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Abstract: In recent years, Vibro-Acoustic Modulation (VAM) techniques for structural health 11 

monitoring have received increasing attention. For such techniques, the sidebands and 12 

higher-order harmonics generated by double/single sinusoidal excitations are utilized to 13 

identify a series of damages. Currently, most VAM investigations are experimental, mainly 14 

involving signal processing, while few studies have paid attention to the mechanics of VAM 15 

generation. This paper presents a comprehensive investigation which studies the effects of 16 

Contact Acoustic Nonlinearity (CAN) on VAM for delaminated composite structures. The 17 

paper includes theoretical analysis, simulations, and experiments. Considering both a 18 

nonlinear contact constitutive model and the clapping/rubbing discontinuity, an approximate 19 

solution for nonlinear motional equation was established by using Fourier series expansion. A 20 

modified Greenwood-Williamson (GW) model for physical contact was implemented into the 21 

commercial finite element software ABAQUS by a UINTER subroutine, which described the 22 

contact behaviors between rough surfaces. The calculated signal responses from the 23 

delaminated composite plates were compared to experimental results. A good agreement was 24 

qualitatively and quantitatively achieved with acceptable error. Particularly, some specific 25 

features of higher-order sidebands existing in the experiment were identified. Results showed 26 

that the combined effect of the nonlinear contact constitutive model and the clapping/rubbing 27 

mechanism caused odd-even order differences. The asymmetry between the sidebands 28 

indicates the existence of amplitude and frequency modulations, which can be used to extract 29 

nonlinear damage indexes. These indexes are capable of characterizing the degree and range 30 

of damage. 31 
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1 Introduction 3 

Composite structures, under complex loading conditions and impact from unexpected 4 

catastrophic accidents, are prone to delamination. To avoid catastrophic incidents, structural 5 

health monitoring (SHM) methods for composite structures have been developed. In the early 6 

stages, conventional linear-feature-based SHM approaches which employed modal analysis, 7 

Lamb wave and acoustic emission testing were widely used to detect delamination in 8 

composite structures [1,2]. However, due to their weak sensitivity and inability to detect 9 

initial damage, the utilization of linear-feature-based SHM methods is greatly limited. 10 

Therefore, novel nonlinear-feature-based SHM methods, and especially Vibro-Acoustic 11 

Modulation (VAM) technique, gained increasing attention subsequently.  12 

In general, modulation is generated when a nonlinear system (mixer) is excited by two 13 

single-frequency sinusoidal signals. In this study, the “nonlinear system” represents a 14 

damaged structure, and the signals are called pump and probe waves for lower-frequency (LF) 15 

and higher-frequency (HF) excitations, respectively. In mechanical systems, there are 16 

generally two types of acoustic nonlinearity: motional and medium nonlinearity. Motional 17 

nonlinearity exists in hydrodynamics when the Mach number equals 1, but does not exist in 18 

solid mediums [3]. Medium nonlinearity can be divided into two classifications: material 19 

nonlinearity and contact acoustic nonlinearity (CAN) [4]. Material nonlinearity is present in 20 

materials that possesses nonlinear stress-strain behavior, such as plasticity and hyperelasticity, 21 

etc. On the other hand, CAN is present at interfacial contact, such as, delamination and bolted 22 

joints [5]. CAN is considered to be the major factor causing nonlinearity in damaged 23 

structures [6]. 24 

Initially, based on their previous study on liquids, Breazeale et al. [7,8] proposed that a 25 

waveform would be distorted when a high-intensity ultrasonic wave passed through a 26 

nonlinear or anharmonic solid. This indicates the generation of higher-order harmonics of the 27 

fundamental frequency, laying the foundation for nonlinear-feature-based SHM methods. 28 

When they are loaded, materials obeying Hooke’s law may also develop local anharmonicity. 29 

Akira et al. [9] investigated acoustic waves propagating in metals with local dislocation 30 

displacements and found a second-order harmonic. In addition, the amplitude of the 31 

second-order harmonic was found to change as a linear function of the fundamental wave 32 

amplitude and increased with increasing tensile bias stress. The harmonic would also increase 33 

when an ultrasonic wave passed through unbonded interfaces of a linear material [10,11]. 34 

Subsequently, Buck et al. [10,12] used ultrasonic harmonic generation to successfully 35 

establish a nondestructive testing (NDT) technique for detecting fatigue cracks in aluminum. 36 

They also proposed a near-linear relationship between second-order harmonic amplitude and 37 

fatigue crack size.  38 
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Most recent research on harmonics have been focusing on the nonlinear Lamb wave. For 1 

instance, Shkerdin et al. [13,14] investigated the nonlinear interaction between Lamb wave 2 

and bilayer containing delamination by a quasi-stationary approach. The localization result 3 

showed that harmonics provided a higher delamination detection contrast and spatial 4 

resolution with respect to the linear acoustics. Soleimanpour et al. [15,16] conducted explicit 5 

simulation and transducer network experiment for locating delamination, which displayed the 6 

delamination clapping effect generated bidirectional higher harmonics. Yelve et al. [17] 7 

provided a spectral damage index (SDI), which joins peaks of the first three harmonics by a 8 

series of lines to obtain the tangent of the spectral envelop angle  . SDI is invariant to the 9 

sensor location and decreases with delamination width. This represents a potential in 10 

characterizing the degree of damage.  11 

Donskoy and Sutin [18,19] exploited the VAM technique to identify structural damages. 12 

In their studies, the stiffness was phenomenologically abstracted as a quadratic or cubic 13 

multivariate function, a Taylor-series simplification. The coefficient of the quadratic or cubic 14 

item was a nonlinear coefficient that was determined experimentally. For the quantitative 15 

characterization of damage, several damage indexes (DIs) have been defined. Duffour et al. 16 

[20] proposed the ratio of the first sideband amplitude to the carrier amplitude as a definition 17 

for the DI. Despite being able to identify the existence of cracks, the DI does not have a 18 

positive correlation with crack size. 19 

In recent years, VAM has been introduced into composite SHM. Solodov et al. [21] 20 

experimentally investigated the self-modulation of composite structures and found a high 21 

locality of nonlinear response, which indicated VAM’s potential to detect and locate 22 

delamination. Meo et al. [22] discovered higher nonlinear signals in sandwich structures 23 

compared to metals, where more than fourth-order harmonics and sidebands were obtained. 24 

Aymerich and Staszewski [23,24] clarified the piecewise nonlinearity of CAN, demonstrating 25 

that there are at least two different CANs, namely, nonlinear contact pressure-displacement 26 

relationship and clapping. The selection of excitation frequency was discussed, and their 27 

results demonstrated that selecting the optimal modal frequency for excitation could increase 28 

the VAM response. This indicates that the modal frequency could excite stronger contact 29 

motion. Some tests performed on composite structures exhibited special VAM and harmonic 30 

phenomena, consisting of asymmetrical sidebands and odd-even differences that could not be 31 

explained by the Taylor-series-based method [25]. Chen et al. [26] compared a VAM DI with 32 

a harmonic DI and showed that the former had better sensitivity. In a series of studies, Klepka 33 

et al. [27-30] explored the effect of different crack modes, using the finite element method 34 

