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A MULTI-CRITERION APPROACH TO 

OPTIMAL VACCINATION PLANNING: METHOD AND SOLUTION* 

  

  

Abstract 

Seasonal influenza is a serious public health concern, against which vaccination is one of the most 

effective ways to protect people. However, the effect of vaccination on containing influenza spread 

critically depends on the immunization programme adopted. Therefore, the problem of finding the 

optimal combination of vaccination strategies, with a view to decreasing the programme cost, 

enhancing vaccination efficiency, and improving societal benefits, is of great theoretical and 

practical importance. We develop a multiple criteria mathematical programming model to address 

the problem, analyze the model, and derive the structural properties of the optimal solution. 

Conducting extensive numerical studies to assess the merit of the model, we find that an integrated 

strategy embracing early-stage indiscriminate mass vaccination with late-stage targeted vaccination 

outperforms other strategies in cost and efficacy.      

Keywords: influenza vaccination; vaccine supply chain; targeted vaccination; optimal vaccination 

strategy 
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1. Introduction 

An acute respiratory illness that spreads as a seasonal epidemic and necessitates the development of 

a new vaccine every year, influenza annually causes great losses in both human lives and financial 

expenses. Seasonal influenza has become a serious public health concern, against which vaccination 

is one of the most effective ways to protect people. Specifically, usage of vaccination can 

significantly reduce the transmission rate of infection from the infected to susceptible individuals, 

curtailing the disease spread. This results in lower morbidity and mortality in the population, see, 

e.g., World Health Organization (WHO) (2011), Turner et al., (2003), Andre et al. (2008), Clements 

et al. (2011), Ӧzaltin et al. (2011), Center for Disease Control and Prevention (CDC) (2013), Hovav 

and Herbon (2017) etc. 

Different vaccination strategies can be adopted, depending on the timing of the epidemic 

outbreak and medical resources availability. In this study we distinguish among three main types of 

vaccination strategy, namely mass, random, and targeted vaccination. Mass vaccination involves 

administration of vaccine doses to a large population over a short period of time, random 

vaccination means to vaccinate randomly chosen members of the community, while targeted 

vaccination seeks to vaccinate a comparatively small group of people that either have the highest 

impact on the disease spread (e.g., medical staff) or are most likely affected by the disease (e.g., 

children, seniors).  

The effectiveness of a vaccination strategy over a planning horizon is typically evaluated with 

respect to the following performance measures: (i) the cost of the immunization programme 

comprising a specific vaccination strategy or a combination of vaccination strategies, (ii) the 

vaccination efficacy, and (iii) the societal benefits. The planning  horizon is the time period that 

spans the three main stages of an influenza season, comprising the (i) beginning (during October), 

(ii) peak (from November to January), and (iii) ending (from February to March) stages.   

The cost of a vaccination strategy is estimated as the sum of direct and indirect costs incurred in 

the entire vaccination supply chain, to be described in detail below. Vaccination efficacy (VE) is 

defined as the fraction of people no longer susceptible and immune due to vaccination, which, in 

turn, leads to decrease mortality and morbidity. A convenient and popular way to estimate VE is to 

measure the integrated characteristic known as post-vaccine reproduction number PVRN (see, e.g., 

Halloran et al., 1997; Becker and Starczak, 1997; Tanner et al., 2008), whereby the smaller the 

PVRN is, the lesser is the morbidity of the epidemic and the faster the epidemic dies out. Finally, 

societal benefits (SB) include the number of prevented visits to doctors and the mean number of 

saved working days in terms of cost (see, e.g., Ӧzaltin et al., 2011, and Hovav and Tsadikovich, 

2015). 
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It is important to note that the above three performance measures (criteria) are in conflict, i.e., 

there is no single optimal strategy that simultaneously optimizes all three criteria. Optimal 

vaccination planning over a planning horizon subject to a limited budget and medical resources is a 

challenging task. Thus, finding a solution for such a multi-criterion optimization problem amounts 

to a search for a so-called Pareto-optimal solution, which constitutes the main purpose of our work. 

Recall that a Pareto-optimal solution is a feasible solution that cannot be improved with respect to 

one criterion without worsening at least one of the other criteria. After all the Pareto-optimal 

solutions (or their sufficiently complete subset) are found, a decision-maker may select among them 

the most preferred alternative. 

Complementary to Becker and Starczak (1997), Tanner et al. (2008), and Glasser et al. (2010), 

we focus on determining the optimal amounts of vaccine doses to be assigned to different 

population groups at risk. Yet the main difference between our work and theirs is that we take into 

account the three vaccination strategies (mass, random, and targeted) discussed above and solve the 

problem in the context of multi-criterion optimization. It is worth noting that the mathematical 

model that we develop recommends, as an optimal solution, an integrated approach to vaccination 

planning whereby the mass or random strategy is to be used in the first stage, whereas the targeted 

strategy is to be deployed in later stages of the influenza season. Despite more than five decades of 

research on classical vaccination planning, which is primarily based on the susceptible-infectious-

recovered (SIR) model (to be described below), to the best of our knowledge, this is the first time 

that application of multi-criterion analysis for optimal vaccination planning is considered with 

regard to epidemiology and operations research. 

   The rest of the paper is organized as follows: In the next section we describe a typical vaccine 

supply chain (VSC) and discuss the main vaccination strategies. In Section 3 we provide a brief 

survey of the closely related literature. In Section 4 we introduce the problem under study and 

formulate a multi-criterion mathematical programming model. We present the solution algorithm 

and computational experiments in Section 5. In Section 6 we summarize the research findings and 

discuss the managerial insights, whereas in Section 7 we conclude the paper and suggest future 

research topics. For the sake of completeness, we give the basic definitions from immunization 

theory in the Appendix. 

2. The Vaccine Supply Chain 

The influenza vaccination process begins at the moment the WHO determines and announces the 

expected influenza epidemic risk, strain type, vaccine type, and production rate (this usually takes 

place in January in the northern hemisphere). After that, vaccine manufacturers initiate the vaccine 
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production process. After being produced, the vaccine undergoes testing, which usually takes 45 to 

60 days. Assume that the vaccine testing is performed in June and July, and that the vaccine is 

packed and ready to be shipped from the manufacturers in August. The vaccination planning 

horizon starts in August and terminates in March of the following year, with a total duration of 33 

weeks.  

Figure 1, which is borrowed from Hovav and Tsadikovich (2015), illustrates a typical VSC. The 

chain consists of two major “players”, namely a manufacturer and a healthcare organization (HCO). 

