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Abstract: We consider Pareto-scheduling with two competing agents A and B on a single

machine, in which each job has a positional due index and a deadline. The jobs of agents A

and B are called the A-jobs and B-jobs, respectively, where the A-jobs have a common pro-

cessing time, while the B-jobs are restricted by their precedence constraint. The objective is to

minimize a general sum-form objective function of the A-jobs and a general max-form objective

function of the B-jobs, where all the objective functions are regular. We show that the problem

is polynomially solvable.
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1 Introduction

Agnetis et al. [2] introduced two-agent scheduling. In this model, there are two competing

agents A and B, and n jobs J = {J1, J2, . . . , Jn} that are partitioned into two subsets J A =
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{JA1 , JA2 , . . . , JAnA
} (called the A-jobs) and J B = {JB1 , JB2 , . . . , JBnB

} (called the B-jobs). Each

agent X ∈ {A,B} has a scheduling objective function γX to be minimized. Agnetis et al. [1]

collected most of the research results on two-agent scheduling.

We consider in this paper Pareto-scheduling with two competing agents to minimize the

objective functions γA and γB. A feasible schedule σ of the n jobs is called nondominated if

there exists no other feasible schedule π such that

(γA(π), γB(π)) ≤ (γA(σ), γB(σ)) and (γA(π), γB(π)) 6= (γA(σ), γB(σ)).

In this case, we also call (γA(σ), γB(σ)) a nondominated pair. The goal of the problem is to find

all the nondominated pairs and, for each nondominated pair, a corresponding nondominated

schedule. Following the notation introduced in T’kindt and Billaut [15], we denote the Pareto-

scheduling problem with two competing agents to minimize the objective functions γA and

γB as α|β|#(γA, γB), where α represents the machine environment and β represents the job

characteristics or the feasibility conditions.

Zhao and Yuan [18] introduced scheduling with the due-index constraint. In this scheduling

model, each job Jj is associated with a position index kj ∈ {1, 2, . . . , n}, called the positional

due index (due index) of job Jj, which indicates the latest tolerable position of job Jj in a

feasible schedule. Given a schedule σ of the n jobs J1, J2, . . . , Jn, the position number of a job

Jj in schedule σ is denoted by σ[Jj]. Thus, σ[Jj] = x if and only if x ∈ {1, 2, . . . , n} and job

Jj is scheduled at the x-th position in schedule σ. The due-index constraint requires that, in

a feasible schedule σ, we must have σ[Jj] ≤ kj for all j = 1, 2, . . . , n. Chen et al. [3], Gao

and Yuan [5], and Zhao and Yuan [18] documented most of the research results for this new

scheduling model.

Although the due-index constraint “kj” was originally introduced in Zhao and Yuan [18]

in the research of rescheduling problems, it has many applications in the real life. In some

servicing or production systems, processing sequences of the jobs (which are either the customers

waiting for services or the tasks to be processed) must be determined. When the jobs have

their requirements for the latest tolerable positions in the processing sequences, the due-index

constraint can be used in the formulation of the corresponding scheduling problems. Concrete

examples of such applications can be found in Chen et al. [3].

In this paper we study Pareto-scheduling with two competing agents on a single machine to

minimize the total scheduling cost of the A-jobs
∑
fAj and the maximum scheduling cost of the

B-jobs gBmax. In the problem, each job Jj ∈ J has a positional due index kj and a deadline d̄j,
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the A-jobs have a common processing time pA, and the B-jobs have a precedence constraint,

i.e., JBj ≺ JBk implies that job JBj must be processed before job JBk in any feasible schedule.

Then we denote the Pareto-scheduling problem as

1|kj, d̄j, pAi = pA, precB|#(
∑

fAi , g
B
max), (1)

where “kj” denotes the due-index constraint, “d̄j” denotes the deadline constraint, “pAi = pA”

denotes the common processing time pA of the A-jobs, and “precB” denotes the precedence

constraint of the B-jobs. In particular, we assume that
∑
fAi is a general sum-form objective

function of the A-jobs and gBmax is a general max-form objective function of the B-jobs under

the assumption that fAi , i ∈ {1, 2, . . . , nA}, and gBj , j ∈ {1, 2, . . . , nB}, are regular functions,

where a function f(t), t ∈ [0,+∞), is regular if f(t) is nondecreasing in t. Our goal is to find a

polynomial-time algorithm to solve problem (1). For simplicity, we use 1|β∗|#(
∑
fAi , g

B
max) to

denote problem (1), where β∗ = {kj, d̄j, pAi = pA, precB}.

Note that the two restrictions pAi = pA and precB in the β∗-field in problem (1) cannot be

further extended for two reasons. First, problem 1||
∑
wjTj is unary NP -hard, as shown in

Lawler [12]. Second, problem 1|chains, pj = 1|
∑
Uj is unary NP -hard, as shown in Lenstra

and Rinnooy Kan [13].

