( , )
( , ) ( , ),I I I I
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where ( , )APFf x t  denotes the APF that is the equivalent axial force caused by the damage, 

applied at the damaged location from 1x x=  to 2x x=  along the bar: 
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=  
−  −    

 





−

(4) 

Equation (3) indicates that the forced vibration of the damaged bar as governed by Eq. (1) 

is equivalent to the vibration of an intact bar under the combination of the axial external 

excitation and APF. A schematic of the APF applied on a bar element with a damage in it 

is illustrated in Fig. 1. 

 

Fig. 1 Schematic of the APF applied on a bar element with a damage in it. 

 

As the APF reflects damage-induced perturbation in the longitudinal vibration of the 

bar element, a damage identification approach using the APF can be established: Eq. (4) 

indicates that the APF is concentrated within the damage region and rapidly attenuates at 

undamaged locations, by which phenomenon damage can be indicated and located. 
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Consider that a pointwise axial excitation is applied at a specific location outside an 

inspection region of the bar. With regard to bar elements bearing no axial excitation, i.e., 

( , ) 0f x t = , Eq. (3) becomes 

2 2

2 2

( , ) ( , )
( , ).I I I I

APF

u x t u x t
A E A f x t

x t


 
− =

 
                            (5) 

By assuming that the bar is undamped, its longitudinal MSs, denoted as ( )MU x , can be 

obtained by assuming that ( , ) ( )sin( )M nu x t U x t= , where n  denotes an undamped 

longitudinal natural frequency of the bar. One can also assume that 

( , ) ( )sin( )Su x t U x t= , where ( )SU x  denotes the longitudinal SRSHE of the bar at an 

excitation frequency   that excludes an undamped longitudinal natural frequency [41]. 

Note that each VS in this study is associated with one vibration frequency: a MS is 

associated with the corresponding natural frequency and a SRSHE is associated with the 

harmonic excitation frequency for the steady-state vibration. Substituting the ( , )u x t  

expression in either case into Eq. (5) yields 

2
2

2

d ( )
( ) ( ),

d

I I I I

APF

U x
A E A U x F x

x
 + =                                    (6) 

where ( )U x  is the longitudinal VS that can be either the longitudinal MS ( )MU x  or the 

longitudinal SRSHE ( )SU x , and ( )APFF x  denotes the amplitude of ( , )APFf x t : 
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   (7) 

Equation (7) indicates that the amplitude of the APF is proportional to reductions of the 

elastic modulus and cross-sectional area of the bar at the damage location. Thereby, a DI, 
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denoted as DI , is established using the absolute value of APFF , by which the occurrence, 

location, and extent of the damage can be characterized: 

2
2

2

d ( )
( ) ( ) ( ) .

d

I I I I

APF

U x
DI x F x A E A U x

x
 = = +                         (8) 

For flexural vibration, discontinuity peaks in amplitudes of TPFs appear at damage 

boundaries to indicate and locate the damage, the mechanism of which can be found in 

Ref. [30]. Similarly, for longitudinal vibration, the APF proposed in this study can reflect 

damage-induced discontinuities at damage boundaries. The continuity condition of the 

axial force at one edge of the damage ( 1x x= ) can be expressed as  

1 1
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                    (9) 

where   is a small positive parameter and 1( )F x  denotes the amplitude of the axial force 

at 1x x= . By Eq. (9), one can obtain 
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Subtracting Eq. (10b) from Eq. (10a) yields 
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By differentiating Eq. (11), 
2

1

2

d ( )

d

I I U x
A E

x
 can be expressed as 
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where ( )  denotes the Dirac delta function. Similarly, at the other edge of the damage 

