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Abstract 25 

High-order harmonics and sub-harmonics that are engendered upon interaction between surface 26 

Rayleigh waves and material flaws have been exploited intensively, for characterizing material 27 

defects on or near to waveguide surfaces. Nevertheless, theoretical interpretation on underlying 28 

physics of defect-induced nonlinear features of Rayleigh waves remains a daunting task, owing to 29 

the difficulty in analytically modeling the stress and displacement fields of a Rayleigh wave in the 30 

vicinity of defect, in an explicit and accurate manner. In this study, the Rayleigh wave scattered 31 

by a surface or a sub-surface micro-crack is scrutinized analytically, and the second harmonic 32 

triggered by the clapping and rubbing behaviors of the micro-crack is investigated, based on the 33 

elastodynamic reciprocity theorem. With a virtual wave approach, a full analytical, explicit 34 

solution to the micro-crack-induced second harmonic wavefield in the propagating Rayleigh wave 35 

is ascertained. Proof-of-concept numerical simulation is performed to verify the analytical solution. 36 

Quantitative agreement between analytical and numerical results has demonstrated the accuracy 37 

of the solution when used to depict a surface/sub-surface crack-perturbed Rayleigh wavefield and 38 

to calibrate the crack-induced wave nonlinearity. The analytical modeling and solution advance 39 

the use of Rayleigh waves for early awareness and quantitative characterization of embryonic 40 

material defects that are on or near to structural surfaces. 41 

 42 

Keywords: Rayleigh waves; second harmonic generation; elastodynamic reciprocity theorem; 43 

surface crack; sub-surface crack 44 
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1. Introduction 45 

Invisible sub-surface flaws, often ignored in ordinary nondestructive evaluation owing to their 46 

close proximity to transducers that are placed on the sample surface, remarkably jeopardize 47 

structural integrity and are liable for numerous structural failures. Under a cyclic load, a 48 

surface/sub-surface flaw can progress quickly from its embryo to a critical degree without 49 

sufficient warning. Aimed at detecting the onset of a surface/sub-surface flaw, a diversity of 50 

ultrasonics-driven evaluation approaches has been readily available, making use of various 51 

modalities of wave modes including longitudinal waves [1], Rayleigh-Lamb waves [2-5], bulk 52 

waves [6-9] and shear horizontal waves [10-12]. In such a context, provided the linear features of 53 

ultrasonic waves (e.g., delay in time-of-flight, mode conversion, degree of energy dissipation, 54 

reflection and transmission coefficients) are concerned, approaches may not be adequately 55 

competent to pinpoint and depict an embryonic flaw, dimensions of which are significantly smaller 56 

than the wavelength of the incident wave – that is because a flaw of such dimensions usually does 57 

not incur phenomenal wave scattering upon interaction with the incident wave. In contrast, 58 

methods making use of nonlinear attributes of ultrasonic waves, such as the high-order harmonics 59 

or sub-harmonics generated by the clapping (a.k.a., breathing) and rubbing motions of a micro-60 

crack [13-15] or nonlinear modulation [16, 17], have proven effectiveness in characterizing small-61 

scale flaws, thanks to the superior sensitivity of nonlinear wave features to the microstructural 62 

evolution or initial material degradation even at a weak degree. 63 

 64 

Contrast to bulk waves that thoroughly disseminate in a waveguide, a Rayleigh wave decays 65 

exponentially with depth, and particles in a Rayleigh wave oscillate in an elliptical pattern, with 66 

the major axis of the ellipse perpendicular to the surface of the waveguide [18]. It is noteworthy 67 

that the Rayleigh wave explored in this study is different from wedge waves or edge waves [19-68 

22] which are guided by the apex of a plate-like waveguide. Wedge waves and edge waves 69 

propagate in the vicinity of the structural boundary (i.e., edge of a waveguide) and the wave energy 70 



4 

is concentrated near the edge. A Rayleigh wave is guided by a free surface of a waveguide and 71 

constrains its major energy to the waveguide surface. With the energy dominance near to the 72 

waveguide surface, Rayleigh-Lamb waves have been employed to locate [23, 24], orientate [25] 73 

and evaluate [26-29] surface or sub-surface flaws. Amongst demonstrated paradigms, the second 74 

harmonic generation is one of the wave features that has been exploited extensively. The periodic 75 

opening and closing behavior of a crack-like flaw, under a cyclic load or under the modulation of 76 

an incident wave (referred to as clapping or breathing behavior), along with the rubbing motion, 77 

can distort propagation of an incident Rayleigh wave, as a consequence of which the high-order 78 

harmonics, as typified by the second harmonic, are induced. Good supply of research, in either an 79 

analytical or an experimental nature, has investigated and interpreted the crack-scattered waves 80 

and second harmonics in Rayleigh-Lamb waves, on which basis a surface or a sub-surface crack 81 

can be detected and evaluated [30-34]. Representatively, Lamb waves scattered by a surface-82 

breaking crack in a two-dimensional (2D) elastic waveguide and the accordingly emanated second 83 

harmonics were studied by Shen and Giurgiutiu [35], and a damage index was proposed to 84 

correlate the acoustic nonlinearity in the captured waves with the crack severity. Wang et. al. [13, 85 