There are fruitful research results on Pareto-scheduling problems in the literature. Due to

the page limit, we only summarize in Table 1 the most closely related known results. Note that

our problem 1|β∗|#(
∑
fAi , g

B
max), i.e., 1|kj, d̄j, pAi = pA, precB|#(

∑
fAi , g

B
max), is a generalization

of the problem 1|kj, pAj = pA, precB|#(
∑
wjC

A
j , f

B
max) studied in Gao and Yuan [5] and the

problem 1|pj = 1|#(
∑
fAj , g

B
max) studied in Oron et al. [14]. This motivates us to study

problem 1|β∗|#(
∑
fAi , g

B
max).

Table 1: Known results related to this study.
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Scheduling problems Time complexity References

1||#(
∑
Cj, fmax) O(n4) Hoogeveen [9]

1||#(fmax, gmax) O(n4) Hoogeveen [10]

1||#(
∑
CA
j , f

B
max) O(n2

AnB log nA + nAn
3
B) Agnetis et al. [2]

1||#(fAmax, g
B
max) O(n3

AnB + nAn
3
B) Agnetis et al. [2]

1|pj = p|#(
∑
wjCj, fmax) O(n3 log n) He et al. [7]

1|kj|#(
∑
Cj, fmax) O(n4) Gao and Yuan [4]

1|pj = 1|#(fAmax, g
B
max) O(n2

A + n2
B + nAnB log nB) Oron et al. [14]

1|pj = 1|#(
∑
fAj , g

B
max) O(nBnmax{n3

A, n}) Oron et al. [14]

1||#(
∑
UA
j , g

B
max) O(min{nA, nB}n2

A(n log n+ n2
B)) Wan et al. [16]

1|kj, prec|fmax O(n2) Zhao and Yuan [18]

1|kj, prec|#(fmax, gmax) O(n4) Gao and Yuan [5]

1|kj, prec|#(fAmax : gBmax) O(n3
AnB + nAn

3
B) Gao and Yuan [5]

1|kj, pj = p|#(
∑
wjCj, fmax) O(n3 log n) Gao and Yuan [5]

1|kj, pAj = pA, precB|#(
∑
wjC

A
j , f

B
max) O(nnAn

2
B + n2

AnB log nA) Gao and Yuan [5]

1|kj, precB|#(
∑
CA
j , f

B
max) O(nnAn

2
B + n2

AnB log nA) Gao and Yuan [5]

Recently, Zhang and Yuan [17] presented an O(n2
B + n3

A) algorithm for problem 1|pAi =

pA|
∑
fAi : gBmax ≤ Q. This provides a basic idea for us to solve problem 1|β∗|#(

∑
fAi , g

B
max).

The organization and contributions of this paper, together with the approaches used in this

paper, can be stated as follows.

In Section 2, we introduce some notation and a basic lemma on Pareto-scheduling problems.

In Section 3, we establish an important lemma, which shows that problem 1|β∗|#(
∑
fAi ,

gBmax) can be reduced in linear time to an auxiliary problem 1|β∗|#(
∑
FA
i , g

B
max) on the same job

set, where FA
i (t) is strictly increasing in t ≥ 0 for i = 1, 2, . . . , nA. Such a reduction borrows the

technique used in Gao and Yuan [5] for dealing with the problem 1|kj, prec|#(fmax, gmax). This

lemma enables us to assume in the followed discussions that each fAi (t) is strictly increasing in

t ≥ 0 for i = 1, 2, . . . , nA. Our discussions in Section 4 depend heavily on this assumption.

In Section 4, we first present an O(n2
B + n3

A) solution algorithm, denoted Algorithm I, for

problem 1|β∗|
∑
fAi : gBmax ≤ Q, which results a schedule optimal for problem 1|β∗|

∑
fAi :

gBmax ≤ Q and nondominated for problem 1|β∗|#(
∑
fAi , g

B
max). Our Algorithm I is derived

from the algorithm in Zhang and Yuan [17] for solving problem 1|pAi = pA|
∑
fAi : gBmax ≤ Q.

The main change is that, when we need to schedule an unscheduled B-job in position h for
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completing at time t, we always pick an available B-job JBj to schedule such that gBj (t) is as

small as possible. This modification guarantees that Algorithm I always yields an optimal and

nondominated schedule. Such an approach for determining the B-job to be scheduled has been

widely used in bicriteria scheduling research, for example, in Agnetis et al. [2], Gao and Yuan

[4, 5], He et al. [7], and Hoogeveen [9, 10]. After this, we present another algorithm, denoted

Algorithm II, to generate all the nondominated pairs of problem 1|β∗|#(
∑
fAi , g

B
max). Each

iteration of Algorithm II generates a new nondominated pair by running Algorithm 1 based on

a new value of Q. Execution of Algorithm II is in fact a general approach for solving Pareto-

scheduling problems, with a detail discussion in Geng and Yuan [6]. Thus, from Geng and Yuan

[6], the time complexity of Algorithm II depends on the time complexity of Algorithm I and

the number of nondominated pairs of problem 1|β∗|#(
∑
fAi , g

B
max). By using a new technique

to calculate the number of nondominated pairs, we show that problem 1|β∗|#(
∑
fAi , g

B
max) has

at most nAnB + 1 nondominated pairs. As a result, problem 1|β∗|#(
∑
fAi , g

B
max) is solvable in

O(nAn
3
B + n4

AnB) = O(n5) time.

