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Abstract 25 

Multiple Signal Classification (MUSIC) – a directional scanning and searching algorithm, has 26 

gained its prominence in phased array-facilitated nondestructive evaluation. Nevertheless, 27 

prevailing MUSIC algorithms are largely bound up with the use of a dense linear array, which fail 28 

to access the full planar area of an inspected sample, leaving blind zones to which an array fails 29 

to scan, along with the incapability of differentiating multiple damage sites that are close one from 30 

another. To break above limitations, conventional MUSIC algorithm is ameliorated in this study, 31 

by manipulating the signal representation matrix at each pixel using the excitation signal series, 32 

instead of the scattered signal series, which enables the use of a sparse sensor network with 33 

arbitrarily positioned transducers. In the ameliorated MUSIC (Am-MUSIC), the orthogonal 34 

attributes between the signal subspace and noise subspace inherent in the signal representation 35 

matrix is quantified, in terms of which the Am-MUSIC yields a full spatial spectrum of the 36 

inspected sample, and damage, if any, can be visualized in the spectrum. Am-MUSIC is validated, 37 

in both simulation and experiment, by evaluating single and multiple sites of damage in plate-like 38 

waveguides with a sparse sensor network. Results verify that i) detectability of Am-MUSIC-39 

driven damage imaging is not limited by damage quantity; ii) Am-MUSIC has full access to a 40 

sample, eliminating blind zones; and iii) the amelioration expands conventional MUSIC from 41 

phased array-facilitated nondestructive evaluation to health monitoring using built-in sparse 42 

sensor networks. 43 

 44 

Keywords: structural health monitoring; guided ultrasonic waves; multiple signal classification 45 

(MUSIC); phased array; sparse sensor network 46 

47 
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1. Introduction 48 

With the incentive to “visualise” hidden material defect or structural damage, continued effort has 49 

been made to projecting identified results, by means of proper imaging algorithms, in synthetic 50 

illustration, in which anomaly, if any, can be imaged intuitively [1]. Amongst various anomaly 51 

imaging approaches, those by virtue of guided ultrasonic waves (GUWs) have demonstrated 52 

eminent detectability, accuracy and precision [2-5], as represented by tomography-based imaging 53 

[6], delay-and-sum imaging [7], time-reversal focusing imaging [8], probability-based imaging 54 

[9], and array signal processing-based imaging [10-14], to name a few. Amongst them, the array 55 

signal processing-based imaging can be implemented in various modalities, including sparse 56 

reconstruction [10], minimum variance distortionless response method [11], subspace fitting [12], 57 

maximum-likelihood method [13], and Multiple Signal Classification (MUSIC) [14]. 58 

 59 

In particular, the MUSIC algorithm, with its theoretical framework shaped by Schmit [15] in 1981 60 

for frequency estimation and radio direction finding, is a directional scanning and searching 61 

method to unbiasedly estimate signal features in terms of the orthogonal attributes between signal 62 

subspace and noise subspace. With a directional scanning ability, MUSIC has been extended to 63 

various application domains such as radar positioning [16], sonar [17], seismic exploration [18], 64 

biomedicine [19] and so forth. MUSIC has also proven effectiveness in GUW-based damage 65 

imaging. Representatively, Stepinski and Engholm [20] revamped a conventional MUSIC 66 

algorithm for estimating the direction of arrival (DOA) of incoming waves in plates with a 67 

uniform circular array. Yang et al [21, 22] employed the MUSIC algorithm to calculate the arrival 68 

times of impact-induced waves in conjunction with the use of wavelet transform, whereby to 69 

predict the location of an impact to a plate. Majority of MUSIC-driven damage evaluation lies in 70 

the far-field hypothesis that assumes a wave scatterer (e.g., damage) within the inspection region 71 

is sufficiently far from the phased array, so that the waves emanating from the scatterer can be 72 

considered as a plane wave when they arrive at the array, as illustrated schematically in Fig. 1(a). 73 

 74 

 75 

 76 

 77 

 78 

 79 

 80 

 81 
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 82 

            83 

(a) (b) 84 

Fig. 1. Use of phased array for evaluation of damage in a planar inspection region [23]: (a) far-field 85 

scenario; and (b) near-field scenario (
kd : the distance from the wave source through the damage then to 86 

the 
thk  array element). 87 

 88 

Despite demonstrated effectiveness in numerous applications, the far-field hypothesis is often 89 

questioned in practical implementation, as the damage location is unknown a priori, and the 90 

wavefront scattered by the damage is naturally cylindrical rather than planar, provided the damage 91 

is in the near-field – the scenario in Fig. 1(b). In recognition of such deficiency that prevailing 92 