The cooperation between them starts when the HCO sends a request for the vaccine to the 

manufacturer. The production of the influenza vaccine starts before a vaccination season. The 

produced vaccine goes through control checking and then is packed and transported from the 

manufacturer to the distribution centres (DCs) of the HCO, and then from the DC to clinics, 

hospitals, and other customers in accordance with their demands. Finally, at the clinics the vaccine 

is distributed among the population groups (see Figure 1). The interested reader can find detailed 

explanations for the operations of the VSC with an emphasis on product type, production process, 

and vaccine distribution in Duijzer et al. (2018).  

The main role of the VSC is three-fold: (a) to ensure effective vaccine storage, handling, and 

stock management; (b) to guarantee effective logistics management, and (c) to provide rigorous 

temperature control in the cold chain. The ultimate goal is to ensure the uninterrupted availability of 

quality vaccines from manufacturers at acceptable service/delivery levels so that opportunities for 

vaccination will not be missed because vaccines are unavailable.  

 

Figure 1. Main VSC components and process flows (source: Hovav and Tsadikovich, 2015) 

In order to provide an overall high-quality vaccination service, the HCO needs to make a set of 

strategic decisions before the start of the influenza vaccination season. Particularly, the HCO has to 

decide how many vaccine doses should be ordered to minimize the total VSC cost. In particular, the 
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VSC costs (including the direct/indirect medical/non-medical costs) contain the following main 

components:  

 the costs associated with the selection of vaccine manufacturers and assignment of DCs to 

manufacturers in case of multiple manufacturers and multiple DCs, 

 the expenses of the DCs, i.e., the cost of transporting vaccines from the manufacturers to the 

DCs, the cost of the logistics service from the DCs to clinics, and inventory costs at the 

DCs, 

 the expenses of the clinics, i.e., the cost of transporting and delivering vaccines from the 

DCs to the clinics, the inventory/storage costs at the clinics, the service costs of 

administering vaccine injections made by nurses and physicians to diverse groups of 

population, and the costs associated with possible vaccine shortage.  

Therefore, the decisions regarding the number of doses to be ordered and distributed in each 

stage of the vaccination season has a major impact on disease propagation and it is heavily 

dependent on the chosen immunization programme comprising various vaccination strategies. In the 

next sub-section we discuss the different types of vaccination strategies in detail. 

2.1. Vaccination Strategies 

There is a vast body of medical literature on diverse vaccination strategies and their combinations. 

However, their mathematical modelling is limited to the study of the simplest cases (we refer to 

Tanner et al. (2008) for a review of the current situation). In the present paper we concentrate on 

studying three main types of vaccination strategy, namely the mass, random, and targeted 

strategies, while exploration of a wider variety of vaccination strategies is the subject of our future 

research.  

Aiming to vaccinate large population groups over a short period of time, mass vaccination seems 

to be the most effective strategy when the budget is unlimited. This vaccination strategy ensures 

that the entire population is prepared for future attacks, so decreasing the need for surveillance of 

contacts. However, in real life, resources are often limited, so such a strategy becomes impractical. 

On the other hand, random immunization means to randomly select a fraction of individuals to be 

vaccinated without accounting for their heterogeneity (age, gender, occupation, and so on). Such a 

strategy can lead to vaccination of sustainable-to-disease individuals or persons who are in general 

isolated from the main mass of the population. Consequently, the impact of random immunization 

on preventing the disease spread may be relatively small.  

On the other hand, targeted vaccination is mainly directed towards the high-risk groups, which 

can be heavily affected by the disease (e.g., elderly people, children, people with chronic illnesses, 
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medical workers), as well as groups that are responsible for the disease spread (e.g., medical staff). 

Such a strategy allows better utilization of the scarce resources, such as vaccines, logistics 

resources, and finances.  

The existence of various vaccination strategies raises a crucial question of finding an optimal 

immunization programme. The following literature review section addresses this issue.  

3. Literature Review 

Vaccination is known to be a primary strategy used by modern health organizations in the battle 

against influenza. Mathematical modelling plays a major role in analyzing and evaluating different 

strategies to allocate limited resources for guaranteeing the best quality of the vaccination service 

during influenza outbreaks. To date, two major modelling approaches have been developed; 

deterministic and stochastic. In this paper, the focus is on the analysis and development of the 

deterministic approach, which consists of the following three major groups.  

The first group, constituting the majority of all the models, seeks to evaluate predetermined 

vaccine composition strategies in order to see which composition of the proposed vaccine strains 

may be the most effective. The main objective of such models is to reduce the susceptible 

population below the epidemic threshold at the minimum cost, see, e.g., Muller (1997), Patel et al. 

(2005), Pourbohloul et al. (2005), Wu et al. (2005) etc. For instance, Wu et al. (2005) investigated 

whether the forecasted epidemic strain policy suggested by the WHO can be further improved by 

including the antigenic history of the vaccine. They developed a dynamic program to determine the 

optimal strain composition. Ӧzaltin et al. (2011) showed that choosing several most prevalent 

strains for the vaccine composition might be beneficial. 

Determining the optimal strain composition for the vaccine is not sufficient to guarantee that the 

disease spread will be successfully contained. In particular, the optimal but lately produced vaccine 

composition may have a very small positive effect on disease prevention. This means that 

synchronization between the release date of the vaccine and its efficiency should be taken into 

account. The tradeoff between the timing of vaccination and the effectiveness of the response has 

been extensively studied by Duijzer et al. (2018b) and Özaltın et al. (2018). Complementarily to the 

above works, our study focuses on finding the optimal vaccination strategy rather than the 

composition of the vaccine.  

Due to their computational complexity, exact solution methods for determining the optimal strain 

composition, e.g., linear and mixed-integer programming, become ineffective for solving medium- 

and large-scale problems. This is why the development of heuristic algorithms has received 

substantial attention from researchers. In this context, we would like to highlight the comparatively 
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new techniques of artificial immune learning (El-Sherbiny and Alhamali, 2013), social engineering 

optimization (Fathollahi-Fard et al., 2018), virus colony search (Fathollahi-Fard and Hajiaghaei-

Keshteli, 2018), three-level metaheuristics (Hajiaghaei-Keshteli and Fathollahi-Fard, 2018), and 

hybrid metaheuristics (Sahebjamnia et al., 2018) which are being used in practice along with the 

classical heuristics like genetic algorithms and tabu search.  

The second group considers strategic planning in the context of broad socio-economic analysis 

of the VSC. Such a broad view permits coordination of the global interests in the entire supply 

chain, on the one hand, and the corporate (local) interests of all the individual stakeholders, such as 

DCs and geographically distributed clinics, on the other hand. Dasaklis et al. (2012) defined the role 

of logistics operations and examined their management that may assist the control of epidemic 

outbreaks.    

