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Abstract We consider the single-machine preemptive Pareto-scheduling problem with

two competing agents A and B, where agent A wants to minimize the number of its jobs

(the A-jobs) that is tardy, while agent B wants to minimize the total late work of its jobs

(the B-jobs). We provide an O(nnA log nA + nB log nB)-time algorithm that generates all

the Pareto-optimal points, where nA is the number of the A-jobs, nB is the number of the

B-jobs, and n = nA + nB.
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1 Introduction

Background: Scheduling has remained an active domain of research in the field of com-

binatorial optimization and an abundance of theoretical results have been developed over

the years (see, e.g., Brucker (2001), Chen et al. (1998), and Lawler (1983)). Motivat-

ed by a wide array of practical applications, researchers have developed a great variety
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of scheduling models and made remarkable progress in addressing their computational

complexity issues, and devising solution and approximation algorithms for them. One

main branch of scheduling research concerns multi-agent scheduling, in which two-agent

scheduling is at its core. In the literature, two-agent scheduling that considers the late

work criterion is an emerging topic that has not been extensively studied. Considering

this topic, we study the two-agent preemptive Pareto-scheduling problem, in which one

agent wants to minimize the number of its tardy jobs, while the other agent wants to

minimize the total late work of its jobs.

Problem Formulation: We introduce the single-machine preemptive scheduling prob-

lem with two competing agents as follows: There are two agents A and B that compete

to perform their respective jobs on a common machine. Let J A = {JA1 , JA2 , . . . , JAnA
} and

J B = {JB1 , JB2 , . . . , JBnB
} denote the job sets of agent A and agent B, respectively, under

the competing restriction that J A∩J B = ∅. For each agent X ∈ {A,B}, the jobs of J X

are called the X-jobs. Each job JXj has a processing time pXj > 0 and a due date dXj ≥ 0,

both of which are integer-valued. Let PX =
∑nX

j=1 p
X
j for X ∈ {A,B}, n = nA + nB,

J = J A∪J B, and P = PA+PB. All the jobs are available at time zero. We assume that

the maximum due date of all the jobs is at most P and the schedules are preemptive. A

feasible schedule requires that any pair of jobs cannot be processed in the same time slot.

Given a feasible schedule σ of the n independent jobs of J , we use CX
j (σ) to denote

the completion time of a job JXj , X ∈ {A,B}. The late work of job JXj under σ, denoted

by Y X
j (σ), is the amount of processing of JXj after its due date dXj in σ. If Y X

j (σ) = 0 or,

equivalently, CX
j (σ) ≤ dXj , then JXj is called early under σ. If 0 < Y X

j (σ) < pXj , then JXj
is called partially early under σ. If Y X

j (σ) = pXj , then JXj is called late under σ. JXj is

called non-late under σ if JXj is either early or partially early, i.e., not late, under σ. JXj
is called tardy under σ if CX

j (σ) > dXj , i.e., JXj is either partially early or late under σ.

We define UX
j (σ) = 0 if JXj is early under σ and define UX

j (σ) = 1 if JXj is tardy under σ.

When no ambiguity may occur, we abbreviate CX
j (σ), Y B

j (σ), and UA
j (σ) as CX

j , Y B
j , and

UA
j , respectively. In addition, we use the the following notation throughout the paper.

•
∑
UA
j =

∑nA

j=1 U
A
j (σ) is the number of tardy A-jobs under schedule σ.

•
∑
Y B
j =

∑nB

j=1 Y
B
j (σ) is the total late work of the B-jobs under schedule σ.

Specifically, we consider in this paper the single-machine preemptive Pareto-scheduling

problem with two competing agents A and B to minimize the number of tardy A-jobs

and total late work of the B-jobs. The goal is to find all the Pareto-optimal points and,

for each Pareto-optimal point, the corresponding Pareto-optimal schedule. T’kindt and
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Billaut (2006) gave the formal definitions of Pareto-optimal points and Pareto-optimal

schedules. Following the notation in T’kindt and Billaut (2006), we denote the scheduling

problem under study as

1|pmtn|#(
∑

UA
j ,

∑
Y B
j ). (1)

Throughout the paper, we sort the A-jobs such that

dA1 ≤ dA2 ≤ · · · ≤ dAnA
≤ P (2)

with ties being broken by the longest processing time (LPT) first rule, i.e.,

i < j if dAi = dAj and pAi > pAj . (3)