(FEM) and relevant signal processing methods, on the VAM for multiple composite structures. 35 

A piecewise linear continuous function around the delamination was established and 36 

approximated by a polynomial, while the delamination was simulated by a doubled-node 37 

approach. Ooijevaar et al. [31] decomposed the original experimental VAM signal and found 38 

that there were two components, namely amplitude modulation (AM) and frequency 39 

modulation (FM). In addition, the spatial results illustrated that the nonlinear signal possessed 40 
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great locality, useful for identifying the location of defects. Ashish et al. [32,33] proposed a 1 

generic 3D theory to explain VAM generation and developed a finite element model in the 2 

FEM simulation software ABAQUS based on the hard contact constraint, where the damage 3 

mapping method using sideband indices evidently displayed the approximate shape and 4 

position of the delamination. Furthermore, a sweep was used as the pump wave, and results 5 

showed that it could significantly decrease the frequency-dependence compared to a sine 6 

pump wave [34,35]. 7 

Despite long-term investigations on contact linearity in statics, studies focusing on the 8 

physical background of CANs are limited [36-39]. Most contact models were based on the 9 

Hertz contact model that describes the behavior when two micro-hemispherical elastomers 10 

contact with each other. Subsequently, Greenwood and Williamson [36] established a model 11 

to extend the Hertz model, known as the GW model, describing the mechanical behavior of 12 

two rough plates that are in contact. Several modifications have been proposed to extend the 13 

applicability of the GW model. For example, a Gaussian distribution was employed to 14 

describe the normal height statistics of micro-peaks in the original GW model. Afterwards, 15 

Adler et al. [37] and Brown et al. [38] corrected the Gaussian distribution to a chi-square 16 

distribution and the modified contact pressure-displacement curve corresponded better with 17 

the experimental. Baltazar et al. [39] discussed the effect of the dislocation angle, and 18 

provided two correction factors: normal and tangential. By taking the dislocation angle into 19 

account, the error between the predicted curve and the experimental one further shrunk. 20 

Based on the above literature review, little attention has been paid to exploring how the 21 

CAN induces the generation of modulation. Especially, there is a lack of a physical 22 

illustration for the mechanism of CAN on the delamination of composite material. In addition, 23 

relevant FEMs seem to be outdated for modeling the specific nonlinear contact stiffness, 24 

which is usually equivalent to a quadratic function, phenomenologically. The nonlinear 25 

contact behavior should be controlled more precisely. To tackle these issues, this paper 26 

presents a comprehensive VAM investigation based on both the modified GW model and the 27 

clapping/rubbing discontinuity. Firstly, a Fourier-series-expansion-based approximation 28 

theory is established to satisfy the first-order discontinuity caused by the clapping/rubbing 29 

mechanism. Secondly, a modified GW model is introduced into FEM by a user-defined 30 

interaction (UINTER) subroutine [40] that is a subroutine provided by ABAQUS and allows 31 

to code the user-defined model to control the interaction between contact faces. Subsequently, 32 

a series of delaminated composite plate FEM models are calculated and verified 33 

experimentally. Finally, several nonlinear DIs are extracted from original modulation signals 34 

to identify the degree and range of delamination. 35 

 36 

2 Physical CAN-based vibro-acoustic modulation theory 37 

In this paper, the derivation is based on three basic hypotheses: firstly, the structure does 38 

not display material nonlinearity; secondly, the nonlinearity is generated by damage only, i.e., 39 
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nonlinear contact stiffness cK ; and thirdly, the damping is omitted. For the discussed 1 

composite material, the first two hypotheses are reasonable as all the material nonlinearities, 2 

consisting of the plasticity, the hyperelasticity, or any other nonlinear elasticity, do not 3 

manifest when the composite material only withstands micro-amplitude deformation aroused 4 

by ultrasound transmitted to the structure. For the third hypothesis, the energy dissipation is 5 

not concerned in this paper, since the steady-state vibration is studied here, which is also 6 

consistent with previous investigations [5,31,32]. As a result of the no damping hypothesis, 7 

the displacement field can be assumed to have a consistent phase. Fig. 1 shows a typical 8 

delaminated composite plate with an in-plane delamination present in the interior of the plate. 9 

When the delaminated composite plate is loaded, the upper and lower rough delaminated 10 

interfaces perform an opening-closing motion which caused local contact. The strength of 11 

contact may strongly depend on the modal shapes, and it will be much stronger when the 12 

z-direction displacement component in the selected mode plays the main role [31], hence the 13 

selection of excitation frequencies should take this into account. A detailed frequency 14 

selection will be discussed in the experiment, and the major displacement component used in 15 

this section is assumed as z-direction, corresponding to contact direction. At the location of 16 

contact, a weak VAM wave is generated. The following theoretical analysis determines the 17 

evolution of the displacement field at the location of contact. 18 

For simplification, it is assumed that the vibration in the structure has reached a 19 

steady-state, and any transient response is neglected. According to the perturbation theory, the 20 

displacement field , u , v  and w  corresponding to x, y and z direction respectively, around 21 

the location where contact occurs can be determined by decoupling the displacements as 22 

products of modal functions and periodic functions, by the following expression:  23 
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where 
i  and ( )0 , , ,i i x y z = , q  and 

0q  represent modal functions and periodic functions, 25 

respectively, and the displacement field is divided into two parts: ( ) ( ), ,i x y z q t  represents 26 

the linear displacement, and ( ) ( )0 0, ,i x y z q t  represents the perturbation. Under forced 27 

vibration, the equilibrium differential equation can be expressed as: 28 
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where ( ), , ,
ij

f i j x y z=  represent the excitation force components, and ( ), , ,ij i j x y z =  1 

are the stress components. Being in line with reality, the stiffness along the z -direction is 2 

assumed to change due to delamination. Substituting Eq. (1) into Eq. (2), the following 3 

motion function is obtained: 4 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
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M q t M q t K q t K q t F
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+ + + =Mq M q Kq K q F

  (3) 5 

where, the original mass matrix is split into two mass sub-matrices M  and 0M  due to the 6 

existence of perturbation, containing only three diagonal non-zero elements iM  and 7 

( )0 , ,iM i x y z= . Due to combined effect of cK  and perturbation 0q , K  and 0K  exist, 8 

representing the two stiffness sub-matrices with only diagonal non-zero elements iK  and 9 