( 2x x= ), 
2

2

2

d ( )

d

I I U x
A E

x
 can be expressed as 
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Hence, the DI can be rewritten as a Heaviside step function: 
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Equation (13) indicates that in theory the DI exists within the damage region only and 

vanishes at undamaged locations; meanwhile, discontinuity peaks in the DI sharply rise at 
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damage boundaries, e.g., notch edges, whereas values of the DI within the damage region 

are expected to be much less pronounced. Thereby, the analytical mechanism for having 

discontinuity peaks in a DI at damage boundaries is explicitly expounded. Accordingly, 

discontinuity peaks in the DI can be used to indicate and locate damage: the exact 

location and size of the damage can be estimated by the locations of the discontinuity 

peaks in the DI. In contrast, the existing TPF approach can have limitations when it is 

applied to tension-governed structures. In those cases, damage-induced discontinuity 

peaks can be barely identified by the TPF approach because damage-induced bending 

perturbation in their flexural vibration equations can be negligible. Note that the discrete 

form of a DI [ ]DI x  can be obtained from the measured discrete VS [ ]U x , whose second-

order derivative can be calculated by the finite difference method: 

2

2 2

d [ 1] 2 [ ] [ 1]
[ ] ,

d x

U U x U x U x
x

x h

− − + +
=                                    (14) 

where xh  is the sampling interval. 

2.2 Robustness against noise interference 

As noise components are inevitably involved in measured VSs and can be amplified by 

second-order differentiation 
2

2

d

d x
 involved in Eq. (6), actual damage-induced peaks in a 

DI can be masked by intense noise interference. By addressing this problem, robustness 

of the DI against noise interference is enhanced by multiscale analysis [42]. In this study, 

measured longitudinal VSs are inspected in a “region-by-region” manner [34] instead of 

the conventional “point-by-point” manner: the VSs are averaged in a scaled Gaussian 

windowing function ( )sg x  that slides along VS signals: 
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1
( , ) ( ),sU v s U g v

s
=                                                   (15a) 

( ) ( , ) ,s v x
U x U v s

=
=                                                   (15b) 

where 
1

( ) ( )s

x
g x g

ss

−
=  with the Gaussian function 

21/4( ) (2 / ) xg x e −=  and scale 

parameter s , and   denotes convolution. It is noteworthy that unlike the pointwise U , 

sU  is represented in a scaled Gaussian window to average random noise. Equation (15) 

produces a multiscale longitudinal VS sU . Then, the multiscale DI (MDI), denoted as 

sDI , can be obtained by replacing U  with sU  in Eq. (8): 

2
2

2

d ( )
( ) ( ) .

d

I I I Is
s s

U x
DI x A E A U x

x
 = +                                   (16) 

Thereby, the MDI exhibits an intrinsic multiscale property, which has two merits [42]. 

On the one hand, noise components caused by sensors and environments are inevitably 

involved in the measured longitudinal VSs. By gradually increasing scale parameters, 

noise components are averaged in ever-wider Gaussian windows, leading to increasingly 

smooth second-order derivatives of VSs, which is demonstrated in Section 3.3. When 

scale parameters increase to satisficing levels, second-order derivatives of VSs become 

smooth enough, which means noise components in the VSs are basically eliminated. On 

the other hand, damage-induced discontinuity peaks at damage boundaries are naturally 

retained with increasing scale parameters, with which damage can be indicated and 

located. Thereby, the MDI is capable of identifying damage in longitudinally vibrating 

structures in noisy conditions using their longitudinal VSs. Note that the APF approach is 

an offline approach and noise interference needs to be eliminated by postprocessing 
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measured VSs using multiscale analysis; for online damage identification, approaches 

based on Kalman filter [43], band-pass filters [44], and eigen-perturbation [5] are capable 

of removing noise components in VS data streams in real time. 

2.3 Independence of material and structural parameters 

Although the principle of damage identification using the APF is simple and 

straightforward, accurate baseline information, including vibration frequencies and 

material and structural parameters of longitudinally vibrating structures under inspection, 

needs to be known, which inhibits its applications to real-world structures whose material 

and structural parameters are unknown in most scenarios. By addressing this problem, a 

normalization strategy is proposed by dividing both sides of Eq. (8) by I IA E ; one then 

has a normalized MDI (NMDI), denoted as 
*

sDI : 

