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Abstract 8 

The mechanical properties of complex concentrated alloys (CCAs) depend on their formed 9 

phases and corresponding microstructures. The data-driven prediction of the phase formation 10 

and associated mechanical properties is essential to discovering novel CCAs. The present work 11 

collects 557 samples of various chemical compositions, comprising 61 amorphous, 167 single-12 

phase crystalline, and 329 multi-phases crystalline CCAs. Three classification models are 13 

developed with high accuracies to category and understand the formed phases of CCAs. Also, 14 

two regression models are constructed to predict the hardness and ultimate tensile strength of 15 

CCAs, and the correlation coefficient of the random forest regression model is greater than 0.9 16 

for both of two targeted properties. Furthermore, the Shapley additive explanation (SHAP) 17 

values are calculated, and accordingly four most important features are identified. A significant 18 

finding in the SHAP values is that there exists a critical value in each of the top four features, 19 

which provides an easy and fast assessment in the design of improved mechanical properties of 20 

CCAs. The present work demonstrates the great potential of machine learning in the design of 21 

advanced CCAs. 22 
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1. Introduction 30 

The conventional alloys contain only one principal element in each alloy, which is usually 31 

called the principal element based alloy. The mechanical properties of a principal element based 32 

alloy are generally predominated by the principal element[1]. In contrast, complex concentrated 33 

alloys (CCAs) are composed of multiple principal elements with more or less same percentage 34 

and have excellent mechanical properties and unexpected micro-structures. The multiple 35 

principal elements render high configuration entropy if the CCAs in solid solution, thereby 36 

called high-entropy alloys. Actually, CCAs encompass medium-entropy alloys (MEAs) 37 

consisting of three or four principal components and high-entropy alloys (HEAs) consisting of 38 

more than four principal components[2–7].  39 

According to the Gibbs phase rule F = C – P +1 (where F is the degree of freedom, C is 40 

the number of components and P is the number of phases), multiple elements might produce (C 41 

+ 1) equilibrium phases in CCAs, a maximum of six equilibrium phases are expected in the 42 

case of a five-component CCA[8]. However, the high configuration entropy in a CCA can 43 

enhance the formation of a single phase rather than multiple phases[3,9]. Thus, some CCAs 44 

were reported to form single-phase disordered solid solutions with simple body-centered-cubic 45 

(BCC)[10], face-centered-cubic (FCC)[11], or hexagonal close-packed (HCP)[12] lattice 46 

structure, and some CCAs were found to form single intermetallic phase, such as C14 Laves 47 

phase[13] and B2 phase[14]. Multiple disordered solid-solutions[15] and multiple intermetallic 48 

phases[16] are termed here as multi-phase CCAs. Besides, some amorphous CCAs have been 49 

developed in the past decades[17]. Therefore, in the present work, a CCA belongs to one of 50 

three crystalline sets of amorphous (AM), single-phase (SP), and multi-phases (MP).  51 

Figure 1 shows that the mechanical properties of CCAs depend on their formed phases; the 52 

MP CCAs are stronger than the SP CCAs, the CCAs that contain intermetallic phases (termed 53 

as IM) are stronger than the CCAs that only consists of solid solutions (termed as SS), the SP-54 

BCC and MP-BCC CCAs are harder and stronger than the SP-FCC and MP-FCC CCAs. In 55 

materials computation, researchers conduct thermodynamic modeling, density functional 56 

theory (DFT) calculations, and molecular dynamics (MD) simulation in order to design CCAs 57 

from elements. For example, Gorsse et al.[18] applied the CALPHAD method to predict the 58 

phase formation of CCAs, Huhn et al.[19] utilized the DFT approach to predict the phase 59 
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transformation in CCAs. The large number of elements in CCAs, however, gives rise to the 60 

difficulty and cost of those computation techniques. Recently, the materials community 61 

employs Machine learning (ML) to investigate and design novel materials, including steels[20–62 

22], metallic glasses[23–27], shape memory alloys[28], and CCAs[29–31]. For instance, Wen 63 

et al.[29] proposed a ML-based strategy to find new CCAs with high hardness in the Al-Co-Cr-64 

Cu-Fe-Ni system. Islam et al.[30] employed a neural network to classify the corresponding 65 

phase selection in 118 CCAs with an average test accuracy of higher than 80%. Huang et al.[31] 66 

adopted and compared three different ML algorithms on 401 CCAs to predict the crystalline 67 

phases. The distinction between single-phase and multi-phases and the formation of HCP solid 68 

solutions, however, have not been considered yet in ML of CCAs. The hardness of only one 69 

specific CCA system has been studied by ML [29], although big hardness data are available in 70 

the literature for many CCA systems. The yield strength of CCAs has been investigated by the 71 

ML approach [32], whereas the ultimate tensile strength of CCAs has not been investigated by 72 

ML at all.  73 

 

Figure 1. Ashby plot of ultimate tensile strength 

versus hardness of CCAs with different crystalline 

phases, where the first phase in each label of multi-

phases is the matrix, e.g., BCC is the matrix for 

BCC+FCC+B2.  