25] scrutinized the circumferential pattern of the second harmonic of Lamb waves generated by 86 

an inclined fatigue crack and utilized the harmonic magnitude to determine the crack orientation. 87 

Yelve et. al. [36] explored the first three high-order (e.g., 1st, 2nd and 3rd order) harmonics of a 88 

Lamb wave upon interaction with a transverse crack, and defined a spectral index with these 89 

harmonics for evaluating the crack depth. 90 

 91 

Experimentally, nonlinear Rayleigh waves have been explored by Walker et. al. [37], Zeitvogel et. 92 

al. [38], and Pfeifer et. al. [39], respectively, for the purpose of assessing fatigue damage, stress 93 

corrosion cracking or damage-induced plasticity in metals. In these experimental studies, the 94 

magnitude of surface damage-induced high-order harmonic was observed to augment in a 95 

Rayleigh wave, as damage accumulated. Therefore, the severity of surface damage can be assessed 96 
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by virtue of the intensity of captured high-order harmonic. On the other hand, theoretical or 97 

analytical exploration on the interaction of a Rayleigh wave with a clapping surface crack has been 98 

fairly limited in a linear domain, focusing on the linear feature changes of a Rayleigh wave caused 99 

by a surface or sub-surface crack. To mention but a few, the linear scattering of a Rayleigh wave 100 

by a crack was thoroughly examined by Yang and Achenbach [31, 40], Wang et. al. [30, 32] and 101 

Phan et.al. [41], respectively. Instead of using a complicated integral transform, the Rayleigh wave 102 

scattered by a crack was formulated in these studies as the radiation from equivalent body forces 103 

based on the elastodynamic reciprocity theorem. 104 

 105 

However, analytical illustration of the principle and mechanism behind the crack-generated second 106 

harmonics of Rayleigh waves is still absent, let alone an explicit, quantitative solution to the 107 

magnitude of the crack-induced second harmonics. This is in part owing to the challenge in 108 

analytically modeling the stress and displacement fields of a Rayleigh wave in the vicinity of 109 

defect, in an explicit and accurate manner. Among trailblazing attempts, Deng et. al. [42] 110 

interrogated the propagation of a Rayleigh wave in a medium with randomly distributed surface 111 

micro-cracks using perturbation analysis and numerical simulation. Thiele et. al. [43] also utilized 112 

the perturbation approach to analytically depict a nonlinear Rayleigh wave, for assessing material 113 

nonlinearity. However, this analytical solution is applicable to a nonlinear Rayleigh wave scattered 114 

by damage which can be simplified as holistic material degradation at a sufficient degree, and may 115 

not be tenable when extened to evaluation of a single, localized micro-crack that is inadequate to 116 

perturb mechanical properties of the entire waveguide. 117 

 118 

It is in recent that the authors of this paper have interrogated the second harmonic generation of 119 

Lamb waves (plate waves) induced by a fatigue crack with breathing behavior, by equating the 120 

fatigue crack as an additional wave source in addition to the original incident wave, and 121 

considering the crack-induced second harmonic as the radiation by the equivalent forces at the two 122 
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crack surfaces [14]. A closed-form solution to the amplitude of the crack-induced second harmonic 123 

is obtained by virtue of the elastodynamic reciprocity theorem. Nonetheless, an explicit, analytical 124 

solution to the scattering problem of Rayleigh waves upon interaction with a surface or a sub-125 

surface micro-crack and the solution to the crack-induced second harmonic generation is still 126 

beyond reach. To this end, the elastodynamic reciprocity theorem, along with a virtual wave 127 

approach, has been extended to Rayleigh waves in this study, to depict propagation of Rayleigh 128 

waves scattered by a ‘breathing’ crack, and the crack-induced nonlinearity in waves. The second 129 

harmonics generated by a surface crack and a sub-surface crack are modeled analytically, and the 130 

harmonic magnitudes are quantified, leading to a full analytical solution to nonlinear Rayleigh 131 

wavefield in the crack vicinity. Proof-of-concept numerical simulation is conducted to validate the 132 

analytical model and the solution. 133 

 134 

This paper is structured as follows: in Section 2, the displacement and stress fields of a Rayleigh 135 

wave, under a 2D plane strain condition, are briefed, on which basis the new analytical solution is 136 

derived. The problem of the crack-induced second harmonic generation is stated in Section 3, 137 

followed with detailed solution to harmonic magnitude that is premised on the elastodynamic 138 

reciprocity theorem, decomposition principle and a virtual wave approach, in Section 4. Section 5 139 

compares analytical and numerical results, to demonstrate the validity of the analytical model and 140 

the solution. 141 

 142 

2. Analytical Depiction of Rayleigh Wavefield – Theoretical Foundation 143 

Irrespective that considerable literature exists addressing propagation of the Rayleigh wave in an 144 

isotropic, homogenous, and linearly elastic solid [44], it is incumbent on us to recapitulate the 145 

fundamentals of Rayleigh waves, on which the model and solution to nonlinear interaction 146 

between a Rayleigh wave and a surface or sub-surface crack are to be developed. 147 