2
* 2

2

d ( )
( ) ( ) ,

d

s
s s

U x
DI x U x

x
= +                                          (17) 

where 
2

2
I

IE

 
 =  is a constant related to the vibration frequency and material and 

structural parameters of a bar. However, as material and structural parameters of a 

longitudinally vibrating structure under inspection are usually unknown, the constant 2  

cannot be directly obtained. By addressing this problem, 2  is evaluated in this study in a 

statistical manner instead of being directly evaluated [45]: first, a concept of pointwise 

constant 
2[ ]x  for each measurement point in a VS is proposed. As 

*

sDI  in Eq. (17) 

rapidly attenuates and almost vanishes at undamaged locations of the structure, 
2[ ]x  at 

undamaged locations can be alternatively calculated by Eq. (17) using [ ]sU x : 
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2
2

2

d
[ ] [ ] / [ ].

d

s
s

U
x x U x

x
 = −                                             (18) 

Second, as undamaged locations account for a great proportion of the inspection region, 

the pointwise constant 
2[ ]x  with the maximum probability is regarded as the constant 

2 . Thereby, 
*

sDI  can then be obtained by Eq. (17). By the statistical manner of 

evaluating 2 , the APF approach becomes independent of the vibration frequency and 

material and structural parameters. 

For an easy comprehension of the APF approach, its flowchart is shown in Fig. 2. 

Note that the APF approach is a response-only approach that relies only on measured 

longitudinal VSs of structures under inspection and is independent of responses data of 

intact structures. If VSs of intact structures are available, a baseline dataset can be built 

and trained for intelligent damage identification by artificial intelligence algorithms such 

as deep learning, which can be addressed in some future study. It is also noteworthy that 

the APF approach is a reference-free approach: vibration frequencies and material and 

structural parameters of structures can be unknown, making the approach feasible for 

structures made of not only isotropic materials but also orthotropic materials such as 

fiber-reinforced composite laminates [45]. However, the APF approach is an offline 

approach that relies on postprocessing of measured VSs. In contrast, eigen-perturbation 

techniques that have attracted considerable attention promise to identify structural 

damage in real time [5], examples being recursive principal component analysis [46] and 

recursive singular spectrum analysis [47]. Thus, fast measurement and processing of VS 

data streams with real-time algorithms can be addressed in some future study. 
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Fig. 2 Flowchart of the APF approach. 

3. Verification of the approach 

The capability of the APF approach in identifying damage in a bar is analytically 

verified in this section. Note that analytical solutions of longitudinal VSs of bars are 

continuous and noise-free here. For verification of the APF approach, analytical VSs of 

bars are spatially discretized and Gaussian noise is added to them to simulate 

environmental noise interference. Consider an undamped bar of length L , which contains 

a two-sided notch along its length. The bar is divided into three segments by edges of the 

notch section with lengths jL  ( 1, 2,3j = ). Two intact segments are joined by the notch 

segment with reduced cross-sectional dimensions. Let x  be the abscissa and /x L =  be 

the dimensionless coordinate. Let jx  be the abscissa of the jth change in the cross-section 

and /j j jl x L = =  be the dimensionless abscissa of jx . The dimensionless length of the 
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notch is 2 1l l− . Let /c cx L =  denote the dimensionless central location of a notch, 

where cx  is the central location of the notch with the subscript c  denoting the center of 

the notch. Dimensions of the bar with a notch is shown in Fig. 3. 

 

 

Fig. 3 Dimensions of the bar with a notch. 

The elastic modulus and mass density of the bar are denoted as E  and  , 

respectively, which are assumed to be constant. The cross-sectional area of the jth 

segment of the bar is jA , which is assumed to be constant for each segment. A 

dimensionless parameter =( ) /H h H −  is used to represent thickness reduction of the 

notch with H  and h  denoting thicknesses of intact and notched cross-sections, 

respectively. An aluminum bar of length 500 mm, width 25 mm, and thickness 6 mm is 

considered as a specimen, whose elastic modulus and mass density are 70 GPa and 2700 

kg/m3, respectively. A two-sided notch with reduced cross-sectional dimensions is 

introduced by symmetrically reducing the thickness of the specimen from both its top and 

bottom surfaces throughout its width. Figure 4 shows a schematic of the APF applied on 

a bar element with a two-sided notch. Damage Scenarios I-VIII of the specimen are used 

for verification of the approach, where different vibration frequencies and notch locations 

and extents are considered, as illustrated in Table 1. 
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Fig. 4 Schematic of the APF applied on a bar element with a two-sided notch. 