 74 

In this work, we proposed a ML framework to investigate the phase formation ability and 75 

predict the mechanical properties of CCAs. A dataset of CCAs was constructed by collecting 76 

data from related studies. These data covered variables such as processing conditions, resulting 77 

phases, hardness, and ultimate tensile strength (UTS). A large number of features were initially 78 

introduced, and various feature selection algorithms were utilized to select key features during 79 
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model construction. A random forest classifier (RFC) was used to classify the formed phases in 80 

CCAs, while a random forest regressor (RFR) was employed to predict the hardness and UTS 81 

of CCAs.    82 

 83 

2. Methodology 84 

2.1 Data Acquisition 85 

In addition to chemical compositions, the fabrication conditions of CCAs play an essential role 86 

in the phase formation of CCAs. Therefore, only the fabrication by vacuum arc melting-cast is 87 

considered here, and 750 as-cast CCAs are collected from five review articles [33–37] and 88 

several related studies [37-54]. There have been some samples with conflict reports on phases 89 

in the 750 as-cast CCAs; excluding the conflict data reduces the data number to 557. The present 90 

phase dataset includes 61 AM samples, 136 SP-SS samples, 31 SP-IM samples, 94 MP-SS 91 

samples, and 235 MP-IM samples. The RFC is conducted on all 557 data, called ML-A dataset, 92 

to classify AM, SP, and MP. The number of crystalline-set, termed ML-B dataset, is 496, on 93 

which RFC will classify SS and IM. The 230 SS CCAs form ML-C dataset, with which RFC 94 

classify HCP sub-cluster, BCC sub-cluster including SP and MP BCC CCAs, FCC sub-cluster 95 

including SP and MP FCC CCAs, and mixture (MSS) sub-cluster including the mixture of BCC, 96 

FCC, and HCP. Some of the 750 CCAs have reported hardness values, and a few of them have 97 

reported UTS values. If the reported values of hardness (or UTS) of a CCA are different, the 98 

average value of hardness (or UTS) is adopted for that CCA. The hardness dataset and the UTS 99 

dataset in the present study consist of 290 and 71 CCAs, respectively. All the collected data are 100 

listed in Tables S1-S3 in the Supplementary Material.  101 

 102 

2.2 Feature Construction  103 

Table 1 lists feature blocks, including 22 elemental parameters, 5 thermodynamic parameters, 104 

and 3 valence electron distributions. The elemental properties of a CCA can be approximately 105 

estimated by the atomic average value x̅ as, 106 

�̅� = ∑ 𝑎𝑖𝑥𝑖

𝑛

𝑖=1

 (1) 

where ai and xi is the atomic fraction and elemental properties of the ith element, respectively. 107 
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In addition, the mismatch in elemental properties (𝛿𝑥) of constituent elements is also employed 108 

to describe each CCA, which is defined by  109 

𝛿𝑥 = √∑ 𝑎𝑖 (1 −
𝑥𝑖

�̅�⁄ )2 (2) 

The five thermodynamic parameters are the enthalpy of mixing (Hmix) [56], the entropy of 110 

mixing (Smix) [56], the entropy of fusion (𝑆𝑓 = 𝐻𝑓
̅̅ ̅ 𝑇𝑚

̅̅ ̅̅⁄ ) with 𝐻𝑓
̅̅ ̅ and 𝑇𝑚

̅̅ ̅̅  being average heat 111 

of fusion and average melting temperature, respectively [57], Gibbs free energy of mixing (Gmix) 112 

[58], and the 1/Ω=|𝐻mix|/𝑇𝑚
̅̅̅̅ 𝑆mix parameter [12, 56] The valence electron distributions comprise 113 

the fraction (fk) of the average electrons in the s, p, d valence orbitals, i.e.,   114 

𝑓𝑘 = 𝑘VEC̅̅ ̅̅ ̅̅ ̅
VEC̅̅ ̅̅ ̅  

⁄ (𝑘 = 𝑠, 𝑝, 𝑑 orbitals) (3) 

where the overbar means the average obtained by Equation 1. In this way, 30 features are 115 

initially generated with the feature blocks and then normalized to [0, 1] according to: 116 

𝑥′ =
𝑥 − min 𝑥

max 𝑥 − min 𝑥
 (4) 

where x’ is the normalized feature, min x and max x are the minimum and maximum values of 117 

the original feature x, respectively. 118 

 119 

2.3 Evaluation Metrics 120 

The performances of classification are evaluated by the miss rate and accuracy, which are 121 

defined by  122 

𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝐹

𝑇 + 𝐹
 (5) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝑀𝑖𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝑇

𝑇 + 𝐹
 (6) 

where T and F stand for the number of correctly and wrongly classified samples, respectively.  123 

The performances of regression models are evaluated by the normalized root mean squared 124 

error (NRMSE) and correlation coefficient (r): 125 

𝑁𝑅𝑀𝑆𝐸 =

√∑
1
𝑛

(�̂�𝑖 − 𝑦𝑖)2𝑛
𝑖=1

�̅�
 

(7) 

𝑟 = √
∑ (𝑦�̂� − �̅�)2𝑛

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑛
𝑖=1

 (8) 