 148 
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In a 2D, half-space defined by x z−  coordinates, the displacements of a time-harmonic Rayleigh 149 

wave in an isotropic, homogenous, and linearly elastic waveguide can be defined, along the 150 

positive x  direction, as 151 

          ( , ) ( ) ,R ikx

x inu x z iA U z e=    (1a) 152 

           ( , ) ( ) .R ikx

z inu x z A W z e=   (1b) 153 

In the above, inA  signifies the magnitude of the incident Rayleigh wave, i  the imaginary unit and 154 

  the circular frequency. k  is the wavenumber ( / Rk c= , where Rc  denotes the phase velocity 155 

of Rayleigh wave). ( , )xu x z  and ( , )zu x z  represent the particulate displacement components of the 156 

Rayleigh wave in the x  direction and z  direction, respectively. The plus and minus signs in Eq. 157 

(1a) indicate wave propagation in the positive and negative x  direction, respectively. Functions 158 

( )RU z  and ( )RW z  read 159 

          1 2( ) ,R pz qzU z d e d e− −= +   (2a) 160 

          3( ) ,R pz qzW z d e e− −= +   (2b) 161 

where 162 

          
2 2

1 ( ) / (2 ),d k q kp= − +  (3a)  163 

          2 / ,d q k=   (3b) 164 

          
2 2 2

3 ( ) / (2 ).d k q k= +   (4) 165 

p  and q  are given by 166 

           
2 2 2 2(1 / ),R Lp k c c= −   (5a) 167 

           
2 2 2 2(1 / ),R Tq k c c= −   (5b) 168 

where ( 2 ) /Lc   = +  and /Tc  =  are the phase velocities of the longitudinal and 169 

transverse waves propagating along the positive x  direction, respectively.   and   are Lame 170 

constants, and   the density of the waveguide. 171 
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 172 

Analogous to displacement components, the stress components of the Rayleigh wave can be 173 

obtained using the same approach, as 174 

           ( ) ,ikx

xx in xxA T z e =   (6a) 175 

           ( ) ,ikx

xz zx in xziA T z e  = =    (6b) 176 

           ( ) ,ikx

zz in zzA T z e =   (6c) 177 

where 178 

           4 5( )= ( ),pz qz

xxT z d e d e − −+   (7a) 179 

           6 7( )= ( ),pz qz

xzT z d e d e − −+   (7b) 180 

           zz 8 9( )= ( ),pz qzT z d e d e − −+   (7c) 181 

and 182 

           
2 2 2 2 2 2

4 =( )(2 ) / (2 ),d k q p k q pk+ + −   (8a) 183 

           5 =-2 ;d q   (8b) 184 

           
2 2

6 7 =( ) / ,d d k q k= − +   (9) 185 

           
2 2 2 2

8 ( ) / (2 ),d k q pk= − +   (10a) 186 

           9 =2 .d q   (10b) 187 

Equations (1) and (6), respectively, depict the displacement and stress fields of an incident 188 

Rayleigh wave in an intact waveguide, serving as the theoretical foundation for the following 189 

derivation when a surface or sub-surface crack is present in the waveguide. 190 

 191 

3. Crack-induced Second Harmonic of Rayleigh Wave 192 

Consider a 2D, half-space waveguide, in which a surface crack at a microscopic degree (e.g., an 193 

embryonic fatigue crack) exists, as illustrated schematically in Fig. 1. In practice, the crack 194 

surfaces are rough and the stress state in the vicinity of the crack under a cyclic load is complex. 195 
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The interaction of a probing Rayleigh wave with a surface/sub-surface crack and the according 196 

generation of nonlinear Rayleigh waves are the main focus of this study. Here, the crack surface, 197 

crackS , is deemed smooth and in the absence of any external load. crackS  consists of two crack 198 

surfaces, namely crackS +
 and crackS −

, respectively called the positive surface and negative surface. 199 

With the small dimension of the crack (crack depth is smaller than 1/5 of the wavelength of the 200 

incident Rayleigh wave) and ignorable gap between crackS +  and crackS − , the crack opens and closes, 201 

respectively during the tensile and compressive phases of the Rayleigh wave. Owing to the 202 

displacement discontinuity at the crack location, the normal stress in the x  direction on crackS +
, as 203 

the Rayleigh wave traverses, shall satisfy the following ‘traction-free’ criterion: 204 