( )0 , ,iK i x y z= . F  is the excitation vector with three elements ( ), ,iF i x y z= . q  and 0q  10 

are two vectors with all three elements that are equal to q  and 0q , respectively. Eq. (3) 11 

represents the differential dynamic function of a system with nonlinear displacement 12 

components, of which the terms have undergone significant simplification. Their full forms 13 

are detailly listed in Appendix I. From Appendix I, it can be noticed that K  and 0K  are 14 

two time-dependent stiffness matrices, since both of them are functions of cK , which is 15 

time-dependent and will be discussed in detail later. However, M  and 0M  remain 16 

time-independent and constant. Thus, Eq. (3) is a non-homogeneous linear differential 17 

equation with variable coefficients, or a nonlinear state-variable function. Based on the 18 

state-variable method, there are few coefficient forms that can obtain an analytical solution of 19 

nonlinear state-variable functions. An analytical solution of Eq. (3) can rarely be obtained in 20 

this case, since the modified GW function selected to describe cK  has an open-integration 21 

form. However, if only the frequency components are of interest, where this study focuses on, 22 

some transformations may be helpful. K  and 0K  can be further decomposed into the 23 

following two sub-matrices, respectively: 24 
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where, the operator    indicates the row vector.   ( )1, ,6
i

i =C  represents the i-th row 2 

vector of transformed stiffness matrix of composite material C . Then, Eq. (3) can be 3 

transformed into: 4 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 00 0 0L N L Nt t t t t t+ ++ + + =Mq M q K q K q K q K q F   (5) 5 

where 00NK q  can be omitted since 0NK  is derived by using the partial differential 6 

perturbation modal function vector 0Φ  and the nonlinear contact stiffness cK , as presented 7 

at Eq.(4), and 0q  are the perturbation periodic function, hence the product of them is 8 

higher-order infinitesimal. Meanwhile, N−K q  and 00LK q  cannot be omitted, because q  is 9 

linear periodic function and 0LK  does not contain cK . Therefore, Eq. (5) can be rearranged 10 

as: 11 

 ( ) ( )Lt t+ =Mq K q F   (6) 12 

 ( ) ( ) ( )000 0 NLt t t+ = −M q K q K q  (6b) 13 

Eq. (6a) is a linear dynamic function, where the frequency components of q  are equal to 14 

those of F , i.e. two fundamental circular frequencies 1  and 2 . As mentioned above, K  15 

is time-dependent, however in Eq. (6b), it can be noticed that 0LK  is a constant matrix, 16 

thanks to the decomposition of K ; thus, Eq. (6b) is a derived constant coefficient dynamic 17 

function. Similar to Eq. (6a), the frequency components of 0q  are equal to those of virtual 18 
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excitation ( )N t−K q . The following derivation analyzes the frequency components of 1 

( )N t−K q . Here, the column vector q  is assumed as containing two sinusoidal signals: 2 

 

( ) ( )
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where, the operator    indicates the column vector. By substitute Eq.(7) into Eq. (4), the 4 

( )t− NK q  is obtained: 5 
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The first and second elements of ( )t− NK q  are 0, which means that the motion along the x 7 

and y directions is a “free vibration”. Despite that, the damping effect has been omitted for 8 

simplification in this paper, in reality it is known that the perturbation in x and y directions 9 

would be damped and attenuated. The cK  is a function of the relative displacement in the 10 

contact ( )t . When the system stays in steady-state vibration, the ( )t  is a periodic 11 

function. Hence, ( )( )cK t  is also a periodic function with the same circular frequency. This 12 

frequency   is the greatest common divisor of 1  and 2 , satisfying: 13 
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Subsequently, by using Fourier series expansion, ( )( )cK t  can be expressed as follows: 15 
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By substituting Eq.(10) into Eq.(8), the third element of Eq.(8) can be obtained, of which a 1 

detailed derivation is attached in Appendix Ⅱ:  2 

 

( ) ( )( )

( )( )

( )( )

( )( )

( )( )

,0
33 1 1 2 2

I

2 1 1

2
1 12 2

, ,

1 2 2

2 2

II

sin sin
2

sin

sin1
                      

2 sin

sin

a

n
z

n

a n b n

n n

n

k
C t t

n t

n tz
k k

n t

n t

   

   


   

   

   



=

 
− + + + + 

 

 + + − +
  

 − + + +
+  

+ + − + 
 
 − + + 



 
 
 
 
 
 
 
 
 
 
 
 
 

  (11) 3 

where , ,tan n b n a nk k = , ( )Nn n  +  indicates the nonlinearity-induced phase. From Eq.(11) 4 

and Eq.(9), the frequency components corresponding to part Ⅰ and Ⅱ are presented as: 5 


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According to Eq. (12), a total of 4 frequency components exist: 1) fundamental frequencies 7 

1  and 2 ; 2) harmonics of the two fundamental frequencies 1i  and 2i  ( )2,3,i = ; 3) 8 

VAM sidebands 2 1i   and 1 2i   ( )1,2,i = ; 4) the rest of the components related to 9 

the frequency division. With regard to the frequency division, 1  and 2  are coprime in 10 

most selections of excitation frequency, which causes the frequency division energy to spread 11 

across the spectrum. Therefore, it is not as significant as the other three components. Based on 12 

the above analysis, the frequency components of perturbation 0q  are known, which are the 13 

same as the ones of the virtual excitation Eq.(8) as shown in Eq.(12). 14 

The amplitude of the VAM sidebands should be further discussed. Taking the first-order 15 

sidebands as an example and assuming that 1 2  , the amplitude of 2 1 +  and 2 1 −  16 

sidebands are shown as the following, referring to detail derivation in Appendix Ⅲ:  17 
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where， j  and k  are the constants given by Eq.(9). Due to the phase difference, the right 2 

sideband amplitude may not be equal to the left one. It can be further noticed that although the 3 

excitation phase difference can be eliminated by setting 1 2 0 = = , the phase difference of 4 

the damaged structure still exists, i.e. difference between j  and k , which is generated by 5 

nonlinearity. This phenomenon indicates that AM and FM may exist simultaneously. 6 

The above derivation has proved the existence of sidebands and harmonics when the 7 

structure containing nonlinear contact stiffness cK . This result satisfies the arbitrary 8 

nonlinear form of cK . The following derivation presents the specific cK  evaluated by using 9 

the modified GW model. According to the Hertz model (Fig. 2), every contact hemisphere 10 

peak pair can be simplified as a hemispherical elastomer in contact with a rigid plane, which 11 

can be described by the following relationship [36,39]: 12 
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Where cF  is contact force, 
*E  and 

*R  are the equivalent elastic modulus and the radius of 14 

the equivalent hemisphere, respectively, satisfying: 15 
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Where iE , iv  and ( )1,2iR i =  are the elastic moduli, Poisson ratios and radii of two 17 

hemispheres respectively. As an extension of the Hertz model, the modified GW model 18 

constitutes a statistical method to equate the contact between two rough surfaces and the 19 

contact between a rough surface and a rigid plane (Fig. 3). Then the weighted cF  of every 20 

hemisphere peak pair is summed to form normal contact pressure cP , normal stiffness ,c NK , 21 

contact shear c  and tangential stiffness ,c TK . Ref. [39] provides the detailed derivation: 22 
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where   and   represents the average radius and number of the contact hemisphere per 2 

unit area. 
*G and   are the equivalent shear module and height distribution of the peaks:  3 
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Where   is gamma function, and chin  is the degree-of-freedom (DoF) of chi-squared 6 

distribution. RMSr  refers to the root mean square roughness. In Eq. (16), the clapping and 7 

rubbing effects are introduced when the interfaces is detached, i.e. 0 = . N  and T  8 

represent the average normal and tangential dislocation factors of contact hemisphere peak 9 

pairs, respectively, related to the normal and tangential dislocation angles   and   (Fig. 10 

4): 11 

 

( )

*
2.5 0.5 2

*

2 2

2 2

0 2

6
cos cos sin ;

1
d 1 sin cos d ;

N

T

G

E

p

 



   

     


