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A multi-task matrix factorized graph neural network
for co-prediction of zone-based and OD-based

ride-hailing demand
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Abstract—Ride-hailing service has witnessed a dramatic
growth over the past decade but meanwhile raised various
challenging issues, one of which is how to provide a timely and
accurate short-term prediction of supply and demand. While the
predictions for zone-based demand have been extensively studied,
much less efforts have been paid to the predictions for origin-
destination (OD) based demand (namely, demand originating
from one zone to another). However, OD-based demand predic-
tion is even more important and worth further explorations, since
it provides more elaborate trip information in the near future
as reference for fine-grained operations, such as the routing
and matching of shared ride-hailing services that pick up and
drop off two or more passengers in each ride. Simultaneous
prediction of both zone-based and OD-based demand can be an
interesting and practical problem for the ride-hailing platforms.
To address the issue, we propose a multi-task matrix factorized
graph neural network (MT-MF-GCN), which consists of two
major components: (1) a GCN (graph convolutional network)
basic module that captures the spatial correlations among zones
via mixture-model graph convolutional (MGC) network, and
(2) a matrix factorization module for multi-task predictions of
zone-based and OD-based demand. By evaluations on the real-
world on-demand data in Manhattan and Haikou, we show that
the proposed model outperforms the state-of-the-art baseline
methods in both zone- and OD-based predictions.

Index Terms—ride-hailing, OD-based prediction, mixture-
model graph convolutional network, matrix factorization, deep
multi-task learning

I. INTRODUCTION

R IDE-HAILING service, serving as a novel option of
transportation market, has fast-growing user groups

around the world and boosts the emergence of a variety of
corresponding operation platforms like Didi, Uber and Lyft.
For example, just a single platform like Didi can generate
millions of daily ride-hailing demand in Beijing [1], showing
the size and popularity of this new market. Utilizing the
historical trip records, the ride-hailing platform can predict
demand of future trips to assist in dynamic operation strate-
gies, such as surge pricing, vacant vehicle re-positioning, and
ride-pooling, etc. Two types of demand can be of interest:
zone demand and OD demand. The former one represents
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cumulative demand that depart from or arrive at each zone,
regarded as outflow zone-based demand (outflow demand)
or inflow zone-based demand (inflow demand), respectively.
The OD-based demand represents the number of trips from a
given zone to another. Zone-based demand depicts a macro-
view of spatial distribution of ride-hailing requests, while OD-
based demand more precisely shows the quantity of trips
with different combinations of origin and destination. The
ride-sourcing companies have to make multiple decisions,
including vehicle re-positioning, route planning of vehicles
and pricing for both non-ride-pooling and ride-pooling pas-
sengers in real time. Some tasks need zone-based demand
predictions, for example, the platform wants to dispatch an
idling vehicle to a region with high predicted outflow demand.
Some tasks require OD demand predictions, for example, the
platform may proactively raise the trip fare (surge pricing) for
an OD with a predicted excess demand (compared to supply
level). Moreover, some tasks need both zone-based and OD-
based demand predictions, for example, as the platform plans
a route for a vehicle who already picks up the first ride-
pooling passenger, it needs to determine a route for the vehicle
such that (1) there are high outflow demands along this route
(zone demand prediction is required); (2) there are demands
with similar destinations as the first passenger (OD demand
prediction is required). As the platform chooses a suitable
route for the vehicle, there is a higher probability that this
vehicle can serve one or more additional passengers on the
way to deliver the first passenger, which helps to improve
vehicle utilization and platform revenue. To summarize, since
the platform has to make different decisions, there is a strong
need for the platform to obtain accurate zone-based and OD-
based demand predictions to support these decisions. Note that
zone attraction demand is not simply equal to the summation
of OD demand over origin zones in a given time interval.
With this difference, the predictions of zone demands and OD
demand should be viewed and treated as different tasks. This
is because the system is dynamic and non-stationary and thus
the trips generated in an origin zone may arrive at a destination
zone in a different time interval. Since most of the existing
models only predict zone-based ( [2], [3], [4]) or OD-based
demand ( [5], [6]), a multi-task prediction model structure with
shared embedding module and separate decoding modules
for different tasks can be adopted. Such a multi-task model
usually possesses fewer model parameters compared to the
sum of parameters of the three single task models for the
prediction of each type of demand. For each of the single-
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task models for the three tasks, there are some similar model
structures, especially in the encoder part. However, these
similar structures (for different tasks) can be merged into one
structure, where the parameters are co-trained for the three
tasks. The required computation resources to store and train
several similar modules within the single-task models are then
reduced, since there is only one integrated module for the
proposed multi-task model.

In addition to the co-prediction problem, a practical chal-
lenge is to capture the spatial dependence among the demands
in multiple irregular zones. Different types of dependencies
should be well considered. The first one is based on geo-
graphical closeness. That is, some adjacent zones may share
highly similar demand patterns. For example, two adjacent
business zones in Lower Manhattan may both have intensive
inflow in morning peak and high outflow in evening peak. On
the other hand, zones which are distant from each other may
also have some latent correlations in demand. For instance,
residential areas in both Lower and Upper Manhattan may
have high morning outflow and evening inflow, although they
are geographically remote from each other. In most previous
short-term predictions, the studied area is first partitioned into
regular zones (in Euclidean domain) like squares, as shown
in Fig. 1a as an instance of Manhattan, based on which the
standard CNN (Convolutional Neural Network)-based method
(e.g. 2D/3D CNN [3] [7] [6], Conv-LSTM [2] [3]) can be
adopted to capture the spatial dependencies. However, this
simple zone partition can not well consider the heterogeneity
of the zones in terms of administrative and functional prop-
erties. A better way is to partition the examined area into
multiple regions according to administrative definitions, such
as zip codes, as shown in Fig. 1b. The CNN-based methods
are no longer applicable to these irregular regions, since they
rely on a standard image-like input data structure.

(a) Euclidean domain (b) non-Euclidean domain

Fig. 1: Different partitions of Manhattan. The corresponding
zones are represented by the red box.

To tackle the aforementioned critical issues, we propose
the multi-task matrix factorized graph neural network (MT-
MF-GCN). The model contains two major parts: the GCN
(graph convolutional network) basic module for capturing
spatial-temporal features in non-Euclidean domains, and the
matrix factorization module for multi-task learning. GCN basic

module serves as an encoder for graph embedding. In this
module, the aim is to capture demand patterns and represent
them by a set of hidden feature vectors for each zone based on
historical data. To form the representations, we employ GCN-
based structure to capture information from a zone itself and
its neighbors. Two correlation matrices are first established,
including a distance matrix and a function similarity matrix.
The first one measures the geographical proximity between
each pair of two zones, and the second one characterizes the
functional similarities among zones. We then develop four
graphs and corresponding neighborhoods: one graph based
on geographical adjacency, and three semantic graphs respec-
tively based on the two proposed correlation matrices and
real-time commuting patterns (say OD graph for simplicity).
The last semantic graph is interesting since it employs the
correlation between OD demand and zone demands for the
improvement in prediction accuracy. In general, the larger
the OD demand, the larger the inflow/outflow zone demand.
In the real-time constructed OD graph, two zones become
neighbors when the OD demand for this OD pair is large
enough. Since the amount of OD demand and zone demand
is correlated with each other, two neighbor zones in a OD
graph, although with possibly low similarity in function or
geographical location, can also share high correlations in their
zone demands. Capturing this correlation helps to employ
more complete information to generate hidden representations
and make predictions for zone demands. With all the graphs
constructed, four groups of mixture-model graph convolutional
(MGC) networks are respectively built to capture the non-
Euclidean spatial dependencies.