    ( , ) 0.xx crackz t z S +        (11) 205 

Thus, the compressive phase of the incident Rayleigh wave propagates through the crack without 206 

distortion, while the tensile phase is intercepted by the crack. 207 

 208 

 209 

 210 

Figure 1. Schematic of propagation of incident Rayleigh wave in a 2D waveguide bearing a surface crack at a 211 

microscopic degree. 212 

 213 

Allowing for the small dimension of the crack, a time-harmonic, concentrated force, ( )F t , is 214 

introduced to reflect the perturbation of the crack to the original incident Rayleigh wavefield. 215 

Considering the microscopic dimensions of the crack, ( )F t  is applied along x  direction at the 216 
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center of the crack. The magnitude of ( )F t  equals to the difference in the integral value of the 217 

normal stresses in x  direction on crackS +  when the waveguide is in its intact status and bears a 218 

surface crack, respectively, as 219 

 

( ) ( , ) ( , )

0,                                   
        =

( , ) .     

crack crack

crack

xx intact xx crackedS S

xx intactS

F t z t ds z t ds

during compressive phase

z t ds during tensile phase

 



+ +

+

= −





 



      (12) 220 

In the above, ( , )xx crackedz t  represents the normal stress component on crackS +
 in the waveguide 221 

bearing the crack, and ( , )xx intactz t  signifies the normal stress component on the same surface in 222 

the intact waveguide. ( )F t  serves as an additional wave source that is applied to the original 223 

incident Rayleigh wavefield, and thus ( )F t  is referred to as the second excitation force in this study 224 

hereinafter. The second excitation force is present during the tensile phase in a cycle of wave 225 

propagation, and vanishes otherwise, as shown in Fig. 2(a). 226 

 227 

In the frequency domain, the second excitation force is decomposed into two equivalent forces: i) 228 

the first equivalent force, 1eqF , which is a sinusoidal signal at the excitation frequency   of the 229 

incident Rayleigh wave; and ii) the second equivalent force, 2eqF , which is the absolute value of 230 

1eqF  at the double excitation frequency 2 , as shown in Figs. 2 (b-c). Either magnitude of 1eqF  231 

and 2eqF  is half the magnitude of ( )F t , whereby to warrant that the summation of 1eqF  and 2eqF  232 

equates F . With this, 2eqF  represents the source of the crack-induced second harmonic in the 233 

Rayleigh wavefield. Applied with the continuous-time Fourier transform (FT), it can be observed 234 

in Fig. 2 (d) that 1eqF  corresponds to a wave component at the fundamental frequency ( ), and 235 

2eqF  to a wave component at 2  – the source to generate the second harmonic. 236 

 237 
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         238 

 239 

             240 

Figure 2. Time domain signals of (a) ( )F t  applied on crackS +
, (b) 1eqF , (c) 2eqF , and (d) spectra of 1eqF  and 241 

2eqF  ( : fundamental excitation frequency; 2 : double excitation frequency). 242 

 243 

To obtain the explicit solution to the crack-induced second harmonic of Rayleigh wave with the 244 

application of elastodynamic reciprocity theorem, the second excitation force is written in the form 245 

of stress tensor. Taking into account both the opening and closing phases of the crack during a 246 

cycle of the incident Rayleigh wave propagation, the stress components induced at crackS +
 and crackS −

 247 

are written with an indicator function, as 248 

 ( ),breathing

xx xx f t =        (13a) 249 

 ( ),breathing breathing

xz xz xz f t  = =        (13b) 250 

 ( ),breathing

zz zz f t =        (13c) 251 
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where ( , , )ij i j x z =  signifies the stress fields generated by the incident Rayleigh wave in the intact 252 

waveguide, ( , , )breathing

ij i j x z =  represents the stress components at crackS +  and crackS − , and the 253 

indicator function is 254 

 
0,   

( )=
1.   

crack opening
f t

crack closing





      (14) 255 

 256 

Regulated by the indicator function as defined by Eq. (14), Eq. (13) – namely the incident Rayleigh 257 

wave-induced stress at crackS +
 and crackS − , can be decomposed into two equivalent stress fields, as 258 