𝑦𝑖
 and �̂�𝑖 is the actual and corresponding predicted value, and �̅� is the mean of actual values. 126 
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The value of r = 1 indicates perfect fitting.  127 

Table 1. Feature blocks consisting of elemental parameters, thermodynamic parameters, and VEC distributions. 128 

 Description Abb. Definition  

Elemental 

parameters 

Atomic Number AN 

�̅� = ∑ 𝑎𝑖 𝑥𝑖  

 

𝛿𝑥 = √∑ 𝑎𝑖 (1 −
𝑥𝑖

�̅�⁄ )2 

Metallic Radius MR 

Melting Point Tm 

Boiling Point Tb 

Pauling Electronegativity XP 

Electron Affinity Eea 

First Ionization Potential I1 

Molar Heat Capacity Cm 

Thermal Conductivity K 

Valence Electron VEC 

Heat of Fusion Hf 

Thermodynamic 

parameters 

Enthalpy of mixing Hmix 𝐻mix = 4 ∑ ∑ Δ𝐻𝑖𝑗𝑎𝑖𝑎𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

Entropy of mixing Smix 𝑆mix = −𝑅 ∑ 𝑎𝑖ln 𝑎𝑖

𝑁

𝑖=1

 

Entropy of fusion Sf 𝑆𝑓 =
𝐻𝑓
̅̅ ̅

𝑇𝑚
̅̅̅̅⁄  

Gibbs free energy of mixing Gmix 𝐺𝑚𝑖𝑥 = 𝐻mix − 𝑆mix ∙ 𝑇𝑚
̅̅̅̅  

The reciprocal of Ω 1/Ω 1/𝛺 =
|𝐻mix|

𝑇𝑚
̅̅̅̅ 𝑆mix

⁄  

VEC 

distributions 

fraction of the electrons in the s valence orbitals fs 𝑓𝑠 = 𝑠VEC̅̅ ̅̅ ̅̅ ̅
VEC̅̅ ̅̅ ̅⁄  

fraction of the electrons in the p valence orbitals fp 𝑓𝑠 =
𝑝VEC̅̅ ̅̅ ̅̅ ̅

VEC̅̅ ̅̅ ̅⁄  

fraction of the electrons in the d valence orbitals fd 𝑓𝑠 = 𝑑VEC̅̅ ̅̅ ̅̅ ̅
VEC̅̅ ̅̅ ̅⁄  

 129 

2.4 Validation method 130 

The ten-fold cross-validation method is employed, where each dataset is randomly divided into 131 

ten folds, nine folds as the training set and one fold as the validation set. In turn, the ML model 132 
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is trained on the training set and tested on the validation set ten times. The average of ten test 133 

performances then gives the cross-validation performance.  134 

 135 

3. Results and Discussion 136 

3.1 Classification of Phase-formations 137 

A good ML model should provide as good as possible performance with as less as possible 138 

number of features to achieve a balance between accuracy and complexity. Thus, feature 139 

selection should be conducted to remove redundant features. First, linear-correlated features are 140 

removed by using the Pearson correlation coefficient (PCC, 𝜌),  141 

𝜌(𝑥1,𝑥2) =
𝑐𝑜𝑣(𝑥1, 𝑥2)

𝜎𝑥1
𝜎𝑥2

 (9) 

where 𝜎𝑥1
  and 𝜎𝑥2

  denote the standard deviation of features x1 and x2, and cov is the 142 

covariance. The absolute value of PCC bigger than 0.9 indicates a strong linear correlation 143 

between two features and then only one feature of the correlated pair is selected. After that, 144 

sequential backward selection (SBS) wrapped with RFC, sequential forward selection (SFS) 145 

wrapped with RFC, and mean decrease impurity (MDI) derived from RFC [59] are conducted 146 

to screen further the PCC initially selected features. The three feature selection methods are 147 

denoted by SBS+RFC, SFS+RFC, and MDI/RFC accordingly. 148 

Table 2. The PCC selected features 149 

Dataset PCC selected Features 

ML-A 
𝐴𝑁̅̅ ̅̅ , 𝛿𝐴𝑁 , 𝑀𝑅̅̅ ̅̅̅, 𝛿𝑀𝑅, 𝛿𝑇𝑏 , 𝑇𝑚̅̅̅̅̅, 𝛿𝑇𝑚, 𝐸𝑒𝑎̅̅ ̅̅ ̅, 𝛿𝐸𝑒𝑎, 𝛿𝑋𝑃, 𝐻𝑓̅̅ ̅̅ , 𝛿𝐻𝑓 , 

𝐼1̅, 𝛿𝐼1, 𝐶𝑚̅̅̅̅̅, 𝛿𝐶𝑚, 𝐾, 𝛿𝐾 , VEC̅̅ ̅̅ ̅, 𝛿VEC, 𝑓𝑝, 𝐻mix, 𝑆mix, 𝑆𝑓 

ML-B 
𝐴𝑁̅̅ ̅̅ , 𝛿𝐴𝑁 , 𝑀𝑅̅̅ ̅̅̅, 𝛿𝑀𝑅, 𝛿𝑇𝑏, 𝑇𝑚̅̅̅̅̅, 𝛿𝑇𝑚, 𝐸𝑒𝑎̅̅ ̅̅ ̅, 𝛿𝐸𝑒𝑎, 𝑋𝑃̅̅ ̅̅ , 𝛿𝑋𝑃, 𝛿𝐻𝑓 , 