−


= +



 = −



 
  (19) 12 

All the parameters of the modified GW model could be obtained by optical microscopic 13 

observation (Wanheng® MM-158C) of the rough surfaces (Fig. 5). The interface edge profiles 14 

are outlined, and the height of the peaks were measured to obtain the RMS roughness and fit 15 

the Chi-squared probability density function. The rest of the parameters relied on the 16 

geometry and the material properties of the contact material, which, in this case, was the fiber 17 

of the composite material. All the measured parameters of the modified GW model are listed 18 

in Table 1. 19 

 20 

3 Finite element implementation 21 
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3.1 FEM model of delaminated composite plate 1 

The FEM software ABAQUS has been employed to calculate the nonlinear dynamic 2 

response of delaminated composite plates. The hardware platform is a Window 10® 3 

workstation including 2 Intel® Xeon® Gold 6128 @3.4GHz CPUs, 64G memory, and a 4 

NVIDIA Quadro® P5000 16GB GPU. The time costs for computing 0.1s dynamic responses 5 

of the FE-models with 12.5mm 25mm and 50mm delamination cases, corresponding to 10248, 6 

12012 and 15882 elements, are ~24h, ~50h and ~72h in this platform, respectively. A FEM 7 

model was set up to simulate the VAM of 6 laminated composite plates with different 8 

delamination sizes and locations along the thickness direction. The key points are shown in 9 

Fig. 6. The delaminated composite plate was divided into 6 parts, and a user-defined contact 10 

pair in the delamination region was defined to control the interaction. The rest of internal 11 

surfaces were constrained by Tie constraints that provide the continuous deformation 12 

condition. Finally, the clamped cantilever boundary condition was applied to the assembly. 13 

The LF and HF excitations were applied at two nodes corresponding to their experimental 14 

locations. The excitation forms of LF and HF is the sinusoidal displacement and force, 15 

respectively. For the trade-off between the computational efficiency and the contact stress 16 

accuracy, the element size in the intact area was set as 2.5mm×2.5mm×0.525mm continuum 17 

3-dimensional 8 nodes solid element with reduced integration (C3D8R), whose hourglass 18 

effect is slight enough because of the micron-level displacement in this simulation, where the 19 

default hourglass control provided by ABAQUS can well settle the minor weakened stiffness 20 

brought by reduced integration. Two layers of 1mm × 1mm × 0.525mm continuum 21 

3-dimensional 8 nodes solid element with incompatible modes (C3D8I), which is claimed to 22 

provide better accuracy of contact stress results, were laid in the delaminated area [40], as the 23 

green elements shown in the lower right subfigure of Fig. 6. To match the actual thickness and 24 

layers of the specimen, 4 layers of elements in the thickness direction were set, and 4 25 

composite layers were set in each layer of the element via Composite Layup Management, i.e., 26 

each layer represents the ° ° °

2[0 /90 /0 ]  layup. Specifically, 4 plies were established via 27 

Composite Layup Management, where the 
°0  and 

°90  rotation angles and the material 28 

parameters were assigned to the corresponding regions. The element relative thicknesses of 29 

the plies were set as 1, which means they possess the same thickness. 30 

Taking into consideration the computational cost, an explicit analysis is suitable for 31 

high-velocity nonlinear problems, such as impact and explosion. This is because their period 32 

is extremely short (less than a microsecond). However, in this study, to obtain a 33 

higher-resolution spectrum, a motion of at least 0.1 s is required; hence, implicit analysis is 34 

more appropriate. The implicit dynamic analysis using direct integration, Dynamic Implicit 35 

step, was chosen. because the other implicit dynamic steps, while being faster, cannot 36 

calculate complex contact nonlinearity problems. In ABAQUS, the Newmark method is the 37 

core algorithm that proceeds the Dynamic Implicit step, which can refresh the stiffness matrix 38 

in every increment to simulate the time-dependence of a nonlinear system.  39 
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 1 

3.2 Flowchart of the UINTER subroutine 2 

The UINTER subroutine was selected to introduce the modified GW model to control 3 

the delamination contact interaction. It is an interface that allows the users to program their 4 

own specific contact model to define the contact stiffness cK . Its principle follows the 5 

penalty method, which allows a limited penetration between master and slave surfaces to 6 

simulate the contact relative displacement. A certain penetration was input into UINTER to 7 

calculate the corresponding contact stress. The UINTER was called for every contact node 8 

pair. The contact stress vector and stiffness matrix, named as STRESS and DDSDDR in 9 

UINTER, should be updated after every increment. Fig. 7 illustrates the flowchart of the 10 

UINTER process, and the main steps are as follows: 11 

(1) Assuming that the UINTER is executing the (k+1)-th increment, the ABAQUS 12 

main program (Black dotted frame) passes the statev(1) (the last residue of 13 

dividing by the ABAQUS-assigned -thk increment kt ), statev(2) (the number 14 

of the last -thk increment), statev(3) (the expected increment, 1t ), a increment 15 

correction fraction pr , 1kt +  and the normal and tangential relative 16 

displacement components in the contact   1s  and 2s  into the UINTER 17 

subroutine, where the statev is preset as 0. 18 

(2) The UINTER subroutine contains two parts. In the first part, due to the 19 

requirement of computational stability of the FEM model and execution 20 

convenience of signal processing, an increment control routine (within the red 21 

dotted frame) is presented to obtain equal interval increments. This routine 22 

firstly exams whether the increment is the first ( 0k =  and statev(2)=0) or 23 

second ( 1k = ), of which the t  is naturally equal to the expected increment 24 

and assigned to inc and statev(3). The statev(2)=0 is not superfluous since the 25 

statev(1) is initially smaller than 1t  ( 0k = ), which will cause the infinite loop. 26 

Then, the 1kt +  will be reassigned by assigning the new pr  if the statev(1) is 27 

smaller than the 1kt + , which indicates the 1kt +  has missed the expected time 28 

step (integer multiples of the expected increment). Otherwise, the 1kt +  is 29 

applied to the next routine. 30 

(3) When the updated increment is qualified, the contact pressure updating routine 31 
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(within the blue dotted frame), i.e., the second part of UINTER, determines 1 

whether the current contact node pair is open. If it is not open, the current 2 

STRESS and DDSDDR are updated by the calculated 1 2,  ,  c c cP    and 3 

, 1 , 2,  ,  c c T c TK K K ; otherwise, they are set as 0. All the (k+1)-th information is 4 

stored in statev to prepare for the next increment calculation. Finally, the 5 

updated STRESS, DDSDDR, and statev are transferred back to the ABAQUS 6 

main program. 7 

 8 

4 Experimental procedure 9 

4.1 Specimens and experimental methods 10 

The material used for specimen manufacturing was T300/7901 (Weihai Guang Wei 11 

Carbon Fiber Co., Ltd., China), and its mechanical properties are shown in Table 2. The 12 

layer-up of the specimens was ° ° ° ° °

2 2 2 s[0 /90 /0 /90 /0 ]  with a size of 310.0mm×30.0mm×2.1mm, 13 

while the cantilever was 250 mm. Delamination was preset at two locations along the 14 

thickness direction, namely, the fourth-fifth interlayer for offset delamination and the 15 