 

Table 1. Damage Scenarios I-VIII 

Scenario I II III IV V VI VII VIII 

2 1l l−  0.2 0.12 0.05 0.05 0.05 0.05 0.05 0.05 

c  0.5 0.5 0.5 0.3 0.4 0.5 0.6 0.7 

  0.2 0.15 0.1 0.1 0.1 0.1 0.1 0.1 

Frequency (Hz) 4867.9 4931.1 4988.7 1000 2000 3000 4000 5000 

 

3.1 Notch identification using longitudinal MSs 

The equation of longitudinal motion of the undamped bar is expressed as [40] 

2 2

2 2

( , ) ( , )
0,

j ju x t u x t
E

x t


 
− =

 
 1,2,3,j =                               (19) 

where ju  is the longitudinal displacement of the jth segment, whose solution can be 

assumed as 

,( , ) ( )sin( ),j M j nu x t U x t=  1,2,3,j =                                  (20) 

where , ( )M jU x  is the jth segment of the longitudinal MS of the bar associated with its 

natural frequency n . Substituting Eq. (20) into Eq. (19) yields 

2

2

2

d ( )
( ) 0.

d

j

n j

U x
U x

x E


+ =                                            (21) 
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By introducing the dimensionless abscissa /x L = , the general solution to Eq. (21) can 

be expressed as 

,1 ,1 ,1 ,1 ,1 1( ) cos sin , 0 ,M M M M MU e f l     = +                                   

,2 ,2 ,2 ,2 ,2 1 2( ) cos sin , ,M M M M MU e f l l     = +                           (22) 

,3 ,3 ,3 ,3 ,3 2( ) cos sin , 1,M M M M MU e f l     = +                                   

where ,M je  and ,M jf , in which 1, 2,3j = , are constants to be determined by boundary 

and continuity conditions, and , /M j n j jL E  =  is the dimensionless natural frequency 

of each bar segment. The axial force in a bar segment is 
'

, ( )j M jEA U  . 

By taking a free-free bar as an example, its boundary conditions at its two ends are 

'

,1 0( ) 0,MU  = =  
'

,3 1( ) 0.MU  = =                                         (23) 

Continuity conditions of the displacement and axial force at two edges of the notch 

section, i.e., 1l =  and 2l = , are 

1,1 ,2( ) ( ) ,M M lU U   ==  
1

' '

1 ,1 2 ,2( ) ( ) ;M M lEAU EA U   ==                      (24a) 

and 

2,2 ,3( ) ( ) ,M M lU U   ==  
2

' '

2 ,2 3 ,3( ) ( ) .M M lEA U EAU   ==                     (24b) 

Substituting Eq. (22) into Eqs. (23) and (24) yields six homogeneous equations with six 

unknown constants ,M je  and ,M jf . To obtain a nontrivial solution, the determinant of the 

coefficient matrix is set to zero, from which natural frequencies of the bar can be solved 
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and ,M je  and ,M jf  can be solved by normalizing MSs with unit maximum absolute 

values. Accordingly, , ( )M jU   can be obtained by Eq. (22). 

Following the foregoing procedure, the first MSs of the bar for Scenarios I-III are 

obtained by Eq. (22). Figure 5 shows the first MS for Scenario I, which is continuous at 

locations of notch edges. By Eq. (8), DIs for Scenarios I-III are obtained and shown in 

Fig. 6, in each of which two discontinuity peaks sharply rise at locations of the notch 

edges, clearly indicating and locating the notch, in good agreement with actual notch 

locations: the identified notches for Scenarios I-III span from = 0.4 to 0.6, 0.44 to 0.56, 

and 0.475 to 0.525, respectively. In addition, Fig. 6 shows that ratios of amplitudes of the 

DIs for the three scenarios are approximately 1:1.5:2, which are consistent with ratios of 

thickness reductions of the three notches. This finding corresponds to the inference of Eq. 

(7) that the amplitude of the APF is proportional to the thickness reduction of the bar in 

the notch section. 
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  Fig. 5 First MS for Scenario I.                          Fig. 6 DIs for Scenarios I-III. 