MUSIC algorithms inherently has, enhancement has been made to improve conventional MUSIC-93 

driven damage evaluation. Zhong et al [23, 24] developed a revamped MUSIC algorithm based 94 

on the Taylor expansion theory, applicable to detecting near-field damage in a composite oil tank. 95 

Extending this study, Yuan et al [25] took into account the anisotropy of composite structures and 96 

proposed a single-frequency component-based MUSIC algorithm able to improve the precision 97 

of locating a near-field impact site in composites. Zuo et al [26] calculated the cross-correlation 98 

function for the scattered signals received by a damage scattering model and the residual signals 99 

received in experiment, and applied the two-dimensional (2-D) MUSIC algorithm to identify 100 

damage in plate-like structures. Bao et al [27] combined the transmitter beamforming and 101 

weighted image fusion to enhance the conventional MUSIC, endowing it with the capability of 102 

localizing near-field corrosion in aluminum plates. Bao et al [28] further proposed a compensated 103 

MUSIC algorithm by considering the effect of both the localization error caused by structural 104 

anisotropy and the sensor position error, showing improved detection accuracy. 105 
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 106 

Notwithstanding the forgoing, the prevailing MUSIC-based damage imaging approaches in 107 

general present the following limitations: 108 

i) use of linear phased arrays: the MUSIC algorithm, as an eigen-structure mathematic 109 

approach, is not inherently restricted to the use of linear arrays. When used for damage 110 

identification, a linear array that features a dense configuration of transmitter elements is 111 

usually adopted, and the element pitch ( l ) shall be uniform and small enough, ideally 112 

satisfying / 2l   ( : the wavelength of the wave generated by the array [29]), to 113 

facilitate construction of the signal representation matrix with the scattered signal series. 114 

In general, the conventional MUSIC algorithms do not sustain the use of a sparse sensor 115 

network with individual sensors at arbitrary locations; 116 

ii) existence of blind zone: the beamforming capacity of the algorithm degrades when the 117 

scanning angle is close to 0° or 180°. In most circumstances, those regions, where the 118 

scanning angles are in the range of [0, 30] or [150, 180], are deemed blind zones [30], in 119 

which damage, if any, may be overridden; 120 

iii) ambiguous results due to mirror effect: the identified damage using a MUSIC algorithm 121 

might be a mirrored dummy of the true damage which is located symmetrically with 122 

regard to the array surface [31]; and 123 

iv) obscure multiple damage sites: when MUSIC is used for imaging multiple damage sites, 124 

the number of scatterers shall be predicted beforehand. To this end, a threshold is selected, 125 

and the eigenvalues of the covariance matrix of the received signals that are larger than 126 

this threshold shall be counted as the number of the scatterers. However, selection of the 127 

threshold is a highly subjective manner at the discretion of individuals, and it is prone to 128 

contamination of measurement noise [32]. This results in inferior imaging resolution and 129 

makes it challenging to differentiate multiple damage sites that are close one from another. 130 

 131 

Aimed at surmounting the above limitations that prevailing MUSIC-based damage imaging 132 

approaches may encounter, an ameliorated MUSIC (Am-MUSIC) algorithm is developed by 133 

manipulating the signal representation matrix at each image pixel using the excitation signal series 134 

instead of the scattered signal series. Thanks to that, Am-MUSIC algorithm does not necessarily 135 

entail the use of a linear phased array, and instead it is compatible with a sparse sensor network 136 

in which individual transducers can be positioned arbitrarily. At each image pixel, the orthogonal 137 

attributes between the signal subspace and noise subspace inherent in signal representation matrix 138 

is quantified, in terms of which Am-MUSIC yields a full spatial spectrum of the inspected sample, 139 

to visualize damage, regardless of its quantity in the sample. Both simulation and experiment are 140 
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performed to validate the Am-MUSIC algorithm, by evaluating single and multiple sites of 141 

damage in plate-like waveguides with a sparse sensor network comprising only a handful of 142 

miniaturized lead zirconate titanate (PZT) wafers. 143 

 144 

The rest of this paper is organized as follows. The conventional MUSIC-driven damage imaging, 145 

based on the near-field hypothesis, is briefed in Section 2, on which basis the Am-MUSIC 146 

algorithm is developed, with key amelioration detailed in Section 3. Numerical verification of 147 

Am-MUSIC is illustrated in Section 4, followed with experimental validation in Section 5. 148 