eighth-ninth interlayer for central delamination. Both delamination locations are the typical 16 

damage that may occur when the composite structure is loaded with predominant bending, 17 

especially the central delamination which lies in the neutral line, where the significant 18 

out-plane stress exists. In total, three delamination sizes of 12.5 mm, 25 mm, and 50 mm were 19 

chosen, as seen in Fig. 8. An intact plate was tested as the control case. Since the roughness of 20 

the delamination area is a critical factor in determining the parameters of the modified GW 21 

model, a re-solidification process was utilized to produce the real delamination. In the first 22 

solidification phase, a Teflon film was placed at one end of the composite plate to form the 23 

initial delamination. Then, a mode-Ⅰ load was applied to expand the initial delamination to 24 

generate real delamination. There was a fixer, at the other end, to prohibit any further 25 

propagation of the real delamination. Finally, an epoxy film was applied to the initial 26 

delamination to re-solidity and close it. In total, 4 piezoelectrics (PZT) sheets were fixed on 27 

the surface of each specimen, and the locations are indicated in Fig. 9.  28 

Fig. 10 displays the experimental system. The experiments were performed on a 29 

vibration isolation table. A signal generator (Tektronix® AFG 3102) was used to provide two 30 

sinusoidal signals. One signal was amplified by a power amplifier (DH5871) and passed into 31 

a shaker (SH40020) to excite the pump vibration. The other signal was input to the PZT to 32 

generate probe waves. The responses were sampled by a digital oscilloscope (Tektronix® DPO 33 

3034) and recorded by the Tektronix® OpenChoice software. Preliminary tests were conducted 34 

to determine the LFs and HFs, where 1000-2500 Hz modal frequencies with the strongest 35 

harmonic were chosen as LFs and 20-50 kHz frequencies with the maximum amplitude were 36 

chosen as HFs. The results are shown in Table 3. It can be noticed that the modes excited by 37 
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different frequencies may not be the same. However, using the different modes for some cases 1 

does not matter here, as long as they can provide a strong enough nonlinear response. 2 

 3 

4.2 Signal decoupling 4 

Based on the analysis in Section 2.1, both AMs and FMs exist in the nonlinear acoustic 5 

response. Therefore, in order to analyze them separately, a pre-filtered Hilbert Transform (HT) 6 

was utilized to decouple the original signal [31]. The procedure of the signal decoupling 7 

method is as follows: 8 

(1) The original time-domain signal was transformed into a spectrum by fast Fourier 9 

transform (FFT) to determine the highest-order k of the observable sidebands. 10 

(2) A bandpass filter was used to filter out every observable sideband and HF response. 11 

(3) The filtered signal is processed by HT to obtain the amplitude envelope and the 12 

instantaneous frequency. 13 

(4) FFT was used to obtain the amplitude of every order harmonic in the amplitude 14 

envelope and the instantaneous frequency, ,A iA  and ( ), 1, 2, ,F iA i k= , 15 

respectively. 16 

,A iA  and ,F iA  can be summarized as two nonlinear damage indexes, i.e. the sum of 17 

amplitude modulation index (SAMI) and the sum of frequency modulation index (SFMI):  18 
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where HA  and Hf  are the amplitude and frequency of the HF response, respectively. 20 

In addition, due to the lock of method for conducting spatial nonlinear shape 21 

decomposition, the sideband index (SBI, similar as the SB2 in Ref. [27]), was selected to 22 

image the damage. The detailed decoupling flowchart of SBI will be presented in Section 5.3.  23 

 24 

5 Results and discussion 25 

5.1 Frequency and time domain characteristics 26 

Taking the offset 12.5 mm delaminated composite plate as an example, the typical 27 

frequency spectrums of damaged and intact composite plates are presented in Fig. 11. Both 28 

the experimental and FEM results of the damaged plates exhibit harmonic and VAM 29 

responses. For the experimental result of the intact plate, there were few and weaker nonlinear 30 

signals, which may be generated by the excitation system and boundary condition 31 

nonlinearities. As for the FEM result of the intact plate, there is no nonlinear response, since 32 

the excitation and boundary conditions in FEM are ideal. Under this circumstance, the 33 
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experimental values of SAMI and SFMI were obtained by subtracting the intact plate results 1 

from those of the damaged one.  2 

Fig. 12 displays the time-domain transformation results of pre-filtered HT. The original 3 

time-domain shows mainly two fundamental frequencies and can hardly reflect any nonlinear 4 

response. As the filtered spectrum illustrates, the noise in experiment, the structural inherent 5 

response in FEM, LF, and its harmonics were filtered out, and only the HF and its sidebands 6 

remained. Some slight fluctuations in the filtered time-domain appeared but they were not 7 

significant, therefore HT was used to extract these slight signals hiding in the HF. Both the 8 

experimental and FEM results revealed the existence of AMs and FMs. As shown in Fig. 11 9 

b1), because there are just 4 order sidebands calculated out in the FEM, the numerical AM 10 

and FM signal contain fewer higher frequency components, resulting in being different from 11 

the experimental one. The same reason also responses the much weak amplitudes of 12 

higher-order (>4-th) numerical AMs and FMs, as shown in Fig. 13. These phenomena suggest 13 

that the maximum order the proposed FE-model can accurately simulate is the 4-th order. 14 

Despite the deviations in higher-order sidebands, the FE-model in this study has been superior 15 

compared with former phenomenological quadratic models which usually just provide second 16 

or third order precision by manually adding high-order items. In addition, the frequency 17 

components of AM and FM consisted of the integral multiples of LF, this is similar to the 18 

harmonic.  19 

In this study, making the numerical results perfectly matching the experimental ones is 20 

not what the study is intended to, which is relatively difficult for dynamic issues. Three 21 

progresses have been achieved and superior to previous simulations: 1) obtain the 22 

higher-order (at least 4-th) sidebands without artificially adding high-level items in the 23 

contact model, 2) the odd-even order sidebands difference and 3) the asymmetric sidebands 24 

suggesting the existence of FM. All three phenomena have been observed in numerous 25 

reported experiments, but with little theoretical and simulation explanation before. As long as 26 

the above phenomena are displayed, the value of this simulation method is presented. 27 

 28 

5.2 Contact behavior 29 

As emphasized in Section 2, contact plays a critical role in the VAM generation. While it 30 

is hard to observe such contact experimentally, FEM can help to provide some insight. Two 31 

cases with significant contact effects, i.e., the offset and central 50 mm delamination cases, 32 

were taken as examples, to determine the contact behavior within an LF circle. The results are 33 

shown in Fig. 14, where the contact pressure maps of the 4 phases of LF are displayed. In 34 

general, the offset delamination caused much greater contact pressure than the central one, 35 

about 1.2×10-6 vs. 1.5×10-9 MPa, respectively. This is also supported by the greater VAM 36 

response in the offset 50 mm case compared to that in the central 50 mm one. Moreover, the 37 

difference of the odd-even order sidebands shown in the central 50mm case is larger than that 38 

in the offset 50mm case, accompanying more marked amplitude asymmetry, as the blue dot 39 

lines display (taking the third-order sidebands as an example). As the amplitude asymmetry is 40 
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the sign of the existence of FM, it suggests that FM can be used to identify the strength of the 1 

contact behavior. In general, the maximum contact pressure occurs at the phase corresponding 2 

to the peak of the amplitude envelope, while the valley corresponds to the opening of the 3 

interfaces. Due to the geometric symmetry about the delamination, which allows the vibration 4 

has the mirrored shapes about the original neutral line in the first and second half-cycles, 5 

hence these two half-cycles contact stress distributions of the central 50 mm case are 6 

analogous. In some previous simulations, such as Ref. [41], the impact loading was applied to 7 

the delaminated composite structure. In the condition of this study, the excitation is 8 

steady-state excitation which can be treated as the integration of a series of impact loading. 9 