2 Preliminaries

We use the following notation throughout the paper.

• kXi is the positional due index of the X-job JXi , where X ∈ {A,B}.

• d̄Xi is the deadline of the X-job JXi , where X ∈ {A,B}.

• pAi = pA is the processing time of the A-job JAi .

• pBj is the processing time of the B-job JBj .

• PB =
∑nB

j=1 p
B
j is the total processing time of the B-jobs.

• Jσ(i) is the job scheduled in the i-th position in schedule σ.

• JAσA(i) is the i-th processed A-job in schedule σ, where we regard σA as the restriction of

schedule σ on the A-jobs.

• σ[JXi ] is the position number of the X-job JXi in schedule σ, where X ∈ {A,B}. This means

that JXi is the σ[JXi ]-th job in schedule σ. Then we have σ[JXi ] ≤ kXi under the due-index

constraint.

• CX
i (σ) is the completion time of the X-job JXi in schedule σ, where X ∈ {A,B}. Then we

have CX
i (σ) ≤ d̄Xi under the deadline constraint.
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• fAi (t) and gBj (t) are two functions nondecreasing in t ≥ 0 for each i with 1 ≤ i ≤ nA and each

j with 1 ≤ j ≤ nB. In this case, we also say that functions fAi (·) and gBj (·) are regular.

•
∑
fAi =

∑nA

i=1 f
A
i (CA

i ) is the total scheduling cost of all the A-jobs under the function vector

(fA1 , f
A
2 , . . . , f

A
nA

).

• gBmax = max{gBj (CB
j ) : 1 ≤ j ≤ nB} is the maximum scheduling cost of all the B-jobs under

the function vector (gB1 , g
B
2 , . . . , g

B
nB

).

We take the following convention throughout the paper.

Convention: All the parameters in the paper are integer-valued. Especially, the processing

time of each job is a positive integer and the functions fAi (·) and gBj (·) are integer-valued.

Associated with the Pareto-scheduling problem 1|β|#(γA, γB) is its constrained version,

denoted as 1|β|γA : γB ≤ Q, which seeks to find a feasible schedule σ so that γA(σ) is minimized

under the condition that γB(σ) ≤ Q. The following lemma is due to Hoogeveen [8].

Lemma 2.1. Suppose that schedule σ is optimal for problem 1|β|γA : γB ≤ Q and schedule π is
optimal for problem 1|β|γB : γA ≤ γA(σ). Then γA(π) = γA(σ) and schedule π is nondominated
for problem 1|β|#(γA, γB).

3 An important lemma

Consider problem 1|β∗|#(
∑
fAi , g

B
max) on the job set {JA1 , JA2 , . . . , JAnA

, JB1 , J
B
2 , . . . , J

B
nB
}, where

the functions fAi (t) (i = 1, 2, . . . , nA) and gBj (t) (j = 1, 2, . . . , nB) are integer-valued and non-

decreasing in t ≥ 0. For each function fAi (t) (i = 1, 2, . . . , nA), by adding a common sufficiently

large positive integer, we may assume that fAi (t) ≥ 1 for all t ≥ 0. Suppose that we only

consider the schedules in which every job completes at an integral time point. Following Gao

and Yuan [5], we use the following notation in our discussion.

• L is a sufficiently large integer so that, for every reasonable schedule σ, we have Cmax(σ) ≤ L.

• M = nAL+ 1.

• FA
i (t) = MfAi (t) + t, i = 1, 2, . . . , nA.

In our problem, we may define L = nAp
A + PB. It can be easily verified that each function

FA
i (t), i = 1, 2, . . . , nA, is strictly increasing in t ≥ 0. For problem 1|β∗|#(

∑
fAi , g

B
max) on the

job set J = {JA1 , JA2 , . . . , JAnA
, JB1 , J

B
2 , . . . , J

B
nB
}, we call the problem

1|β∗|#(
∑

FA
i , g

B
max) (2)
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on the same job set J the auxiliary problem. Since the two problems are defined on the same

job set, we use schedules of the n jobs for both problems at the same time. According to the

definitions of M and function FA
i (t) (i = 1, 2, . . . , nA), we obtain the following two observations.

Observation 3.1. Suppose that f ′, f ′′, x, and y are positive integers, where x, y ∈ {1, 2, . . . , nAL}.
If Mf ′ + x ≤ Mf ′′ + y, then f ′ ≤ f ′′. Moreover, if Mf ′ + x = Mf ′′ + y, then f ′ = f ′′ and
x = y.

Observation 3.2. For every feasible schedule σ, we have
∑
FA
i (σ) = M

∑
fAi (σ)+

∑
CA
i (σ) ≤

M
∑
fAi (σ) + nAL.

The following lemma reveals an essential relation between problem 1|β∗|#(
∑
fAi , g

B
max) and

its auxiliary problem 1|β∗|#(
∑
FA
i , g

B
max).