The assumption of preemptive scheduling and the criterion
∑
Y B
j of agent B enable us

to make a simple assumption for the B-jobs. If there are two B-jobs JBj and JBj′ such that

dBj = dBj′ , then we can merge JBj and JBj′ into a new job JBj·j′ such that pBj·j′ = pBj + pBj′

and dBj·j′ = dBj . This clearly does not affect the results of our analysis of the problem. So

we assume that the B-jobs have distinct due dates. Throughout the paper, we sort the

B-jobs such that

dB1 < dB2 < · · · < dBnB
≤ P. (4)

Literature Review: There is a large body of literature on scheduling involving two com-

peting agents, scheduling considering the tardy-job criterion, and scheduling considering

the late work criterion. For our purpose, we only review the most related results.

Agnetis et al. (2004), and Baker and Smith (2003) pioneered two-agent scheduling

research. Agnetis et al. (2004) considered various constrained scheduling problems and

Pareto-scheduling problems involving two competing agents. The objective functions they

sought to minimize include the maximum scheduling cost, total (weighted) completion

time, and number of tardy jobs. Baker and Smith (2003) considered the global objective

to minimize a positive combination of the criteria of two competing agents. The objective

functions they sought to minimize include three basic scheduling criteria, namely the

makespan, maximum lateness, and total weighted completion time. Yuan et al. (2005a)

further studied some of the problems that Baker and Smith (2003) considered. For detailed

results on two-agent scheduling, we refer the reader to Agnetis et al. (2014), Cheng et al.

(2006, 2008), Lee et al. (2010), Leung et al. (2010), Liu et al. (2019), Ng et al. (2006),

Oron et al. (2015), and Yuan (2016, 2018).

Blazewicz and Finke (1987) first studied scheduling considering the late work criteri-

on. They showed that the preemptive scheduling problem with release dates on identical
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parallel machines can be solved by linear programming, so the problem is polynomial-

ly solvable. Potts and Van Wassenhove (1991a) considered single-machine scheduling to

minimize the total late work. They showed that the problem is NP -hard and is solvable in

pseudo-polynomial time. Potts and Van Wassenhove (1991b) further proposed a branch-

bound algorithm and presented two fully polynomial-time approximation schemes, which

run in O(n
2

ε
) and O(n

3

ε
) times, respectively, for the problem. Hariri et al. (1995) consid-

ered single-machine preemptive scheduling to minimize the total weighted late work and

presented an O(n log n)-time algorithm for the problem. Zhang and Wang (2017) studied

the two-agent scheduling problem where the objective is to minimize the total weighted

late work of agent A’s jobs, while keeping the maximum cost of agent B within a given

bound U . They analyzed the computational complexity of three related problems, and

presented polynomial-time or pseudo-polynomial-time algorithms to solve them. Zhang

and Yuan (2019) further studied the problems that Zhang and Wang (2017) considered.

Chen et al. (2019) studied single-machine scheduling to minimize the total weighted

late work with job deadlines. They showed that the problem is unary NP -hard even if

all the jobs have a unit weight, the problem is binary NP -hard and admits a pseudo-

polynomial-time algorithm and a fully polynomial-time approximation scheme if all the

jobs have a common due date, and some special cases of the problem are polynomially

solvable. Recently, He and Yuan (2019) studied two-agent preemptive Pareto-scheduling

where one agent aims to minimize the total late work of its jobs, while the other agent

aims to minimize the total late work, maximum lateness, or total completion time of its

jobs. They presented three corresponding polynomial-time solution algorithms that find

the trade-off curves. For more results on scheduling research to minimize the total late

work, we refer the reader to the survey paper of Sterna (2011).

For the classical single-machine scheduling problem 1||
∑
Uj, Moore (1968) provided

an O(n log n)-time solution algorithm, which is known as the Moore’s algorithm. Note

that problem 1||
∑
Uj is equivalent to its preemptive version 1|pmtn|

∑
Uj, so the latter

is also solvable by Moore’s algorithm in O(n log n) time. Recently, Zhao and Yuan (2019)

presented another algorithm, named BSRPT, to solve problem 1|pmtn|
∑
Uj in O(n log n)

time. Wan et al. (2016) presented a polynomial-time algorithm to solve the two-agent

Pareto-scheduling problem 1||#(
∑
UA
j , f

B
max). As an intermediate result, they presented

an O(n log n)-time algorithm to solve the problem of scheduling n jobs to minimize the

total processing time of the early jobs under the restriction that exactly k jobs are early,

where 1 ≤ k ≤ n. We deploy the algorithm in Wan et al. (2016) and a generalization of
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the algorithm BSRPT in Zhao and Yuan (2019) as subroutines in our solution algorithm.