Hence, the signals and contact stress under these two situations are different, where they are 10 

attenuated in Ref. [41], but steady and periodic in this study. The same point is both contact 11 

behaviors of two excitation conditions are partial and displaying as small impact loadings 12 

since the open-close switching is ultrafast. 13 

 14 

5.3 Nonlinear DIs 15 

After obtaining the amplitude of each order of harmonics in AM and FM using the 16 

pre-filtered HT, the values of SAMI and SFMI can be calculated. Fig. 15 presents the 17 

experimental and FEM results of SAMI and SFMI for the 6 delaminated composite plates, 18 

including the data concerning the 3 sampling points. The SAMI and SFMI trends predicted by 19 

FEM are basically consistent with the experimental ones, which suggests that the FEM 20 

method can reflect the actual generation mechanism of VAM to a certain extent. The error 21 

between FEM and experimental results could be caused by multiple factors. From the 22 

experimental aspect, due to the second solidification, the grade of the embedded epoxy resin 23 

film is different from the prepreg epoxy, which may induce local mechanical property 24 

discontinuity that generates slight material nonlinearity and increase the DIs. However, the 25 

precise effects of this discontinuity on AM and FM are still unknown and remain further 26 

investigation. In addition, the thickness of the epoxy resin film may have slightly opened the 27 

delamination and decreased the contact strength, since the initial space between two interfaces 28 

is extended that should have been ideally 0. As a result, the DIs may be weakened. Although 29 

the effects of the different grades of epoxy and the thickness of the film is opposite, it does 30 

not mean they can cancel each other out. From the FEM perspective, due to the limitations in 31 

calculation capability, the density of the finite element mesh was set to satisfy the minimum 32 

requirements, i.e. 8-10 elements per wavelength. At present, the DI magnitude and change 33 

trend are close to that of the experiment, which indicates the qualitative effectiveness of the 34 

presented FEM. 35 

The results of 4 cases exhibited a positive slope between delamination size and DIs, 36 

while those of the other two cases did not. This means that both SAMI and SFMI can 37 

characterize the degree of damage when the sampling point location has been appropriately 38 

selected. Moreover, in 4 cases, a1) a3) b1) and b2), the slopes of SFMI change are slightly 39 

steeper than those of SAMI, especially from the 5%~10% delamination, suggesting that SFMI 40 
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is more sensitive when the delamination is small. The two non-monotonic cases suggest that 1 

there could be a certain spatial distribution of DIs.  2 

The following discussion will focus on the damage imaging using SBI. The procedure to 3 

obtain the spatial distribution of DIs is shown in Fig. 16. Firstly, the vibration shapes excited 4 

by HF and LF, single HF, and single LF were extracted separately. Subsequently, the two 5 

single shapes were subtracted from the combined one to remove the LF and HF responses and 6 

their harmonics. The remaining shape is the pure modulation shape. Finally, the maximum 7 

amplitude of the modulation shape was recorded and divided by that of the HF response, and 8 

the SBI spatial distribution was obtained. Fig. 17 9 

 illustrates all the SBI spatial distributions of the 6 delaminated composite plates 10 

calculated by FEM. Different from conventional indices that identify damage location via 11 

local maximum, SBI utilizes the spatial distribution difference between the delamination and 12 

the delamination-free areas. As seen in Fig. 17, appearance of the local maxima of SBI cannot 13 

determine the existence of the damage. While there is a significant difference of SBI spatial 14 

distribution outlining the delamination boundary precisely, which highly indicates its potential 15 

in delamination imaging. One index that can quantitatively characterize the distribution 16 

difference is the peak density, i.e., the number of the peaks per unit length. As shown in Table 17 

4, all the peak densities of the delamination areas are higher than the delamination-free area. 18 

What’s more, the difference between the peak densities of delamination and intact areas is 19 

relatively greater when the visual difference of the distribution is more notable. Some 20 

linear-feature-based SHM methods can be used to roughly visualize delamination, e.g., the 21 

scattering of Lamb waves. However, their visualization capability is based on the precondition 22 

that the length of the probe wave is much shorter than the feature size of delamination; 23 

otherwise, the probe wave may directly overpass delamination. On the other hand, VAM is 24 

not limited by that as the length of the probe wave is allowed to be longer than the feature size 25 

of delamination (12.5 mm and 25 mm cases), because the nonlinear features are related to the 26 

nonlinear frequency components which wavelength can be shorter than the one of the probe 27 

wave. 28 

This imaging method has some disadvantages. Two evident trends can be seen in Fig. 17: 29 

the imaging quality decreases with smaller delamination or deeper delamination location in 30 

the thickness direction. Two aspects for improving the spatial resolution of this imaging 31 

method should be further considered. A generic method is using higher-frequency probe 32 

excitations. However, the higher frequency comes up with stronger dispersion and lower 33 

signal-to-noise ratio that may cause difficulty in nonlinear decoupling and identification. Even 34 

in linear-feature-based methods, strong dispersion and lower signal-to-noise ratio are also 35 

troublesome. In addition, the time cost of current nonlinear dynamic FEM is too heavy to 36 

simulate the modulation with higher frequency probe excitation. Therefore, the nonlinear 37 

dynamic simulation method should be improved specifically for modulation. Beside 38 

increasing probe frequency, another method is to use a sharper nonlinear imaging DI. If there 39 
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is a decomposition method for extracting SAMI and SFMI special distribution, they are 1 

expected to replace SBI for sharper damage imaging. 2 

At present, it is only the numerical SBI distributions that are presented. The current 3 

PZT-based acquisition system we have is not capable enough to scan the whole plate to obtain 4 

the experimental SBI distributions, as the size of the PZT sensor is too large to conduct the 5 

high areal density sampling. A possible verification may be achieved via using the laser 6 

vibrometer which can provide micron-level sampling point size and automatically scans the 7 

whole surface. At least, in this study, we provide the numerical result to show the potential. 8 

The verification is being considered for our next-stage work. 9 

 10 

6 Conclusions 11 

In this paper, a theoretical analysis and a FEM model for investigating the generation of 12 

VAM in delaminated composite plates is presented. The theory is based on a physical CAN 13 

model involving a modified GW model and clapping/rubbing discontinuity introduced into 14 

FEM via UINTER subroutine, which governs the contact behavior of the delamination 15 

interfaces. Every parameter of the modified GW model was determined from microscopic 16 

observation rather than fitting experimental data. The simulated VAM results were verified by 17 

confirmatory experiments. The main conclusions of this investigation are drawn as follows: 18 