The learned hidden representations in the GCN basic mod-
ule are then fed into the matrix factorization module. In this
part, the representations are decoded into estimated demands
for inflow, outflow and OD flow. The prediction of each
type of demand is given by the output of a stack of sub-
predictors, which are called matrix factorization (MF) layers.
Through simple decomposition process, the MF layer can
serve as region-specific decoders, which sufficiently considers
the uniqueness of the mobility patterns in different zones.
Moreover, the parameters required to learn are reduced through
the decomposition, providing a smaller-size model structure.
In addition, we also design a special decoder placed after
the final one of MF layers for OD-based prediction. This
decoder structure in our proposed model is in the same
spirit of the classic OD-based demand function, in which
the OD demand is given by the product of the minimum
travel time and its associated origin-based and destination-
based characteristics. However, the decoder in our model is
different from the classical model in the following aspects:
(1) the minimum travel time in the classical model is replaced
by a transmission matrix learned by the network; (2) the pre-
determined properties of origin and destination in the classical
model are substituted by the hidden representations generated
by the MF layers. In a word, although our model shares the
same formulation with the classical OD-estimation model,
all the inputs are hidden parameters learned by the neural
network, rather than human investigations. The representation
power of the deep neural networks has the potentials to better
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capture the demand patterns from historical data, and thus
offers a more accurate prediction.

Finally, the outputs of the predictors for each task are
combined in a single loss function for an end-to-end learning.
Evaluated on the real-world ride-hailing data in Manhattan,
New York, and Haikou, China, the proposed framework
demonstrates the superiority against the baseline approaches.
In summary, this paper makes the following contributions:
• We propose a multi-task matrix factorized graph neural

network (MT-MF-GCN) to achieve the co-prediction of
inflow, outflow and OD-based ride-hailing demand within
a single model framework.

• We design a GCN-based embedding module with multi-
semantic graphs and a mixture-model graph convolutional
network to capture non-Euclidean spatial dependencies
and generate hidden representations for each zone.

• We design a matrix factorization module for multi-task
learning. Region-specific decoders via matrix factoriza-
tion are utilized to decode the hidden representations,
and make predictions by effectively capturing the depen-
dence among zones. A special decoder refined on classic
demand estimation is proposed for the prediction of OD-
based demand.

• We conduct extensive experiments on the real-world for-
hire ride-hailing dataset in Manhattan and Haikou, and
demonstrate that the proposed model outperforms the
state-of-the-art baselines.

• The proposed model structure can be also utilized for
other multi-task applications in future, such as predictions
for customer demand for different travel modes, joint
predictions for multiple traffic state variables (speed,
density, etc.) in a road network.

The remainder of the paper is organized as follows. In
section II, we provide a literature review on classic and
recent approaches in traffic demand prediction. In section
III, some preliminaries of the study are provided, including
basic definitions and a formal description of the research
problem. The details of the model framework and numerical
experiments will be respectively presented in section IV and
section V. Finally, in section VI, we provide conclusions and
directions for future research.

II. LITERATURE REVIEW

The prediction of zone-based and OD-based ride-hailing
demand can be grouped into the family of spatial-temporal
forecasting problem. This section conducts an extensive lit-
erature review on the classic and state-of-the-art prediction
approaches of traffic demand, which provides insights for the
current study. The sub-sections of the review include classic
and deep learning based prediction methods for traffic demand,
matrix factorization technology and their applications in de-
mand forecasting, and multi-task learning for transportation.

A. Prediction approaches

Early studies of both zone-based and OD-based demand
prediction depend on the regional properties subjectively de-
cided and surveyed by researchers. For instance, OD trip rates

are influenced by the level of service and properties of origin
and destination. When congestion increases on the routes for
an OD pair, travelers may change the travel mode or even
cancel the trip, which affects the OD-based traffic demand. The
properties of origin and destination, including population size,
income distribution, vehicle ownership, employment intensity
and business properties, are also important factors for the
intensity of each OD-based demand. Based on this knowledge,
the classic OD-based demand function in [8] is given by

mi,j = AiBjf(ci,j) (1)

where mi,j is trip rate between zone i and j in a studied
transportation network, Ai and Bj are parameters associated
with the natural properties of origin and destination, f(·) is
a function with input ci,j , which represents the minimum
travel cost in the form of time or distance. For most classic
studies in transportation network theory, Ai, Bj and f(·) are
usually assumed known and fixed, and the only parameter
ci,j is calculated with the equilibrium theory. However, the
pre-set region properties can be incomplete and biased, and
even in some cases, not available or quite time-consuming
for collection. This is a common challenge in other fields
involving feature engineering.

Based on the classic methods, a potential improvement
comes from the employment of historical data. To better
formulate predictions from the past mobility records, a series
of methods have been proposed, including the auto-regressive
integrated moving average (ARIMA) models ( [9], [10], [11],
[12]), Bayesian inference approaches ( [13], [14]), Kalman
filtering model [15], local regression model [16], and neural
network models ( [17], [18]). Most of these work construct
the past traffic information as a time series, without sufficient
focus on spatial correlations. To overcome the issue, some
studies utilize traffic demand or other states collected from
upstream [19] or nearby states [20] as supplement to the
estimation for the downstream or center node. However, these
approaches usually capture the information from only one or
small-size neighbor nodes, which may ignore the knowledge
in geographically remote regions.

In recent years, machine learning or deep learning based
methods have been widely applied in various areas of trans-
portation, such as pedestrian behavior study ( [21], [22]), pas-
senger flow planning [23] and ride-hailing demand prediction (
[2], [7], [6]). For prediction task, generally, convolutional neu-
ral network (CNN) is utilized to capture spatial correlations,
while the recurrent neural networks (RNNs) and their variants
long short term memory (LSTM) are employed for mining
sequential properties. Most of the studies explore different
combinations of these two groups of deep learning paradigms
to capture spatial-temporal information in a single model
framework. In [2], Ke et al. propose a short-term forecasting
model for ride-hailing demand which first combines CNN and
LSTM in traffic demand prediction task. In [7], Ye et al.
construct multiple auto-encoders to predict demand of pick-
up and drop-off service for taxi and bikes. In [6], Liu et
al. utilize LSTM to encode the input feature and node-wise
correlation matrices to refine the middle representations before
final output.
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The majority of these studies choose to first partition the
studied city or area into regular zones like squares or hexagons.
The prediction is then made for demand inside these artificially
constructed zones. With such partitions on the Euclidean do-
mains, CNN-based deep learning approaches, including 2D/3D
CNN and Conv-LSTM, have been extensively employed to
capture spatial correlations and make predictions. However,
a more effective idea is to partition geographic zones into
graphs. The demand is then estimated via aggregating infor-
mation from neighborhood on these graphs. The complexity
of graph data has generated significant challenges on existing
deep learning approaches. The graph data is irregular. Each
node in a graph has a different number of neighbors, causing
some important operations (e.g., convolutions), which are easy
to compute in the Euclidean domain, not directly applicable
to the graph domain anymore with standard CNN [24]. To
enable this complicated process, a model structure called graph
convolutional network (GCN) has been developed recently.
In Fig. 2, we show the difference and similarity between a
standard 2D CNN and a type of graph convolution. GCN-based
methods are also explored in transportation state prediction by
past studies. In [25], Wang et al. refine GraphSAGE [26] with
fixed and pre-defined weights to aggregate neighborhood infor-
mation for ride-hailing demand prediction. In [4], contextual
gated RNN is combined with GCN to forecast zone-based
demand. In [5], Ke et al. capture correlations between each
OD pair and add residual mechanism to its GCN module.
Compared to [25], all the edge weights of GCN module in
the proposed model are obtained via training instead of being
artificially pre-defined, providing better flexibility for different
problems. Compared to [4] and [5], while they only have a
single kind of edge weight for each adjacency matrix, the
proposed model employs a mixed weight via mixture-model
GCN, in order to capture the correlations between different
edge weights. About this point, a more detailed discussion
is provided in section IV C. In addition, matrix factorization
module is applied as a region-specific decoder, while the other
GCN researches either lack this part or simply use linear
transformation layers.