 149 

2. Near-Field MUSIC Algorithm 150 

GUWs guided by a plate-like waveguide, a.k.a. Lamb waves, are of a multimodal and dispersive 151 

nature. At a given frequency, Lamb waves feature a multitude of wave modes which can be 152 

classified as the symmetric and antisymmetric modes. We consider a pure, monochromatic Lamb 153 

wave mode in the waveform of a toneburst, as the excitation signal ( )s t . ( )s t  is defined in a 154 

complex domain as 155 

0( ) ( )exp
i t

s t u t


= ,                                                              (1) 156 

where ( )u t  denotes a window function to regulate the toneburst, t the time, i the imaginary unit, 157 

and 
0   the central frequency of the toneburst. With the attenuation in magnitude as wave 158 

propagation in consideration, the Lamb wave, ( )R  , after travelling the distance d  can be 159 

represented, in the frequency domain, as 160 

0( ) ( )exp ikdd
R S

d
  −= .                                                       (2) 161 

In the above, 
0d  signifies an initial distance with regard to which the wave attenuation is calibrated; 162 

( )S    is the corresponding Fourier representation of ( )s t ; 0k
c


= , where k denotes the 163 

wavenumber and c represents the propagation velocity of the considered monochromatic Lamb 164 

wave mode. 165 

 166 

Substituting Eqs. (1) into (2), the Lamb wave ( )r t  when it arrives at the distance d  can be 167 

yielded, in the time domain, as 168 

0
0 ( )

10 0 0( ) ( )exp ( ) ( )exp

w d
i d i t

c c
d d dd d

r t s s t u t
c cd d d




− −

−
 

= = − = − 
 

F ,             (3) 169 

where ( )r t  is the inverse Fourier transform of ( )R   and 1−F  is the inverse Fourier transform. 170 
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 171 

For an intact waveguide, the captured wave signal, denoted with 
measured-intact ( )r t , is the direct 172 

arrival wave direct ( )r t , boundary-reflection wave boundary-reflection ( )r t with incoherent noise 173 

measured-intact ( )w t , as 174 

measured-intact direct boundary-reflection measured-intact( ) ( ) ( ) ( )r t r t r t w t= + + ,                         (4) 175 

where 
direct ( )r t  is the arrival wave propagating along the path from the wave source to the wave 176 

receiver. Provided damage is present at an unknown location in the waveguide, the damage can 177 

be modeled as a secondary wave source to scatter the incoming Lamb waves. Ignoring mode 178 

conversion that is fairly weak in magnitude, the measured signal 
measured-damage ( )r t  comprises the 179 

direct arrival wave direct ( )r t , boundary-reflection wave 
boundary-reflection ( )r t , additional scattered wave 180 

from the damage scattered ( )r t , and the incoherent noise 
measured-damage ( )w t , as 181 

measured-damage direct boundary-reflection scattered measured-damage( ) ( ) ( ) ( ) ( )r t r t r t r t w t= + + + ,                (5) 182 

where 
scattered ( )r t  is the arrival wave propagating along a scattered path (namely, the path from the 183 

wave source to the damage and then to the wave receiver). Suppose that the direct waves and 184 

boundary-reflection waves are the same at  
measured-intact ( )r t  and 

measured-damage ( )r t , 
scattered ( )r t  which 185 

carries information pertaining to the damage location can be obtained through benchmarking 186 

reference signals obtained from the intact status, as 187 

measured-damage measured-intact scattered residual( ) ( ) ( ) ( ) ( )r t r t r t w t r t− = + = ,                         (6) 188 

where ( )w t  is the difference between the two noise terms 
measured-intact ( )w t  and 

measured-damage ( )w t  in 189 

the intact and current statuses. Here, for convenience of discussion, the terms of scattered ( ) ( )r t w t+  190 

is referred to as the residual signal. 191 

 192 

With the near-field assumption, as schematically illustrated in Fig. 1(b), Lamb wave is excited at 193 

a foreknown position P, scattered by the damage, and then received by a linear sensor array that 194 

consisting of K transducing elements with a uniform element spacing l. According to Eq. (3), the 195 

scattered signal received by the first array element, 
scattered

1 ( )r t , is 196 

1
0 ( )

scattered 0 01 1
1

1 1

( ) ( ) ( )exp

d
i t

c
d dd d

r t s t u t
c cd d

 −

= − = − ,                              (7) 197 

where 1d   signifies the distance from the wave source through the damage then to the first array 198 

element. Let 1 k
k

d d

c


−
=  (i.e., the time delay between two arrival signals captured by the first and 199 
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the thk  (k=1, 2, …, K) element in the array), and then the scattered wave signal received by the 200 

thk  element, 
scattered ( )kr t , can be expressed as 201 

( )

1
0 0( ) ( )

scattered 0 0 0 1( ) ( ) ( )exp ( )exp

1,2, ,

k
k

d d
i t i t

k k c c
k k

k k k

d d d d d d
r t s t u t u t

c c cd d d

k K

  


− − +

= − = − = − +

=

.