 (1) ( )1 1
( ) ,

2 2

i kx t

xx xx in xxA T z e   −= =       (15a) 259 

 
(1) (1) ( )1

( ) ,
2 2

i kx t

xz zx xz in xz

i
A T z e    −= = =       (15b) 260 

 (1) ( )1 1
( ) ,

2 2

i kx t

zz zz in zzA T z e   −= =       (15c) 261 

and 262 

 (2) (1) ,xx xx =       (16a) 263 

 (2) (2) (1) (1) ,xz zx xz zx   = = =       (16b) 264 

 (2) (1) .zz zz =       (16c) 265 

In the above, 
(1) ( , , )ij i j x z =  and 

(2) ( , , )ij i j x z =  signify the first and second equivalent stresses, 266 

respectively. The first equivalent stress, 
(1)

ij , induces the scattering wave at the excitation 267 

frequency  , and the second equivalent stress, 
(2)

ij , generates the second harmonic wave at 268 

double excitation frequency 2 , as illustrated schematically in Fig. 3. 269 

 270 

 271 
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 272 

 273 

Figure 3. Principle of decomposition for the incident Rayleigh wave scattered by 
crackS +  and crackS −  of a 274 

‘breathing’ crack ( 0f

scu : scattering wavefield at excitation frequency  , 02 f

scu : scattering wavefield at double 275 

excitation frequency 2 ). 276 

 277 

4. Elastodynamic Reciprocity Theorem-based Solution 278 

Subsequent to the above derivation, the elastodynamic reciprocity theorem, in conjunction with 279 

the use of a virtual wave method, is recalled, to determine the magnitude of the second harmonic 280 

induced by 
(2)

ij . The reciprocal identity relates two elastodynamic states of the body of an 281 

arbitrarily selected region in the waveguide. For the body of region V  with the boundary P , under 282 

two distinct elastodynamic states denoted by A   and B , it has 283 

          ( ) ( ) ,A B B A A B B A

V i i i i P i ij i ij jf u f u dV u u n dP − = −    (17) 284 

where 
A

if  and 
B

if  are the body forces, A

iu  and 
B

iu  the displacements, 
A

ij  and 
B

ij  the stress and 285 

jn  the components of the outward normal to P , respectively, under states A and B. In this study, 286 

state A   is the crack-scattered second harmonic of the Rayleigh wave that is generated by 
(2)

ij , 287 

and state B  is a virtual Rayleigh wave, which propagates in the negative x  direction. 288 

 289 
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Based on the Rayleigh wavefields descripted in Section 2, the displacement and stress fields of the 290 

Rayleigh wave, under states A  and B , can be obtained. For the forward-propagating, crack-291 

induced second harmonic, it has 292 

          2 +

2 ( ) ,R ikx

xu iA U z e

=   (18a) 293 

          2

2 ( ) ;R ikx

zu A W z e



+ =   (18b) 294 

          2

2 ( ) ,ikx

xx xxA T z e

 + =   (19a) 295 

          2

2 ( ) ;ikx

xz xziA T z e

 + =   (19b) 296 

for the back-propagating, crack-induced second harmonic, one has 297 

          
2

2 ( ) ,R ikx

xu iA U z e



− −= −   (20a) 298 

          2

2 ( ) ;R ikx

zu A W z e



− −=   (20b) 299 

          
2

2 ( ) ,ikx

xx xxA T z e

 − −=   (21a) 300 

          
2

2 ( ) .ikx

xz xziA T z e

 − −= −   (21b) 301 

In the above, 
2 2( )i iu u + −

 and 
2 2( )ij ij

  + −
 represent the displacement and stress fields of the second 302 

harmonic, respectively, and the plus (or minus) sign implies that the second harmonic propagates 303 

in the positive (or negative) direction. 2A   is the magnitude coefficient of the crack-scattered 304 

second harmonic wave. 305 

 306 

In the elastodynamic reciprocity theorem-based modeling, for the virtual wave (i.e., state B ), the 307 

displacement and stress fields can be expressed as 308 

          ( ) ,vi vi R ikx

xu iB U z e−= −   (22a) 309 

          ( ) ;vi vi R ikx

zu B W z e−=   (22b) 310 

          ( ) ,vi vi ikx

xx xxB T z e −=   (23a) 311 

          ( ) ,vi vi ikx

xz xziB T z e −= −   (23b) 312 
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where viB  is the magnitude coefficient of the virtual wave. By introducing the virtual wave into 313 

Eq. (17), the magnitude of the crack-induced second harmonic can be ascertained explicitly (note: 314 

the unknown magnitude coefficient of the virtual wave, viB , is to be canceled in the subsequent 315 

derivation). 316 

 317 

Consider the crack vicinity – the region V  with the boundary P (edge 1~7) encompassing the 318 

crack, as shown in Fig.4. Provided the thickness of V  is sufficiently large (e.g., greater than three 319 

times the wavelength of the incident Rayleigh wave), the Rayleigh wave attenuates to vanish at 320 

the bottom of the region (i.e., edge 2). Here, the contour integration in the right-hand side of Eq. 321 