B. Matrix factorization applications

Matrix factorization technology has been a classic approach
in image compression [27], recommendation systems ( [28],
[29]), classification ( [30], [31]) and prediction task ( [32],
[33]). In matrix factorization process, the studied matrix is
decomposed into multiplication of small-size matrices, which
reduce the total number of model parameters and thus effec-
tively save the computation resources. The advantages of ma-
trix factorization enable model with more virtual parameters
but fewer actual ones. The complexity of such models can thus
be increased for the solution of complicated tasks. In [34], a
supervised matrix factorization approach is proposed to learn
latent features for link prediction on graphs. In [35], Chen et al.
construct a matrix factorization framework to estimate accident
risk with heterogeneous data. For deep learning setting, Pan
et al. [36] combine matrix factorization layers with neural
network models to predict urban flows. In [35], the matrix

(a) 2D convolution (b) graph convolution

Fig. 2: 2D convolution and graph convolution. In 2D convo-
lution for Euclidean domain, the neighbors of each zone are
ordered and fixed in size. The adjacency is represented with
red edges. The 2D convolution takes a weighted average over
the yellow zone and its neighbors. In graph convolution for
non-Euclidean domain, the neighbors of each zone have no
orders and vary in size. The graph convolution takes average
over the yellow zone and its neighborhood to formulate a
hidden representation.

factorization module serves as both embedding and decoding
modules, while the proposed model only utilizes it as decoder
modules for multi-tasks. The separation of embedding and
decoding module can improve the model complexity and thus
the prediction accuracy for complicated tasks. Meanwhile, the
previous researches either focus on tasks outside transportation
demand estimation (bibliographic networks or computational
biology for [34], accident risks for [35]), or only single-task
prediction (such as [36]). In comparison, the proposed model
employs the technology to formulate smaller-size region-
specific decoders for multi-task traffic demand predictions.

C. Multi-task learning based approaches

Multi-task learning aims to share information among dif-
ferent tasks that have similar properties. Most of studies in
deep learning setting employ multiple shared layers or part of
parameters to direct their models towards capturing common
knowledge. Separate decoding modules are then employed to
restore unique predictions for each task. For transportation,
there is also a variety of studies for multi-task learning and
predictions. In [7], Ye et al. integrate information from taxi
and bike into a single temporal-knowledge mining module.
In [37], Kuang et al. utilize a 3D residual network to fuse
representations of pick-up and drop-off modes of taxi demand
data. In [38], Geng et al. employ grouped GCN and multilinear
relationship to realize modality interaction among various
hidden features.

However, limited efforts have been made to combine pre-
dictions of inflow, outflow, and OD-based demand together in
a single model. In our proposed multi-task prediction model,
shared embedding module is used to generate hidden represen-
tations for ride-hailing demands, and separate modules with
region-specific decoders are employed to restore predictions
for different tasks.
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III. PRELIMINARIES

A. Basic definitions

We first provide several fundamental definitions for the
formulation of multi-task ride-hailing demand prediction prob-
lem.

Definition 1. (Graph) The utilized graph is defined as
G(V,E,A), where V is the set of zones, E represents the set
of edges with different weights, and A ∈ R|V |×|V | denotes
the adjacency matrices. Multiple graphs can be constructed
via different setting of edge weights and adjacency matrices.

Definition 2. (Inflow and outflow vectors) The total time
period is portioned into a discrete series of time slots with
a constant interval. We use T to represent the final time slot
of the time sequence and t to denote a certain middle time
slot. Based on the time slot definition, let xti,in and xti,out,
∀i ∈ {1, ..., N} and ∀t ∈ {1, ..., T}, denote the inflow and
outflow demand of zone i during time slot t, where N is the
number of zones. The inflow and outflow demand vectors are
denoted by Xt

in and Xt
out ∈ NN , ∀t ∈ {1, ..., T}, whose

vector entries are xti,in and xti,out respectively.
Definition 3. (OD matrix) We use M t ∈ NN×N , ∀t ∈

{1, ..., T}, as the OD demand matrix for each time interval.
Each entry of M t, mt

i,j , represents the number of ride-hailing
demands with origin zone i and destination zone j.

B. Research problem

Definition 4. (Zone-based demand prediction) For a time
slot t, given a historical inflow or outflow demand sequence
[Xt−k, ...,Xt], the zone-based demand prediction problem is
to predict the demand vector in the next time slot t+ 1, that
is, Xt+1.

Definition 5. (OD-based demand prediction) Given a
time slot t and the past OD demand matrix sequence
[M t−k, ...,M t], the OD-based demand prediction problem is
to forecast the OD matrix in the next time slot t+ 1, that is,
M t+1.

Problem 1. (Multi-task ride-hailing demand prediction) The
problem is a combination of zone-based demand prediction
problem and OD-based demand prediction problem, where his-
torical demand sequence [Xt−k

in , ...,Xt
in], [Xt−k

out , ...,X
t
out],

and [M t−k, ...,M t] are given, and the task is to predictXt+1
in ,

Xt+1
out and M t+1 simultaneously within a single model.

IV. MODEL FRAMEWORK

A. Overview

In this section, we propose a unified model to solve the
multi-task prediction problem of inflow, outflow and OD-based
demand. The overview of the model is given in Fig. 3. First,
the input features selected based on temporal dependencies
is fed into the GCN basic module. The module consists
of four sub-modules, which are respectively constructed on
different neighborhoods with the stack of mixture-model graph
convolutional (MGC) network to capture spatial dependencies.
The outputs of the sub-modules are then fused together and fed
into the matrix factorization module for multi-task learning.
The fused representation is separately decoded by three groups

of matrix factorization (MF) layers. The output of MF layers
will be employed to obtain the short-term estimation of inflow,
outflow and OD-based ride-hailing demand. In the following
part, we will first introduce the construction of correlation
matrices and semantic neighborhoods, then specifications of
GCN basic module, and finally the details of the matrix
factorization module and loss function for multi-task learning.