𝐼1̅, 𝛿𝐼1, 𝐶𝑚̅̅̅̅̅, 𝛿𝐶𝑚, 𝐾, 𝛿𝐾 , VEC̅̅ ̅̅ ̅, 𝛿VEC, 𝑓𝑝, 𝑓𝑑, 𝐻mix, 𝑆mix, 𝑆𝑓 , 𝐺mix 

ML-C 
𝐴𝑁̅̅ ̅̅ , 𝛿𝐴𝑁 , 𝛿𝑀𝑅 , 𝛿𝑇𝑏, 𝑇𝑚̅̅̅̅̅, 𝛿𝑇𝑚, 𝐸𝑒𝑎̅̅ ̅̅ ̅, 𝛿𝐸𝑒𝑎 , 𝑋𝑃̅̅ ̅̅ , 𝛿𝑋𝑃, 𝛿𝐻𝑓 , 𝛿𝐼1, 

𝐶𝑚̅̅̅̅̅, 𝛿𝐶𝑚, 𝐾, 𝛿𝐾 , VEC̅̅ ̅̅ ̅, 𝛿VEC, 𝑓𝑝, 𝐻mix, 𝑆mix, 𝑆𝑓 , 𝐺mix, 1/𝛺 

 150 

Figure 2 shows the PCC map between features in the ML-A dataset with the highlighting 151 

of strong correlation features. There are six strong-correlated feature pairs, namely, 𝑀𝑅̅̅̅̅̅ − 𝑋𝑃̅̅ ̅̅ , 152 

𝑇𝑏̅̅̅̅ − 𝑇𝑚̅̅̅̅̅, VEC̅̅ ̅̅ ̅ − 𝑓𝑠, VEC̅̅ ̅̅ ̅ − 𝑓𝑑, 𝐻mix − 𝐺𝑚𝑖𝑥 and 𝐻mix − 1/𝛺, from which the four features 153 

of 𝑀𝑅̅̅̅̅̅, 𝑇𝑚̅̅̅̅̅, VEC̅̅ ̅̅ ̅, and 𝐻mix are selected [36,60,61]. Thus, the PCC selects 24 features in the 154 
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ML-A dataset, which are listed in Table 2. Similarly, the PCC approach (see supplementary 155 

material as Figure S1-S2 for details) screens out 26 and 24 features in the ML-B and ML-C 156 

datasets, respectively, which are listed in Table 2 as well. 157 

 

Figure 2. The PCC matrix of features in the 

ML-A dataset. 

 158 

The three feature selection methods of SBS+RFC, SFS+RFC, and MDI/RFC are thus 159 

conducted to screen further and rank the PCC selected features, and the results are shown in 160 

Figures 3(a), 3(b), and 3(c) for the ML-A, ML-B, and ML-C datasets, respectively, where the 161 

distance of each feature from the center indicates the feature rank, and the longer the feature 162 

distance, the higher the feature rank will be. The features are then ranked by integers 163 

sequentially, with one representing the most important feature. 164 

 

Figure 3. The rank of features in the (a) ML-A, (b) ML-B, and (c) ML-C dataset resulting from on the SBS+RFC 

(in red), SFS+RFC (in blue), and MDI/RFC (in yellow). 
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Figure 4. The miss rate of each RFC model with 100 

trees versus the feature number for the (a) ML-A, (b) 

ML-B, and (c) ML-C dataset.  

 165 

Accordingly, Figures 4(a, b, c) show the miss rate of each RFC model versus feature rank 166 

number in the ML-A, ML-B, and ML-C datasets, respectively, where the miss rate is the 167 

averaged value of ten miss rates from the ten-fold cross-validation. As expected, when the 168 

feature number increases, the miss rate decreases, reaches a minimum and then increases. The 169 

validation minimum in the miss rate determines the feature number, which are 10, 7, and 9 170 

corresponding to the SBS+RFC feature set for the ML-A dataset, the SFS+RFC feature set for 171 
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the ML-B dataset, and the SFS+RFC feature set for the ML-C dataset, respectively. In addition 172 

to showing the determined feature numbers, Figures 4(a, b, c) all indicate the miss rate decreases 173 

very slow when the feature number is larger than a critical value, which allows one to further 174 

reduce the feature numbers under the cost of acceptable loss in the prediction power. Here, we 175 

suggest a tolerance of 2% around the validation minimum of miss rate to balance performance 176 

and complexity, which is clearly shown in each of Figures 4(a, b, c). With the 2% tolerance, we 177 

select the OS-A, OS-B, and OS-C feature sets for the classifications of the ML-A, ML-B, and 178 

ML-C datasets, respectively. Table 3 lists the OS-A, OS-B, and OS-C feature sets, indicating 179 

each set contains 5 features. Table 3 indicates that feature Hmix appears in all three feature sets, 180 