3.2 Notch identification using longitudinal SRSHEs 
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The equation of longitudinal motion of the jth segment of the undamped bar under the 

distributed axial harmonic excitation force ( , )f x t  with the excitation frequency   that 

excludes an undamped longitudinal natural frequency of the bar can be expressed as [40] 

2 4

2 2

( , ) ( , )
( , ),

j j

j j

u x t u x t
EA A f x t

x t


 
− =

 
 1,2,3,j =                        (25) 

whose solution can be assumed as 

,( , ) ( )sin( ),j S ju x t U x t=                                              (26) 

where , ( )S jU x  is the jth segment of the longitudinal SRSHE of the bar associated with 

the excitation frequency  . 

Consider a pointwise harmonic excitation ( , ) sin( ) ( )f x t F t L x = −  with the 

amplitude F  applied at a free end ( x L= ) of the bar. Since ( , )f x t  vanishes for 

[0, )x L , solutions to , ( )S jU x  for [0, )x L  have the same forms as those in Eq. (22): 

,1 ,1 ,1 ,1 ,1 1( ) cos sin , 0 ,S S S S SU e f l     = +    
                                

,2 ,2 ,2 ,2 ,2 1 2( ) cos sin , ,S S S S SU e f l l     = +                           (27) 

,3 ,3 ,3 ,3 ,3 2( ) cos sin , 1,S S S S SU e f l     = +                                    

where ,S je  and ,S jf , in which 1, 2,3j = , are constants to be determined by boundary 

and continuity conditions, , /S j j jL E  =  are the dimensionless frequency of each 

beam segment corresponding to the excitation frequency. The axial force in each bar 

segment is 
'

, ( )j S jEA U  . 

Boundary conditions of the bar with the pointwise harmonic excitation force at 

x L=  are 
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'

,3 0( ) 0,SU  = =  
'

,3 1

3

( ) .S

F
U

EA
 = = −                                   (28) 

Continuity conditions of the displacement and axial force at two edges of the notch 

section, i.e., 1l =  and 2l = , are 

1,1 ,2( ) ( ) ,S S lU U   ==  
1

' '

1 ,1 2 ,2( ) ( ) ;S S lEAU EA U   ==                     (29a) 

and 

2,2 ,3( ) ( ) ,S S lU U   ==  
2

' '

2 ,2 3 ,3( ) ( ) .S S lEA U EAU   ==                   (29b) 

Substituting Eq. (27) into Eqs. (28) and (29) yields six nonhomogeneous equations, from 

which six unknown constants ,S je  and ,S jf  can be solved by assuming that the pointwise 

harmonic excitation force has a unit amplitude (1 N). Accordingly, , ( )S jU   can be 

obtained by Eq. (27), which has the same shape with different force amplitudes under the 

linear vibration assumption. 

To verify the feasibility of the proposed approach for a VS with an arbitrary 

vibration frequency, normalized SRSHEs of the bar with unit maximum amplitudes 

associated with vibration frequencies of 1000, 2000, 3000, 4000, and 5000 Hz for 

Scenarios IV-VIII, respectively, are obtained following the foregoing procedure. 

Correspondingly, for notches with a dimensionless length of 0.05, their dimensionless 

central locations c  are 0.3, 0.4, 0.5, 0.6, and 0.7, respectively. The SRSHEs are obtained 

by Eq. (27) and shown in Fig. 7, which are continuous at locations of the notch edges. 

DIs for Scenarios IV-VIII are obtained by Eq. (8) and shown in Fig. 8. It can be seen 

from Fig. 8 that at locations of the notch edges in each scenario, two discontinuity peaks 
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in each DI sharply rise to clearly indicate and locate the notch, which correspond to 

actual locations of the notch edges. Thereby, the approach proposed in this study is 

feasible for identifying notches using either a MS or a SRSHE with an arbitrary vibration 

frequency. It is noteworthy that to obtain SRSHEs of the structures under inspection, they 

need to be excited by single frequencies, which is difficult to achieve for some large-

scale structures. Use of VSs under environmental excitations can be addressed in some 

future study. 

     

Fig. 7 VSs for Scenarios V-VIII.                          Fig. 8 DIs for Scenarios V-VIII. 

