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Abstract 29 

Characterization of small-scale damage (with dimensions smaller than 1/10 of the probing 30 

wavelength) using nonlinear guided ultrasonic waves (GUWs) has been practiced over years, 31 

numerically and experimentally. To compensate for the insufficiency of analytical solutions that 32 

are able to interpret the underlying physical aspects of nonlinearity in GUWs induced by the 33 

small-scale damage and in particular fatigue damage, a new theoretical model based on the 34 

elastodynamic reciprocity theorem is developed. The model yields a closed-form solution to the 35 

modulation mechanism of a fatigue crack with ‘breathing’ attributes on Lamb wave propagation, 36 

gaining insight into the generation of second harmonics in Lamb waves. The model depicts the 37 

‘breathing’ crack as an additional wave source imposing extra forces on crack surfaces that is 38 

equivalent to the integral of the stress tensor, and the source interferes with the wavefield of the 39 

original probing wave. In a time-frequency domain, this additional wave source is linked to the 40 

second harmonic generation in spectra. By virtue of the model, a nonlinear damage indicator, 41 

governed by the quantified second harmonic generated by the crack, is defined, to calibrate crack 42 

severity quantitatively. Finite element simulation is performed to verify the analytical model and 43 

demonstrate its accuracy when used for evaluating damage onset. Proof-of-concept experimental 44 

validation is conducted to verify the proportional trend of the damage indicator with respect to 45 

damage severity. This elastodynamic reciprocity-driven model and the closed-form solution shed 46 

light, from an analytical perspective, on the nonlinear interaction of GUWs with damage of small 47 

scale featuring ‘breathing’ attributes. 48 

 49 

Keywords: damage detection; contact acoustic nonlinearity; second harmonic generation; fatigue 50 

crack; elastodynamic reciprocity; Lamb wave 51 
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1. Introduction 52 

The superior sensitivity of higher order harmonics embodied in guided ultrasonic waves (GUWs) 53 

to the microstructural evolution and material degradation has been broadly exploited, to develop 54 

high-precision nondestructive evaluation, condition monitoring, material state awareness and 55 

structural health monitoring techniques [1-8]. The higher order harmonics can be generated upon 56 

nonlinear interaction between a probing wave and microstructural degradation in a waveguide 57 

that is associated with dislocation, phase change, void nucleation and plastic deformation. There 58 

is a rich body of literature, in numerical or experimental natures [9-12], to reveal that the higher 59 

order harmonics of GUWs are more sensitive to contact-type defect (e.g., fatigue cracks or 60 

delamination under the modulation of external loads), yet less affected by ambient variations (e.g., 61 

environmental noise or temperature fluctuation) than the linear features of GUWs including the 62 

coefficients of wave transmission/reflection, distortion of waveform, and delay in wave arrival 63 

time [13-21]. Amongst the higher order harmonics, the second order harmonics are extensively 64 

explored, owing to their relatively stronger magnitudes and easier acquisition, compared with 65 

harmonics of higher orders. 66 

 67 

Approaches making use of the second harmonics of GUWs and in particular those of Lamb waves, 68 

for the purposes of material characterization and damage evaluation, have primarily been 69 

developed based on the premise that the second harmonic generation can be attributed to two 70 

sources: i) the nonlinear material elasticity of the waveguide [22-24], and ii) the damage-induced 71 

contact acoustic nonlinearity (CAN) [25, 26]. For the former, the continuous material 72 

deterioration under cyclic loads (e.g., dislocation dipoles, slip bands and micro-cracks) leads to 73 

deviation in intrinsic constitutive properties of the waveguide material, and the nonlinearity in 74 

constitutive properties consequently induces the second harmonic generation. This phenomenon 75 

can be rigorously interpreted by physics-based models. Representatively, the Hikata model, first 76 

established by Hikata et al. [27, 28] and further extended by Cash and Cai [29], links the 77 
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contribution of screw and edge dislocations in the material to the magnitude of generated second 78 

harmonics. Chen and Qu [30] extended the Hikata model and proposed a solution to the pure and 79 

mixed dislocations in anisotropic crystals with orientation-dependent line energy, and the model 80 

was proven accurate in molecular dynamic simulation when it was used to evaluate variable 81 

dislocation lengths. Cantrell [31] investigated the effect of dislocation dipoles mutually trapped 82 

in wavy-slip on the generation of nonlinearity in GUWs propagating in various metals including 83 

crystalline nickel, aluminium alloys and copper single crystals, and revealed the correlation of 84 

acoustic nonlinearity with the density of dislocation dipoles and the dipole height. Based on that, 85 

Cantrell predicted the rise in the magnitude of the second harmonics by considering the interaction 86 

between precipitates and dislocations [32]. 87 

 88 

As far as the CAN concerned, the modulation of a contact-type defect, for instance a fatigue crack, 89 

on propagating GUWs is a key driving force to trigger the generation of nonlinear wave features. 90 

When a probing GUW traverses a contact-type crack or when the crack is modulated by an 91 

external excitation, the crack opens and closes, respectively during the tensile and compressive 92 

phases of the probing GUW, and such a crack is impersonated as the ‘breathing’ crack. Good 93 

supply of research has rigorously examined the scattering and second harmonic generation by a 94 