𝛿𝐶𝑚 appears in both OS-A and OS-B, 𝐴𝑁̅̅ ̅̅  appears in both OS-B and OS-C. Thus, the total 181 

number of different features is 11, and the 11 features can be used to predict the mechanical 182 

properties of CCAs. 183 

Table 3. Finally selected features for ML-A, ML-B, and ML-C datasets. 184 

Dataset Feature set Method Features sorted by the feature rank 

ML-A OS-A SBS+RFC 𝑀𝑅̅̅̅̅̅, 𝛿𝑇𝑏, Hmix, 𝐸𝑒𝑎̅̅ ̅̅ ̅, 𝛿𝐶𝑚 

ML-B OS-B SFS+RFC VEC̅̅ ̅̅ ̅, 𝐴𝑁̅̅ ̅̅ , Hmix, 𝛿𝐾, 𝛿𝐶𝑚 

ML-C OS-C SFS+RFC 𝐴𝑁̅̅ ̅̅ , 𝛿𝐴𝑁, 𝛿𝑋𝑃, 𝐾, Hmix 

 185 

The OS-A feature set includes the five features of enthalpy of mixing (Hmix), mismatch in 186 

boiling temperature (𝛿𝑇𝑏), mismatch in molar heat capacity (𝛿𝑐𝑚), average metallic radius (𝑀𝑅̅̅̅̅̅), 187 

and average electron affinity (𝐸𝑒𝑎̅̅ ̅̅ ̅). The previous studies indicate that a near zero of Hmix value 188 

leads to the formation of single-phase CCAs, a medium negative Hmix promotes the formation 189 

of amorphous; otherwise, the multi-phase CCAs exist [26,62,63]. This might be because the 190 

Gibbs free energy of mixing is expressed by 𝐺𝑚𝑖𝑥 = 𝐻mix − 𝑆mix ∙ 𝑇𝑚
̅̅ ̅̅  and thus the smaller the 191 

absolute value of Hmix is, the larger the contribution of 𝑆mix will be. The boiling temperature 192 

and the molar heat capacity may reflect the bond strength, thus, 𝛿𝑇𝑏  and 𝛿𝑐𝑚  might be 193 

considered as an estimator of the mismatch in metallic radius (𝛿𝑀𝑅). Zhang et al. [56] found 194 

that amorphous phases are formed when 𝛿𝑀𝑅 is large, while single-phase CCAs are more like 195 

to possess a small 𝛿𝑀𝑅. Fukuhara et al. found that amorphous alloys tend to have more valence 196 
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electrons than crystalline alloys [64,65], thus the value of 𝑀𝑅̅̅̅̅̅ and 𝐸𝑒𝑎̅̅ ̅̅ ̅ affects the formation 197 

of AM phase.  198 

The OS-B feature set contains enthalpy of mixing (Hmix), mismatch in thermal conductivity 199 

(𝛿𝐾 ), mismatch in molar heat capacity (𝛿𝑐𝑚 ), average valence electron (VEC̅̅ ̅̅ ̅ ), and average 200 

atomic number (𝐴𝑁̅̅ ̅̅ ). The presence of Hmix is in agreement with empirical rules [66,67]. The 201 

thermal conductivity of Co, Cr, Fe, and Ni are all between 80~100 W/m/K, while Mn and Cu 202 

have significantly different thermal conductivities of 8 and 400 W/m/K, respectively [26]. Thus, 203 

a larger 𝛿𝐾 might lead to the formation of solid solutions and a smaller value of 𝛿𝑐𝑚 might 204 

stabilize solid solutions. Tsai et al. [68] show that the σ phase only exists in the range of 6.88 < 205 

VEC̅̅ ̅̅ ̅̅  < 7.84 in as-cast Cr- and V- containing CCAs, Leong et al. [69] found that B2 phase 206 

presence at VEC̅̅ ̅̅ ̅̅  ≤ 6.81  in CoCrFeNi-Alx CCAs and C14 phase presence at VEC̅̅ ̅̅ ̅̅  ≤ 7.4  in 207 

CoCrFeNi-Tix CCAs, these observations demonstrate that the VEC̅̅ ̅̅ ̅̅  is another essential feature 208 

of the phase formation in CCAs. The 𝐴𝑁̅̅ ̅̅  is a coarse estimation of the average number of 209 

electrons, too many electrons might destabilize the solid solutions [70].  210 

The OS-C feature set contains enthalpy of mixing (Hmix), mismatch in atomic number (𝛿𝐴𝑁), 211 

mismatch in Pauling electronegativity (𝛿𝑋𝑃), average thermal conductivity (�̅�), and average 212 

atomic number (𝐴𝑁̅̅ ̅̅ ). The feature of Hmix appears in all the three feature sets, thereby indicating 213 

that Hmix plays an important role in the phase formation ability. The FCC or HCP structure has 214 

a packing fraction of 74%, while the BCC has a packing fraction of 68%. Therefore, BCC 215 

structures might have larger 𝛿𝑀𝑅 (indicating larger 𝛿𝐴𝑁) than FCC or HCP structures [71]. A 216 

larger 𝛿𝑋𝑃 might promote the segregation behaviors in as-cast CCAs, which makes BCC phase 217 

formation possible from the FCC matrix [72]. The phase formation depends on the cooling rate 218 

during the cast and therefore �̅� is selected to be an important feature. The elements of Al, Cr, 219 