(17) at edge i  is denoted as iJ ( 1,2,...,7i = ). As there is no body force existing in both states (A 322 

and B), the left-hand side of Eq. (17) equals zero. Due to the exponential decay of the Rayleigh 323 

wave in the waveguide thickness direction, 2J  retreats to zero. On the other hand, as the top 324 

surface of the waveguide is traction-free, one has that 4 7 0J J= = . As demonstrated elsewhere 325 

[45], the contour integral in the right-hand side of Eq. (17) is non-zero only when propagation 326 

directions of two waves used in the elastodynamic reciprocity theorem are opposite simultaneously. 327 

As a consequence, there is no contribution from edge 1 to the integral in the right-hand side of Eq. 328 

(17) (i.e., 1 0J = ), because the propagation directions of both the virtual wave and crack-scattered 329 

second harmonic are in the negative x  direction along edge 1. With this, Eq. (17) yields to 330 

          3 5 6 0,J J J+ + =   (24) 331 

where 332 

          

2 2 2 2

3
0

2

( ) ( 1)

    2 ,

vi vi vi vi

x xx z xz x xx z xz

vi

J u u u u dz

iA B I

   



   


+ + + += + − −  + 

=

   (25) 333 

and 334 

          
0

= [ ( ) ( ) ( ) ( )] .R R

xz xxI W z T z U z T z dz


−    (26) 335 

For 5J  and 6J , it has 336 
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          5
0

( 1) ,
L

J dz +=  −    (27) 337 

          6
0

( 1) ,
L

J dz −=  +    (28) 338 

where L  is the crack length – the crack severity along the waveguide thickness, and 339 

          2 2 2 2 ,vi vi vi vi

x xx z xz x xx z xzu u u u       + + + + += + − +   (29a) 340 

          2 2 2 2 .vi vi vi vi

x xx z xz x xx z xzu u u u       − − − − −= + − +   (29b) 341 

 342 

 343 

Figure 4. Integral domain of the crack vicinity. 344 

 345 

Focusing on the normal traction at the two crack surfaces first, one has that 
2 2 0xz xz

  + −= = ,346 

2 2

z zu u + −=  and 
2 2

xx xx

  + −= , due to the symmetric motion of particles at the two crack surfaces 347 

with respect to z  axis. Thus, Eq. (24) can be written as 348 

          
2

2
0

2 ( ) 0,
L

vi vi

x xxiA B I B u T z dz

 −  =   (30) 349 

where 
2

xu   is the crack opening displacement in x  direction, as 350 

           
2 2 2 .x x xu u u  + − = −   (31) 351 

The magnitude coefficient, 2A  , is determined as 352 

           2

2
0

1
( ) .

2

L

x xxA u T z dz
iI



 =    (32) 353 

For a surface crack of small dimensions, the opening displacement of the crack, from the normal 354 

stress component  
(2)

xx , can be expressed as [46] 355 
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           (2) 24
( ) 1 ( ) ,

'
x xx

L z
u z

E L
 = −   (33) 356 

where 357 

            

 

2

,              

'
.    

(1 )

E for plane stress

E E
for plane strain






= 
 −

  (34) 358 

Substituting Eqs. (16) and (33) into Eq. (32) yields 359 

           
2 2

2

(1 ) [ ( / 2)]
.

8

in xxL A T L
A

i I


 



−
=   (35) 360 

An analogous solution to the shear stress component, (2)

xz , can also be obtained as 361 

           
2 2

z
2

(1 ) [ ( / 2)]
.

8

in xL A T L
A

i I


 



−
=   (36) 362 

Combining Eqs. (35) and (36), the magnitude of the displacement of the second harmonic 363 

generated by a surface crack can be determined, in an explicit manner, as 364 

           
2 2 2

2 (1 ) {[ ( / 2)] [ ( / 2)] }
( ) ,

8

R ikxin xx xz
x

L A T L T L
u U z e

I

  



− −
=   (37) 365 

           
2 2 2

2 (1 ) {[ ( / 2)] [ ( / 2)] }
( ) .
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 367 

Equations (37) and (38), explicitly and analytically, link the length of a surface crack (i.e., L), to 368 

the crack-scattered second harmonic wavefield, on which basis the crack can be evaluated 369 

inversely.  370 

 371 

Along the same line of thinking, expanding the above discussion from a surface crack to an interior 372 

sub-surface crack that is beneath the waveguide surface, the crack opening displacements due to 373 

the normal and shear components can be written as 374 

           
(2) 22

( ) 1 ( ) ,
' / 2

x xx

L z d
u z

E L


−
 = −   (39) 375 



18 

           (2) 22
( ) 1 ( ) ,

' / 2
z xz

L z d
u z

E L


−
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where d  defines the location of the crack along the waveguide thickness, as illustrated 377 

schematically in Fig. 5.  378 

 379 

 380 

 381 

Figure 5. Schematic of a sub-surface crack in the waveguide. 382 

 383 

Substituting Eqs. (39) and (40) into Eq. (32) leads to the displacement magnitudes of the second 384 