‘breathing’ crack. Rose et. al. [33] represented the crack as a displacement discontinuity in the 95 

waveguide. The displacement discontinuity induces equivalent forces at the crack location, which 96 

generate additional wave to interfere in the original global wavefield. Achenbach et. al. [34, 35] 97 

investigated the scattering of elastic waves by a small-scale crack, and depicted the scattered 98 

waves from the crack as the radiated waves generated by an equivalent force, considering the 99 

sufficient small characteristic dimensions of the crack when compared with the wavelength of the 100 

incident wave. Shen and Giurgiutiu [36] simulated the nonlinear interaction between Lamb waves 101 

and a ‘breathing’ crack using a finite element (FE) method, and clarified a monotonic increase of 102 

the generated second harmonic against the crack severity. Yang et al. [6, 37] conducted numerical 103 
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and experimental research on the second harmonic generation in low-frequency Lamb waves that 104 

was triggered by fatigue cracks, to conclude that the magnitude of the second harmonic induced 105 

by the interaction between the fundamental symmetric Lamb mode (S0) and fatigue crack is much 106 

higher than that by the fundamental antisymmetric Lamb mode (A0). Zhao et al. [38, 39] 107 

constructed a numerical model containing randomly distributed micro-cracks, to explore the 108 

second harmonic generation in low-frequency S0 caused by these micro-cracks using a Monte 109 

Carlo simulation method. The simulation illuminated that the magnitude of the second harmonic 110 

is proportional to the crack density and propagation distance of Lamb waves in the cracking 111 

region, but is not correlated to the friction state of the micro-crack surfaces. 112 

 113 

With that being said, most approaches exploring the second harmonic generation in GUWs are of 114 

a nature of either numerical simulation or experimental observation, and there is obvious lack of 115 

analytical interrogation to shed light on underlying physical aspects of nonlinearity in Lamb 116 

waves induced by small-scale damage and ‘breathing’ fatigue cracks in particular. Compared with 117 

the acoustic nonlinearity arising from the nonlinear elasticity of materials which can be thoroughly 118 

interpreted by physics-based models, rigorous theoretical derivation on the crack-induced second 119 

harmonic generation is still deficient. Among limited effort, Nazarov and Sutin [40] proposed a 120 

physical model to explain the phenomena observed in experiment and illustrated the high acoustic 121 

nonlinearity in the medium containing uniformly distributed and randomly oriented penny-shape 122 

micro-cracks. The model describes the crack behavior as an elastic contact of two rough surfaces, 123 

pressing one to the other under the action of internal stress in the surrounding solids. It has also 124 

been demonstrated that the presence of cracks results in strong variation in the quadratic and cubic 125 

nonlinearity parameters. The above model was later used to quantitatively determine the 126 

contribution of an evolving fatigue crack in a wavy slip metal to the acoustic nonlinearity in 127 

GUWs [41]. In the model, the distributed cracks were simplified as a single, holistic damage to 128 

alter the mechanical properties of the medium. However, when extended to scenarios in which a 129 
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localized crack, rather than a multitude of distributed cracks, exists in the medium (e.g., a corner 130 

crack near a fastener hole), the model becomes not tenable. 131 

 132 

In recognition of the insufficiency of analytical solutions able to interpret the underlying physics 133 

of nonlinearity in GUWs induced by small-scale damage and in particular a fatigue crack with 134 

‘breathing’ attributes, an analytical model is proposed in this study, based on the elastodynamic 135 

reciprocity theorem [33, 42-44]. The crack considered in the model is of a microscopic degree 136 

and under a stress-free state, namely in the absence of any external load. The model equates the 137 

‘breathing’ crack as an additional wave source to impose extra forces equivalent to the integral of 138 

the stress on the crack surfaces, which interferes with the wavefield of the original probing Lamb 139 

wave. By performing a time-frequency analysis, this additional source is linked to the second 140 

harmonic generation in spectra. Residing on the elastodynamic reciprocity theorem, a closed-form 141 

solution to the magnitude of the ‘breathing’ crack-induced second harmonic is obtained. A 142 

nonlinear damage indicator is further defined by virtue of the closed-form solution, to calibrate 143 

the crack severity in a quantitative manner. FE simulation and experimental validation are 144 

respectively conducted to validate the model and examine its accuracy when used for evaluating 145 

embryonic fatigue cracks. 146 

 147 

2. Elastodynamic Reciprocity-driven Model and Closed-form Solution 148 

To analytically scrutinize the generation mechanism of second harmonic in a probing Lamb wave, 149 

upon the nonlinear interaction between the wave and a ‘breathing’ fatigue crack, an analytical 150 

model, based on the elastodynamic reciprocity theorem, is developed. 151 

 152 

2.1 Lamb Waves Generated by A Time-harmonic Point Force 153 

When a probing Lamb wave interacts with a ‘breathing’ crack, the wave can traverse through the 154 

crack without being distorted during the compressive phase of the wave; in the contrast, the wave 155 
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is intercepted by the crack during the tensile phase of the wave [45-47]. To depict such two 156 

alternate periods in a wave cycle, a second excitation force is introduced in the analytical model, 157 

to supplant the stress generated on the crack surfaces during this interaction. To facilitate this, the 158 

probing Lamb wave generated by a time-harmonic point force is defined first. 159 

 160 

Comprising symmetric and antisymmetric modes, a Lamb wave in a thin plate-like waveguide in 161 

a stress-free state, can be excited using a time-harmonic vertical point force P  and a horizontal 162 

point force Q  applied simultaneously, see Fig. 1, as [48, 49] 163 

 164 

 165 

Figure 1. Schematic of Lamb wave generation by a point force. 166 

 167 

 1 2( , )1
( ) ,n n i t

n

x x
u V z e

k x



 




=


  (1) 168 

 1 2( ) ( , ) .n n i t

zu W z x x e =   (2) 169 

In the above, nu  ( =0 or 1) and n

zu  denote the in-plane displacement (within the 1 2x x  -plane) 170 

and out-of-plane displacement of the 
thn -order Lamb wave mode, respectively.   and t  are the 171 

angular frequency of the time-harmonic point force and the time, respectively. i  is the imaginary 172 

unit. nk  is the wavenumber of the 
thn -order Lamb wave mode at  . 1 2( , )x x  signifies the 173 

solution of the membrane equation in the 1 2x x  -plane, which satisfies 174 

 2 2

1 2 1 2( , ) ( ) ( , ) 0.nx x k x x  + =  (3) 175 
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( )nV z  and ( )nW z  represent the in-plane and out-of-plane displacement functions of the 
thn -176 

order Lamb wave mode, respectively, which can be separated into the symmetric ( ( )n