Through an analysis of selected papers on epidemics control and logistics operations, they posed 

open questions on supply chain management in the context of epidemics control. In this stream of 

research, Gerdil (2003), Chick et al. (2008), Herlin and  Pazirandeh (2012), Hovav and Herbon 

(2017), Hovav et al. (2017), and Duijzer et al. (2018a) considered different aspects of strategic 

vaccination supply chain management. Although the main driver behind this study is to reduce the 

total cost associated with the operation of the VSC, our suggested solution approach is quite 

different. Specifically, instead of focusing on better coordination among the different actors within 

the VSC, hence improving management decisions, we reduce the operational costs by determining 

the optimal vaccination strategy.  

The third group focuses on identifying the optimal vaccination strategy. In particular, exploiting 

a graph representation of the disease spread, Cohen et al. (2003) proposed a novel efficient strategy 

for immunization, requiring no knowledge of the nodes’ degrees or any other global graph 

information. The proposed strategy, referred to as acquaintance immunization, calls for the 

immunization of random acquaintances of random nodes (individuals). In turn, Holme (2004) 

showed that the targeted immunization strategy, wherein a neighbour with the highest number of 

the neighbours is vaccinated, outperforms the random strategy. Pastor-Satorras and Vespignani 

(2002) revealed that the random uniform immunization of individuals does not lead to the 

eradication of infections in all complex networks. Successful immunization strategies can be 

developed only by taking into account the inhomogeneous connectivity properties of scale-free 

networks. In particular, targeted immunization schemes, based on the nodes’ connectivity hierarchy, 

sharply lower the network’s vulnerability to epidemic attacks. Ferguson et al. (2006) showed that 

since school-age children have the highest transmission rates, they should be vaccinated first. On 

the other hand, vaccinating the elderly first gives the lowest impact on transmission. Bansal et al. 

https://www.sciencedirect.com/science/article/pii/S0925527311001678#!
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(2006) presented a comparative analysis of two vaccination strategies: (a) mortality-based - targeted 

at high-risk population groups and (b) morbidity-based - targeted at high-prevalence groups. Their 

findings show that the choice of the optimal strategy is heavily dependent on the reproductive rate 

of the virus. Specifically, for a moderate transmissible disease, the morbidity-based strategy 

prevails over the mortality-based strategy. On the other hand, for a highly transmissible disease, the 

mortality-based strategy is better. Aballéa et al. (2007) compared two traditional strategies, namely 

universal mass vaccination (UMS) and a targeted vaccine programme (TVP), based on a cost-

effectiveness analysis. They found that UMS is better than TVP. Similar to Aballéa et al. (2007), 

Clements et al. (2011) found that UMS outperforms TVP in terms of probability of influenza-

related illness and costs associated with the necessary medical interventions. Duncan et al. (2012) 

observed that UMS may have a substantial advantage, from individual and societal perspectives, in 

comparison with TVP. However, it is important to realize that even when effective vaccines are 

created, acute shortages are possible, especially in areas with limited production capacities, making 

it difficult or impossible to obtain a sufficient number of vaccines in time to protect the at-risk 

populations. The prospect of a shortage motivates health authorities to devise strategies for ensuring 

that people who are most likely to suffer the complications of influenza are vaccinated first. Hence, 

CDC (CDC, 2013) recommended that the populations that should be targeted first are pregnant 

women, infants, seniors, and healthcare workers. For instance, Meltzer et al. (2005), Glasser et al. 

(2010), Nichol (2008, 2011), and Duijzer et al. (2018a) focused on identifying the optimal vaccine 

allocation strategies to reduce influenza morbidity and mortality within age-structured populations. 

Using simulation, they found that vaccinating either younger children or older adults averts the 

most deaths. Based on mathematical models, as well as epidemiological data, Longini and Halloran 

(2005), and Medlock and Galvani (2009) showed that targeting vaccination towards school-age 

children is a preferred strategy to prevent mortality and morbidity in the population group. Chen et 

al. (2008) sought to find the best strategy to immunize a population with a minimum number of 

immunization doses. They proposed a new graph-partitioning strategy that requires 5% to 50% 

fewer immunization doses compared with the targeted strategy, while achieving the same degree of 

immunization.  

Recently, Nguyen and Carlson (2016) provided a comparative analysis of different vaccination 

strategies depending on when and how many vaccine doses become available. Yamin et al. (2016) 

found that prioritizing individuals on the basis of age and co-morbidities along with considering 

individual infection history may have a greater impact on disease reduction in targeting and 

promoting influenza vaccinations. Recently, Ng et al. (2018a,b) proposed a multi-criterion model 

for evaluating the impact of targeted vaccination on the quality and efficacy of immunization 
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programmes. They provided a fast heuristic based on the TOPSIS scalarization of multiple criteria 

in combination with the Borda ranking method for finding the Pareto-optimal points.  

In the following table, we summarize the main differences between the papers considered above. 

 

 

Table 1. The main characteristics of the surveyed papers 

Paper 

Authors 

Solution Approach Multiple-

criteria 

optimization 

problem 

Socio-

economic 

aspects 

Hybrid 

strategies 
Deterministic 

optimization 

Contact 

network  

Scenario-

based 

Pastor-

Satorras and 

Vespignani 

(2002) 

 x x    

Holme (2004)  x     

Bansal et al. 

(2006) 
 x    x 

Aballéa et al. 

(2007) 
    x  

Clements et al. 

(2011) 
    x  

Duijzer et al. 

(2018a,b) 
x     x 

Nguyen and 

Carlson 

(2016) 

x      

Ng et al. 

(2018a,b) 
x   x   

Our work x x x x x x 

    Although the cited papers provide valuable insights into the socio-economic aspects of 

vaccination programmes, they do not provide an integrated quantitative cost-benefit-efficacy 

outlook that takes into account potential variations in the three criteria of a vaccination programme 

over the course of the vaccination season, nor do they consider the fact that an integrated approach 

that mixes the vaccination strategies can be more efficient and less costly than the pure strategies. In 

addition, our paper suggests a different solution approach to treat the problem. Specifically, we use 

the deterministic linear programming optimization model rather than a simulation or a contact 

network model. Such an approach has several advantages. First, it does not require thorough and 

deep knowledge of the complex contact network as the model by Pastor-Satorras and Vespignani 

(2002) and Holme (2004). Second, contrary to the stochastic optimization models that are hard and 

computationally intractable for large instances, the linear deterministic optimization model allows a 

larger degree of computational tractability for large problem instances occurring in practice. 
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Furthermore, while there are a wide variety of optimization and heuristic approaches for solving the 

MCMP problem in the literature, we present in this paper a modified version of the reliable and 

popular solution method called the augmented epsilon-constraint method (Mavrotas, 2009) to 

address the problem. 