harmonic generated by the sub-surface crack, as 385 
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In the same vein, Eqs (41) and (42) correlate the second harmonic wavefield induced by a sub-388 

surface crack with the crack length, in an explicitly and analytically manner, which are therefore 389 

conducive to the evaluation of crack length, even when the crack is a sub-surface crack that is 390 

invisible. It is noteworthy that in the above analytical modeling, the second harmonic generation 391 

of Rayleigh waves are induced by the ‘breathing’ and rubbing motions of surface/sub-surface 392 

cracks. Contribution of nonlinear elasticity of the waveguide to the nonlinear Rayleigh generation 393 

is neglected due to its neglectable effect compared with that of crack-induced nonlinearity. 394 

 395 
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5. Proof-of-Concept Validation Using Numerical Simulation 396 

Finite element (FE) simulation is performed with ABAQUS®/EXPLICIT to validate the analytical 397 

solutions: Eqs. (37) and (38) for a surface crack, and Eqs. (41) and (42) for an interior sub-surface 398 

crack. 399 

 400 

A 2D waveguide, identical to that used in the theoretical derivation, is considered, and the FE 401 

model is developed. With aluminum (density: 2700 kg/m3; Young’s modulus: 73 GPa; Poisson’s 402 

ratio: 0.33) as the waveguide material, velocities of the longitudinal and transverse waves are 6,329 403 

m/s and 3,188 m/s, respectively. The incident Rayleigh wave is excited by applying a displacement 404 

field with the magnitude of 
41 10− mm at a FE node on the upper surface of the FE model, and 405 

Rayleigh wave propagation is captured 100 mm from the excitation. 406 

 407 

According to the phase velocity of a Rayleigh wave [30] 408 

           
2 2 2 2 2 1/2 2 2 1/2(2 / ) 4(1 / ) (1 / ) 0,R T R L R Tc c c c c c− − − − =   (43) 409 

the phase velocity of the incident Rayleigh wave is calculated to be 2,971 m/s. Three different 410 

excitation frequencies are considered, namely 500 kHz, 800 kHz and 1 MHz (with corresponding 411 

wavelengths being 5.942 mm, 3.714 mm and 2.971 mm, respectively). To warranty simulation 412 

accuracy, the integral step is 0.2 ns and a fine FE mesh is applied in which the maximum mesh 413 

size is 0.1 mm – that is ~1/30 of the minimal wavelength of the Rayleigh wave. By setting an 414 

absorbing layer with increasing damping (ALID) [47] on the bottom of the FE model, the wave 415 

reflection from the lower surface is eliminated. To simulate the ‘breathing’ behavior of the crack 416 

that introduces nonlinearity to the incident Rayleigh wave, the contact-pair interaction-based 417 

boundary condition is applied on the two crack surfaces, with which the separation of the two 418 

crack surfaces is permitted, while penetration of FE nodes on the two surfaces is prevented. 419 

 420 
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First, the second harmonic of Rayleigh wave generated by a surface crack is scrutinized. The crack 421 

length varies from 0.1 to 0.6 mm, with an interval of 0.1 mm. The analytical and numerical results 422 

of magnitude of the crack-induced second harmonic are compared in Fig. 6, for three selected 423 

frequencies. 424 

 425 

 426 

 427 

 428 

Figure 6. Comparison of analytical and numerical results when the frequency of incident Rayleigh surface 429 

wave is (a) 500 kHz, (b) 800 kHz, and (c) 1 MHz. 430 

 431 
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 432 

 433 

Figure 6. Cont. 434 

 435 

Figure 6 reveals that variations in magnitude of the second harmonic induced by a surface crack, 436 

as the crack progresses, are distinct at different frequencies. At 500 kHz, the magnitude increases 437 

monotonously against the crack length in both x  and z  directions, in Fig. 6(a), while the 438 

magnitude, at 800 kHz and 1 MHz, increases against the crack length, reaches its maximum and 439 

then decreases, Figs. 6(b-c). The non-monotonous variation at higher frequencies can be attributed 440 

to the distinct stress distributions along the waveguide thickness at different excitation frequencies. 441 

Putting into perspective, the normal and shear stress components along the waveguide thickness 442 

at the three frequencies, analytically calculated based on Eqs. (6a) and (6b), are illustrated in Fig. 443 