Fig. 3: Model Framework. F t is the input feature, MGCNs in
different colors represent mixture-model GCNs respectively
constructed for one geographical and three semantic neigh-
borhoods, with output matrices HG, HF , HD, HOD.
After the matrix concatenation operation, MF in different
colors represent matrix factorization layers for the three tasks,
and FD is a transmission matrix. M̂

t+1
, X̂

t+1

in , X̂
t+1

out , are the
predicted demand of OD flow, inflow and outflow.

B. Correlation matrices and semantic neighborhoods

The GCN basic module is built on fine identification and
definition of multiple types of neighborhoods to efficiently
capture spatial dependencies on different levels. The neigh-
borhoods are represented by adjacency matrices, constructed
based on geographical closeness, functionality and mobility
patterns. Geographical closeness is considered by two kinds
of adjacency matrices: geographical adjacency matrix and
distance adjacency matrix. In the former one, if two zones
are geographically adjacent to each other, they are viewed as
neighbors. In the latter one, if the distance between two zones
are sufficiently small, they can become neighbors, although
they may not be directly adjacent to each other. Both matrices
follow the same logic: the closer the two zones to each other,
the higher the possibility to share similar historical mobility
patterns. However, some distant zones with high similarity in
functionalities or frequent mobility interaction can also share
similar demand patterns, and thus provide useful and unique
information for the message transmission. We use the term
”semantic neighbor” to differentiate such closeness within
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zones from the regular geographical adjacency (where zones
become neighbors only when they are directly geographically
adjacent to each other). The neighborhoods formed by se-
mantic neighbors are called semantic neighborhoods, and spe-
cial adjacency matrices are designed and applied to describe
them. For the convenience of presentation, neighborhoods
corresponding to distance adjacency matrix are also viewed
semantic. Specifically, we first build two correlation matrices,
CD andCF , to represent the relations in distance and function
similarity, which are given by,

[CD]i,j = [dis(i, j)]−1 (2)

[CF ]i,j = ‖vi − vj‖−1 (3)

where dis(i, j) is the straight-line distance between the cen-
troid of zone i and j, and vi and vj are the vectors repre-
senting features related to function similarity, such as private
car ownership, household density, population and employment
structure, station distribution and cumulative lengths of road
network per square kilometers. In another word, CD shows
the geographical closeness between each pair of two zones,
while CF presents the similarity in intrinsic properties within
zones.

Based on the correlation matrices and region-level com-
muting history, we then construct one geographical adjacency
matrix and three semantic adjacency matrices as the rep-
resentations of different neighborhoods for each zone. The
geographical adjacency matrix is given by,

[AG]i,j =

{
1, if zone i and j are adjacent
0, otherwise

(4)

which is the most common and natural one for spatial graph
in transportation study (as in [4], [5]). However, similarities
also exist in the zones which are not geographically adjacent to
the studied one. The information stored in these hidden neigh-
bors should not be ignored in the formulation of zone-based
representations. To capture these indirect relationships based
on functionality, distance and commuting patterns, multiple
stacks of MGCN layers are constructed with the corresponding
semantic adjacency matrices, as shown in GCN Basic Module
in Fig. 3. For this goal, we first establish three auxiliary
matrices AD, AF and AOD as the following:

[AD]i,j =

{
1, if [CD]i,j ∈ SD,i

0, otherwise
(5)

[AF ]i,j =

{
1, if [CF ]i,j ∈ SF,i

0, otherwise
(6)

[AOD]i,j =

{
1, if ni,j ≥ rod
0, otherwise

(7)

where [CD]i,j and [CF ]i,j are matrix entries defined in equa-
tion (2) and (3), SD,i and SF,i are the sets of the largest rthd
and rthf entries of row vectors [CD]i and [CF ]i respectively,
ni,j is the cumulative number of trip requests from i to j
during critical time slots. Three thresholds rd, rf and rod are
defined to control the size of semantic neighborhoods. In eq.

(5), each matrix entry [AD]i,j is 1 if the distance between zone
i and zone j is small, and otherwise zero. In eq. (6), [AF ]i,j
is 1 if zone i and zone j have high similarity in functionality,
and otherwise zero. In eq. (7), [AOD]i,j is 1 if there is enough
OD flow between zone i and zone j in the past time intervals,
and otherwise zero. To keep the symmetry of each adjacency
matrix, we refine the auxiliary ones as follows:

[A]i,j =

{
1, if [A]i,j = 1 or [A]j,i = 1

0, otherwise
(8)

where [A]i,j , [A]i,j and [A]j,i here are applicable to the three
semantic cases.

With different definitions of adjacency, both the neighbor-
hood structure and the learned feature itself can be quite
diversified, and it is important to integrate them into the
single model framework for information completeness. In next
section, we will show how this process works.

C. GCN basic module

In this module, mixture-model GCN (MGC) is utilized to
formulate hidden representations based on different neighbor-
hoods. MGC can be categorized into the family of spatial-
based GCN, which has been widely used in applications
including node and graph classifications and predictions in
the studies of social network, chemistry, e-commerce, etc.
Generally, the spatial-based GCN aggregates the feature vector
of a center node and its neighbors together as the learned
hidden representations of the central one. In this process, the
appropriate choice of aggregation method plays the key role.
A fundamental approach is proposed in [26], with aggregation
in the following form:

h
′

i = σ(W ·meanj∈Ne(i)(hj)) (9)

where h
′

i is the new hidden representation of zone i, W is
a linear transformation matrix to learn, Ne(i) is the index
set containing zone i and its neighbors, hj is the initial or
learned features fed into GCN. This aggregation approach
simply takes the average of the local information without
differentiation of importance, which may negatively affect
the accuracy and stability of learning. Some later studies
improve the naive one in equation (9) via imposing pre-defined
edge-wise weights before training. To further increase the
model complexity, the fixed edge weights can be substituted
by weighting functions with hyper-parameters learned by the
model itself [39]. Following this idea, the proposed mixture-
model GCN is given by:

h
′

i = σ(
1

|Ne(i)|
∑

j∈Ne(i)

1

R

R∑
r=1

Θr(ui,j)�W rhj) (10)

Θr(u) = exp(−1

2
(u− µr)TΣ−1r (u− µr)) (11)

where |Ne(i)| is the number of neighbors of zone i, R is the
number of kernels, Θr(·) is a function calculating edge weights
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under each kernel, � is the element-wise multiplication opera-
tor, ui,j is the vector of edge weights for the edge linking zone
i and zone j, W r represents a linear transformation matrix
under rth kernel. In equation (11), µr and Σr are parameters
to learn during training. Aggregation method in equation (10)
is just similar to the one in equation (9), except the setting of
multiple kernels and substitution of pre-set edge weights with
the parametric Gaussian function in (11).