3.3 Notch identification without knowing material and structural parameters 

To simulate a noisy condition, white Gaussian noise of a signal-to-noise ratio (SNR) of 

70 dB is individually added to the longitudinal SRSHE for Scenario VIII, from which 

2 2d / dU x  is obtained by Eq. (14) and shown in Fig. 9. It can be seen from Fig. 9 that 

noise interference dominates 2 2d / dU x  and masks the notch-induced discontinuity peaks. 

To eliminate noise interference, U  is convoluted with the scaled Gaussian window by Eq. 

(15). By gradually increasing the scale parameter, 
2 2d / dsU x  at scale parameters of 5, 10, 
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15, and 20 are obtained and shown in Fig. 10, where noise components in U  are 

gradually removed until 
2 2d / dsU x  becomes smooth at the scale parameter of 20. 

 

   

Fig. 9 2 2d / dU x  in a noisy condition.       Fig. 10 
2 2d / dsU x  in a noisy condition. 

 

By substituting 20U  into Eq. (16), the MDI is obtained and shown in Fig. 11, where 

two discontinuity peaks in 20DI  sharply rise, by which occurrence of the notch is clearly 

manifested and its two edges are located at about  = 0.6 and 0.65, corresponding to the 

actual locations of the notch edges indicated by two vertical lines. When the vibration 

frequency and material and structural parameters are unknown, the constant 2  is 

evaluated by the normalization strategy to be 38.7 (the exact value of 2  can be 

calculated by 
2

2
I

IE

 
 =  to be 38.1), with which the NMDI is obtained by Eq. (17) and 

shown in Fig. 12. Similar to discontinuity peaks in Fig. 11, two discontinuity peaks in Fig. 

12 clearly indicate and locate the notch. Note that the MDI in Fig. 11 is divided by I IA E  

for comparison with the NMDI in Fig. 12. Thereby, the proposed approach is verified to 
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be effective in damage identification in noisy conditions even when vibration frequencies 

and material and structural parameters are unknown. 

   

Fig. 11 MDI in a noisy condition.                Fig. 12 NMDI in a noisy condition. 

3.4 Crack identification in noisy conditions 

By considering a bar element with a single-sided notch, the APF is applied on one side of 

the element, as illustrated in Fig. 13. When the length of the notch is much smaller than 

dimensions the bar, the notch can be regarded as a perpendicular single-sided crack. In 

that situation, the APF is perpendicularly applied along the crack, as illustrated in Fig. 14. 

 

Fig. 13 Schematic of the APF applied on a bar element with a single-sided notch. 
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Fig. 14 Schematic of the APF applied on the bar element with a single-sided crack. 

Considering that the analytical bar model bears a crack with a width of 0.2 mm 

(dimensionless width of 0.0004) and depth of 0.6 mm (dimensionless reduction in 

thickness of 0.1); its VS under an axial excitation at 5000 Hz is shown in Fig. 15. By Eq. 

(8), the DI is obtained and shown in Fig. 16. It can be seen from Fig. 16 that a peak in the 

DI is concentrated at the crack location and values of the DI at undamaged locations 

vanish. Note that as two edges of the crack are close to each other, two peaks that 

correspond to the two crack edges merge into one single peak. 

To verify the robustness of the NMDI against noise interference, SNRs of VSs 

decrease from 70 dB to 50 dB and thence to 30 dB. The NMDIs are obtained by Eq. (17) 

and shown in Fig. 17. For the SNR of 70 dB, it can be seen from Fig. 17(a) that the 

NMDI with the scale parameter of 25 bears an evident crack-induced peak at the crack 

location, meanwhile noise-induced burrs appear in the DI at undamaged locations. For 

the SNR of 50 dB, it can be seen from Fig. 17(b) that more intense noise interference to 

the NMDI is suppressed when the scale parameter increases to 30. For the SNR of 30 dB, 

it can be seen from Fig. 17(c) that although the crack-induced peak in the NMDI can still 

be identified by increasing the scale parameter to 35, some noise-induced fake peaks with 

less pronounced amplitudes also appear at undamaged locations. Thus, the SNR of 30 dB 

can be regarded as the limit of the APF approach for crack identification in this case. 
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Thereby, besides identification of notches, the APF approach is capable of identifying 

cracks with much smaller widths.  