(1) By introducing GW model into FEM via UINTER subroutine, the asymmetry and 19 

odd-even difference of sidebands predicted in theory were confirmed, which 20 

indicates the simultaneous existence of AM and FM. The odd-even order sidebands 21 

difference is related to the strength of contact. Concerning the SAMI and SFMI, the 22 

simulated single-point sampling results can approximately reflect the trend of the 23 

experimental results. This comparison showed there was still some deviation 24 

between the two results, but their order of magnitude was equal. Basically, the 25 

proposed FEM method can provide a reasonable approximation of the experimental 26 

results. 27 

(2) FEM CPRESS results display strong proof of the existence of the opening and 28 

closing phases during a vibration cycle. What is more, they indicate the contact of 29 

the interfaces is partial, which may be the reason that frequency modulation exists. 30 

The SAMI and SFMI were extracted in both experimental and FEM time-domain 31 

signals. Their results generally supported the positive relationship between 32 

delamination size and DIs. While SFMI displayed a better sensitivity for detecting 33 

smaller delamination. 34 

(3) Some non-monotonic DI results indicate the existence of the spatial distribution of 35 

DIs. The SBI spatial distributions for all 6 cases were simulated, demonstrating 36 

significantly visual differences in the SBI spatial distributions between the 37 

delaminated area and the intact area. A simple index, the peak density, is used to 38 

provide a quantification comparison for the SBI distribution difference. The 39 
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delamination area’s peak density is higher than intact area. One point that is 1 

attractive is this method does not require selecting a probe wave with a wavelength 2 

longer than the feature size of delamination, while linear-feature-based methods do. 3 

This advantage may benefit the subwavelength delamination and cracks detection. 4 

(4) The proposed damage imaging method provides a blurred result for the Central 5 

12.5mm specimen, indicating it is still limited by the delamination’s depth and size. 6 

Further investigation should be conducted via proposing an effective modulation 7 

simulation method for increasing the probe frequency, or a spatial decomposition 8 

approach for extracting sharper nonlinear damage indices like spatial SAMI and 9 

spatial SFMI. 10 
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Appendix Ⅰ: Analytical expression of terms in the differential dynamic function 18 

The terms comprising Eq. (3) are analytically expressed as follows:  19 
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where   ( ), 1, ,6
i

C i =  refers to i-th row vector of the transformed stiffness matrix of 2 

composite material C , and elements of the excitation vector  
T

x y zF F F=F  are: 3 
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 5 

Appendix Ⅱ: Derivation for determining the third element expression of Eq.(8) 6 

By substituting Eq.(10) into Eq.(8), the third element of Eq.(8) can be expressed as: 7 
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The part Ⅱ can be further expanded by using trigonometric identities: 2 
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Combining Eq.(II-1) and Eq.(II-2), the third element of Eq.(8) can be obtained as shown in 4 

Eq.(11). 5 

 6 

Appendix Ⅲ: Derivation for first-order sidebands 7 

The first-order sideband frequency components are 2 1  . Based on Eq.(9) and Eq.(11), 8 
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the n  corresponding to 2 1 +  and 2 1 −  are j  and k . Then, for 2 1 +  1 

component, the amplitude can be derived out by using trigonometric identities: 2 
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Using the similar derivation, the amplitude of 2 1 −  component is also obtained: 6 
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Nomenclature 1 

u , v , w  Displacement components 

i , ( )0 , ,i i x y z =  Linear and nonlinear modal functions 

q , 0q  Linear and nonlinear periodic functions 

ii , ( ), , ,ij i j x y z =  Stress components 

( ), , ,
ij

zf i j x y=  Differential exciting forces components 

  Density 

iM , ( )0 , ,i i x y zM =  Linear and nonlinear mass coefficients 

iK , ( )0 , ,i i x y zK =  Linear and nonlinear stiffness coefficients 

M , 0M  Linear and nonlinear mass matrices 

K , 0K  Linear and nonlinear stiffness matrices 

iF ( ), ,i x y z=  Excitation components 

F  Excitation vector 

q , 0q  Linear and perturbation response vectors 

C  
Transformed stiffness matrix of composite 

material 

  ( ), 1, ,6
i

C i =  i-th row vector of C  

cK  Nonlinear contact stiffness 

LK , NK  Sub-matrices of K  

0LK , 0NK  Sub-matrices of 0K  

1 , 2  
Circular frequency of the two sinusoidal 

excitations 

1 , ( )2 , ,i x y z =  Phases of the two sinusoidal excitations 

cF  Contact force 

1E , 2E  Elastic moduli of contact materials 

1R , 2R  Radii of the two contact hemispheres 

1v , 2v  Poisson's ratio of contact materials 
*E  Equivalent elastic modulus 

*R  
Equivalent radius of the equivalent contact 

hemisphere 
  Relative contact displacement 

cP  Normal contact pressure 

,c NK  Normal contact stiffness 

c  Tangential contact shear stress 

,c TK  Tangential contact stiffness 

  
Average radius of the peaks on the rough 

interfaces 
  Density of peaks on the rough interfaces 
*G  Equivalent shear modulus 

1G , 2G  Shear moduli of contact materials 



28 

  Height distribution of peaks in the z-direction 

chin  DoF of Chi-squared probability density function 

  Gamma function 
  Normal dislocation angle 
  Tangential dislocation angle 

 1 

  2 



29 

Table and Figure Captions: 1 

 2 

Figure 1 VAM generation by local contact in an excited delaminated composite plate (color images in the 3 

e-edition, same hereinafter) 4 

 5 

Figure 2 Hertz contact model describing the contact behavior between two hemisphere peaks (left) and the 6 

equivalent transformation as a contact between a hemisphere peak and a rigid plane (right). 7 

 8 

Figure 3 Rough surface and rigid plane equivalent of the contact between rough surfaces. 9 

 10 

Figure 4 Dislocation of a contact peak pair. 11 

 12 

Figure 5 Microscopic observation of rough delamination interfaces. 13 

 14 

Figure 6 Schematic diagram of a 4-DoF system with local nonlinear stiffness. 15 

 16 

Figure 7 Spectrum results for a 4-DoF system (a-c) with clapping and (d-e) without clapping. 17 

 18 

Figure 8 FEM model of delaminated composite plates: contact pair construction and mesh. 19 

 20 

Figure 9 Flowchart of the FEM calculation process combined with the UINTER subroutine. (Black: 21 

ABAQUS main program; Red: increment control; Blue: contact pressure updating) 22 

 23 

Figure 10 Specimen geometry. 24 

 25 

Figure 11 Schematic diagram of a specimen showing the locations of the excitation and sampling points. 26 

 27 

Figure 12 Experimental system. 28 

 29 

Figure 13 Frequency spectra of the offset 12.5 mm delaminated composite plate and the corresponding 30 

intact plate (sampling point 1). 31 

 32 

Figure 14 Offset 12.5 mm time-domain transformation procedure results of pre-filtered HT (sampling point 33 

1). 34 

 35 

Figure 15 Frequency components of AM and FM in the offset 12.5 mm case (sampling point 1). 36 