K

 202 

(8) 203 

With the assumption that the array element spacing l  is sufficiently small (namely, / 2l  , 204 

where   is the wavelength of wave signal), 
scattered ( )kr t   can be obtained based on the first element 205 

scattered signal 
scattered

1 ( )r t  (defined in Eq. (7)) as 206 

1
0

1
0

0

( )
scattered 0 1

( )
0 1

scattered1
1

( ) ( ) exp

( )exp

( )exp .

k

k

k

d
i t

c
k k

k

d
i t

c

k

i

k

d d
r t u t

cd

d d
u t

cd

d
r t

d

 

 

 


− +

− +

= − +

 −

=

                                           (9) 207 

According to the cosine theorem [33] and second-order Taylor expansion [34], 
k  can be re-208 

written as 209 

2 2 2

1 1 11

2 2
2 2

2

1 1

( 1) 2 ( 1) cos(90 )

sin
( 1) ( cos )( 1) ( ) ,

k
k

d d k l d k ld d

c c

l l l
k k O

c cd d







− + − − − −−
= =

− −
= − + − +

o

                    (10) 210 

where 
2

2

1

( )
l

O
d

 denotes those terms, the order of which is greater than or equal to 
2

2

1

l

d
. Using the 211 

second-order Taylor series approximation, the scattered wave signal received by the thk  element 212 

retreats to 213 

2
2 2

0
0 1

sin
( ( 1) ( cos )( 1) )

scattered scattered scattered1 1
1 1( ) ( ) exp ( )expk

l l
i k k

i c cd

k

k k

d d
r t r t r t

d d


 

 

− −
− + −

= = .           (11) 214 

Letting 

2
2 2

0
1

sin
( ( 1) ( cos )( 1) )

1( , ) exp

l l
i k k

c cd

k

k

d
b d

d


 



− −
− + −

= , as the array steering factor for the thk  215 

scattered signal, and recalling the noise term in Eq. (6), the thk  residual signal, 
residual ( )kr t , can be 216 

expressed as 217 

residual scattered

1( ) ( , ) ( ) ( )k k kr t b d r t w t= + .                                         (12) 218 
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For the linear array with K elements, the residual signal vector 
residual ( )tR  can thus be obtained 219 

and expressed in a signal representation matrix, which reads 220 

residual scattered

1( ) ( , ) ( ) ( )t d r t t= +R B W ,                                     (13) 221 

where  222 

residual residual residual residual

1( ) [ ( ) , , ( ) , , ( )]T

k Kt r t r t r t=R L L , 223 

2
2 2

0
1

2
2 2

0
1

1

sin
( ( 1) ( cos )( 1) )

1

sin
( ( 1) ( cos )( 1) )

1

( , ) [ ( , ) , , ( , ) , , ( , )]

1

exp

exp

T

k K

l l
i k k

c cd

k

l l
i K K

c cd

K

d b d b d b d

d

d

d

d


 


 

   

− −
− + −

− −
− + −

=

 
 
 
 
 
 =
 
 
 
 
 
 

B L L

M

M

, 224 

1( ) [ ( ) , , ( ) , , ( )]T

k Kt w t w t w t=W L L . 225 

 226 

Prevailing MUSIC-based damage imaging approaches have been developed by virtue of the signal 227 

representation matrix as defined in Eq. (13). They, in general, present the following limitations 228 

during practical implementation, as preliminarily commented in the preceding section: 229 

i) In Eq. (9), the operation of approximation, 
1 1( ) ( )k

d d
u t u t

c c
− +  − , lies in the premise that 230 

k   is negligibly small. To accommodate such a pre-requisite, the element spacing in the 231 

phased array must be sufficiently small ( / 2l  ), leading to a dense configuration of the 232 

transducing elements; and 233 

ii) In Eq. (11), the steering vector is approximated using the second-order Taylor approximation, 234 

and the range error introduced by such approximation is remarkable when the damage is close 235 

to the array. For a range that is smaller than twice the array length (i.e., the length from the 236 

first element to the 
thk element), such error could be 10% or above due to such approximation 237 