Basing upon the above-mentioned specific features of the suggested work in comparison with 

earlier publications, we summarize our main contributions to the vaccine strategy selection problem 

as follows: (a) we focus on the problem’s multi-criterion nature, (b) we formulate the problem as a 

new multiple criteria mathematical programming model, and (c) we provide a novel, flexible, and 

computationally effective solution approach oriented towards solving large-scale problem instances.  

4. Problem Description and Mathematical Formulation 

4.1. Problem Description  

The main purpose of healthcare providers all over the world during the vaccination period is to 

provide a high-quality vaccination service, while keeping the total operational cost at the lowest 

possible level. To reach this goal, the HCO is to annually decide how many vaccine doses to buy. 

This decision straightforwardly stems from the optimal vaccination strategy. To address this issue, 

the influence of different vaccination strategies, i.e., mass, random, and targeted, on the disease 

spread in the community should be considered. For this purpose, in this paper, we study the 

deterministic SIR model for a closed community. By closed community, we mean a population in 

which there is no migration. We make this assumption in order to mimic the population structure 

that reflects urban settlements. The community considered in this research is divided into a number 

of different risk groups according to age, place of living, and profession (e.g., groups of babies, 

infants, teenagers, seniors). The number of members in each group may be different. However, due 

to the homogeneity of the group, each group includes individuals with similar rates of 

susceptibility, i.e., the risk to be infected, as well as the risks of morbidity and mortality. The 

members of each group may have contacts both inside their groups, as well as with members of 

other risk groups. Thus, the initial number of infected individuals in each group being known, the 

disease can spread in the entire community. A key point is that disease transmission occurs only 

when an infected individual contacts a susceptible individual. Note that, for the sake of simplicity, 

we assume that for each risk group, all the individuals are equally susceptible and contact all other 

individuals in the population in equal frequencies.  

The main purpose of the proposed mathematical model is to find an optimal combination of 

different vaccination strategies with the intention of preventing a disease outbreak. In other words, 

we aim to define the optimal number of vaccine doses assigned to the members of each risk group 
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under different immunization programmes (adopting mass, random, targeted vaccination, and/or a 

combination of these strategies) in all stages of the influenza season. Note that a mixed strategy is 

possible wherein different individuals in the same risk group can be vaccinated by various 

vaccination strategies. For instance, certain group members can be vaccinated under the targeted 

strategy, whereas the remaining members are vaccinated under the mass or random strategy.  

     Assessment of the efficacy of an immunization programme is performed through the use of the 

following performance measures: 

 (i) The cost of the immunization programme.  

(ii) Vaccination efficacy - measured by the post-vaccination reproduction number. This is the 

number of secondary cases that an initial infective can generate in a community of susceptible 

individuals with partial vaccine coverage. When the post-vaccination reproduction number is 

less than one, it means that the disease becomes endemic, i.e., the disease fades away with time 

without additional interventions. Otherwise, the rate of the disease spread increases and the 

infection becomes an epidemic. 

(iii) Societal benefits - measured by the number of prevented flu cases or by the so-called prevented 

cost of the disease cases, as in Ӧzaltin et al. (2011).   

4.2. Mathematical Formulation  

The multi-criterion vaccination planning problem belongs to the domain of MCMP. Specifically, 

denote by )(xZ , )(xR , and )(xB , the three pertinent performance measures, i.e., cost of the 

immunization programme, vaccination efficacy, and social benefits, respectively, where x  is a 

vector of the decision variables. Then, we formulate the problem as follows: 

 

                                          )(),(),( xMaxBxRMaxxZMin                                                    (1) 

                                                                    
nRXXx  ,                                                             (2) 

where X  is the feasible set of the variables to be defined below.  

Similar to the earlier mathematical models considered by Becker and Starczak (1997) and 

Tanner et al. (2008), we introduce the notion of a vaccination plan (called a vaccination policy 

index by Becker and Starczak, and Tanner et al.). The vaccination plan (policy index) v defines 

how many people can be entirely vaccinated in each group. Since the number of people in each risk 

group g  is known (denoted by gf ), it follows that the index v may take the following possible 

values in group g : gf,..,1,0 . Furthermore, we essentially extend the Becker-Starczak model as we 
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explicitly introduce and evaluate several possible vaccination strategies, namely mass, random, 

targeted vaccination, and so on. To this end, combining with the just mentioned concept of 

vaccination policy, we introduce an additional (and meaningful) concept of vaccine allocation 

strategy   that defines which type of vaccination strategy is applied to the individuals of a certain 

group.  

In the following we present the notation of the mathematical model: 

Sets: 

G  - set of risk groups, Gg   

  - set of vaccine allocation strategies,  ,  ,...,1   


gv  -  the possible number of people that can be vaccinated by a strategy   in a risk group g . The 

possible value of index 

gv  may change from 0 up to the (known) number of people gf  in group g : 

gg fv ,...,0
 (for the sake of simplicity, henceforth in some formulae 


gv  we omit the indices   

and g : 

gvv  ) 

gV  - set of all possible values of index 

gv  with respect to group g and allocation strategy  ,  ;

gg fv ,...,0
, Gg .    

Parameters: 

gf - the number of individuals in risk group g , Gg  

gh  - the proportion of the number of people of risk group g  in the entire population 

G  - the average size of a risk group 

M  - the maximum number of available vaccine doses  



g
c  - the cost associated with vaccinating one individual in risk group g  by implementing an 

allocation strategy   

p  - the prevented cost of flu cases (as defined in detail in Ӧzaltin et al., 2011) 

gC  - the minimally required coverage rate in risk group g   



gv
a - the impact of vaccinating 


gv  individuals in risk group g    with the help of allocation 

strategy   on the disease spread (this parameter is explained and formalized by Becker and 

Starczak (1997) for the case of a single vaccine allocation strategy) 
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g
n  - average time required to administer the vaccine to an individual in a risk-group g  under the 

allocation strategy      

N - total medical-personnel available hours.  