Lemma 3.1. Consider the two problems 1|β∗|#(
∑
fAi , g

B
max) and 1|β∗|#(

∑
FA
i , g

B
max) on the

same job set J = J A∪J B. If (f, g) is a nondominated pair of problem 1|β∗|#(
∑
fAi , g

B
max), then

(Mf+x, g) is a nondominated pair of problem 1|β∗|#(
∑
FA
i , g

B
max) for some x ∈ {1, 2, . . . , nAL}.

Proof. Suppose that (f, g) is a nondominated pair of problem 1|β∗|#(
∑
fAi , g

B
max) and let σ

be a nondominated schedule of the problem corresponding to (f, g). Then
∑
fAi (σ) = f

and gBmax(σ) = g. From Observation 3.2, we have
∑
FA
i (σ) = M

∑
fAi (σ) +

∑
CA
i (σ) =

Mf +
∑
CA
i (σ) ≤ Mf + nAL. Thus

∑
FA
i (σ) = Mf + x∗ for some x∗ ∈ {1, 2, . . . , nAL}. It

follows that (Mf + x∗, g) is an objective vector of problem 1|β∗|#(
∑
FA
i , g

B
max).

Suppose to the contrary that (Mf + x, g) is not a nondominated pair of the auxiliary
problem 1|β∗|#(

∑
FA
i , g

B
max) for each x ∈ {1, 2, . . . , nAL}. Then (Mf + x∗, g) is not a non-

dominated pair of problem 1|β∗|#(
∑
FA
i , g

B
max), either. Therefore, there is a nondominated

schedule π for problem 1|β∗|#(
∑
FA
i , g

B
max) such that (

∑
FA
i (π), gBmax(π)) ≤ (Mf + x∗, g), and

either
∑
FA
i (π) < Mf + x∗ and gBmax(π) = g, or gBmax(π) < g. From Observation 3.2, we

have
∑
FA
i (π) = M

∑
fAi (π) + x′ for some x′ ∈ {1, 2, . . . , nAL}. Since (

∑
FA
i (π), gBmax(π)) ≤

(Mf+x∗, g), we have M
∑
fAi (π)+x′ ≤Mf+x∗. From Observation 3.1, we have

∑
fAi (π) ≤ f .

Since (f, g) is a nondominated pair of problem 1|β∗|#(
∑
fAi , g

B
max), we have gBmax(π) = g. Thus,∑

FA
i (π) = M

∑
fAi (π) + x′ < Mf + x∗. From Observation 3.1, we have

∑
fAi (π) < f . This

contradicts the assumption that (f, g) is a nondominated pair of problem 1|β∗|#(
∑
fAi , g

B
max)

since
∑
fAi (π) < f and gBmax(π) = g. The result follows.

The result in Lemma 3.1 implies that, if P(
∑
FA
i , g

B
max) = {(Mf (i) + x(i), g(i)) : 1 ≤ i ≤

K} is the set of nondominated pairs of problem 1|β∗|#(
∑
FA
i , g

B
max), then the set of all the

nondominated pairs of problem 1|β∗|#(
∑
fAi , g

B
max), denoted by P(

∑
fAi , g

B
max), is a subset of

{(f (i), g(i)) : 1 ≤ i ≤ K}. We may assume that g(1) > g(2) > · · · > g(K). Then P(
∑
fAi , g

B
max)

can be obtained from {(f (i), g(i)) : 1 ≤ i ≤ K} in O(K) time, which is dominated by the

time complexity for solving problem 1|β∗|#(
∑
FA
i , g

B
max). Consequently, we can solve problem

1|β∗|#(
∑
fAi , g

B
max) by using the solution for its auxiliary problem 1|β∗|#(

∑
FA
i , g

B
max).
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In order to increase the comprehensibility, let us consider in the following a small numer-

ical example. In the job instance, we have J A = {JA1 , JA2 , JA3 } and J B = {JB1 , JB2 , JB3 , JB4 }.
Each job JXj , X ∈ {A,B}, has a weight wXj , a processing time pXj , and a due date dXj .

For simplicity, the due-index constraint, the deadline constraint, and the precedence con-

straint are not considered. Table 2 presents all the parameters of the job instance. We may

choose L = 9, which is the total processing time of all jobs. Then M = nAL + 1 = 28.

In a schedule σ of the jobs in J A ∪ J B, we use TXj (σ) = max{0, CX
i (σ) − dj} to denote

the tardiness of the X-job JXj . Moreover, the objective functions of the A-jobs and the

B-jobs are concretized as
∑
fAj =

∑3
j=1w

A
j T

A
j (the total weighted tardiness) and gBmax =

max{wBj TBj : j = 1, 2, 3, 4} (the maximum weighted tardiness). Then
∑
FA
i = 28

∑
fAj +∑

CA
j . For the auxiliary problem 1|β∗|#(

∑
FA
i , g

B
max), the nondominated pairs are given by

P(
∑
FA
i , g

B
max) = {(6, 8), (8, 7), (96, 6), (326, 4), (499, 3)} and the corresponding nondominated

schedules {σ1, σ2, σ3, σ4, σ5} are described in Table 3. The nondominated pairs of problem

1|β∗|#(
∑
fAi , g

B
max) are given by P(

∑
fAi , g

B
max) = {(0, 7), (3, 6), (11, 4), (17, 3)}, which are the

nondominated pairs in {(f (i), g(i)) : 1 ≤ i ≤ 5} = {(0, 8), (0, 7), (3, 6), (11, 4), (17, 3)}.

dAj 6 3 4

pAj 1 1 1

wAj 1 2 2

JA1 JA2 JA3

dBj 3 2 6 1

pBj 1 2 1 2

wBj 2 1 3 2

JB1 JB2 JB3 JB4

Table 2. The parameters of agent A and agent B.