SV z  and 177 

( )n

SW z ) and antisymmetric ( ( )n

AV z  and ( )n

AW z ) modes, as 178 

for symmetric modes 179 

 1 2( ) cos( ) cos( )n

SV z s pz s qz= +   (4) 180 

 3 4( ) sin( ) sin( )n

SW z s pz s qz= +   (5) 181 

for antisymmetric modes 182 

 1 2( ) sin( ) sin( )n

AV z a pz a qz= +  (6) 183 

 3 4( ) cos( ) cos( ),n

AW z a pz a qz= +  (7) 184 

where 185 

  
2

2 2 2

2

2 (1 )
( ) ,     ,

(1 )
n L

L

p k c
c

  

 

−
= − =

−
  (8a) 186 

  
2

2 2 2

2
( ) ,     .n T

T

q k c
c

 


= − =   (8b) 187 

1 2 3 4, , ,s s s s  and 1 2 3 4, , ,a a a a  are two series of coefficients, depending on p , q , and nk . Lc  and Tc  188 

are the velocities of the longitudinal and transverse wave modes, respectively, which jointly 189 

constitute the Lamb wave.   is the shear modulus of the plate,   the Poisson’s ratio, and   the 190 

density. 191 

 192 

In a cylindrical coordinate system, the wavefield of the outgoing symmetric Lamb wave modes 193 

(using symmetric modes as an example – the mode to be explored in the analytical model) 194 

generated by the time-harmonic point force can be written as 195 

 ( ) '( )cos ,n n

r S nu V z k r =   (9) 196 

 
1

( ) ( ) ( )sin ,n n

S n

n

u V z k r
k r



 
 = −  (10) 197 
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 ( ) ( )cos ,n n

z S nu W z k r =  (11) 198 

where n

ru , nu  and n

zu  are the radial, circumferential and out-of-plane displacement components 199 

of the 
thn -order  Lamb wave mode, respectively. r  and   are coordinates of the sensing point, at 200 

which the propagating wave signal is captured.   and '  are the first-order Hankel function of 201 

the second kind and its derivative, respectively. The stress component along the radial direction 202 

induced by the probing wave for the 
thn -order Lamb wave mode, n

rr , can be expressed as [48] 203 

2

1 1
( ) ( )cos ( ) [ '( ) ]cos .

n nS Sn

rr n nrr rr
n

z k r z k r
r k r

 


    = − −                         (12) 204 

( )
nS

rr
z  and ( )

nS

rr
z  are two functions of  , p , q  and waveguide thickness ( 2h ). 205 

 206 

Recalling the elastodynamic reciprocity theorem relating two elastodynamic states of the same 207 

body V  and  surface S , which can be expressed as 208 

 ( ) ( ) ,A B B A A B B A

V i i i j S i ij i ij jf u f u dV u u n dS − = −    (13) 209 

where A and B  represent two elastodynamic states, ( )A B

i if f , ( )A B

i iu u  and ( )A B

ij ij   are body 210 

force, displacement and stress, respectively. jn  is the component of outward normal to S . The 211 

amplitudes of the symmetric Lamb wave modes of different orders, generated by a time-harmonic 212 

point force, can be determined explicitly at a given circular frequency. Based on the recursive 213 

relation of the Hankel function, the Lamb wave modes can be obtained as a function of the time-214 

harmonic vertical point force P  and horizontal point force Q , wave propagation distance and 215 

direction [48], as follows, 216 

 , (2)

1

0

( , ) ( ) ( ) ,
m

PS r S n

r v n S n

n

u f P r C V z H k r P 

=

= = −   (14a)217 

, (2)

0

0

( , ) ( ) ( ) ,
m

PS z S n

z v n S n

n

u f P r C W z H k r P 

=

= =                                  (14b) 218 
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, (2) (2)

0 1

0

1
( , , ) ( )[ ( ) ( )] cos ,

m
QS r S n

r h n S n n

n n

u f Q r A V z H k r H k r Q
k r

   
=

= = −   (15a) 219 

 , (2)

1

0

( , , ) ( ) ( ) cos .
m

QS z S n

z h n S n

n

u f Q r A W z H k r Q  
=

= =   (15b) 220 

Here, r

vf  (or r

hf ) and z

vf  (or z

hf ) are the magnitude functions of the in-plane and out-of-plane 221 

displacement of the symmetric Lamb wave modes, generated by a vertical (or horizontal) point 222 

force – namely P (or Q). m  is the number of Lamb wave modes generated in the waveguide. 223 

Superscripts PS and QS indicate the symmetric modes generated by vertical force P and horizontal 224 

force Q, respectively. 
(2) ( )pH   denotes the 

thp -order Hankel function of the second kind ( p = 0 225 

or 1). ,S

nC   and ,S

nA   are the magnitude coefficients which can be expressed as a function of the 226 

applied point force and the modal energy flux as follows 227 

 , ( )
,

4

n
S n S
n S

nn

k W z
C

i I


 =   (16a) 228 

 , ( )
.