 37 

Figure 16 Contact pressure contours at different phases on the offset (Left) and central (Right) 50 mm 38 

delamination plates and corresponding spectrums. 39 

 40 
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Figure 17 Predicted and experimentally obtained SAMI and SFMI of the 6 delaminated composite plates. 1 

 2 

Figure 18 Procedure for extracting the calculated spatial distribution of SBI. 3 

 4 

Figure 19 SBI spatial distribution of the 6 delaminated composite plates. 5 

 6 

 7 

Table 1 Parameters of the 4-DoF system. 8 

 9 

Table 2 Modified GW model parameters 10 

 11 

Table 3 Material properties of the T300/7901 carbon/epoxy composites. 12 

 13 

Table 4 Selected LFs and HFs.  14 
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 1 

Figure 1 VAM generation by local contact in an excited delaminated composite plate (color images in the 2 

e-edition, same hereinafter) 3 

 4 
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Figure 2 Hertz contact model describing the contact behavior between two hemisphere peaks 6 

(left) and the equivalent transformation as a contact between a hemisphere peak and a rigid 7 

plane (right). 8 

 9 

 10 
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Figure 3 Rough surface and rigid plane equivalent of the contact between rough surfaces. 1 

 2 

 3 

Figure 4 Dislocation of a contact peak pair. 4 

 5 

 6 

Figure 5 Microscopic observation of rough delamination interfaces. 7 

 8 

 9 
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Figure 6 FEM model of delaminated composite plates: contact pair construction and mesh 2 
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 4 

Figure 7 Flowchart of the FEM calculation combined with UINTER subroutine. (Black: ABAQUS main 5 

program; Red: increment control; Blue: contact pressure updating) 6 

 7 



34 

 1 

Figure 8 Specimen geometry. 2 

 3 

 4 

Figure 9 Schematic diagram of a specimen showing the locations of the excitation and sampling points. 5 
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Figure 10 Experimental system. 2 
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Figure 11 Frequency spectra of the offset 12.5 mm delaminated composite plate and the corresponding 3 

intact plate (sampling point 1). 4 
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 6 

Figure 12 Time-domain transformation procedure results of pre-filtered HT (sampling point 1 of offset 7 

12.5mm): a-1) Experimental signal, a-2, 3) Experimental bandpass-filtered spectrum and signal, a-4, 5) 8 

Experimental amplitude and frequency modulation, b-1) Calculated signal, b-2, 3) Calculated 9 

bandpass-filtered spectrum and signal, b-4, 5) Calculated amplitude and frequency modulation. 10 

 11 
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Figure 13 Frequency components of AM and FM (sampling point 1 of offset 12.5 mm). 3 
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Figure 14 Contact pressure contours at different phases on the offset (Left) and central (Right) 50 mm 5 

delamination plates and corresponding spectrums. 6 

 7 



38 

5 10 15 20
-60

-40

-20

0

20
a1) Offset p_1

 Exp. SAMI  Exp. SFMI
 FEM  SAMI  FEM SFMI

D
a
m

a
g
e 

in
d

ex
 /

d
B

Delamination percentage /%
5 10 15 20

a2) Offset p_2

 Exp. SAMI  Exp. SFMI

 FEM  SAMI  FEM SFMI

Delamination percentage /%
5 10 15 20

a3) Offset p_3

 Exp. SAMI  Exp. SFMI

 FEM  SAMI  FEM SFMI

Delamination percentage /% 1 

5 10 15 20
-60

-40

-20

0

20
b1) Central p_1

 Exp. SAMI  Exp. SFMI
 FEM  SAMI  FEM SFMI

D
a

m
a

g
e
 i

n
d

e
x

 /
d

B

Delamination percentage /%
5 10 15 20

b2) Central p_2

 Exp. SAMI  Exp. SFMI

 FEM  SAMI  FEM SFMI

Delamination percentage /%
5 10 15 20

b3) Central p_3

 Exp. SAMI  Exp. SFMI

 FEM  SAMI  FEM SFMI

Delamination percentage /%  2 

Figure 15 Calculated and experimentally obtained SAMI and SFMI of the 6 delaminated composite plates. 3 
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Figure 16 Procedure for extracting the calculated spatial distribution of SBI. 2 

 3 



40 

Offset 12.5mm

Offset 25mm

Offset 50mm
x /mm200

150

100

50

0

S
B

I 
In

d
e
x
 /
d

B

0

250y /mm 30

 

P1: -41.4891
P2: -44.9763

P3: -24.9688

P1: -28.9947
P2: -12.8996

P3: -30.558

P1: -41.8264
P2: -29.567

P3: -39.0063

x /mm200

150

100

50

0

S
B

I 
In

d
e
x
 /
d
B

0

250y /mm 30

 

x /mm200

150

100

50

0

S
B

I 
In

d
e
x

 /
d
B

0

250y /mm 30

 

10

0

-10

-20

-30

-40

-50

-60

-10

-20

-30

-40

-50

-60

0

-10

-20

-30

-40

-50

-60  1 



41 

Central 12.5mm

Central 25mm

Central 50mm
x /mm200

150

100

50

0

S
B

I 
In

d
e

x
 /

d
B

0

250y /mm 30

 

x /mm200

150

100

50

0

S
B

I 
In

d
e
x

 /
d

B

0

250y /mm 30

 

x /mm200

150

100

50

0

S
B

I 
In

d
e

x
 /
d

B

0

250y /mm 30

 

P1: -35.0562
P2: -30.1456

P3: -20.7986

P1: -28.623
P2: -25.6984

P3: -24.1728

P1: -36.1647
P2: -33.7797

P3: -33.8279

10

0

-10

-20

-30

-40

-50

-60

0

-10

-20

-30

-40

-50

-60

10

0

-10

-20

-30

-40

-50

-60

 1 

Figure 17 SBI spatial distribution of the 6 delaminated composite plates. 2 
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Table 1 Parameters of the modified GW model. 1 

Material properties Value 

33fE  (GPa) 15 

23fG  (GPa) 7.0 

  (μm) 6.5 

  (mm-2) 2.25×106 

*r  6.6×10-3 

N  
1.006 

T  
0.984 

n  5 

 2 

 3 

Table 2 Material properties of the T300/7901 carbon/epoxy composites. 4 

Material properties Value 

11E  (GPa) 130.0 

22E , 33E  (GPa) 7.64 

12G , 13G  (GPa) 3.70 

23G  (GPa) 3.00 

12 , 13  0.32 

23  0.45 

  (g/cm3) 1.69 

 5 

 6 

Table 3 Selected LFs and HFs. 7 

Specimen LF (kHz) HF (kHz) 

Offset 

12.5mm 1.82 21.45 

25mm 1.79 21.00 

50mm 1.09 35.50 

Central 12.5mm 1.77 36.00 
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25mm 2.20 35.20 

50mm 1.62 33.50 

 1 

Table 4 Peak densities of the delamination and delamination-free areas in all 6 cases 2 

Specimen Delamination delamination-free 

Offset 

12.5mm 
10.80cm−  10.59cm−  

25mm 
11.20cm−  10.53cm−  

50mm 
11.40cm−  10.80cm−  

Central 

12.5mm 10.80cm−  10.76cm−  

25mm 11.20cm−  10.80cm−  

50mm 11.00cm−  10.70cm−  

 3 

 4 