An important factor for the construction of edge weights
here is the selection of edge weight vector u. The choice
should sufficiently capture different correlations between each
pair of two zones, while the vector dimension is limited for
saving space and speed of computation. On the one hand,
geographical correlation should be considered since intuitively,
zones with closer geographic location usually share higher
similarities in future mobility demand pattern. On the other
hand, distant neighbors can also provide meaningful infor-
mation, especially for those possessing strong functionality
similarity with the studied zone. To consider the geograph-
ical closeness and functionality properties simultaneously,
we utilize ([CD]i,j , [CF ]i,j) as the weight vector for edge
between zone i and zone j. Although each entry of this
vector represents different correlations, complex interactions
may exist between them. For example, a neighbor with a
certain distance from the studied zone and higher functionality
correlation is more likely to share strong similarity in demand
representations, compared to one with the same geographical
closeness but lower correlation in functionality. This is why we
need to integrate different edge weights together into Θr(u) in
equation (11), where µr and Σr are employed and learned by
the model itself, in order to depict the intrinsic relationship of
the weights based on the shape of the two-dimension Gaussian
function.

With the construction of MGCN, we build four learning
paths in the GCN basic module based on the adjacency
matrices given in the last section. Along each path, multiple
MGCN layers are first built with one of the four adjacency
matrices, and then stacked together to collect information
from different neighborhoods. Usually, two to three layers
of MGCN are sufficient for the message passing process. In
the final step of this module, the last hidden representations
learned from the four paths are fused together, given by:

HM = [HG,HF ,HD,HOD] (12)

where HM is the output representation of the GCN basic
module, HG, HF , HD, and HOD are final representations
learned from the four paths respectively constructed on AG,
AF , AD, AOD.

D. Matrix factorization module

Patterns of ride-hailing demand for different zones can be
quite diversified from each other. For example, residential
zones may become major destinations during late afternoon
when most people prepare to return home, while the situation
is on the contrary for the zones where people work. Since the
zone-based patterns of mobility may become quite different
from each other, it is difficult to capture the uniqueness of each

zone via a single same decoder. To address the problem, an
intuitive solution is to train zone-wise decoders to decode their
representations. However, this strategy, on the one hand, will
introduce too many extra parameters, which generate heavy
burdens in the speed and space of computation, especially
with a large number of zones. On the other hand, the intrinsic
correlations within different regions should also be considered
in the decoders. Multiple methods have been explored to
integrate both diversity and similarity of different prediction
task inside one forecasting module, including building multi-
linear relationship within decoders [38], or the utilization of
matrix factorization technology [36]. Following the insights of
the last one and on the basis of task definitions of inflow, out-
flow and OD-based demand prediction, we formulate matrix
factorization (MF) layers as shown in Fig. 4, given by:

V = reshape(V RV B) (13)

hnew
i = V ihi,∀i ∈ {1, ..., N} (14)

where V is the decoder tensor whose each layer V i represents
a linear transformation matrix, reshape(·) is a function to
transform matrix into tensor, hi and hnew

i are input and
output hidden representations for each zone, and N is the total
number of zones. The utilization of tensor V enables every
zone to possess a unique decoder. With matrix factorization in
equation (13), we decompose the large tensor V into two sub-
matrices V R and V B . In this way, the target to learn becomes
the sub-matrices instead of the tensor V , which reduces the
total number of decoder parameters. Moreover, the similarity
within zones can also be captured by the share of base V B

in zone-wise decoding matrix V i.

Fig. 4: Matrix factorization process. V R and V B are two
sub-matrices for the proposed model to learn. V is the tensor
actually used as a region-specific decoder. N and k are
respectively the number of zones and bases. ndim equals to
the product of nh and nnew

h , which are the dimensions of
original and new hidden representations for each zone.

With the construction of basic MF layers, we design the
whole matrix factorization module for multi-task learning. The
module consists of three groups of decoders, each of which
contains a sequence of MF layer. The hidden representation
generated from the GCN basic module is respectively fed into
the three decoder groups for the prediction of inflow, outflow
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and OD-based demand. For OD-based demand prediction, we
add an extra final decoder given by:

mi,j = hT
f,iV f,ihf,j (15)

where hf,i and hf,j are representations for zone i and j
generated by the final MF layer for OD-based prediction, V f,i

is a transmission matrix constructed with matrix factorization.
In Fig. 3, we use FD to represent the process in equation
(15). In contrast with the classic OD-based demand function
in equation (1), hf,i and hf,j play the same role as Ai and
Bj , representing unique properties of each zone. V f,i captures
correlations between zone i and other zones as f(ci,j) in eq.
(1). The difference here is that all the parameters in our model
are directly learned by the deep learning model, instead of the
pre-definition and investigation by researchers as in classic OD
demand function. This design of decoder, on the one hand, can
uncover and employ hidden information stored in historical
data, which may be ignored by human investigators. On the
other hand, the time-consuming survey of region properties
are also removed, showing the advantage in convenience for
data-driven approach.

With model output for all the three tasks, we formulate the
loss function as below:

L = βodLod +
1

α
βinLin +

1

α
βoutLout (16)

where Lod, Lin, Lout are MSE losses of OD-based, inflow and
outflow demand predictions, βod, βin, and βout are weights
which sum to one, and α is a coefficient utilized to scale
the loss magnitude. The loss functions of each sub-task are
formulated as follows:

Lod =
1

S × |M t+1|

S∑
s=1

‖M t+1
s − M̂ t+1

s ‖
2

F (17)

Lin =
1

S × |Xt+1
in |

S∑
s=1

‖Xt+1
in,s − X̂

t+1
in,s‖

2

2
(18)

Lout =
1

S × |Xt+1
out |

S∑
s=1

‖Xt+1
out,s − X̂t+1

out,s‖
2

2
(19)

where S is the number of samples, |M t+1|, |Xt+1
in |, |X

t+1
out |

represent the number of entries for OD matrix and zone-based
demand vectors respectively. ‖ · ‖F represents the Frobenius
norm for matrix, and ‖ · ‖2 is the L2 norm for vector.

V. EXPERIMENTAL RESULTS

A. Data and models

We implement experiments on two ride-hailing
dataset. The first one is a for-hire-vehicle dataset
released by New York TLC in September 2018
(https://www1.nyc.gov/site/tlc/about/tlc-trip-record-
data.page). The dataset is built on data reported by
ride-hailing company like Uber and Lyft, including trip-
specific information such as pick-up and drop-off time, origin
and destination. The origin and destination of each raw trip
record are provided in the form of TLC zone id, which is
determined based on zip code. The partition method for

Manhattan by TLC is exactly as shown in Fig. 1b. In this
experiment, we mainly focus on trips with more than one
customers sharing a single vehicle, called shared service
mode. Only orders with non-empty records of timestamp,
origin and destination will be counted. After filtering, the
dataset contains a total of 18970027 OD transactions.