4

n
S n S
n S

nn

k V z
A

i I


 =  (16b) 229 

In the above, S

nnI  is the energy carried by the 
thn -order symmetric Lamb wave mode which can 230 

be expressed as 231 

 2 2

1 2[ ( ) ( )],S

nnI c cos ph c cos qh= +  (17) 232 

where 233 

2 2 2 2
2 2 2 2

1 3 3

2 2
2 2 2

2 3

( )( )
[2 ( ) ( 7 ) (2 )]

2

[4 2( 2 ) (2 )].

n n
n n

n

n
n n

n

k q k q
c qh k q k q sin qh

q k

k q
c k ph k p sin ph

pk

− +
= − − +

+
= + −

 234 

Validity of the above theoretical derivation is to be verified in Section 4.1. 235 

 236 

2.2 ‘Breathing’ Crack-induced Second Harmonic 237 
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Consider a 3-D, thin plate-like waveguide under a stress-free state, on the upper surface of which 238 

there exists a non-penetrating (occupying partial thickness of the waveguide), small-scale fatigue 239 

crack (with length and depth of the crack being smaller than 1/10 of the wavelength of the probing 240 

Lamb wave) with ‘breathing’ attributes. The crack locates between the excitation point and a 241 

sensing point from which Lamb waves, upon interaction with the crack, are captured. The center 242 

of the crack is 1r  from the excitation point, and 2r  from the sensing point, as schematically 243 

illustrated in Fig. 2. 244 

 245 

 246 

Figure 2. Schematic of Lamb wave excitation and acquisition in a plate waveguide containing a ‘breathing’ 247 

crack. 248 

 249 

During the tensile phase of wave propagation, the two crack surfaces are apart one from the other, 250 

partially or entirely. The crack surfaces are deemed smooth due to the fairly small dimensions of 251 

the crack, as a consequence of which the effect of vertical force at the crack on the second 252 

harmonic generation is not considered. Let S  stand for the opening area of the crack surface, 253 

which can further be divided as 
+S  and S −

, referred to as the shaded and illuminated surfaces, 254 
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respectively, in Fig. 2. As a result of the traction-free state on 
+S  and S −

, the normal stress in 1x  255 

direction on 
+S  satisfies the following criterion during wave propagation: 256 

+( , ) 0. x t x S                                                          (18) 257 

The probing wave can propagate through the crack without distortion during the compressive 258 

phase in a wave cycle, while the wave is intercepted by the crack during tensile phase. Allowing 259 

for the small scale of the crack (with dimensions smaller than 1/10 of the probing wavelength), a 260 

pair of time-harmonic, concentrated, horizontal point forces, F +  and F −  , is introduced to 261 

supplant the effect of the stress on 
+S  and S −

, respectively, to investigate the crack-induced 262 

second harmonic. F +  and F −  are equal in amplitude but opposite in direction. Taking F +  as an 263 

example, the amplitude of F +  equals to the difference between (i) the integral value of the normal 264 

stress in 1x  direction on 
+S  when the waveguide is intact, and (ii) the integral value of the normal 265 

stress in 1x  direction on 
+S  when the waveguide is cracked, as 266 

 

| ( , ) |  | ( , ) |  

0,                                  

        = | ( , ) |  ,      .

n n

rr intact rr cracked

S S

n

rr intact

S

F x t ds x t ds

during compressive phase

x t ds during tensile phase

 



+ +

+

+ = −






 



      (19) 267 

The identical manipulation is also applied to F −  on S −
. In the above, | ( , ) |n

rr crackedx t  represents 268 

the absolute value of the normal stress component on crack surface in the cracked waveguide, and 269 

| ( , ) |n

rr intactx t  signifies the absolute value of the normal stress component on the same surface in 270 

an intact waveguide. The pair of F +
 and F −

 serves as an equivalent second excitation on the 271 

crack surface, to interfere with the original wavefield in the waveguide, and therefore it is referred 272 

to as the second excitation force hereinafter. Considering the second excitation force is defined 273 

based on the stress component under intact scenario, all other stress components on the two crack 274 

surfaces, as well as the sliding effect of the crack, are ignored here, as the normal stress in 1x  275 
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direction dominates the stress field in the intact waveguide, and is higher than other stress 276 

components by several orders of magnitude [48]. 277 

 278 

The stress component along the radial direction induced by the probing wave, as analytically 279 

obtained in Section 2.1 (i.e., Eq. (12)), is substituted into Eq. (19). With Eq. (19), the amplitude 280 

of the second excitation force on the crack surface, in pace with the cyclic probing wave, is 281 

obtained analytically and shown in Fig. 3(a). The second excitation force exists in the tensile 282 

phase of the probing Lamb wave propagation only, and otherwise vanishes. The force is then 283 

scrutinized in the frequency domain, in which it is decomposed into two equivalent forces, 284 

respectively at fundamental frequency ( ) and at the double excitation frequency ( 2 ): i) the 285 

first equivalent force, 1eqF +
, which is a sinusoidal signal at  , Fig. 3(b); and ii) the second 286 

equivalent force, 2eqF +
, which is the absolute value of 1eqF +

 at 2 , as shown in Fig. 3(c). Both 287 

the magnitudes of 1eqF +
 and 2eqF +

 are the half of that of F + . Such decomposition warrants that 288 

the summation of 1eqF +
 and 2eqF +

 equates F +
. Applied with the continuous-time Fourier 289 

transform (FT), it can be observed in Fig. 4 that 1eqF +
 corresponds to a wave component at the 290 
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fundamental frequency ( ) and 2eqF +
 to a wave component at 2  – the source to generate the 291 

second harmonic. 292 

 293 

 294 

 295 

 296 

 297 

Figure 3. (a) The second excitation force (F(t)) generated by the ‘breathing’ crack, (b) 1eqF  and (c) 2eqF  (f: 298 

the second excitation force (F(t)) calculated when the crack opens entirely during the tensile phase; T: the 299 

period of a wave cycle). 300 
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 301 

 302 

Figure 3. Cont. 303 

 304 

 305 

Figure 4. Spectra of 1eqF  and 2eqF  ( : the fundamental frequency; 2 : the double excitation frequency). 306 

 307 

Knowing the source of the second harmonic generation, the amplitude of the second harmonic 308 

induced by the crack with ‘breathing’ attributes can be quantified explicitly and analytically. 309 

According to the magnitude functions of Lamb wave generated by a time-harmonic horizontal 310 
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point force as described in Eqs. (15a) and (15b), the magnitude ( sh

ru  and sh

zu ) of the second 311 

harmonic induced by 2eqF +
 and 2eqF −

 can be determined, in the cylindrical coordinate system, as 312 

 
,2 (2) 2 (2) 2

2 2 0 2 1 2 2

0 2

1
(2 , , ) ( )[ ( ) ( )] cos ,sh r S n

r h eq n S n n eq

n n

u f F r A V z H k r H k r F
k r

   


+ +

=

= = −  (20a) 313 

 ,2 (2) 2

2 2 1 2 2

0

(2 , , ) ( ) ( ) cos ,sh z S n

z h eq n S n eq

n

u f F r A W z H k r F  


+ +

=

= =                     (20b) 314 

where 315 

 
2

,2 ( )
.