   

Fig. 15 VS of the bar with the crack.                  Fig. 16 DI of the bar with the crack. 

 

   

(a)                                                                 (b) 
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(c) 

Fig. 17 NMDIs in noisy conditions with SNRs of (a) 70 dB, (b) 50 dB, and (c) 30 dB. 

4. Experimental validation 

The applicability of the approach is experimentally validated by identifying a two-sided 

notch in a bar through non-contact vibration measurement using a 3D SLV. 

4.1 Experimental specimen and setup 

The experimental specimen of an aluminum bar with a two-sided notch is shown in Fig. 

18, whose elastic modulus and mass density are 70.5 GPa and 2680 kg/m3, respectively. 

The aluminum beam is 475 mm long, 25.4 mm wide, and 6.35 mm thick. The notch with 

a length of 55 mm is manufactured by symmetrically milling 1.25 mm in the thickness of 

the specimen from its both top and bottom surfaces throughout its width. Dimensionless 

reduction in thickness =( ) /H h H −  of the specimen is about 0.4. To simulate free-free 

boundary conditions, it is suspended by four flexible strings that are glued to its four 

corners of the upper surface; an MB Dynamics Modal 50A electromagnetic shaker is 

attached to the end of the bar farther away from the notch, as shown in Fig. 18(a). The 

zoomed-in view of the notch is shown in Fig. 18(b) to display its details. The 

measurement line, which is indicated by dots in Fig. 18(a) to represent the laser spot 

moving along it, on one lateral side along the length of the bar is 450 mm in length, 

whose origin is 2 mm away from its end without excitation applied to it; the notch is 145 

through 200 mm away from the origin of the measurement line, whose dimensionless 

coordinates is  = 0.322 through 0.444. As the maximum excitation frequency of the 

shaker is 5000 Hz, and the first undamped longitudinal natural frequency of the beam is 

estimated to be 4968.6 Hz by the analytical solution in Section 3, the first damped 



30 

 

longitudinal natural frequency of the beam cannot be accurately acquired due to the 

limitation of the shaker. In this restricted case, a SRSHE having a similar shape to that of 

the first MS is used to validate the applicability of the APF to both MSs and SRSHEs. 

The shaker produces a harmonic force to excite the bar in the axial direction at 4900 Hz, 

which is close to the first calculated undamped longitudinal natural frequency of the bar 

and within the excitation frequency range of the shaker, so that the SRSHE has a similar 

shape to that of the first MS of the bar. Consequently, the longitudinal SRSHE at 4900 

Hz is used in this study to validate the applicability of the proposed approach for damage 

identification. 

 

(a) 

 

(b) 
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Fig. 18 (a) Aluminum bar with a two-sided notch, which is excited by an electromagnetic 

shaker in the axial direction, and (b) the zoomed-in view of the notch. 

 

The experimental setup of a 3D SLV (Polytec PSV-500-3D) is shown in Fig. 19. 

Steady-state velocity responses of the beam are acquired by the 3D SLV at 255 uniformly 

distributed measurement points along the measurement line. Longitudinal operating 

deflection shapes (ODSs) of the bar are extracted using LMS Test.Lab 9b’s animation 

module by analyzing averaged cross-power spectra of the measurement points. The real 

part of the ODS at 4900 Hz is regarded as the longitudinal SRSHE for this lightly-

damped bar, since its magnitude is much larger than that of the imaginary part, which 

leads to a higher SNR [6] that benefits structural damage identification.  

 

Fig. 19 3D SLV with three scanning heads and a controller. 

4.2 Experimental results 

Figure 20 shows the measured longitudinal SRSHE at 4900 Hz, from which its second-

order derivative 2 2d / dU x  is shown in Fig. 21. It can be seen from Fig. 21 that noise 

components are intensely amplified by differentiation and dominate 2 2d / dU x . As a 

result, damage-induced discontinuities in 2 2d / dU x  are masked by noise interference and 

Controller 

Scanning heads 
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fail to indicate any damage. To eliminate noise interference, U  is convoluted with the 

scaled Gaussian window by Eq. (15). By gradually increasing the scale parameter s  to a 

satisficing level of 50, 
2 2

50d / dU x becomes smooth with success in removal of noise 

interference. 