In addition to ride-hailing dataset with OD record, we also
employ the Smart Location Database to collect properties
including distance between regions, and zone-specific infor-
mation like residences number, employment rate and other
point of interest. With the combination of the two datasets,
we then construct the two correlation matrices specified in
Part B of section IV, which capture similarity in distance
and functionality respectively. In Fig. 5, we randomly select
a TLC zone located at downtown Manhattan and show the
correlations between this one and the others with graph
representations. The studied zone (id 232) is marked with red
color, and the color depth of the other zones relates to the
level of correlation. Fig. 5b demonstrates that geographically
remote zones can also have high correlation with the studied
one. It is necessary to construct multiple semantic adjacency
matrices to mine different dependencies sufficiently.
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Fig. 5: Representations of correlation matrices for zone 232

Demand patterns may be stable in mega-city like New
York. However, in other tourism areas, the pattern may change
a lot across seasons. To validate the robustness, we also
test our method on a dataset released by DiDi Chuxing for
Haikou, a tourism city in southern China. The dataset we used
(https://gaia.didichuxing.com) contains ride-hailing trips for
five month since June 2017. The Haikou city is first partitioned
into 10 × 10 rectangular grids which contains basically all
the recorded OD data. Some grids with rare data records
are then deleted, leaving 59 grids which include most of the
historical OD trips. The remaining grid network is naturally
classified into non-Euclidean domain. All the OD transactions
considered are then processed to contain zone-based origin
and destination information, as well as the corresponding time
stamps. Similar process of filtering as done on the Manhattan
dataset is then implemented for Haikou data. Correlation ma-
trices and semantic adjacency matrices are also constructed. In
addition, our method follows a routine of using both tendency
and periodicity features for predictions (introduced later in the
following paragraphs), while no specific module is added to
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characterize the seasonal patterns. Instead, these patterns are
learned by training on a sufficiently long horizon such that the
model can experience many scenarios, including the scenarios
with suddenly changing demand over weeks.

In the experiment for Manhattan data, we use demand data
from January 8, 2018 to November 4, 2018 for training,
November 5, 2018 to December 2, 2018 for validation, and
December 3, 2018 to December 31,2018 for testing. For
Haikou, demand data from June 5, 2017 to October 2, 2017 is
used for training, October 3, 2017 to October 16, 2017 for val-
idation, and October 17, 2017 to October 30, 2017 for testing.
To demonstrate the effectiveness of the proposed model, we
compare it with the following state-of-the-art machine learning
competitors:

• GraphSAGE [26]: a graph convolutional model that
aggregates adjacent information by taking average of
neighbor features.

• GEML [25]: a graph convolutional model that refines
GraphSAGE with pre-weighted aggregator.

• ST-GCN [4]: a graph convolutional model that employs
ChebNet [40] with multiple graphs.

• MLP: multi-layer perception network, which is a stan-
dard deep learning model.

• XGB: XGBoost model, a scalable end-to-end gradient
boosted decision trees.

• GBDT: gradient boosting decision tree model which
build multiple regression decision trees.

• RF: random forest model which is a classical ensemble
approach trained by bootstrapped samples for each con-
structed decision tree.

• LASSO: LASSO model which adds a L1-norm regular-
ization term to the linear regression as constraints on
parameter size.

• HA: the history average of past inflow, outflow and OD-
based demand respectively.

In the experiments, the standard CNN-based method cannot
be applied since the demand data is handled in graphs. Instead,
we employ GCN-based method including GraphSAGE, GEML
and ST-GCN as some of the major baseline approaches to
compare the ability of capturing spatial dependencies. For the
temporal dependencies, we select historical observations of
demands at time intervals t, t−1 (the time intervals before one
and two hours), t+1−24 (the time interval for the same hour
on yesterday), t+1−24×7 (the time interval for the same hour
on the same day of last week) as features. As given by Zhang
et al. [41], the former two represent temporal tendency, which
shows short-term dependency within time intervals. The long-
term temporal dependency, or say periodicity, is considered
by the last two, which capture demand patterns repeated over
days and over weeks. In this way, the temporal dependency is
well-captured directly in input features, instead of employing
extra RNN-related modules to do the same task.

In addition to the baseline methods, we also implement eight
variants of the proposed one as sensitivity analysis for both
the major modules:

• MT-MF-GCN-V1 to -V4: the combination of geograph-
ical and multiple semantic neighborhoods is replaced

by single one, respectively constructed on geographical
adjacency, function similarity, distance and commuting
history.

• MT-MF-GCN-V5: the matrix factorization layers are
replaced by linear transformation (LT) layers. The form
of LT layers is the same as in eq. (14), except that we
substitute different V i for each zone with a single same
matrix directly learned by the model, rather than obtained
from a certain layer of the tensor V .

• MT-MF-GCN-V6: a single-task model with the same
encoder structure as the proposed one, except that there
is only one group of MF layers for the OD demand
prediction.

• MT-MF-GCN-V7 to -V8: single-task models with the
same structure as the proposed one, respectively for
inflow and outflow demand predictions.

For model specifications, the three coefficients for inflow,
outflow and OD-based prediction error in the loss function
are 0.1, 0.1 and 0.8, selected from the set of [0.1, 0.1, 0.8],
[0.2, 0.2, 0.6], [0.33, 0.33, 0.33], [0.4, 0.4, 0.2]. The parameter
for scaling of inflow and outflow loss items is 1000, selected
from the set of 1, 10, 100, 1000. Learning rate is selected from
the set of 0.0001, 0.001, 0.01 and 0.1. The layer and size of
GCN is determined from the set of [64, 128], [128, 256], [64,
128, 64] and [128, 256, 128]. All the neural network based
baselines also share these sets of parameters if applicable. The
batch size for training is 16 and the maximum number of epoch
is 300. PyTorch is utilized to implement the experiments with
ADAM as the optimizer. For LASSO, the related parameter
alpha is chosen from the set of 0.1, 1, 10. For XGB and GBDT,
the max depth of tree is selected from 3, 5 and 7. For RF, the
number of trees is chosen from 50, 100, 200. All the models
are fine-tuned on the applicable parameter sets. For details of
hardware, a server with 64G RAM and one NVIDIA 1080Ti
GPU are employed for the implementation of the experiments.

B. Comparison with baselines

To evaluate the prediction performance, we utilize three
measurements including Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) and Mean Absolute Percent-
age Error (MAPE). The performance of baselines and the
proposed model, MT-MF-GCN, are summarized in TABLE I
for the Manhattan dataset. For all the three tasks of inflow,
outflow and OD-based prediction, the MT-MF-GCN model
outperforms both the traditional group of methods and classic
GCN models. For Manhattan dataset, compared to the best
performance of traditional ones, the proposed model reduces
RMSE/MAE/MAPE by 10.256%/12.079%/5.965% for OD-
based demand, 17.992%/16.179%/20.413% for inflow de-
mand, and 21.566%/19.256%/22.843% for outflow demand. In
comparison with the best performance of GCN-based baselines
(GraphSAGE, GEML and ST-GCN), the improvement mainly
comes from zone-demand prediction, where the reductions of
errors are 8.934%/8.355%/12.994% for inflow demand, and
5.964%/6.688%/7.317% for outlfow demand.