2

n
S n S
n S

nn

k V z
A

i I


 =   (21) 316 

In the above, 2

nk   signifies the wavenumber of 
thn -order Lamb wave mode at 2 , and 

2eqF +  the 317 

magnitude of 2eqF +
. Validity of the above theoretical derivation is to be verified in Section 4.2. 318 

 319 

3. Nonlinear Damage Indicator 320 

Equation (20) – a closed-form solution to the magnitude of the second harmonic generated by a 321 

‘breathing’ crack, analytically depicts the CAN induced by the crack in Lamb waves. It offers 322 

possibility to inversely characterize a fatigue crack by virtue of the quantified second harmonic 323 

extracted from a captured Lamb wave signal. With such a philosophy, a nonlinear damage 324 

indicator is developed, for calibrating the severity of a fatigue crack quantitatively. The nonlinear 325 

damage indicator,  , is defined as the ratio of the magnitude of the generated second harmonic 326 

to that of the fundamental wave of the probing Lamb wave. Using the in-plane displacement of 327 

the fundamental symmetric mode ( 0S ) under the in-plane excitation as an example,   reads 328 

 
,0

0

| |

| |

sh

r

r

u

u
 =   (22) 329 
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where 0| |ru  and ,0

r| |shu  are the magnitudes of the in-plane displacement of the fundamental 0S  330 

mode and the ‘breathing’ crack-triggered 0S  mode second harmonic, respectively, which can be 331 

calculated based on Eqs. (15a) and (20a). 332 

 333 

Allowing for the micro-dimensions of an embryonic fatigue crack under investigation, the normal 334 

stress at the crack surface (
+S  and S −

) is constant across the entire crack surface (including the 335 

opening area and the closed area, see Fig. 2), and consequently the second excitation force 336 

introduced by the crack, as defined by Eq. (19), can be simplified as 337 

  ( ) ( ),n

Opening area rrF t S t=    (23) 338 

where  Opening areaS  is the opening surface area of the crack. In addition, the normal stress is 339 

primarily constant along the entire thickness of the waveguide (including the cracked and 340 

uncracked parts), provided the crack is not in the vicinity of the excitation point. To put it into 341 

perspective and by way of illustration, the normal stress in a 5-mm thick plate along 1x  direction 342 

that is generated by a time-harmonic point force with a magnitude of 1 N, is calculated using Eq. 343 

(12), in Fig. 5. It is noted in the figure that the normal stress, respectively measured at different 344 

locations (50, 100, 150 and 200 mm away from the excitation point), remains largely constant 345 

along the entire waveguide thickness when the crack is not in the vicinity of the excitation point. 346 

 347 
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 348 

Figure 5. Normal stress along 1x  direction through waveguide thickness, measured at locations of different 349 

distances from the excitation point. 350 

 351 

With a quasi-constant distribution of normal stress across the waveguide thickness, 
2eqF + , – the 352 

source to generate the second harmonic, is proven proportional to the surface area of the crack. 353 

Therefore, the magnitude of the second harmonic generated by the crack, as well as the damage 354 

indicator  , are also proportional to the area of the whole crack surface (including the opening 355 

area and the closed area). Such a conclusion is conducive to continuous monitoring and 356 

quantitative evaluation of a fatigue crack during its growth (to be detailed in simulation (Section 357 

4) and experiment (Section 5)). 358 

 359 

In conclusion, an elastodynamic reciprocity-driven model is proposed, on which basis the 360 

wavefields of a probing Lamb wave that is generated by a time-harmonic point force in both intact 361 

waveguide and the waveguide with a crack with ‘breathing’ attributes are respectively obtained, 362 

in an explicit and analytical manner. A closed-form solution to the magnitude of the generated 363 

second harmonic is established. With the magnitude of the generated second harmonic, a 364 
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nonlinear damage indicator is defined, which is proven proportional to the crack surface area, to 365 

be used for quantitative evaluation of a fatigue crack in sequent sections. 366 

 367 

4. Validation Using Three-dimensional Finite Element (FE) Simulation 368 

The above analytical model and the closed-form solution are first validated using FE simulation. 369 

The magnitudes of both fundamental wave and crack-induced second harmonic, as well as the 370 

defined damage indicator, are calculated based on the magnitude functions of Lamb waves 371 

generated by a time-harmonic point force. In this section, the magnitude of the Lamb waves 372 

generated by a point force in an intact waveguide is first validated, followed by the verification 373 

of the magnitude of crack-induced second harmonic. 374 

 375 

4.1 Validation of Lamb Waves Generated by A Time-harmonic Point Force 376 

To validate Eqs. (14) and (15) derived based on the elastodynamic reciprocity theorem, a three-377 

dimensional (3-D), plate-like waveguide (Young’s modulus: 73 GPa; Poisson’s ratio: 0.33; 378 

density: 2700 kg/m3) is considered and modeled in ABAQUS®/EXPLICT. The waveguide 379 

measures 600 mm long, 500 mm wide and 5 mm thick. A 5-cycle Hanning-windowed sinusoidal 380 

toneburst at a central frequency of 180 kHz is excited, by simultaneously applying a pair of point 381 

forces with the magnitude of 1 N on the upper and lower surfaces of the waveguide, as a result of 382 

which only the symmetric Lamb wave modes are exited in the waveguide. Lamb wave signals are 383 

captured 50 mm from the excitation point, at up to six sensing points along the waveguide 384 

thickness (as illustrated in Fig. 6). These sensing points, labeled as SP1 – SP6, are scattered evenly 385 

with an interval of 0.5 mm between the upper and middle planes of the waveguide. 386 