[35]. In addition, the steering vectors at the scanning angles   and 180 −o
 have the same 238 

value in Eq. (11), resulting in ambiguous results due to mirror effect. 239 

 240 

3. Am-MUSIC with A Sparse Sensor Network 241 

Aimed at circumventing the above key limitations that conventional MUSIC-based damage 242 
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imaging possesses, the original MUSIC algorithm is revamped. Different from the use of a linear 243 

phased array, we allow a sparse sensor network with individual transducers that are randomly 244 

positioned. Without loss of generality, consider a sparse sensor network comprising Q PZT wafers 245 

(labelled as PZT-1, PZT-2, …, PZT-j, …, PZT-Q), as shown in Fig. 2. Positioned at an arbitrary 246 

location within the inspection region, each PZT wafer acts as either a wave transmitter or a wave 247 

receiver, leading to ( 1) / 2M Q Q= −  transmitter–receiver pairs in the sensor network. Provided 248 

damage exists at pixel ( , )x y  within the inspection area, the propagation distance, mxyd , for a 249 

Lamb wave, which is generated by the 
thi  transmitter at ( , )i ix y , scattered by damage at ( , )x y  250 

and then propagates to the thj  receiver at ( , )j jx y , is 251 

2 2 2 2( ) ( ) ( ) ( )mxy i i j j mxyd x x y y x x y y c t= − + − + − + − =  ,                 (14) 252 

and mxyt  is the time for the wave traveling along the scattered path. 253 

 254 

Fig. 2. A plate waveguide with a sparse sensor network of Q PZT wafers. 255 

Therefore, the scattered signal received by the 
thm  transmitter–receiver pair, 

scattered ( )mr t , can be 256 

written according to Eq. (3) as 257 

scattered 0( ) ( )
mxy

m

mxy

dd
r t s t

cd
= −       ( 2 ,1, ,m M= L ).                      (15) 258 

Equation (15) argues that for M transmitter–receiver pairs rendered by the sensor network, 259 

different scattering paths feature different degrees of time delay. A time shift, mxyt , is then applied 260 

to the thm  scattered signal 
scattered ( )mr t  in Eq. (15), as 261 
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scattered 0 0( ) ( ) ( )
mxy

m mxy mxy

mxy mxy

dd d
r t t s t t s t

cd d
+ = − + = .                          (16) 262 

Letting 0
mxy

mxy

d
a

d
=  ( mxya  is referred to as the array steering factor for the 

thm  scattered signal 263 

in what follows), Eq. (16) can be rewritten as  264 

scattered ( ) ( )m mxy mxyr t t a s t+ = .                                               (17) 265 

With the noise term ( ( )w t  in Eq. (6)) in consideration, the residual signal vector for a total of M 266 

received signals which are respectively scattered by the damage at pixel ( , )x y , residual ( )xy tR , can be 267 

expressed as the signal representation matrix 268 

residual ( ) ( ) ( )xy xyt s t t= +R A W ,                                               (18)                                      269 

where  270 

residual residual residual residual

1 1( ) [ ( ) , , ( ) , , ( )]T

xy xy m mxy M Mxyt r t t r t t r t t= + + +R L L , 271 

1[ , , , , ]T

xy xy mxy Mxya a a=A L L , 272 

1 1( ) [ ( ) , , ( ) , , ( )]T

xy m mxy M Mxyt w t t w t t w t t= + + +W L L . 273 

Equation (18) implies that after compensating for the time delay to each residual signal, the 274 

residual signal vector can be defined using the excitation signal series, instead of using the 275 

scattered signal series as a conventional MUSIC algorithm does (Eq. (13)). It is such a merit of 276 

the ameliorated MUSIC (Am-MUSIC) algorithm that enables the use of a sparse sensor network 277 

with arbitrarily positioned transducers. 278 

 279 

Recalling the MUSIC algorithm, the covariance matrix C  of the residual signal vector at pixel 280 

( , )x y  within the inspection region yields as 281 

residual residual[ ( ) ( ) ]

= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

H

xy xy

H H H H H H

xy xy xy xy

E t t

E s t s t E s t t E t s t E t t

=

       + + +       

C R R

A A A W W A W Wg g g g
    282 

              (19) 283 

where  E  denotes covariance computation, and superscript H represents the complex conjugate 284 

transpose. 285 

 286 

As the source signal and noise signal are uncorrelated and mutually independent, the covariance 287 

matrix C  can be simplified as 288 

2H

xy s xy = +C A R A I ,                                                       (20) 289 
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where = ( ) ( )H

s E s t s t  R g , and it signifies the covariance matrix of the source signal. 2  is noise 290 

power and I the covariance matrix of the noise signal. The covariance matrix C   can be 291 

decomposed into two parts: namely a signal-related part and a noise-related part, as 292 