For tests on Haikou data, the results are shown in
TABLE II. In comparison with the best performance of
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traditional prediction models, the proposed model reduces
RMSE/MAE/MAPE by 6.634%/15.144%/10.811% for OD-
based prediction task. For inflow-based demand predic-
tion, the reductions are 4.129% for RMSE and 6.902%
for MAE, while MAPE basically keeps the same. For
outflow-based demand prediction, RMSE/MAE/MAPE are
reduced by 3.100%/9.762%/6.593%. Compared to the best
results from GCN-based baselines, the proposed model re-
duces RMSE/MAE/MAPE by 7.463%/3.846%/5.714% for
OD-based prediction, 1.751%/10.751%/12.671% for outflow
prediction and more than 5% for the three measurements for
inflow prediction. The results demonstrate the superiority of
the proposed multi-task matrix factorized graph neural network
model (MT-MF-GCN) over other traditional or GCN-based
prediction models on the tested datasets. The improvement
mainly comes from the following aspects: 1) The proposed
model can capture the spatial dependence in terms of distance,
neighborhood, functionality and mobility interaction simulta-
neously, while the other GCN-based models only consider
one or part of them. Diversified neighborhood structures
provide more complete information for the proposed model to
formulate its hidden representations. 2) The baseline models
either utilize pre-defined edge weights (such as GEML), or
only single edge weight (such as GraphSAGE and ST-GCN)
to construct GCN layer for each neighborhood. In comparison,
the proposed model adopts mixture-model GCN layers for
graph embedding, where the combination of different edge
weights are considered and self-adjusted by model training.
The mixture-model GCN structure helps to more accurately
capture general hidden representations in the shared embed-
ding module for multi-tasks. 3) The proposed model utilizes
matrix factorization technology to build its region-specific
decoders. Compared to linear transformation decoders used
in other baselines, the proposed one can provide higher com-
plexity to sufficiently restore the unique information for each
sub-tasks, and still with a relatively low price. 4) The multi-
task model structure leads to good solutions for sub-tasks. The
shared encoder can efficiently capture general information,
while the decoders built on matrix factorization layers keep
the parameter uniqueness for each sub-task. The effectiveness
of the multi-task structure is verified by the testing results,
where the proposed model shows better performance in each
sub-task over single-task models such as MLP, GraphSAGE
and ST-GCN.

To further verify the real-time applicability of the method,
we first compare the training times within MLP, GEML and
the proposed MT-MF-GCN model. On Manhattan dataset,
the training time for MT-MF-GCN over 100 epoch with 16
samples in a batch is 135 minutes, compared to 42 minutes for
GEML and 7 minutes for MLP. Regarding the speed of model
prediction on the test set, 1.4 seconds (testing time) is required
by the proposed model for generating the predictions on the
three tasks for the whole test set of Manhattan, containing
all the samples within one month. The testing time is 0.87
seconds for GEML, and 0.5 seconds for MLP. Although the
proposed model has longer training time than the baselines
due to a more complex architecture, the test time is acceptable.
In actual operations, it is the test time that matters since the

company can train the model offline and conduct predictions
with the trained model online.

TABLE I: Comparison with baselines for Manhattan dataset

OD-based demand
Model RMSE MAE MAPE
HA 1.312 0.537 0.987
LASSO 1.213 0.772 0.591
RF 0.874 0.518 0.573
GBDT 0.858 0.515 0.570
XGB 0.859 0.515 0.570
MLP 0.858 0.505 0.584
GraphSAGE 0.826 0.472 0.547
GEML 0.789 0.451 0.546
ST-GCN 0.776 0.446 0.541
MT-MF-GCN 0.770 0.444 0.536

Inflow demand
Model RMSE MAE MAPE
HA 14.59 8.852 0.526
LASSO 12.954 8.021 0.484
RF 11.278 7.340 0.410
GBDT 10.778 6.944 0.393
XGB 10.674 6.925 0.393
MLP 10.416 6.805 0.387
GraphSAGE 9.700 6.482 0.375
GEML 11.813 8.020 0.496
ST-GCN 9.380 6.224 0.354
MT-MF-GCN 8.542 5.704 0.308

Outflow demand
Model RMSE MAE MAPE
HA 14.464 9.026 0.520
LASSO 12.494 7.980 0.476
RF 11.196 7.406 0.420
GBDT 10.670 7.017 0.401
XGB 10.614 6.996 0.401
MLP 10.463 6.912 0.394
GraphSAGE 9.939 6.677 0.389
GEML 10.478 7.101 0.432
ST-GCN 8.853 5.981 0.328
MT-MF-GCN 8.325 5.581 0.304

C. Comparison with variants

As a sensitivity analysis for both the major modules, we test
the performances of variants V1 to V8, which are shown in
TABLE III and IV. By comparing V1 to V4 with the proposed
model, we verify the necessity to combine geographical adja-
cency graph (V1) with multiple semantic graphs together. By
comparing V5 with the proposed model, we aim to emphasize
on the importance of MF layers and demonstrate to what
degree they outperform regular linear decoders. By comparing
V6 to V8, the goal is to show the effectiveness in integration
of the graph embedding modules.

Usually, the most natural neighborhood is constructed by
geographical adjacency. With this straightforward definition
(V1), the prediction errors of the three tasks, are instead the
worst, especially for the inflow and outflow demand prediction
on both dataset. On the contrary, all the variants with semantic
neighborhoods (V2 to V4) show improvement in all the
prediction tasks compared to V1 for the Manhattan dataset,
and also improvement in zone-based demand prediction tasks
for the Haikou dataset. The combination of all the graphs, as
suggested in our model, further strengthens the performance in
the multi-task prediction. This demonstrates the significance
of employing the extra correlations and information from
multiple semantic neighborhoods.
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TABLE II: Comparison with baselines for Haikou dataset

OD-based demand
Model RMSE MAE MAPE
HA 8.152 1.038 0.999
LASSO 8.094 1.751 0.915
RF 2.385 0.391 0.361
GBDT 2.349 0.383 0.337
XGB 2.333 0.383 0.338
MLP 2.231 0.388 0.333
GraphSAGE 2.355 0.395 0.392
GEML 2.202 0.349 0.328
ST-GCN 2.251 0.338 0.315
MT-MF-GCN 2.083 0.325 0.297

Inflow demand
Model RMSE MAE MAPE
HA 39.169 11.289 0.305
LASSO 32.526 9.959 0.284
RF 30.918 9.683 0.301
GBDT 31.236 9.514 0.282
XGB 30.644 9.600 0.282
MLP 30.078 9.475 0.284
GraphSAGE 34.634 12.988 0.524
GEML 31.622 11.679 0.503
ST-GCN 31.251 10.853 0.391
MT-MF-GCN 28.836 8.821 0.287

Outflow demand
Model RMSE MAE MAPE
HA 43.194 11.090 0.293
LASSO 35.780 9.973 0.278
RF 33.366 9.432 0.295
GBDT 32.439 9.385 0.276
XGB 31.901 9.301 0.273
MLP 32.989 9.631 0.273
GraphSAGE 31.463 9.664 0.334
GEML 33.290 10.709 0.447
ST-GCN 32.518 9.404 0.292
MT-MF-GCN 30.912 8.393 0.255

For V5, the RMSE/MAE/MAPE increase by
10.9%/11.2%/21.1% and 6.1%/10.9%/12.2% for inflow
prediction respectively on Manhattan and Haikou dataset,
compared to the proposed one. The difference in performance
arises from the complexity of layer structure. In the linear
transformation layer of V5, a single matrix is utilized to
decode representations of all the zones. As a result, the
parameters in the matrix may be directed to represent
common characteristics of all the zones, with the sacrifice of
part of uniqueness of each zone. This problem is addressed
in the proposed model with matrix factorization decoders. In
eq. (13) and eq. (14), each zone is provided with its own
decoder matrix to sufficiently represent their uniqueness. The
correlation within decoders is also considered via co-training
of base matrix V B .