Fe, and Mn are BCC stabilizers, while elements of Co, Ni, and Cu are FCC stabilizers in CCAs 220 

[71]. Therefore, the feature 𝐴𝑁̅̅ ̅̅  plays an important role in the phase classification.     221 

The hyperparameters of RFC models are optimized with the selected features to the values 222 

listed in Table 4 by grid search algorithms from the presets [73]. The confusion matrices in 223 

Figure 5 (a, b, c) show the detailed cross-validation classification results on the ML-A, ML-B, 224 

and ML-C datasets, respectively. The RFC models achieve the correct predictions of 92.10%, 225 

74.85%, and 85.25% to classify the three phases of AM, SP, and MP in the ML-A dataset, 83.04% 226 
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and 92.48% to classify the two phases of SS and IM in the ML-B dataset, and 100.0%, 95.83%, 227 

92.65%, and 87.50% to classify the four phases of HCP, BCC, FCC, and MSS in the ML-C 228 

dataset, respectively. The results demonstrate that the RFC models are robust and reliable for 229 

predicting the phase-formation in CCAs. 230 

Table 4. Hyperparameters in the RFC models. 231 

Dataset 
n_estimators max_features max_depth 

Preset: [64, 128] Preset: [1,5] Preset: None and [5, 10] 

ML-A 88 4 None 

ML-B 86 1 None 

ML-C 92 3 7 

 232 

 233 

Figure 5. The confusion matrixes of the RFC models on the (a) ML-A, (b) ML-B, and (c) ML-C datasets. 234 

 235 

3.2 Prediction of mechanical properties 236 

As mentioned before (see Figure 1), the mechanical properties of CCAs, such as hardness and 237 

UTS, are highly dependent on their formed phases. The selected 11 features, listed in Table 3, 238 

have significant effects on the phase formation of CCAs and must play considerable roles in 239 

the mechanical properties of CCAs. Therefore, the selected 11 features, rather than the 240 

originally proposed 30 features, are used here as the initial features in the ML of the hardness 241 

and UTS of CCAs. Due to the relatively small feature space, a brute force search approach, best 242 

subset selector wrapper with RFR algorithms (BSS+RFR) are conducted to search for the best 243 

subset from all possible (211-1) subsets for the regressions of hardness and UTS.  244 

Figure 6(a) illustrates the regression NRMSE in terms of hardness versus feature number 245 

obtained from the ten-fold cross-validation, showing that the NRMSE reaches the lowest value 246 
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of 0.1550 with 6 features selected by BSS+RFR. Figure 7(a) plots the regression NRMSE in 247 

terms of UTS versus feature number obtained from the ten-fold cross-validation, showing that 248 

the NRMSE reaches the lowest value of 0.1886 with 5 features selected by BSS+RFR.  249 

 

Figure 6. (a) The cross-validated NRMSE versus the feature number of each RFR model for hardness prediction, 

(b) ML-predicted hardness versus the measured values. 

 

Figure 7. (a) The cross-validated NRMSE versus the feature number of each RFR model for UTS prediction, 

(b) ML-predicted UTS versus the measured values. 

 250 

Table 5. Hyperparameters in the RFR models. 251 

Dataset 

n_estimators max_features max_depth 

CV-r 

preset result preset result preset result 

Hardness [64, 128] 90 [1, 6] 2 None and [5, 10] None 0.9062 

UTS [64, 128] 74 [1, 5] 1 None and [5, 10] None 0.9498 



14 
 

The grid search algorithm is then employed here to tune the hyperparameters of RFR 252 

models on selected features, and the results are listed in Table 5. Figures 6(b) and 7(b) show the 253 

predicted hardness and UTS from the trained RFR models with the selected features against the 254 

actual values, respectively, indicating r = 0.9062 for hardness and r = 0.9498 for UTS. 255 

In addition, the Shapley additive explanation (SHAP) approach is employed here to analyze 256 

features, which can explore the contribution of each of features in the trained RFR model to the 257 

predictions of hardness and UTS. The SHAP approach is developed based on the game theory 258 

that partitions each prediction into individual feature contributions [74]. The SHAP value of the 259 

i-th feature is calculated by 260 

𝜑𝑖 = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
[

𝑆⊑𝐹\{𝑖}
𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)] (10) 

where F is the set of all features, S is the subset of F, 𝑆 ∪ {𝑖} is the union of the subset S and 261 

the i-th feature, 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) is the prediction of the model with the i-th feature, and 𝑓𝑆(𝑥𝑆) 262 

is the prediction of the model trained without the i-th feature. Adding up contributions from all 263 

features yields the prediction, i.e.,  264 

�̂� = �̂�0 + ∑ 𝜑𝑖

𝑛

𝑖=1
 (11) 

where �̂� is the predicted value and �̂�0 is the prediction without any features, Equations (10, 265 