 387 
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 388 

Figure 6. (a) Schematic of the 3-D FE model, and (b) locations of sensing points (right side-view). 389 

 390 

An in-plane horizontal point force excitation (corresponding to Q in the analytical model) and an 391 

out-of-plane vertical excitation (P in the model) are respectively applied in FE. The radial 392 

component of the in-plane displacement along 1x  direction and the out-of-plane displacement 393 

along z  direction at each sensing point are numerically captured, both of which constitute the 394 

symmetric Lamb wave mode. The in-plane and out-of-plane wave signals captured at SP1 – SP6 395 

under the in-plane excitation scenario are presented in Fig. 7, and it can be observed that 396 

amplitudes of the radial displacement at different locations along waveguide depth remains largely 397 

unchanged; while amplitudes of the out-of-plane displacement changes remarkably, decreasing to 398 

zero at the middle plane of the waveguide, which is in agreement with the stress distribution of a 399 

symmetric Lamb wave mode. The second pulses in the wave signals are the boundary reflection.  400 
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 401 

 402 

 403 

Figure 7. (a) In-plane, and (b) out-of-plane displacement captured at SP1– SP6, obtained from FE simulation 404 

under an in-plane excitation. 405 

 406 

To evaluate the Lamb wave mode generated by the in-plane point force, the time-frequency 407 

analysis is performed, to obtain the spectra of the in-plane displacement of sensing points which 408 

are 50, 100, 150 and 200 mm away from the excitation point, as shown in Figs. 8(a-d). Comparing 409 
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the spectra with the dispersion curve of Lamb waves, it can be clearly observed that only S0 mode 410 

is generated in the waveguide by the applied point force. 411 

 412 

       413 

       414 

 415 

Figure 8. Spectra of the in-plane displacement of the sensing points which are (a) 50, (b) 100, (c) 150, and (d) 416 

200 mm away from the excitation point. 417 

 418 

Further, the magnitudes of symmetric Lamb wave modes at different depths of the waveguide, 419 

numerically obtained using FE and analytically derived using the theoretical model, are compared 420 

in Fig. 9. In Fig. 9, wave signals respectively captured 100, 150 and 200 mm away from the 421 

excitation point are also included for comparison. 422 
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 423 

 424 

 425 

Figure 9. Comparison between the elastodynamic reciprocity-based analytical results and FE simulation: (a) 426 

in-plane, and (b) out-of-plane displacement magnitudes captured at different sensing points under an in-plane 427 

excitation. (solid: analytical results dots: numerical results) 428 

 429 

Analogously, Fig. 10 and Fig. 11 compare the results obtained when an out-of-plane excitation is 430 

applied. 431 
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 432 

 433 

 434 

Figure 10. (a) In-plane, and (b) out-of-plane displacement captured at SP1– SP6, obtained from FE simulation 435 

under an out-of-plane excitation. 436 
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 437 

 438 

Figure 11. Comparison between the elastodynamic reciprocity-based analytical results and FE simulation: (a) 439 

in-plane, and (b) out-of-plane displacement magnitudes captured at different sensing points under an out-of-440 

plane excitation. (solid: analytical results; dots: numerical results) 441 

 442 

It is apparent that the numerical results are in good coincidence with the analytical results for both 443 

the in-plane (Eq. 14(a) and Eq.15(a)) and the out-of-plane (Eq.14(b) and Eq. 15(b)) scenarios, 444 

under either an in-plane or an out-of-plane excitation. This has validated the analytical model 445 

developed in Section 2.1. 446 
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 447 

4.2 Validation of ‘Breathing’ Crack-induced Second Harmonic 448 

To validate the closed-form solution defined by Eq. (20), a surface-breaking, non-penetrating 449 

seam crack is modeled at the center of the above waveguide with the crack surface lying in 2x z -450 

plane, see Fig. 2. The length of the crack is set to be 1 mm yet with different depths. To introduce 451 

the nonlinear ‘breathing’ behavior, the contact-pair interaction-based boundary condition is 452 

applied on the two crack surfaces [10], which permits separation of two surfaces but prohibits the 453 

penetration of FE nodes on each surface to the other. The seam crack with nonlinear ‘breathing’ 454 

behavior well reflects the dynamic attributes of a true fatigue crack in reality. As a consequence, 455 

the CAN due to the presence of a ‘breathing’ crack is introduced into the FE model. A sensing 456 

point, positioned 200 mm from the excitation point, captures the propagating Lamb waves in the 457 

waveguide in a ‘pitch-catch’ configuration with the excitation point. The crack is 100 mm from 458 

the excitation point and the sensing point, respectively. 459 

 460 

As revealed numerically and experimentally [6, 7, 36, 38], the crack-induced second harmonic is 461 

lower than a fundamental wave mode by several orders of magnitude. To facilitate extraction of 462 

the weak second harmonic from a raw wave signal, the pulse-inversion approach [50, 51] is 463 

utilized in simulation, in which the excitation with the same magnitude but in an opposite phase, 464 

are applied respectively in two simulated cases, whereby to double the crack-induced second 465 

harmonic, and in the meantime cancel the fundamental wave mode – a numerical measure to 466 

enhance the extraction and quantification of second harmonics. 467 

 468 

Applying the short-time Fourier transform (STFT) [52, 53], Figs. 12 (a-d) show the spectra of the 469 

fundamental waves and the strengthened second harmonics generated by the crack (of different 470 

depths). Using the pulse-inversion approach, the fundamental wave modes are numerically 471 

cancelled, leaving the doubled second harmonic modes. As observed, the severer the crack, the 472 
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more intense the second harmonic generation it will be. On the other hand, the amplitudes of the 473 

fundamental waves remain largely unchanged regardless of the change in crack depth, implying 474 

that the signal magnitude, a linear characteristic of GUW, is not sensitive to a small-scale crack. 475 