   

Fig. 20 Measured longitudinal SRSHE.    Fig. 21 2 2d / dU x  for the longitudinal SRSHE. 

 

By substituting 50U  into Eq. (16), the MDI is obtained and shown in Fig. 22, where two 

sharply rising discontinuity peaks in 50DI  clearly indicate occurrence of the notch and 

pinpoint its two edges at about  = 0.32 and 0.45, which correspond to actual locations 

of the notch edges indicated by two vertical lines, i.e., x =145 through 200 mm. In a 

practical scenario, baseline information such as the vibration frequency and material and 

structural parameters can be unknown. In this case, the constant 2  needs to be estimated 

in a statistical manner, which is evaluated by the normalization strategy to be 36.5 (the 

exact value of 2  can be calculated by 
2

2
I

IE

 
 =  to be 36.0); consequently, the NMDI 

is obtained by Eq. (17) and shown in Fig. 23. It can be seen that the NMDI is highly 
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consistent with the MDI: two discontinuity peaks in Fig. 23 clearly indicate and locate 

the notch and are consistent with the two discontinuity peaks in Fig. 22. Note that the 

MDI in Fig. 22 is divided by I IE A  for comparison with the NMDI in Fig. 23. Thereby, 

the APF approach proposed in this study can be applied to damage identification of 

longitudinally vibrating structures in noisy conditions even though vibration frequencies 

and material and structural parameters are unknown. 

   

Fig. 22 MDI for the SRSHE.                        Fig. 23 NMDI for the SRSHE. 

5. Concluding remarks 

Among damage identification methods relying on flexural VSs, the TPF approach 

features high sensitivity to initial damage. However, the TPF approach is inapplicable to 

some structures governed mainly by tension and not bending, such as cables in a cable-

stayed bridge, because bending effects on their flexural vibrations are much smaller 

compared to their tension effects. In this study, a new concept of APF is formulated using 

damage-induced perturbation in longitudinal vibration, which forms the basis of a novel 

damage identification approach for longitudinally vibrating structures. The capability of 

the approach in identifying damage in longitudinally vibrating structures is analytically 

verified on bars with two-sided notches and cracks. The applicability of the approach is 
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experimentally validated by identifying a two-sided notch of an aluminum bar through 

non-contact vibration measurement using a 3D SLV. Some conclusions are as follows. 

(1) The APF is concentrated within damage region only and rapidly attenuates at 

undamaged locations; meanwhile, discontinuity peaks in the APF sharply rise at damage 

boundaries, e.g., notch edges. Thereby, the absolute value of the amplitude of the APF 

can be used as the DI to characterize the occurrence, location, and extent of the damage. 

The analytical mechanism for having discontinuity peaks in the DI at damage boundaries 

is explicitly expounded. 

(2) To enhance robustness of the DI against noise interference, the region-by-region 

manner is used to inspect a longitudinal VS by sliding a scaled Gaussian window 

function along the VS signal, whereby random noise involved in the VS can be averaged. 

By gradually increasing the scale parameter to a satisficing level, noise components in the 

VS can be gradually eliminated; meanwhile, damage-induced discontinuity peaks at 

damage boundaries are naturally retained to indicate and locate the damage. 

(3) Elastic moduli, cross-sectional areas, and mass densities are assumed to be constant in 

longitudinally vibrating structures under the intact status in this work. To ensure the 

applicability of the proposed approach to real-world structures under inspection whose 

material and structural parameters are unknown, a normalization strategy is proposed to 

evaluate the constant 2  in a statistical manner, which is independent of baseline 

information of the vibration frequency and material and structural parameters. 

(4) The APF approach is an offline approach that relies on postprocessing of measured 

VSs, which can inhibit its applicability for damage identification in real time. Fast 

measurement and processing of VS data streams with real-time algorithms can be 
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addressed in some future study. On the other hand, to obtain SRSHEs of structures under 

inspection, they need to be excited by single frequencies, which is difficult to achieve for 

some large-scale structures. Use of VSs under environmental excitations can be 

addressed in some future study. 
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