For a concise definition of the latter parameter, we need the following demographic and 

statistical characteristics described in detail by Becker and Starczak (1997) and Tanner et al. (2008): 

m - the average contact rate of infected people 

gu  - the relative infectivity of individuals in risk group g  

gs  - the relative susceptibility of individuals in risk group g  

b  -  the transmission proportion 

g - the vaccine efficiency for individuals in risk group g  under vaccine allocation strategy      

        




  


 ,,,11

2

gggggggggggggg

G

g
VvGgvfsbubvvfbsu

mh
a

gv

 

Decision variable: 



gv
x - the proportion of vaccinated people within vaccine policy v  in risk group g  under vaccine 

allocation strategy         

We formulate the mathematical model as follows: 

To minimize the vaccination cost: 

                                                             
  


Gg Vv

gg

g

gvg
xhcvZMin




                                       (3a) 

To minimize the reproduction number:  

                                                              Min R = 
  Gg Vv g

gvgv
xa




                                                (3b) 

To maximize the societal benefits: 

                                                                 Max B =   
  


Gg Vv

gvgg

g

xvfp


                                               

(3c)  

subject to 

                                                              GgC
f

xv

g

g

Vv

g

g

gv




 

,




                                                         (4) 

                                                           Mxv
Gg Vv

g

g

gv


  

                                                                 (5) 
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                                                         Nxvn
Gg Vv

gg

g

gv


  


                                                      (6) 

                                                    ,;,0 gVvGgx
gv

                                                (7) 

In the above formulation, by minimizing the post-reproduction number R  we aim to maximize 

the vaccine efficacy V . Note that the post-reproduction number R  is taken in the additive form as in 

Becker and Starczak (1997), and Tanner et al. (2008). The main difference of (3b) in comparison 

with the models of R  in the latter works is that the individual reproduction numbers 


gv
a  are 

summarized in (3b) over all the vaccine allocation strategies,  ,  ,...,1 , as well as over all 

the values of index 

gvv   and all the risk groups. The prevented costs in the societal benefits B  are 

formalized in the expression (3c); in this notation the expression  
 






gVv

gg vf  presents the total 

number of prevented flu cases in group g under the premise that the latter number must be 

proportional to the number of people 
gg vf    in the group left unvaccinated.  

Constraint (4) ensures that the total vaccination coverage for the risk-group g is no less than the 

predefined value gC . Note that 
g

Vv

g

f

xv

g

gv
 



 depicts the proportion of vaccinated individuals in 

a risk group g , in which exactly 
 



g

gv

Vv

g xv  members are vaccinated. Since the number of 

vaccine doses is limited, constraint (5) is introduced, whereas the number of personnel’s working 

hours is bound by inequality (6). Finally, constraint (7) guarantees that the decision variables are 

non-negative.  

4.2.1. Properties of the multi-criteria vaccination planning problem 

If functions )(xZ and )(xR are monotonically decreasing in each component of the vector 

decision variable x , and )(xB is monotonically increasing in each component of the vector 

decision variable x then there always exists a Pareto-optimal solution x = (


gv
x ), for which either 

all the available vaccines should be used, or the medical personnel available operates full-time, or 

both. In other words, we have the following result.   

Property 1. If functions )(xZ and )(xR are monotonically decreasing in each component of the 

vector decision variable x , and )(xB is monotonically increasing in each component of the vector 
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decision x , then there always exists a Pareto-optimal solution x = (


gv
x ) for which at least one of 

the inequalities (5)-(6) holds as an equation.  

Property 2. If functions )(xZ and )(xR are monotonically increasing in each component of the 

vector decision variable x,  and )(xB  is monotonically decreasing in each component of the vector 

decision x , then there always exists a Pareto-optimal solution x = (


gv
x ) for which 

GgC
f

xv

g

g

Vv

g

g

gv




 

,




 holds as an equation. 

We start with the proof of Property 1. Note that Property 2 is proved in the same way. 

Proof (by contradiction). Let x = (


gv
x ) be a Pareto-optimal solution for the problem (3)-(7), and 

assume that constraints (5)-(6) are treated as strict inequalities for this solution. Let 

gvy be another 

solution such that: (i)   ,,, gVvGgxy
gvgv

;  (ii) both the constraints (5)-(6) are still valid for 

the 

gvy , and (iii) at least one of the latter constraints holds as an equation.   

     Further, since  


gvgv
xy  , constraint (4) evidently holds for 


gvy . Consider now the function 

)(xZ . By the assumption, the function )(xZ is monotonically decreasing, therefore, )(xZ is 

larger than )(yZ , for the considered solutions x and y . Similarly,  𝑅(𝑥) is larger than 𝑅(𝑦) and 

𝐵(𝑥) is smaller than 𝐵(𝑦). This implies that vector x  is not Pareto-optimal. This contradiction 

proves the claim. 

Next we consider the reciprocal property of the vaccination problem. It seems that there is no 

obvious direct connection between minimization of the reproduction number and maximization of 

the herd effect. However, Ma and Earn (2006) studied the relation between R and the herd effect for 

a single population group and derived that there is a one-to-one relation. Thus, in what follows, we 

extend this result to the case of multiple risk groups and multiple criteria. 

Consider the multi-criterion problem reciprocal to the problem (1)-(2), in which the vaccination 

coverage determined on the left-hand-side of (4) is considered as a (new) criterion )(xV , which is 

to be minimized (instead of )(xB ), whereas the vaccination efficiency )(xV described, for 

instance, as the herd effect is considered as a constraint and is bounded from below by a given value 

0M :  
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                                              )(),(),( xMaxBxRMaxxZMin                                                (1’) 

                                                     
nRxXxMxM  ,;)( 0                                                     (2’) 

                               

Property 3. The two vaccine allocation problems (1-2) and (1’-2’) are equivalent, namely finding 

the Pareto-optimal set  (Z, B) that results in a critical coverage 0MM  and finding the Pareto-

optimal set  (Z, M) that has a corresponding value of the herd effect, is achieved for the same set of 

vector x. The proof, along the same line of reasoning as Favati and Pappalardo (1985), is 

straightforward. 

5. The Solution Algorithm and Experiments 

A comprehensive survey of recent algorithmic approaches for solving multi-criteria optimization 

problems is given in many textbooks (see, e.g., Steuer, 1986; Greco et al., 2005). Finding the 

optimal solutions when explicitly accounting for multiple objectives in a combinatorial problem is a 

mathematically challenging endeavour. To this end, the goal programming and the compromise 

programming approaches have been widely used. The novelty of this paper is that amongst the wide 

variety of such methods that have been developed thus far, we select and develop the ε-constraint 

method (Mavrotas, 2009; Felfel et al., 2016) in combination with the method of ranking Pareto-

optimal alternatives, known as the Borda method (Saari, 2000).   

The idea behind the ε-constraint method is based on the well-known lexicographic optimization 

technique, i.e., when one criterion, namely the vaccination programme cost, is selected as the 

principal criterion, while the two remaining criteria are treated as constraints. The right-hand-side 

constraints are defined by finding the ranges of changing the two criteria, and for them, a grid of 

possible values in the two-dimensional space efficiency-benefits is constructed iteratively. 

Subsequently, different single-criterion problems are systematically solved in each grid cell 

whereby each solution provides a Pareto-optimal point. The grid size is selected adequately fine so 

that either all or most of the Pareto-optimal solutions can be found. The choice of the grid size 

defines the running time of the entire method. For finding the ranges of the grid for the two 

constraints, the corresponding single-criterion problems are solved. The optimal value of each 

single criterion provides one end of the range, while the other end (nadir) is usually defined by 

experts. However, such a procedure does not ensure that the obtained solution is always efficient. 