H H H

S S N N= = +C UΣU U ΣU U ΣU ,                                           (21) 293 

where 1 2[ , , , ]M  =U L , and the columns of U  are the singular vectors; Σ  is a diagonal 294 

matrix with singular values arranged in a descending order of magnitudes. Considering that 
xyA  295 

is the steering vector at pixel ( , )x y  with the dimension of 1M   and 
H

xy s xyA R A  in Eq. (20) is 296 

decomposed as H

S SU ΣU  in Eq. (21), 
1[ ]S =U  denoting the signal subspace spanned by the 297 

eigenvectors corresponding to the first largest eigenvalue; and 
2 3[ , , , ]N M  =U L , 298 

representing the noise subspace spanned by the eigenvectors corresponding to the remaining M -299 

1 eigenvalues. 300 

 301 

Based on Eqs. (20) and (21), the following expression can be obtained after multiplying 302 

covariance matrix C  with the noise subspace 
NU  303 

H

xy s xy N =A R A U 0 .                                                       (22) 304 

As 
sR  is a full rank matrix, Eq. (22) is further simplified as 305 

H

xy N =Α U 0 .                                                              (23) 306 

Equation (23) argues that the steering vector xyΑ  at the position of damage is orthogonal with the 307 

noise subspace 
NU . This characteristic makes it possible for the Am-MUSIC to calculate the 308 

steering vector at each pixel across the entire inspection region and calibrate the degree of 309 

orthogonality between the steering vector and the noise subspace with the squared norm of vector 310 

H

xy NΑ U  as 311 

2
2 ( )H H H

xy N xy N N xy = =Α U Α U U A  .                                  (24) 312 

Taking a reciprocal of the squared norm expression creates a peak in the spatial spectrum that 313 

corresponds to the damage location. Am-MUSIC algorithm defines the pixel value 314 

( Am-MUSIC ( , )P x y ) within the inspection region as 315 

Am-MUSIC

1
( , )

( )H H

xy N N xy

P x y =
Α U U A

.                                       (25) 316 

Equation (24) yields a full spatial spectrum for the inspection region, in which Am-MUSIC ( , )P x y317 

culminates at the damage location. 318 
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In summary, the complete procedure of the proposed Am-MUSIC algorithm is flowcharted in a 319 

nutshell in Fig. 3. Notably, the Am-MUSIC algorithm calculates the signal representation matrix 320 

at each pixel throughout the entire inspection region, and it is therefore the number of scatterers 321 

(i.e., the number of multiple damage sites) is no longer required, in contrast to a conventional 322 

MUSIC algorithm in which the number of scatterers shall be predicted beforehand at a subjective 323 

discretion of individuals. It is also noteworthy that the computational cost of Am-MUSIC does 324 

not intend to increase compared with conventional MUSIC algorithms, regardless of the fact that 325 

the calculation is performed at every signal pixel – that is because the signal representation matrix 326 

can be formed cost-effectively and the steering factor in Eq. (18) can be calculated efficiently 327 

compared with that of conventional MUSIC algorithm in Eq. (13). In addition, it is such a merit 328 

of the Am-MUSIC algorithm that makes it possible to gauge the local region of interest (RoI) only 329 

– the vicinity in the sample where damage may exist, rather than scanning the entire sample. Such 330 

a merit remarkably lowers the computational cost and unburdens computing hardware when the 331 

inspection region has of large dimensions. 332 

 333 

Fig. 3. Key steps of Am-MUSIC algorithm. 334 
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4. Numerical Validation 335 

To validate the developed Am-MUSIC algorithm for damage imaging, numerical simulation is 336 

implemented first. Consider a homogeneous, isotropic plate-like waveguide (density: ρ=2,700 337 

kg/m3; Young modulus: E=71 GPa; Poisson’s ratio ν=0.33), measuring 500 mm × 500 mm × 2 338 

mm. Atop the waveguide there is a sparse sensor network with only six PZT wafers, as illustrated 339 

in Fig. 4(a). Each PZT wafer functions as either a wave transmitter or a wave receiver, leading to 340 

15 transmitter-receiver pairs in the sensor network. For comparison against conventional MUSIC, 341 

another seven PZT wafers are arranged in a linear array as sensors, in Fig. 4(b), along with an 342 

additional PZT wafer as wave actuator placed at the position (250 mm, 400 mm). In all cases, a 343 

3-cycle Hanning window tone burst with central frequency 200 kHz signal is selected as excitation 344 

signal to obtain S0 wave mode, considering wave sensitivity and excitability. A total duration of 345 

150 µs time length is analyzed for all numerical cases.  346 

 347 

 