As a multi-task model, the proposed one performs at least
similarly well as the single-task models (MT-MF-GCN-V6,
-V7 and -V8) in each corresponding sub-task. However, it
takes fewer encoder parameters to achieve such performance
compared to the summation of single-task models, since the
multi-task model share and only need to train one graph
embedding module (GCN Basic Module), while there are three
such modules required to be separately stored and trained
for the single-task ones. This indicates the effectiveness of
the proposed model in discovering good solutions for zone
demand and OD demand predictions simultaneously.

TABLE III: Comparison with variants for Manhattan dataset

OD-based demand
Model RMSE MAE MAPE
MT-MF-GCN 0.770 0.444 0.536
MT-MF-GCN-V1 0.774 0.445 0.537
MT-MF-GCN-V2 0.773 0.444 0.536
MT-MF-GCN-V3 0.771 0.446 0.533
MT-MF-GCN-V4 0.771 0.446 0.534
MT-MF-GCN-V5 0.772 0.447 0.538
MT-MF-GCN-V6 0.771 0.446 0.534

Inflow demand
Model RMSE MAE MAPE
MT-MF-GCN 8.542 5.704 0.308
MT-MF-GCN-V1 9.714 6.384 0.344
MT-MF-GCN-V2 9.163 6.060 0.322
MT-MF-GCN-V3 8.933 5.953 0.324
MT-MF-GCN-V4 8.872 5.893 0.325
MT-MF-GCN-V5 9.473 6.343 0.373
MT-MF-GCN-V7 8.646 5.734 0.308

Outflow demand
Model RMSE MAE MAPE
MT-MF-GCN 8.325 5.581 0.304
MT-MF-GCN-V1 8.785 5.874 0.322
MT-MF-GCN-V2 8.775 5.895 0.320
MT-MF-GCN-V3 8.561 5.760 0.316
MT-MF-GCN-V4 8.595 5.779 0.324
MT-MF-GCN-V5 8.574 5.837 0.329
MT-MF-GCN-V8 8.410 5.617 0.304

TABLE IV: Comparison with variants for Haikou dataset

OD-based demand
Model RMSE MAE MAPE
MT-MF-GCN 2.083 0.325 0.297
MT-MF-GCN-V1 2.116 0.330 0.298
MT-MF-GCN-V3 2.134 0.327 0.299
MT-MF-GCN-V4 2.129 0.326 0.301
MT-MF-GCN-V5 2.113 0.330 0.304
MT-MF-GCN-V6 2.090 0.326 0.300

Inflow demand
Model RMSE MAE MAPE
MT-MF-GCN 28.836 8.821 0.287
MT-MF-GCN-V1 30.181 9.383 0.315
MT-MF-GCN-V3 28.833 9.121 0.308
MT-MF-GCN-V4 29.299 9.061 0.294
MT-MF-GCN-V5 30.602 9.780 0.322
MT-MF-GCN-V7 28.883 9.091 0.302

Outflow demand
Model RMSE MAE MAPE
MT-MF-GCN 30.912 8.393 0.255
MT-MF-GCN-V1 32.299 8.697 0.266
MT-MF-GCN-V3 31.472 8.588 0.272
MT-MF-GCN-V4 32.242 8.682 0.261
MT-MF-GCN-V5 32.147 8.670 0.264
MT-MF-GCN-V8 30.908 8.986 0.281

D. Visualizations of predictions

In order to provide a direct presentation, we select a TLC
zone of Manhattan with id 79 and illustrate prediction results
for it from Fig. 6 to Fig. 8. The chosen zone is an entertaining
area located at downtown Manhattan, which possesses the
largest historical daily demand of ride-sharing service. Fig. 6
presents the mean observed and predicted inflow and outflow
patterns within a week for December. A phenomenon is that
there is only one peak period for the inflow demand on
weekday, which is larger and prior to the evening peak of
outflow. A potential explanation is that most people come
to zone 79 for dinner, which usually happens after 5 pm.
This notable difference and other mobility patterns can be
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effectively observed and captured by the proposed model.
In Fig. 7 and Fig. 8, we show the origin and destination

distribution respectively for requests departing to and from a
selected zone during evening peak. The selected zone, zone
79, is marked with a green box and the color depth relates
to the level of demand. For example, a zone marked with 0-4
in Fig. 7 means that the number of OD trips departing from
this zone to zone 79 is within the range of 0 to 4, while a
zone marked with 4-7 in Fig. 8 means that the number of
OD trips departing from zone 79 to this zone is within the
range of 4 to 7. Thus, similar spatial distributions of color-
depth indicate high similarity in OD flow patterns with a fixed
destination (Fig. 7) or origin (Fig. 8). As shown in Fig. 7
and Fig. 8, the predicted OD flow distribution is similar to
the real distribution. The ride-sharing demand is predicted to
concentrate on downtown Manhattan at evening peak, while
distant orders rarely emerge, which accords with the observed
pattern.

(a) Inflow demand

(b) Outflow demand

Fig. 6: Hourly zone-based predictions of MT-MF-GCN model
for zone 79. The results are generated by taking average of all
the predictions for each week during December 2018.

VI. CONCLUSION

This paper studies the co-prediction problem of inflow,
outflow and OD-based ride-hailing demand, which provides
valuable information for the operation of ride-hailing plat-
form. To address the challenges of multi-task learning and
predictions with irregular zone partition, we first develop
a GCN basic module based on multi-graph mixture-model
GCN. The correlation matrices and multiple neighborhoods
are constructed to capture both geographical and semantic

(a) Predicted demand (b) Observed demand

Fig. 7: Heat maps of demand departing to zone 79 with differ-
ent origins during evening peak for MT-MF-GCN predictions
and observed demand.

(a) Predicted demand (b) Observed demand

Fig. 8: Heat maps of demand departing from zone 79 with
different destinations during evening peak for MT-MF-GCN
predictions and observed demand.

correlations. Based on different neighborhoods, mixture-model
GCNs are utilized to aggregate information with Gaussian
weighting functions learned by the model itself. Then we
employ a multi-task learning module with matrix factorization
(MF) layers as region-specific predictors, to separately decode
representations for each zone and each task. The proposed
end-to-end model is called multi-task matrix factorized graph
neural network. With evaluation on two real-world ride-
hailing datasets, the proposed model is shown able to out-
perform baseline methods significantly. The effectiveness of
each module and the significance of co-prediction structure
are then validated by a sensitivity analysis. In the future,
the proposed framework can be further explored from the
following perspectives: 1) Constant time intervals for predic-
tion can be replaced by time-variant intervals to improve the
flexibility and accuracy of the prediction model. 2) Current
objective function is formalized as a linear combination of
loss function of each sub-task. The coefficients of sub-tasks
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in the objective are determined via empirical tests. In the
future, other forms of objective function can be explored, and
some multi-objective optimization technology can be applied
to adjust the coefficients in loss function with more adaptivity.
3) Different transportation modes and services can be tested
with the proposed model framework, like bike-sharing, take-
out services and even shared autonomous on-demand mobility,
etc. 4) The current model framework is designed for prediction
in a single city. Transfer Learning technology can be applied
in future to co-train models with shared modules for different
cities, in order to increase the data efficiency. 5) The proposed
model mainly considers tendency and periodicity features for
its predictions. A mechanism/module to incorporate seasonal
features, however, is also important and merits future explo-
rations.
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