To overcome this issue, Mavotas (2009) suggested the augmented  -constraint method, which is 

successfully implemented in our work.   
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   In the next stage, after the algorithm finds the set of Pareto-optimal solutions, none of them can be 

claimed to be better than the others. Hence, we suggest adding an additional post-optimization 

Borda-type procedure providing their rankings that disclose the decision-makers’ preferences. 

It is noted that in the Borda method (see, e.g., Saari, 2000), each Pareto-optimal solution is 

treated as a separate alternative. There are K decision-makers, each of whom ranks the list of 

alternatives in order of his/her preference. For example, a decision-maker assigns the rank value 1 

to his/her most preferred alternative, 2 to the second most preferred, and so on. These values, in 

turn, are used to compute initial information, called Borda points. The quantity of Borda points 

given by a decision-maker to each Pareto-optimal alternative is equal to the total number of 

candidate alternatives minus the assigned rank value plus 1. For instance, when there are n (Pareto-

optimal) alternatives, a candidate alternative receives n points from an expert if it is the first 

preference, 1n points for the second preference, 2n for the third, and so on; it receives one 

point for being ranked last. Next, for each alternative, all the Borda points from the K experts are 

added up, and the alternative with the largest sum of Borda points wins; other alternatives are 

ranked correspondingly by their sums of Borda points.  

Subsequently, the obtained ranks may be normalized within the range from 0 to 1 and the 

obtained scores are perceived as the ultimate ranks of the alternatives we are searching for. This 

procedure guides the search towards the most preferred Pareto-optimal solution. As a version, this 

ranking procedure can be performed after a number of iterations of the ε-constraint method defined 

by the decision-maker. This procedure can also be taken as one of the heuristic preference definition 

schemes in GAMS.  

The main factors explaining the predominance of the suggested algorithm in comparison with the 

existing approaches are: (a) multi-criterion decision-making allows for a wider spectrum of 

obtained Pareto-solutions to be obtained, (b) the  -constraint method permits rapid determination 

of the Pareto solutions, and (c) the linear deterministic optimization model leads to a larger degree 

of flexibility and computational tractability.          

Next, we analyzed the experimental behaviour of the above algorithm. To this end, we used the 

commercial solver CPLEX, on the NEOS server (Czyzyk et al., 1998). The hardware specifications 

of the server machines were as follows: Dell Power Edge R410 servers, CPU - 2x Intel Xeon X5660 

@ 2.8GHz (12 cores total), HT Enabled, 64 GB RAM. The analysis was carried out on a set of 100 

test problems generated by experts at the HCO CLALIT Health Services (the largest of Israel’s 

state-mandated health service organizations). All the test problems contained deterministic input 

data resembling the real-life data of the HCO, namely the test parameters were generated by the 

https://en.wikipedia.org/wiki/Israel
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experts on the basis of real data, with possible variations of up to ±20%.   For instance, the demand 

in Table 2 was calculated as the average annual demand over the years 2010-2016.  

In the numerical studies, we used five different risk groups with respect to age. Table 2 presents 

the demand of each group type divided in accordance with the vaccination season stage (note that 

the demand for vaccine equals the number of individuals in each risk group). This number, for each 

stage t, t = 1, 2, 3 (corresponding to the beginning, peak, and final stages respectively) was taken as 

an average across the years 2010-2016. The set of vaccine programmes included the three possible 

vaccination strategies of mass, random, and targeted vaccination. The remaining data regarding the 

contact rate, relative infectivity/susceptibility, and others were borrowed from Tanner et al. (2008), 

and Hovav and Tsadikovich (2015). To find the solution for the linear program (3)-(7), we used the 

commercial software GAMS along with the CPLEX algorithm. 

Table 2. Demands for the vaccine in the groups 

            Group type 1t  2t  3t  

1 (infant - play age) 19,928 37,700 246 

2 (primary school age - adolescence) 24,432 46,298 311 

3 (middle age) 64,287 117,932 797 

4 (senior) 51,433 97,461 636 

5 (elderly) 115,080 218,066 1,432 

5.1. Numerical results 

The computational results of applying the suggested algorithm are graphically presented in Figures 

2(a)-(c). In particular, Figure 2(a) presents the Pareto-optimal frontier for the case where cost is 

selected as the principal objective function, Figure 2(b) presents the Pareto-optimal frontier when 

societal benefits is selected as the principal objective function, and Figure 2(c) presents the Pareto-

optimal frontier for the case where vaccination efficacy is selected as the principal objective 

function. Each point on the exhibited surface (e.g., A, B or C) presents a non-dominated Pareto 

solution corresponding to the corresponding conflicting objective functions. For instance, the 

coordinates of point A are cost = 0.65, vaccination efficacy = 0.42, and societal benefits = 0.41, 

while those of point B are cost = 0.41, vaccination efficacy = 0.22, and societal benefits = 0.72. 

Note that the performance measures, i.e., cost, vaccination efficacy, and societal benefits, are 

normalized. Furthermore, using the Borda method, the decision-maker selects point A as the 

preferred solution. 
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Figure 2. Pareto frontiers for three main objective functions: cost, benefits, and vaccination efficacy 

The performance of the epsilon-constrained method greatly depends on the choice of the 

principal objective function. Our results show that a change in the principal objective function leads 

to new positive ideal solutions (PIS) and negative ideal solutions (NIS), so new Pareto-optimal 

frontiers. For instance, changing the principal objective function from cost (Figure 2(a)) to societal 

benefits (Figure 2(b)) increases the cost but improves the corresponding societal benefits.  

Furthermore, based on the obtained results of the numerical studies, we depict in Figure 3 the 

proportions of individuals in each risk-group vaccinated under each vaccination strategy for 3,2,1t .  

(a) (b) 

(c) 
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Figure 3. The proportion of the individuals in each risk-group vaccinated by each vaccination strategy for: 

(a) time period 1t , (b) time period 2t , and (c) time period 3t  
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From Figures 3(a)-(c), we observe that the results found are non-trivial. Specifically, at the 

beginning of the vaccination season, i.e., 1t , the fraction of individuals vaccinated by the mass 

strategy is larger than the proportion of individuals vaccinated under targeted and random 

vaccination. This is due to the fact that the demand for vaccination in this period is still small, so 

mass vaccination can be more effective. However, the beginning of the second period, i.e., 2t , is 

characterized by a significant increase in the required vaccine doses (see Table 2). Consequently, 

mass vaccination becomes not cost-effective. Therefore, as can be observed from Figure 3(b), the 

targeted vaccination strategy prevails over mass and random vaccination. Finally, during the last 

period of vaccination, i.e., 3t , the requirement for vaccination drops. This results in the 

preference of switching from targeted vaccination to the mass and random strategies (as shown in 

Figure 3(c)).  