(a) 

 

(b) 

Fig. 4. Schematics of the plate waveguide in simulation (all dimensions in mm): (a) with a sparse sensor 348 

network for Am-MUSIC algorithm; and (b) with a linear array for conventional MUSIC algorithm. 349 

 350 

Damage in the simulation is introduced to the waveguide by enforcing the material local stiffness 351 

to be zero. Three damage sites, labeled as D1-D3, are simulated in the waveguide, with respective 352 

positions highlighted in Fig. 4 and summarized in Table 1. With these damage sites, three damage 353 

cases (C-I – C-III) are created by including different damage sites, Table 2.  354 
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Table 1 Three damage sites in simulation 355 

Damage site Position 

x [mm] y [mm] 

D1  200 200 

D2  300 300 

D3  230 230 

 356 

Table 2 Three damage cases in simulation 357 

Damage case Damage site included 

C-I D1 

C-II D1, D2 

C-III D1, D3 

 358 

Figure 5(a) displays the spatial spectrum obtained using the Am-MUSIC algorithm, for C-I – the 359 

case with only a single damage site (D1), accurately pinpointing the damage location (200 mm, 360 

200 mm). For comparison, the image constructed using the conventional MUSIC algorithm is 361 

shown in Fig. 5(b), indicating the damage location at (197 mm, 208 mm), which represents an 362 

error of (3 mm, 8 mm), in addition to an elongation artifact along the damage direction – a 363 

common deficiency for conventional MUSIC algorithms as illustrated elsewhere [21-25, 36]. The 364 

degree of such artifact depends on the signal-to-noise ratio and the point-spread function of the 365 

phased array at the location of the scatterer [37].  366 

 367 

(a) 368 
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 369 

(b) 370 

Fig. 5. Spatial spectra for C-I obtained by (a) Am-MUSIC algorithm; and (b) conventional MUSIC 371 

algorithm. 372 

 373 

Figure 6(a) shows the spectrum for C-II obtained using the Am-MUSIC. Again, the identified 374 

results are observed to coincide exactly with actual damage sites, contrasting the spatial spectrum 375 

obtained using the conventional MUSIC algorithm in Fig. 6(b), in which two damage sites are 376 

predicted with notable error. In addition, the peak at D1 location is much stronger than that at D2 377 

as noted in Fig. 6(b), contradicting the fact that D1 and D2 actually have the same degree of 378 

severity. 379 

  380 

(a) 381 
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  382 

(b) 383 

Fig. 6. Spatial spectra for C-II obtained by (a) Am-MUSIC algorithm; and (b) conventional MUSIC 384 

algorithm. 385 

 386 

Provided that damage sites are in close proximity to each other – the case of C-III, the constructed 387 

spatial spectra using the Am-MUSIC method and conventional MUSIC method are compared in 388 

Fig. 7. In Fig. 7(a), the two damage sites are localized precisely, in good agreement with the actual 389 

positions; however, only one damage site is identified by the conventional MUSIC algorithm with 390 

remarkable artifacts, in Fig. 7(b), implying that the conventional MUSIC method may fail to 391 

detect multiple damage sites which are close one to another. 392 

 393 

(a) 394 

https://cn.linguee.com/%E8%8B%B1%E8%AF%AD-%E4%B8%AD%E6%96%87/%E7%BF%BB%E8%AD%AF/implied.html
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 395 

(b) 396 

Fig. 7. Spatial spectra for C-III obtained by (a) Am-MUSIC algorithm; and (b) conventional MUSIC 397 

algorithm. 398 

 399 

5. Experimental Validation 400 

Subsequent to numerical simulation, effectiveness and accuracy of the Am-MUSIC-driven 401 

anomaly imaging is validated experimentally. A 2 mm-thick aluminum plate (dimensions: 1000 402 

mm × 1000 mm × 2 mm; density: ρ=2700 kg/m3; Young modulus: E=71 GPa; Poisson’s ratio 403 

ν=0.33) is prepared. A sparse sensor network, consisting of eight PZT wafers (labelled as PZT-1, 404 

PZT-2, …, PZT-8), is surface-adhered on the plate, with the location of each wafer indicated in 405 

Fig. 8(a). The experimental set-up is shown in Fig. 8(b). The excitation signal – a Hanning-406 

window-modulated 5-cycle toneburst at a central frequency of 200 kHz – is generated with an 407 

arbitrary waveform generator (NI® PXI-5412) and amplified by a linear power amplifier (Ciprian® 408 

US-TXP-3). The excitation signal is applied on each PZT wafer in turn to emit Lamb wave into 409 

the plate. S0 mode Lamb wave signals, each in 300 µs, are acquired with a digital oscilloscope 410 