 476 

 477 

 478 

 479 

 480 

Figure 12. Spectra of the fundamental waves (left) and the enhanced second harmonics (right, in which the 481 

fundamental wave modes are numerically cancelled using the pulse-inversion approach [50]) induced by a 482 

‘breathing’ crack (1mm long), when its depth is (a) 0.5 mm, (b) 1.0 mm, (c) 1.5 mm, and (d) 2.0 mm. 483 

 484 
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 485 

Figure 12. Cont. 486 

 487 

With the current excitation of 180 kHz, the amplitudes of the second harmonics at the double 488 

excitation frequency (360 kHz) are extracted and displayed in Fig. 13(a), clearly suggesting that 489 

the magnitudes of the generated second harmonics increase as crack grows. By relating the 490 

magnitudes of the second harmonics to the fundamental wave, the nonlinear damage indicator, 491 

defined in Eq. (22), can be ascertained.  492 

      493 

 494 

Figure 13. (a) Amplitudes of the generated second harmonic at double excitation frequency; (b) comparison 495 

of the nonlinear damage indicator when the crack has different dimensions, obtained from FE simulation and 496 

from the analytical model. 497 

 498 

Figure 13(b) reveals the nonlinear damage indicator obtained from FE simulation and calculated 499 

using Eq. (22), to confirm that the numerical results agree with analytical results. With the 500 
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magnitude of the fundamental wave using Eq. (15), this analytical model facilitates quantitative 501 

estimate of the magnitude of crack-induced second harmonic. In addition, Fig. 13(b) argues that 502 

the nonlinear indicator is proportional to the crack depth, validating the conclusion drawn in 503 

Section 3 that the nonlinear indicator is proportional to the area of the crack surface. 504 

 505 

5. Proof-of-concept Validation Using Experiment 506 

Subsequent to FE validation, the analytical model and the closed-form solution are examined 507 

experimentally. In experiment, the growth of a non-penetrating corner crack emanating from a 508 

fastener hole (a typical embryonic fatigue crack) in its early stage is monitored and calibrated 509 

continuously, using the captured second-harmonics in Lamb wave signals. 510 

 511 

5.1 Specimen Preparation and Experimental Set-up 512 

Three aluminum (7075-T6) plates (labeled as T1, T2 and T3; each measuring 500 mm long, 80 513 

mm wide and 3 mm thick) are prepared, in each of which a through-thickness fastener hole 514 

(diameter: 6 mm) is centralized. The plate is installed on a fatigue testing platform (GP® 515 

SDF2000), to perform the fatigue crack growth testing. A triangle notch along the plate thickness 516 

is pre-treated (~0.6 mm in both the out-of-plane and in-plane directions) at the fastener hole, in 517 

Fig. 14(a), to initiate a non-penetrating fatigue crack under the cyclic fatigue load. A 10 Hz pre-518 

cracking cyclic load with the maximum tensile load of 30 kN and the stress ratio of 0.1 is applied 519 

on each sample plate to initiate a corner crack from the tip of the triangle notch. The length and 520 

depth of the corner crack are measured using a microscope and a slender mirror inserted into the 521 

fastener hole, Fig. 14(a). The pre-cracking process is completed when a quarter-elliptical corner 522 

crack of ~1.0 mm in its length and depth from the notch tip, respectively, is reached. Subsequently, 523 

the maximum tensile load of the pre-cracking cyclic load is regulated to 20 kN, to perform fatigue 524 

crack growth testing. The test is paused after every 1,000 cycles of the fatigue load, and during 525 

the interval the length and depth of the corner crack are measured. The nonlinear ultrasonic testing 526 
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is conducted on an ultrasonic testing system (RITEC®, RAM-5000 SNAP) for determining the 527 

magnitudes of the fundamental wave and second harmonics induced by the corner crack. The 528 

fatigue crack growth testing is terminated when the fatigue crack penetrates the entire thickness 529 

of the plate. Details of the fatigue crack growth testing are summarized in Tab. 1. 530 

 531 

Table 1. Key observations in fatigue crack growth testing. 532 

Specimen 

# 

Length of the 

initial fatigue 

crack (mm) 

Depth of the 

initial fatigue 

crack (mm) 

Cycles to 

formation of the 

initial crack 

Cycles to 

formation of a 

penetrating crack 

T1 0.95 0.95 8,000 18,000 

T2 0.9 1.0 10,000 23,000 

T3 0.85 0.85 6,000 22,000 

 533 

 534 

A lead zirconate titanate (PZT) wafer (PSN-33, diameter: 8 mm; thickness: 0.48 mm), functioning 535 

as a wave actuator, is mounted on the surface of each plate, 100 mm from the center of the fastener 536 

hole; another PZT wafer, serving as the wave sensor, is mounted 100 mm from the fastener hole, 537 

to form a ‘pitch-catch’ configuration, in Fig. 14(b). The excitation – a 5-cycle Hanning-windowed 538 

sinusoidal toneburst, is generated by the testing system at a central frequency of 250 kHz, and the 539 

crack-triggered wave signals are captured by the sensor using an oscilloscope at the sampling 540 

frequency of 200 MHz and averaged for 1,024 times to minimize the measurement uncertainty. 541 