5.2. Sensitivity analysis 

In order to investigate the impacts of the different parameters on the optimal solution, we conduct 

the sensitivity analysis. We begin with exploring the effect of the number of available vaccine 

doses. We summarize the results in Tables 3-5. Note that we denote mass vaccination as M, random 

as R, and targeted as T.  

Table 3. Effect of the number of vaccines on the optimal solution for 1t  

Amount of 

available 

vaccines (as a % 

from the total 

demand)/Groups 

Infant - play 

age 

Primary school 

age - 

adolescence 

Middle age Senior Elderly 

M R T M R T M R T M R T M R T 

60% 0.19 0.01 0.38 0.15 0 0.29 0.11 0 0.31 0.18 0.01 0.48 0.19 0.02 0.5 

80% 0.32 0.09 0.33 0.34 0.05 0.25 0.35 0.04 0.24 0.38 0.03 0.4 0.4 0.05 0.42 

90% 0.49 0.1 0.22 0.43 0.11 0.21 0.42 0.1 0.19 0.5 0.04 0.27 0.51 0.05 0.28 

 

Table 4. Effect of the number of vaccines on the optimal solution for 2t  

Amount of 

available 

vaccines (as a % 

from the total 

demand)/Groups 

Infant - play 

age 

Primary school 

age - 

adolescence 

Middle age Senior Elderly 

M R T M R T M R T M R T M R T 

60% 0.01 0 0.43 0.03 0 0.32 0.01 0 0.33 0.01 0 0.68 0 0 0.78 

80% 0.27 0.05 0.41 0.22 0.1 0.3 0.22 0.08 0.29 0.21 0.01 0.58 0.25 0.02 0.62 

90% 0.5 0.08 0.31 0.45 0.05 0.22 0.44 0.1 0.26 0.52 0.01 0.31 0.55 0.02 0.32 
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Table 5. Effect of the number of vaccines on the optimal solution for 3t  

Amount of 

available 

vaccines (as a % 

from the total 

demand)/Groups 

Infant - play 

age 

Primary school 

age - 

adolescence 

Middle age Senior Elderly 

M R T M R T M R T M R T M R T 

60% 0.21 0.19 0.24 0.21 0.16 0.19 0.23 0.16 0.19 0.27 0.2 0.38 0.29 0.21 0.39 

80% 0.29 0.21 0.23 0.29 0.18 0.18 0.3 0.17 0.17 0.31 0.21 0.35 0.33 0.22 0.36 

90% 0.54 0.15 0.13 0.5 0.12 0.11 0.49 0.14 0.12 0.6 0.16 0.14 0.61 0.15 0.14 

 

Our computational results show that for the high-demand periods, i.e., 1t  and 2t  (see Table 

2), reduction in the number of the available vaccine is reflected in a decrease in the vaccinated 

individuals under the random strategy (see Tables 3-4). This is due to the fact that this strategy 

implies random vaccination, so when the vaccine stock is limited, the available vaccine should be 

used in a more effective way, i.e., by either mass or targeted vaccination. In addition, we observe 

that as the vaccine stock increases, the percentage of the individuals vaccinated under the mass 

strategy increases. This result can be explained as follows: if the amount of vaccine is enough to 

cover the entire population, there is no advantage in using either the random or targeted strategy. 

On the other hand, when the vaccine stock is low, targeted vaccination becomes more cost-

beneficial.   

Moreover, it follows from Table 6 that, with a decrease in the initial vaccine stock, the number 

of vaccinated individuals in the low-risk groups (e.g., primary school age–adolescence and middle 

age) diminishes more rapidly than in the high-risk groups (e.g., senior and elderly).  

Table 6. Effect of the number of vaccines on the vaccination rates 

Period/

Group 

Infant - play age 
Primary school 

age - adolescence 
Middle age Senior Elderly 

60% 80% 90% 60% 80% 90% 60% 80% 90% 60% 
80

% 
90% 60% 80% 90% 

1t  0.58 0.74 0.81 0.44 0.64 0.75 0.42 0.63 0.71 0.67 
0.8
1 

0.81 0.71 0.87 0.84 

2t  0.44 0.73 0.89 0.35 0.62 0.72 0.34 0.59 0.8 0.69 0.8 0.84 0.78 0.89 0.89 

3t  0.64 0.73 0.82 0.56 0.65 0.73 0.58 0.64 0.75 0.85 
0.8
7 

0.9 0.89 0.91 0.9 

No less interesting and non-trivial result is found when comparing the consumption rates with 

the available amount of vaccine in stock (see Table 7 and Figure 4). We observe that with an 

increase in the number of available vaccine doses, the inventory-consumption rate decreases. This 
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means that during the vaccination period, the total amount of purchased vaccine may not be fully 

utilized. Such a result has a non-trivial managerial insight and allows the decision maker to re-

consider their current inventory policies by ordering less vaccine in comparison with the existing 

demand. Note that a similar result is observed in Hovav and Tsadikovich (2015). 

Table 7. Consumption rates 

Amount of available vaccines (as a 

% from the total demand) 
Vaccine inventory Consumption Inventory-consumption rate 

60% 477623.4 477513.5 100% 

80% 636831.2 613265.8 96% 

90% 716435.1 658504.2 92% 

 

 

Figure 4. Consumption rates as functions of stocks 

Next, we continue with exploring the impact of the relative susceptibility of individuals gs  on 

the optimal solution. Specifically, we conduct an analysis on the elderly risk group. Recall that 

15 s  means that the elderly individuals are highly susceptible to the disease. In the sensitivity 

analysis, we range 5s  from the level of 0.4 to 1 with a step size of 0.2. We assume that the amount 

of available vaccine is 80% of the entire demand. We report the results in Table 8 and Figure 5. 

Table 8. Effect of the relative susceptibility on the optimal solution for 5s  

Relative susceptibility 

( 5s ) 

1t  2t  3t  

M R T M R T M R T 

0.4 0.48 0.2 0.19 0.42 0.24 0.23 0.48 0.29 0.14 

0.6 0.45 0.14 0.28 0.36 0.16 0.37 0.39 0.27 0.25 

0.8 0.4 0.05 0.42 0.25 0.02 0.62 0.33 0.22 0.36 
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Figure 5. Effect of the relative susceptibility on the optimal solution for elderly individuals for: 

(a) time period 1t , (b) time period 2t , and (c) time period 3t  
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An increase in relative susceptibility of the elderly population means that they are more exposed 

to the disease and can transmit it to the remaining individuals in the community. Thus, to control 

the disease spread, when the vaccine stock is limited, targeted vaccination becomes more effective 

in comparison with the mass and random strategies, as it follows from our observations 

summarized in Table 8.   