11) are applied to every datum, viz., the SHAP value varies with the datum. The mean absolute 266 

value of the SHAP values for each feature can be computed here to get its impact on the targeted 267 

property. Furthermore, since hardness and UTS are both such properties with positive values 268 

that when the SHAP value of a feature is positive, the feature improves the properties; 269 

conversely, a feature with a negative SHAP value weakens them. 270 

Figure 8(a) plots and ranks the mean absolute SHAP values of 6 hardness features selected 271 

by BSS+RFR, where the mean absolute SHAP values of the three most important features (VEC̅̅ ̅̅ ̅, 272 

𝐻mix, 𝛿𝑋𝑃) are much greater than other features. Figures 8 (b-g) plot the SHAP value on every 273 

datum of the hardness data, of the six selected features, VEC̅̅ ̅̅ ̅, 𝐻mix, 𝛿𝑋𝑃, 𝐴𝑁̅̅ ̅̅ , 𝛿𝐶𝑚, and �̅� 274 

respectively. An extremely important finding is that there exists a critical value to each of the 275 

three most important features, which almost sharply separates the SHAP values into positive 276 

and negative two regions. The SHAP values are positive when the features VEC̅̅ ̅̅ ̅ < 7.67 277 
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𝐻mix < −9.8 kJ/mol, and 𝛿𝑋𝑃 > 0.067, regardless there are some data located in the wrong 278 

region in the SHAP value versus 𝛿𝑋𝑃 plot. This finding is significant to the design of high 279 

hardness CCAs, because it provides the right value regions of the top three features.  280 

 281 

Figure 8. (a) Ranked mean absolute value of SHAP values of the 6 BSS+RFR selected features for hardness. The 282 

SHAP values (negative in blue, positive in red) of (b) VEC̅̅ ̅̅ ̅, (c) 𝐻mix, (d) 𝛿𝑋𝑃, (e) 𝐴𝑁̅̅ ̅̅ , (f) 𝛿𝐶𝑚, and (g) 𝐾 for 283 

every one of the data.  284 

 285 

The same behavior regarding the separation of positive and negative SHAP values is found 286 

in the plots of SHAP value versus UTS feature. Figure 9(a) shows the mean absolute SHAP 287 

values of 5 UTS features selected by BSS+RFR and the two most important features of 𝛿𝑇𝑏 288 

and 𝐻mix have the mean absolute SHAP value greater than 100 MPa. Figure 9(b-c) show that 289 

the SHAP values are positive when 𝛿𝑇𝑏 > 0.15 and 𝐻mix < −14.6 kJ/mol, regardless there 290 

is one datum located in the wrong region in the SHAP value versus 𝐻mix plot. If one is going 291 

to design high UTS CCAs, one can select elements with the top two features located in the right 292 

regions.  293 
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 294 

Figure 9. (a) Ranked mean absolute value of SHAP values of the 5 BSS+RFR selected features for UTS. The 295 

SHAP values (negative in blue, positive in red) of (b) 𝛿𝑇𝑏, (c) 𝐻mix, (d) 𝐴𝑁̅̅ ̅̅ , (f) 𝐾, and (g) 𝛿𝐾 for every one of 296 

the data.  297 

 298 

3.3 Design of high hardness and high UTS CCAs  299 

The SHAP values of these top features provide guidance to the design of novel CCAs with high 300 

hardness and high UTS. As an example, we take the CoCrFeNi CCA as the parent CCA to show 301 

how to strengthen and harden it, under the guidance of the SHAP values, by adding another 302 

element, which leads to equimolar quinary CCAs with each having five elements. These 303 

transition elements of Ti, V, Mn, Cu, Zr, Nb, and Hf are selected as candidates. The feature 304 

values of VEC̅̅ ̅̅ ̅ , 𝐻mix , 𝛿𝑋𝑃 , and 𝛿𝑇𝑏  in the parent CoCrFeNi CCA are 8.25, -3.75 kJ/mol, 305 

0.0531, and 0.0328, respectively, as shown in Table 6. Simple calculations give the feature 306 
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values of VEC̅̅ ̅̅ ̅, 𝐻mix, 𝛿𝑋𝑃, and 𝛿𝑇𝑏 in CoCrFeNi-X (X=Ti, V, Mn, Cu, Zr, Nb, or Hf), which 307 

are shown in Table 6 also.  308 

Clearly, adding Zr, Nb, or Hf element makes the feature values of VEC̅̅ ̅̅ ̅ and 𝐻mix lower 309 

than the corresponding critical values and the feature values of 𝛿𝑋𝑃, and 𝛿𝑇𝑏 higher than the 310 

corresponding critical values. Then, as expected, the ML predicted hardness and UTS of 311 

CoCrFeNi-X (X=Zr, Nb, or Hf) are greatly enhanced, which might be caused by Laves phases. 312 