(17, 3) (499, 3) σ5 = (JB4 , J
B
1 , J

B
2 , J

A
3 , J

B
3 , J

A
2 , J

A
1 )

(11, 4) (326, 4) σ4 = (JA2 , J
B
4 , J

B
1 , J

B
2 , J

B
3 , J

A
3 , J

A
1 )

(3, 6) (96, 6) σ3 = (JA2 , J
A
3 , J

B
4 , J

B
1 , J

B
3 , J

B
2 , J

A
1 )

(0, 7) (8, 7) σ2 = (JA1 , J
A
2 , J

B
4 , J

A
3 , J

B
1 , J

B
3 , J

B
2 )

(0, 8) (6, 8) σ1 = (JA1 , J
A
2 , J

A
3 , J

B
4 , J

B
1 , J

B
3 , J

B
2 )

(f (i), g(i)) P(
∑
FA
i , g

B
max) nondominated schedules

Table 3. The nondominated pairs and nondominated schedules.
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4 Pareto optimization

From Section 3, we only need to consider problem 1|β∗|#(
∑
fAi , g

B
max) under the assumption that

each function fAi (t), i = 1, 2, . . . , nA, is strictly increasing in t ≥ 0. To check the feasibility of the

problem, we define gAi (·) = −∞ for each i = 1, 2, . . . , nA. Let gmax = max{gAmax, g
B
max}. Then

problem 1|β∗|#(
∑
fAi , g

B
max) is feasible if and only if the optimal value of problem 1|β∗|gmax,

i.e., problem 1|kj, d̄j, pAi = pA, precB|gmax, is a finite number.

Recall that Zhao and Yuan [18] presented anO(n2) algorithm to solve problem 1|kj, prec|fmax.

Their algorithm is also applicable for problem 1|kj, d̄j, prec|fmax, which is equivalent to problem

1|kj, prec|f ′max, where f ′j(t) = fj(t) if t ≤ d̄j and f ′j(t) = +∞ if t > d̄j.

So we can use the algorithm in Zhao and Yuan [18] for problem 1|β∗|gmax to obtain its

optimal value, denoted as Gmin. Clearly, Gmin is the minimum value of gBmax(σ) among all the

feasible schedules σ. In the sequel, we assume that problem 1|β∗|#(
∑
fAi , g

B
max) is feasible. Then

Gmin < +∞. Given a number Q ≥ Gmin, we present an algorithm for solving the constrained

problem 1|β∗|
∑
fAi : gBmax ≤ Q as follows:

Algorithm I: For problem 1|β∗|
∑
fAi : gBmax ≤ Q.

Input: A feasible job set {JA1 , JA2 , . . . , JAnA
, JB1 , J

B
2 , . . . , J

B
nB
}.

Preprocessing: Sorting the B-jobs in the topological order under their precedence constraint.

Step 1: Set t := nAp
A + PB, h := n, l := nA, J A

0 := J A, and J B
0 := J B.

Step 2: Let Uh(t) be the set of all the B-jobs JBj ∈ J B
0 with gBj (t) ≤ Q, kBj ≥ h, d̄Bj ≥ t,

and JBj having no successor in J B
0 under the precedence constraint of the B-jobs. (Then Uh(t)

consists of all the B-jobs that are available in position h for completing at time t.) Do the

following:

– If Uh(t) 6= ∅, then go to Step 3.

– If Uh(t) = ∅, then go to Step 4.

Step 3: (The case that Uh(t) 6= ∅.) Choose a B-job JBj from Uh(t) such that gBj (t) is as small

as possible. Schedule the B-job JBj in the interval [t−pBj , t] as the h-th job in the final schedule.

Set t := t− pBj , h := h− 1, and J B
0 := J B

0 \ {JBj }. Do the following:

– If t > 0, then go to Step 2.

– If t = 0, then go to Step 5.

Step 4: (The case that Uh(t) = ∅.) Define Tl = [t − pA, t]. (Some uncertain A-job JAi with
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kAi ≥ h and d̄Ai ≥ t will be scheduled in the interval Tl acting as the h-th job in the final

schedule.) For each i = 1, 2, . . . , nA, we define

cil =

 fAi (t), if kAi ≥ h and d̄Ai ≥ t,

+∞, otherwise.

Set t := t− pA, h := h− 1, and l := l − 1. Do the following:

– If t > 0, then go to Step 2.

– If t = 0, then go to Step 5.