(NI® PXI-5105) at a sampling rate of 60 MHz. 411 

 412 
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 413 

(a) 414 

 415 

 416 

(b) 417 

Fig. 8. (a) An aluminum plate with a surface-adhered sparse sensor network consisting of eight PZT 418 

wafers in experiment (red ‘o’: actual damage and all dimensions in mm); and (b) Experimental set-up. 419 

 420 

Similar to the simulation in Section 4, three categories of damage are considered in the experiment, 421 

as recapped in Table 3. 422 

Table 3 Damage cases in experiment 423 

Damage Category Damage Case Damage 

Single damage E-I 
 

A through-hole D1 at (400 mm, 400 mm) 
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(Ø: 10 mm) 

E-II 

 

A through-hole D2 at (300 mm, 700 mm) 

(Ø: 10 mm) 

E-III 

 

A through-hole D3 at (740 mm, 250 mm) 

(Ø: 10 mm) 

Double Damage 

(long distance apart) 

E-IV Two through-holes D1 at (400 mm, 400 

mm) and D4 at (600 mm, 600 mm) 

respectively (Ø: 10 mm) 

 E-V Two through-holes D1 at (400 mm, 400 

mm) and D2 at (300 mm, 700 mm) 

respectively (Ø: 10 mm) 

Double Damage 

(short distance apart) 

E-VI Two through-holes D1 at (400 mm, 400 

mm) and D5 at (480 mm, 480 mm) 

respectively (Ø: 10 mm) 

 424 

The spatial spectra constructed using the Am-MUSIC algorithm for all the six damage cases are 425 

presented in Fig. 9, in which all damage sites are accurately located with precise depiction of the 426 

damage shape. In particular, for E-VI in which two damage sites are close one to the other, the 427 

algorithm still warrants high resolution and distinguishes individual damage sites. 428 

 429 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 9. Spatial spectra constructed using Am-MUSIC algorithm for damage case (a) E-I; (b) E-II; (c) E-430 

III; (d) E-IV; (e) E-V; and (f) E-VI (red ‘o’: actual damage). 431 

 432 

To take a step further, conventional MUSIC algorithm in junction with the use of a linear array is 433 

recalled for comparison. Seven PZT wafers are configured in a linear array as receivers, in Fig. 434 

10, along with an additional PZT wafer as a wave actuator placed at the position (500 mm, 800 435 

mm). Four typical damage cases (E-I, E-III, E-IV, E-VI) are analysed. The spatial spectra 436 

constructed using the conventional MUSIC algorithm are shown in Fig. 11, showing inferior 437 

accuracy in damage localization and sizing; moreover, it fails to differentiate multiple damage 438 

sites in E-VI that are close one from the other, and also fails to identify damage D3 in E-III that 439 

is located in the blind zone for a conventional MUSIC algorithm. 440 

                       441 
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 442 

Fig. 10. An aluminum plate with a surface-adhered linear array consisting of 7 PZT wafers in experiment 443 

(red ‘o’: actual damage and all dimensions in mm). 444 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Fig. 11. Spatial spectra constructed using conventional MUSIC algorithm for damage case (a) E-I; (b) E-445 

III; (c) E-IV; and (d) E-VI (red ‘o’: actual damage). 446 

 447 

6. Concluding Remarks 448 

Aimed to circumvent some critical limitations of the conventional MUSIC algorithm-based 449 

damage imaging, an ameliorated MUSIC algorithm is developed. In the Am-MUSIC algorithm, 450 

the signal representation matrix at each pixel is manipulated by the excitation signal series, instead 451 

of the scattered signal series, which enables the use of a sparse sensor network with arbitrarily 452 

positioned transducers rather than a linear array featuring a dense configuration of transducing 453 

elements with a uniform element pitch. By quantifying the orthogonal attributes between the 454 

signal subspace and noise subspace inherent in the signal representation matrix, a full spatial 455 

spectrum of the inspected sample can be generated, to visualize damage in the sample, irrespective 456 

of the damage quantity. The effectiveness and accuracy of the Am-MUSIC algorithm are verified 457 

in both simulation and experiment. Results show that compared with the conventional MUSIC 458 

methods, the Am-MUSIC algorithm is capable of improving the detectability (in particular for 459 

imaging of multiple damage sites that are close one to another) and eliminating blind zones. The 460 

Am-MUSIC is conducive to expanding conventional MUSIC from phased array-facilitated 461 

nondestructive evaluation to in situ health monitoring using built-in sparse sensor networks. 462 
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