7. It can be observed that at 500 kHz the normal and shear stress components slightly decrease and 444 

increase, respectively, with respect to the crack depth, making magnitude of the second harmonic 445 

largely depend on the crack length, according to Eqs. (37) and (38), and thus the magnitude 446 

monotonously increases against the crack length. On the other hand, the normal and shear stress 447 

components dramatically decrease and increase in the sub-surface region at 800 kHz and 1 MHz, 448 

leading to non-monotonic variation between magnitude of the second harmonic and the crack 449 
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length. Figure 8 presents numerical results of stress distributions of the incident Rayleigh wave, 450 

demonstrating the above interpretation. 451 

 452 

 453 

 454 

 455 

Figure 7. Analytically obtained (a) normal and (b) shear stress distributions along waveguide thickness when 456 

the frequency of incident Rayleigh surface wave is 500 kHz, 800 kHz, and 1 MHz. 457 

 458 



23 

Irrespective of the discrepancy in variation of the magnitude at different excitation frequencies, it 459 

can be observed that in both the x  direction and z  directions, numerical results agree well with 460 

the analytical results, precisely reflecting the variation of the second harmonic of a Rayleigh wave 461 

and validating the developed analytical solution to the magnitude of the second harmonic 462 

generated by a ‘breathing’ crack. 463 

 464 

 465 

Figure 8. Numerically obtained normal stress distribution along waveguide thickness when the frequency of 466 

incident Rayleigh surface wave is (a) 500 kHz, (b) 800 kHz, and (c) 1 MHz. 467 

 468 

To take a step further, the second harmonic generated by an interior sub-surface crack is 469 

investigated when the incident Rayleigh wave is excited at 500 kHz, as a representative. The crack 470 

center is respectively 0.3 mm, 0.6 mm and 1.0 mm deep to the upper surface of the waveguide, 471 

and the crack length varies from 0.1 mm to 0.5 mm with an increment of 0.1 mm. The analytical 472 

results obtained using Eqs. (41) and (42) and numerical results using the FE model are compared 473 

in Fig. 9. As can be seen, the magnitude of sub-surface crack-induced second harmonic increases 474 
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monotonously against the crack length for sub-surface cracks at different depths in the waveguide 475 

thickness. The analytical and numerical results are in good agreement, demonstrating the 476 

theoretical modeling and solution (Eqs. (41) and (42)) are accurate to depict the nonlinear 477 

interaction between a Rayleigh wave and an interior sub-surface crack. It is noted in Fig. 9 that at 478 

a given crack length, the magnitude of the second harmonic is smaller when the crack is deeper in 479 

the waveguide – a phenomenon that can be analytically interpreted in terms of the distribution of 480 

the normal stress and shear stress along the waveguide thickness, as obtained using Eqs. (6a) and 481 

(6b), and depicted in Fig. 7: the smaller difference between the normal and shear stress components 482 

at a deeper location leads to a smaller value of the term in the curly bracket in Eqs. (41) and (42).  483 

 484 

 485 

 486 

Figure 9. Comparison between analytical and numerical results when crack center is (a) 0.3 mm, (b) 0.6 mm, 487 

and (c) 1.0 mm from the upper surface of the waveguide. 488 

 489 
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 490 

 491 

 492 

 493 

Figure 9. Cont. 494 

 495 

The quantitative accordance between the analytical and numerical results has argued that the 496 

analytical model and solution derived in this study are able to explicitly quantify the magnitude of 497 

second harmonic of a Rayleigh wave induced by a surface or a sub-surface crack. The analytical 498 
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modeling and explicit solution to the second harmonic generation of Rayleigh waves can facilitate 499 

detection of cracks in early stage and offer theoretical foundation and guidance to the 500 

implementation of damage characterization framework based on nonlinear Rayleigh waves. 501 

 502 

6. Concluding Remarks 503 

Rayleigh wave scattered by a surface or a sub-surface micro-crack is investigated, based on the 504 

elastodynamic reciprocity theorem, in conjunction with a virtual wave approach. With it, the 505 

second harmonic triggered by the clapping and rubbing behavior of the micro-crack is quantified. 506 

The stress generated by the incident Rayleigh wave at the crack surface is decomposed into two 507 

equivalent stresses components and the second equivalent stress component is demonstrated as the 508 

source to induce second harmonics. Explicit expression for the magnitude of the second harmonic 509 

generated by a surface crack or a sub-surface crack is derived by applying the second equivalent 510 

stress into the elastodynamic reciprocity equation. Proof-of-concept numerical simulation is 511 

conducted to validate the analytical model and solution, and quantitative agreement between 512 

analytical and numerical results accentuates the validity and accuracy of the proposed method. 513 

From the perspective of fracture mechanics, a fatigue crack usually initiates 45 degree to the 514 

surface from slip-bands, and a sub-surface crack is normally located in the plane parallel to the 515 

waveguide surface. With appropriate coordinate transformation, analytical solutions obtained for 516 

vertical surface/sub-surface cracks in this study can be conveniently extended to inclined cracks 517 

and parallel cracks. The developed analytical model and solution are beneficial to early awareness 518 

and quantitative evaluation of embryonic cracks that are on or near to a structural surface. 519 
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