Step 5: Assign the A-jobs to the nA time intervals T1, T2, . . . , TnA
, each of length pA, by solving

the nA × nA Linear Assignment Problem with costs cij, i, j ∈ {1, 2, . . . , nA}. �

Algorithm I for solving problem 1|β∗|
∑
fAi : gBmax ≤ Q is a modification of Algorithm 3.1,

which runs in O(n2
B + n3

A) time, for solving problem 1|pAj = pA|
∑
fAi : gBmax ≤ Q in Zhang and

Yuan [17]. The main differences between the two algorithms are the following two points: (i)

We incorporate the constraints “kj, d̄j, prec” into the implementation of Algorithm 1, and (ii)

in Step 3 of Algorithm I, when more than one B-job are available for completing at time t,

we always choose an available B-job JBj such that fBj (t) is as small as possible. The following

lemma shows that the time complexity O(n2
B + n3

A) is still valid.

Lemma 4.1. Algorithm I runs in O(n2
B + n3

A) time.

Proof. In the preprocessing procedure, the B-jobs are sorted in the topological order under their
precedence constraint, the time complexity of which is O(n2

B). Algorithm I has n iterations in
total. In each iteration, Steps 2-4 are implemented. Step 2, with the topological order of the
B-jobs in hand, runs in O(n) time. Step 3 runs in O(nB) time to pick the B-job JBj from Uh(t)
such that fBj (t) is as small as possible. Step 4 runs in O(nA) time to calculate all the values
cil, i = 1, 2, . . . , nA. Thus, the total running time of the preprocessing procedure and Steps
2-4 in Algorithm I is O(n2

B + n2). Finally, from Lawler [11], the nA × nA Linear Assignment
Problem in Step 5 is solvable in O(n3

A) time. Consequently, the time complexity of Algorithm
I is O(n2

B + n2 + n3
A) = O(n2

B + n3
A). The lemma follows.

Algorithm 3.1 in Zhang and Yuan [17] returns an optimal schedule for problem 1|pAj =

pA|
∑
fAi : gBmax ≤ Q. But in general their algorithm cannot generate a nondominated schedule

for problem 1|pAj = pA|#(
∑
fAi , g

B
max). Alternatively, in our Algorithm I, when more than one

B-job are available for completing at time t, we always choose an available B-job JBj such that

fBj (t) is as small as possible. This guarantees the following stronger result.
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Lemma 4.2. Let J = {JA1 , JA2 , . . . , JAnA
, JB1 , J

B
2 , . . . , J

B
nB
} and let σ be the schedule of the job

set J returned by Algorithm I. Then σ is optimal for problem 1|β∗|
∑
fAi : gBmax ≤ Q and

nondominated for problem 1|β∗|#(
∑
fAi , g

B
max).

Proof. From Lemma 2.1, there is a schedule π of the jobs in J that is optimal for problem
1|β∗|

∑
fAi : gBmax ≤ Q and nondominated for problem 1|β∗|#(

∑
fAi , g

B
max). For convenience,

we call such a schedule π a desired schedule. Then it suffices to show that σ is also a desired
schedule.

Since σ is a feasible schedule for problem 1|β∗|
∑
fAi : gBmax ≤ Q, we have∑

fAi (π) ≤
∑

fAi (σ). (3)

Suppose that

J B = {Jσ(i1), Jσ(i2), . . . , Jσ(inB
)} = {Jπ(j1), Jπ(j2), . . . , Jπ(jnB

)} (4)

such that
i1 < i2 < · · · < inB

and j1 < j2 < · · · < jnB
. (5)

We first prove the following claim.

Claim 1. There is a desired schedule π such that ix = jx and Jσ(ix) = Jπ(jx) for x = 1, 2, . . . , nB.

Suppose to the contrary that the result in Claim 1 is not valid. For each desired schedule
π, we define

λ(σ, π) = max{x ∈ {1, 2, . . . , nB} : either ix 6= jx or Jσ(ix) 6= Jπ(jx)}. (6)

For our purpose, we may choose the desired schedule π such that λ(σ, π) is as small as possible.

Let z = λ(σ, π). The definition of λ(σ, π) in (6) implies that ix = jx and Jσ(ix) = Jπ(jx) for
x = z + 1, z + 2, . . . , nB but either iz 6= jz or Jσ(iz) 6= Jπ(jz). We distinguish the following three
cases.

Case 1: iz > jz. Since the A-jobs have a common processing time pA, the definition of λ(σ, π)
implies that Cσ(iz)(σ) = Cπ(iz)(π), Jπ(iz) is an A-job, and Jσ(iz) is scheduled before Jπ(iz) in
π. Since σ is a feasible schedule for problem 1|β∗|

∑
fAi : gBmax ≤ Q, Jσ(iz) ∈ J B is available

(subject to the constraints in field β∗ and subject to the restriction gBmax ≤ Q) in position iz and
time Cσ(iz)(σ). Let π′ be a new schedule obtained from π by shifting Jσ(iz) to the iz-th position
for completing at time Cσ(iz)(σ) = Cπ(iz)(π). Then π′ is also a feasible schedule for problem
1|β∗|

∑
fAi : gBmax ≤ Q. Moreover, we have Cπ(iz)(π

′) < Cπ(iz)(π) and Cj(π
′) ≤ Cj(π) for all the

A-jobs Jj ∈ J A \ {Jπ(iz)}. Since each function fAi (t), i = 1, 2, . . . , nA, is strictly increasing in
t ≥ 0, we have

∑
fAi (π′) <

∑
fAi (π). This contradicts the fact that π is an optimal schedule

for problem 1|β∗|
∑
fAi : gBmax ≤ Q. Hence, Case 1 does not occur.