On the other hand, adding V, Mn, or Cu cannot make the feature values of VEC̅̅ ̅̅ ̅ and 𝐻mix 313 

lower than the corresponding critical values and the feature values of 𝛿𝑋𝑃, and 𝛿𝑇𝑏 larger than 314 

the corresponding critical values. Therefore, the ML predicted hardness and UTS of CoCrFeNi-315 

X (X= V, Mn, or Cu) are not improved significantly. In addition, adding Ti makes the feature 316 

values of VEC̅̅ ̅̅ ̅ and 𝐻mix lower than the corresponding critical values and the feature value of 317 

𝛿𝑋𝑃 larger than the corresponding critical value, the ML predicted hardness of CoCrFeNiTi is 318 

thus improved significantly, while the predicted UTS is not improved due to a small 𝛿𝑇𝑏 value. 319 

 320 

Table 6. The feature values, ML-predicted, and mechanical properties of CoCrFeNi-X (X=Ti, V, Mn, Cu, Zr, Nb, 321 

or Hf) CCAs, where mechanical properties and structures in parentheses are measured values. 322 

Alloy VEC̅̅ ̅̅ ̅ 𝐻mix 𝛿𝑋𝑃 𝛿𝑇𝑏 Hardness (HV) UTS (MPa) Phases 

CoCrFeNi 8.25 -3.75 0.0531 0.0328 173.6 (129.8 [75]) 527.3 (480 [76]) SP-FCC (FCC [75]) 

CoCrFeNiTi 7.4 -16.32 0.0802 0.0623 592.6 655.0 MP-IM 

CoCrFeNiV 7.6 -8.96 0.0646 0.0754 377.5 424.1 (311 [39]) MP-IM (FCC+σ [39]) 

CoCrFeNiMn 8 -4.16 0.0783 0.1101 175.7 (144.0 [77]) 495.9 (494 [39]) SP-FCC (FCC [77]) 

CoCrFeNiCu 8.8 3.2 0.0502 0.0474 152.9 558.3 SP-FCC 

CoCrFeNiZr 7.4 -22.72 0.1244 0.1846 616.5 1133.3 MP-IM (BCC+C15 [78]) 

CoCrFeNiNb 7.6 -14.88 0.0694 0.2191 615.2 (602 [79]) 1293.1 MP-IM (FCC+C14 [79]) 

CoCrFeNiHf 7.4 -19.52 0.1313 0.2047 586.1 1209.0 MP-IM (BCC+C36 [78]) 

 323 

As seen in Table 6, a lower VEC̅̅ ̅̅ ̅ [68,69] promotes the formation of IM phases, such as σ 324 

phases or Laves phases, which are harder than solid solutions. Therefore, a lower VEC̅̅ ̅̅ ̅ can 325 

harden the CCAs. A smaller mismatch leads to the formation of solid solutions, which are softer 326 
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and weaker than IM phases, thus a larger 𝛿𝑋𝑃  and 𝛿𝑇𝑏  can harden and strengthen CCAs, 327 

respectively. A near zero of Hmix value leads to the formation of single-phase solid solutions 328 

(SP-FCC for CoCrFeNi, CoCrFeNiMn, and CoCrFeNiCu). Thus, a much negative Hmix can 329 

harden and strengthen CCAs. 330 

 331 

Concluding remarks 332 

The present work illustrates an ML framework to predict the formed phases, the hardness, and 333 

the UTS of CCAs. A dataset of 557 samples is constructed, and 30 initial features are proposed. 334 

The adopted feature selection method gives the five features of 𝑀𝑅̅̅̅̅̅, 𝛿𝑇𝑏, Hmix, 𝐸𝑒𝑎̅̅ ̅̅ ̅, and 𝛿𝐶𝑚 335 

in the classification of AM, SP, and MP phases, the five features of VEC̅̅ ̅̅ ̅, 𝐴𝑁̅̅ ̅̅ , Hmix, 𝛿𝐾, and 336 

𝛿𝐶𝑚 in the classification of SS and IM, and the five features of 𝐴𝑁̅̅ ̅̅ , 𝛿𝐴𝑁, 𝛿𝑋𝑃, �̅�, and Hmix in 337 

the classification of mixed solid solutions, pure BCC, FCC, and HCP. All the ML models can 338 

classify the formed phases accurately.  339 

The most significant finding in the present ML regressions of hardness and UTS of CCAs 340 

is the critical value in each of the four most important features ranked by the absolute SHAP 341 

value. The critical feature value separates the SHAP values into positive and negative regions. 342 

This means that the feature values in the positive/negative SHAP value region improve/impair 343 

the mechanical properties of CCAs, thereby providing a straightforward assessment in the 344 

design of high hardness and high UTS CCAs. A demonstration of such a novel design 345 

methodology is illustrated in the present work. Since all data collected are as-cast CCAs, the 346 

ML suggested high hardness and high UTS CCAs should be fabricated by the cast.   347 

It should be kept in mind that the mathematic basis of ML is probability and statistics, and 348 

thus ML predictions depend highly on data and should be understood in the sense of probability. 349 

It is a great challenge to develop knowledge from data. Understanding why there exists the 350 

critical value in each of the four most important features calls for more deep and comprehensive 351 

investigations from both materials science and ML approaches.   352 
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