 542 

5.2 Results and Discussion 543 

The corner crack progresses continuously in both the length and depth under the cyclic fatigue 544 

load, before it develops to a penetrating manner. The length and depth of the corner crack are 545 

measured using a microscope and an inserted slender mirror, in Fig. 15. It can be observed that in 546 

each specimen the corner crack progresses slowly in the pre-cracking stage, behaves a stable 547 

growth, and then advances rapidly before it penetrates the thickness of specimen. 548 

 549 
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 550 

 551 

 552 

Figure 14. (a) Photographic illustration of the specimen in fatigue testing, and (b) schematic of experimental 553 

set-up of nonlinear ultrasonic testing. 554 

 555 

The second harmonic induced by the corner crack is extracted from the captured wave signals 556 

using the ‘pulse-inversion’ approach during the crack initiation and growth stages. Applied with 557 

the STFT-based time-frequency analysis, the amplitudes of both the fundamental wave and the 558 

crack-induced second harmonic are obtained, and consequently the nonlinear indicator is 559 

calculated using Eq. (22), to calibrate the severity of the crack. 560 

 561 
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 562 

 563 

 564 

 565 

Figure 15. Measured length and depth of the corner crack in specimen (a) T1, (b) T2 and (c) T3. 566 

 567 

By way of illustration using specimen T1, Fig. 16(a) shows the normalized   as fatigue cycle 568 

increases (normalized with regard to its initial value when fatigue testing commences), 569 

accentuating three stages which correspond to different stages of the crack growth: crack initiation, 570 

stable growth and rapid growth. i) The indicator primarily remains largely unchanged within the 571 

first 8,000 fatigue cycles, corresponding to the crack initiation stage during which the crack 572 
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progresses slowly; ii) from 8,000 to 15,000 fatigue cycles, the indicator increases significantly 573 

due to the continuously augmented surface area of the crack during its stable growth stage. In this 574 

stage, the corner crack develops steadily in its surface and depth. As a result of the small 575 

dimensions, the crack performs the ‘breathing’ behavior when the probing Lamb wave interacts 576 

with the crack; iii) beyond the stable growth (>15,000 cycles), the indicator fluctuates within a 577 

small range, which corresponds to the rapid growth stage of the crack. The crack deteriorates at a 578 

high rate until it penetrates the plate thickness. In this stage, dimensions of the crack are relatively 579 

large, and the large crack opening displacement can hardly perform the ‘breathing’ behavior. 580 

Therefore, part of the wake region of the crack, especially that near the pre-introduced notch, has 581 

ignorable contribution to the second harmonic generation. In another word, although the crack 582 

surface area increases rapidly in the last stage, the large crack area contributes insignificant 583 

generation of the second harmonic, leading to inapplicability of the nonlinear damage indicator. 584 

The same phenomenon is also observed in specimen T2 and T3, as depicted in Figs. 16(b-c). 585 

 586 

 587 

 588 
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 589 

 590 

 591 

Figure 16. Normalized nonlinear damage indicator against fatigue cycles for specimen (a) T1, (b) T2 and (c) 592 

T3. 593 

 594 

Figures 17(a-c) present the crack surface area (estimated using measured length and depth) versus 595 

normalized   measured during the stable crack growth stage. Here, to eliminate the effect of the 596 

irregular crack growth from the triangle notch to the quarter-elliptical fatigue crack during the 597 

crack initiation stage, the initial crack surface area is subtracted. 598 

 599 
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 600 

 601 

 602 

 603 

Figure 17. Normalized nonlinear damage indicator against crack surface area during the stable crack growth 604 

stage for specimen (a) T1, (b) T2 and (c) T3. 605 

 606 
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 607 

 608 

Figure 17. Cont. 609 

 610 

Figure 17 reveals that the nonlinear indicator increases linearly as the crack surface area expands, 611 

validating the conclusion drawn in the theoretical analysis in Section 3 and in FE simulation in 612 

Section 4.2 – the magnitude of the second harmonic and the nonlinear indicator are proportional 613 

to the crack surface area as a fatigue crack progresses. The deviation of the experimental results 614 

from the fitted linear results is mainly caused by i) the bonding condition between the PZT wafers 615 

and specimens; and ii) irregular crack initiation from the introduced triangle notch, which leads 616 

to error in the measurement of crack surface area. This finding can be beneficial to early awareness 617 

and quantitative evaluation of a contact-type defect. 618 

 619 

6. Concluding Remarks 620 

In this study, an elastodynamic reciprocity theorem-driven analytical model is developed, aimed 621 

at gaining insight into the second harmonic generation by an embryonic fatigue crack with 622 

‘breathing’ attributes. A second excitation force with time-dependent traits is introduced to 623 

supplant the stress at the crack surfaces generated by the probing Lamb wave, to interfere with 624 

the original wavefield in the waveguide. By performing the time-frequency analysis, the second 625 
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excitation force is linked to the generation of the second harmonic in spectra. The magnitudes of 626 

the symmetric Lamb wave modes generated by a time-harmonic point force are obtained 627 

analytically and explicitly. A closed-form solution to the magnitude of the ‘breathing’ crack-628 

induced second harmonic is derived, on which basis a nonlinear damage indicator is defined and 629 

proven proportional to the crack surface area. The indicator has demonstrated effective in 630 

evaluating embryonic fatigue cracks quantitatively. It is noteworthy that the material plasticity-631 

driven increase in the wave nonlinearity is neglectable when compared with that generated by a 632 

‘breathing’ crack. FE simulation is conducted to verify the analytical model, and the results have 633 

demonstrated the validity and accuracy of the model. Experimental results validate the 634 

proportional trend of the indicator with respect to crack severity. This new analytical model and 635 

the closed-form solution shed light, from the analytical perspective, on the nonlinear interaction 636 

between Lamb waves and a small-scale fatigue damage featuring ‘breathing’ attributes. The 637 

developed model facilitates continuous monitoring and quantitative evaluation of an embryonic 638 

fatigue crack. 639 
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