Case 2: iz < jz. Since the A-jobs have a common processing time pA, the definition of λ(σ, π)
implies that Cσ(jz)(σ) = Cπ(jz)(π), Jσ(jz) is an A-job, and Jσ(iz) is scheduled before Jσ(jz) in
σ. Since π is a feasible schedule for problem 1|β∗|

∑
fAi : gBmax ≤ Q, Jπ(jz) ∈ J B is available

(subject to the constraints in field β∗ and subject to the restriction gBmax ≤ Q) in position jz
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and time Cσ(jz)(σ). Thus, in Step 3 of Algorithm I, some B-job should be scheduled in position
jz for completing at time Cσ(jz)(σ). This contradicts the assumption that σ is the schedule
generated by Algorithm I. Hence, Case 2 does not occur.

Case 3: iz = jz and Jσ(iz) 6= Jπ(jz). Since the A-jobs have a common processing time pA,
the definition of λ(σ, π) implies that Cσ(jz)(σ) = Cπ(jz)(π) and Jσ(jz) is scheduled before Jπ(jz)
in π. Since both σ and π are feasible schedules for problem 1|β∗|

∑
fAi : gBmax ≤ Q, the two

B-jobs Jσ(jz) and Jπ(jz) are both available (subject to the constraints in field β∗ and subject
to the restriction gBmax ≤ Q) in position jz and time t := Cπ(jz)(π). Assume that Jσ(jz) = JBx
and Jπ(jz) = JBy . From the implementation of Step 3 of Algorithm I, we have gBx (t) ≤ gBy (t) ≤
gBmax(π). Let π′′ be a new schedule obtained from π by shifting JBx = Jσ(jz) to the jz-th
position for completing at time t = Cπ(jz)(π). Then π′′ is also a feasible schedule for problem
1|β∗|

∑
fAi : gBmax ≤ Q. Moreover, we have Cj(π

′) ≤ Cj(π) for all the A-jobs Jj ∈ J A

and all the B-jobs Jj ∈ J B \ {JBx }. By noting that gBx (π′′) = gBx (t) ≤ gBmax(π), we have∑
fAi (π′′) ≤

∑
fAi (π) and gBmax(π

′′) ≤ gBmax(π). From the fact that π is a nondominated schedule
for problem 1|β∗|#(

∑
fAi , g

B
max), we have

∑
fAi (π′′) =

∑
fAi (π) and gBmax(π

′′) = gBmax(π). Thus,
π′′ is also a desired schedule. Since Jπ′′(jz) = JBx = Jσ(jz), we have λ(σ, π′′) < z = λ(σ, π). This
contradicts the choice of the desired schedule π. The claim follows.

From Claim 1, we suppose in the following that π is a desired schedule such that ix = jx and
Jσ(ix) = Jπ(jx) for x = 1, 2, . . . , nB. Since all the A-jobs have a common processing time pA and σ
is generated by Algorithm I, we have (i) Cj(σ) = Cj(π) for every B-job Jj ∈ J B, and (ii) in both
σ and π, the nA A-jobs are scheduled in the nA intervals T1, T2, . . . , TnA

(generated in Algorithm
I), each of length pA, respectively. From property (i), we have gBmax(σ) = gBmax(π). Note that
in schedule σ, the nA A-jobs are optimally scheduled in the nA intervals T1, T2, . . . , TnA

in Step
5 of Algorithm I. Thus, from property (ii), we have

∑
fAi (π) ≥

∑
fAi (σ). Taking (3) into

consideration, we conclude that
∑
fAi (σ) =

∑
fAi (π) and gBmax(σ) = gBmax(π). Consequently, σ

is a desired schedule. The lemma follows.

The result in Lemma 4.2 implies that we can solve problem 1|β∗|#(
∑
fAi , g

B
max) by using

Algorithm I iteratively in the following way.

Algorithm II: Initially set Q := +∞ and apply Algorithm I to solve problem 1|β∗|
∑
fAi :

gBmax ≤ Q to obtain the first nondominated schedule σ(1) and the corresponding nondominated

pair (
∑
fAi (σ(1)), gBmax(σ

(1))). Generally, if the k-th nondominated schedule σ(k) and the cor-

responding nondominated pair (
∑
fAi (σ(k)), gBmax(σ

(k))) have been generated and gBmax(σ
(k)) >

Gmin, we reset Q := gBmax(σ
(k))−1 and apply Algorithm I to solve problem 1|β∗|

∑
fAi : gBmax ≤ Q

to obtain the next nondominated schedule σ(k+1) and the corresponding nondominated pair

(
∑
fAi (σ(k+1)), gBmax(σ

(k+1))). Repeat this procedure until we meet an index K such that

gBmax(σ
(K)) = Gmin.