6. Operational and Managerial Insights 

The contribution and innovation of this paper consist of the following aspects:   

I. We consider the multi-criteria problem of optimal vaccine distribution in different groups of a 

population as an MCMP problem, and solve it using the standard  -constraint method of finding 

the Pareto-optimal solutions in conjunction with the Borda method for prioritizing the Pareto-

optimal solutions.  

II. We find that the targeted vaccination strategy is more effective than the mass and random 

vaccination strategies, especially when the demand is high and the supply of available vaccine is 

limited. 

III. We use the commercial GAMS solver CPLEX to solve large-sized problem instances based on   

statistical data provided by experts. Computational experiments within the considered study reveal 

that our approach outperforms the empirical approach currently adopted for vaccination planning 

in practice. Specifically, the annual costs of the immunization programmes derived from the 

proposed mathematical model are about 10% less than the average annual vaccination costs 

estimated by experts. 

IV. From the operations research perspective, the proposed mathematical model can be used as an 

effective decision-making tool for determining the optimal vaccination strategy in different 

healthcare organizations around the world. This tool allows the decision-maker to define the 

principal strategy or the optimal combination of the strategies over the vaccination period. As a 

result, the operation of the entire VSC can be significantly improved by reducing the operational 

costs, while providing acceptable customer satisfaction.  

7.  Conclusion 

We develop a mathematical model for determining the optimal vaccination strategy embracing the 

conflicting performance measures of cost, vaccination efficacy, and societal benefits for a 

susceptible population that comprises distinct sub-groups of customers, having different cost and 

benefit characteristics. The optimization model returns an overall minimum cost, while ensuring 

that the recommended strategy complies with the required standards of societal benefits. The 
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rationale for the proposed approach is given in Section 4. HCOs can use this model as a decision 

support tool for determining various aspects of the vaccination process, including the optimal 

distribution of vaccines among clinics and different population sub-groups. Furthermore, the model 

permits the conduct of post-optimization sensitivity analysis that provides additional insights on 

how costs vary once critical parameters change. 

The suggested mathematical model differs from those known in the current literature; however, 

the numerical results obtained in this study are close and similar to earlier research results. 

Specifically, the targeted vaccination strategy seems to be superior to both the mass and random 

vaccination strategies. It is worth noting that the suggested model permits the decision-maker to 

find the best combination of several vaccination strategies.    

In future research we intend to add the factor of time, breaking the vaccination season into 

several stages. By extending the SIR model, we intend to study the so-called SEIR model that has an 

additional compartment E containing the individuals that are exposed and hence infected, but not 

yet infectious. Another prospective study is to add stochastic conditions and design a solution 

method for the stochastic multi-criteria vaccination planning problem.     

Directions for future research can also include incorporating additional stakeholders into the 

model, such as governmental and public entities, and optimization of the clustering of clinics, as 

mentioned above. Moreover, although age-based segmentation is commonly used in practice, it 

would be useful to optimize the segmentation of the population while taking into account additional 

characteristics, such as occupation, gender, income, health, or ethnicity; this could improve the 

accuracy and applicability of the model. An additional challenging perspective is to design efficient 

solution algorithms for the problem in more general environments, including multiple 

manufacturers, multiple governmental and public agencies, and multiple DCs. 
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Appendix: Basic definitions from immunization theory 

The SIR model. The first widely known work in the field of immunization modelling is by Kermack 

and McKendrick (1927, reprinted in 1991), who suggested a mathematical model describing how a 

disease spreads through a population. This model type, called compartmental, divides the 

population into three main compartments, each containing people that are in the same state of 

disease, namely susceptible (S), infected (I), and removed, i.e., recovered (R) individuals. 

According to the capital letters, this model called the SIR model consists of a family of three 

deterministic differential equations that describe the transition in the population from one 

compartment to the other as follows: 

 

The following notation is used in the SIR-type model: 

Table A1: Notation used in the SIR model 

J  or  G  the set of population groups 

)(),(),( trtits jjj  
fractions of the population, respectively, susceptible, infected and removed 

in population group j  at time t  

j  and j  
transmission rate and the rate of recovery in population j  

jl  
transmission rate between susceptible people from population group j  and 

infected people from population group l  

0)0(,)0(,)0( jj
o
jj

o
jj rriiss   

given initially boundary conditions 

    
However, despite their simplicity, sophisticated compartmental models cannot be solved 

analytically due to their nonlinear dynamics nature. This is the reason why in the model described 

below we consider simplified algebraic equations and inequalities. 

Herd immunity (Fine et al., 2011). This term denotes the protection of susceptible individuals 

against infection because they are surrounded by a sufficient number of immune individuals. The 

immunity of the latter group may result either from vaccination or recovery from infection.  
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Herd effect (or indirect effect of vaccination) is defined as the proportion of all the people who 

are saved from infection because of herd immunity. In other words, this is precisely the proportion 

of people who are still susceptible when the epidemic has died out. The final fraction )( jj fG , i.e., 

when t , of the people susceptible in population j  after vaccinating a fraction  jf   of the 

susceptible people in group j  at time t . Thus, )( jj fG  measures the herd effect in population j .  

Health benefit HB is defined as the total number of people who escaped infection. HB = 

 

where jN  denotes the size of population group j  and  jf  the fraction of susceptible people in group 

j . The sum reflects that there exist two benefit types of vaccination: either the direct effect when 

the individuals escape infection because they are vaccinated or indirect (herd) effect when they 

escape infection (in a crowd of vaccinated people) without being vaccinated. 

    The vaccination coverage is the proportion of individuals who are vaccinated (Becker and 

Starczak, 1997).  Critical vaccination coverage CVC (Keeling and Shattock, 2012, Plans-Rubió, 

2012) is defined as the smallest vaccination fraction that results in a decrease in infections directly 

after vaccination. CVC is denoted by 
*f . Expanding the coverage beyond 

*f actually reduces the 

herd effect. The 
*f value not only maximizes the herd effect, but also directly results in a decrease 

in the infected individuals at any time t . 

Basic reproduction ratio, denoted by 
0R , is defined as the number of new infections caused by a 

single infectious individual in a completely susceptible population. For compartmental models,
0R  

can be determined from the differential equations of SIR (Diekmann et al., 2013). 

Post-reproduction number, denoted by 
vR , reflects the effects of vaccination and vaccination 

strategies on a basic reproduction number 
0R  (see, e.g. Becker and Starczak, 1997). Several formal 

presentations of 
vR  are known but all of them lead to the same critical vaccination coverage (see, 

e.g., Becker and Dietz, 1996). In this paper we use the form given by Becker and Starczak (1997) 

because it is suitable for our model. 

 

 

 

  