The above Algorithm II has K iterations and each iteration executes Algorithm I for solving

a corresponding problem 1|β∗|
∑
fAi : gBmax ≤ Q. To estimate the value K, for a schedule σ, we
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define NA(σ) = σ[JA1 ] + σ[JA2 ] + · · · + σ[JAnA
], which is the sum of the position indices of the

A-jobs in schedule σ.

Lemma 4.3. K ≤ nAnB + 1.

Proof. Let σ(1), σ(2), . . . , σ(K) be the nondominated schedules generated by Algorithm II in the
given order. Then we have gBmax(σ

(1)) > gBmax(σ
(2)) > · · · > gBmax(σ

(K)) = Gmin.

Claim 2. For each index k with 1 ≤ k ≤ K − 1, we have NA(σ(k)) < NA(σ(k+1)).

In order to prove Claim 2, it suffices to show that the B-jobs processed before the A-job
JA
σ
(k)
A (i)

in schedule σ(k) are still processed before the A-job JA
σ
(k+1)
A (i)

in schedule σ(k+1) for all

i ∈ {1, 2, . . . , nA}.
Suppose to the contrary that there exists an index i ∈ {1, 2, . . . , nA} such that some B-

job JBx is processed before JA
σ
(k)
A (i)

in schedule σ(k) and processed after JA
σ
(k+1)
A (i)

in schedule

σ(k+1). We may choose the B-job JBx such that CB
x (σ(k+1)) is as large as possible. Since

the A-jobs have a common processing time pA, we have d̄Bx ≥ CB
x (σ(k+1)) ≥ CA

σ
(k)
A (i)

(σ(k)),

σ(k)[JA
σ
(k)
A (i)

] ≤ σ(k+1)[JBx ] ≤ kBx , and job JBx has no successor (under the constraint precB)

between JBx and JA
σ
(k)
A (i)

in schedule σ(k). Since gBmax(σ
(k)) > gBmax(σ

(k+1)) ≥ gBx (σ(k+1)), job JBx

is available at position σ(k)[JA
σ
(k)
A (i)

] for completing at time CA

σ
(k)
A (i)

(σ(k)) when σ(k) is generated

by Algorithm I. But this contradicts the implementation of Step 3 of Algorithm I, in which the
available B-jobs have the priority to be scheduled in any position. The claim follows.

Since 1 + 2 + · · · + nA ≤ NA(σ) ≤ nAnB + 1 + 2 + · · · + nA for every feasible schedule σ,
NA(σ) has at most nAnB + 1 possible values. Thus, from Claim 2, we have K ≤ nAnB + 1. The
lemma follows.

Now our final result can be stated as follows.

Theorem 4.1. Algorithm II solves problem 1|β∗|#(
∑
fAi , g

B
max) correctly in O(nAn

3
B+n4

AnB) =
O(n5) time.

Proof. Since each iteration of Algorithm II executes Algorithm I for solving a corresponding
problem 1|β∗|

∑
fAi : gBmax ≤ Q, from Lemma 4.2, for each k = 1, 2, . . . , K, the k-th iteration of

Algorithm II generates an undominated schedule σ(k) and a corresponding undominated pair
(
∑
fAi (σ(k)), gBmax(σ

(k))). Since gBmax is integer-valued, there is no undominated pair (f, g) such
that gBmax(σ

(k)) − 1 < g < gBmax(σ
(k)), k = 1, 2, . . . , K − 1. Then Algorithm II generates all

the nondominated pairs of problem 1|β∗|#(
∑
fAi , g

B
max) and their corresponding nondominated

schedules. It follows that Algorithm II solves problem 1|β∗|#(
∑
fAi , g

B
max) correctly.

From Lemmas 4.1 and 4.3, each iteration of Algorithm II runs in O(n2
B+n3

A) time and there
are totally K ≤ nAnB + 1 iterations. Then the time complexity of Algorithm II is given by
O(nAn

3
B + n4

AnB) = O(n5). The result follows.
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5 Conclusions

In this paper, we studied the competing-agent Pareto-scheduling problem

1|kj, d̄j, pAi = pA, precB|#(
∑

fAi , g
B
max),

where “kj” denotes the due-index constraint, “d̄j” denotes the deadline constraint, “pAi = pA”

denotes the common processing time pA of the A-jobs, and “precB” denotes the precedence

constraint of the B-jobs. We showed that the problem is polynomially solvable. From the

known results in the literature, the research in this paper cannot be extended to a more general

two-agent scheduling problem in single-machine setting.

For the further research, we suggest to consider the counterparts of the problem stud-

ied in this paper in the serial-batch scheduling environment and the parallel-batch scheduling

environment. It is also interesting to present a polynomial algorithm for problem 1|pAi =

pA|λA
∑
fAi + λBg

B
max with time complexity better than O(n5), where λA and λB are two posi-

tive numbers.
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