Our Contributions: We study in this paper the single-machine two-agent preemtive

Pareto-scheduling problem introduced in (1), i.e., 1|pmtn|#(
∑
UA
j ,

∑
Y B
j ), and present

an O(nnA log nA + nB log nB)-time algorithm to generate all the Pareto-optimal points.

We make repeated use of the techniques in Wan et al. (2016), He and Yuan (2019), and

Zhao and Yuan (2019) to address the problem.

We organize the rest of the paper as follows: In Section 2 we present some important

lemmas and a critical algorithm for the constrained version of the problem under study.

In Section 3 we introduce two subroutines for use in our algorithm. In Section 4 we

present a method to determine all the Pareto-optimal points. In Section 5 we provide a

polynomial-time algorithm to generate all the Pareto-optimal points for our problem.

2 Preliminaries

In this section we present some preliminary results necessary for the analyses in Sections

4 and 5.

2.1 Pareto optimality

For the two-agent preemtive Pareto-scheduling problem 1|pmtn|#(
∑
UA
j ,

∑
Y B
j ) on the

instance J = J A ∪ J B, we use Ω(J A,J B) to denote the set of all the Pareto-optimal

points. Recall from (4) that dB1 < dB2 < · · · < dBnB
. Throughout the paper, we define

σB0 = (JB1 , J
B
2 , . . . , J

B
nB

). (5)

From (4) and (5), the B-jobs are scheduled in the EDD order consecutively in σB0 . Thus,

σB0 is an optimal schedule for the scheduling problem 1||TBmax. From Potts and Van

Wassenhove (1991a), the optimal value of problem 1|pmtn|
∑
Y B
j on instance J B is given

by Tmax(σ
B
0 ). For convenience, we set Y (0) = Tmax(σ

B
0 ). Then we have the following

lemma.

Lemma 2.1. For each point (u, y) ∈ Ω(J A,J B), Y (0) ≤ y ≤ PB.

To study problem 1|pmtn|#(
∑
UA
j ,

∑
Y B
j ), technically we need the constrained schedul-

ing problem 1|pmtn|
∑
UA
j :

∑
Y B
j ≤ y on instance J = J A ∪ J B, which seeks to find

a feasible schedule σ such that
∑
UA
j (σ) is minimized, subject to the constraint that

5
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∑
Y B
j (σ) ≤ y. The feasibility of the problem requires that y ≥ Y (0). For each y ≥ Y (0),

we use U(y) to denote the optimal value of this constrained scheduling problem. The fol-

lowing lemma, which is implied in T’kindt and Billaut (2006), is useful for our research.

Lemma 2.2. For each point (u, y) ∈ Ω(J A,J B), u = U(y) and every optimal schedule
for problem 1|pmtn|

∑
UA
j :

∑
Y B
j ≤ y is also a Pareto-optimal schedule correspond-

ing to (u, y). Moreover, for each value y ≥ Y (0), (U(y), y′) ∈ Ω(J A,J B), where y′

is the minimum value in [Y (0), y] such that U(y′) = U(y). This further implies that
(U(Y (0)), Y (0)) ∈ Ω(J A,J B).

Based on Lemma 2.2, we first consider the constrained problem 1|pmtn|
∑
UA
j :∑

Y B
j ≤ y.

2.2 Scheduling the B-jobs as forbidden intervals

Suppose that we have n jobs J = {J1, J2, . . . , Jn} to be scheduled preemptively on a single

machine, and there is a set of m forbidden intervals I = {hk = [τ
(k)
1 , τ

(k)
2 ] : k = 1, 2, . . . ,m}

in which no job can be scheduled, where τ
(1)
1 < τ

(1)
2 < τ

(2)
1 < τ

(2)
2 < · · · < τ

(m)
1 <

τ
(m)
2 . Throughout the paper, we use |hk| to denote the length of the interval hk, i.e.,

|hk| = τ
(k)
2 − τ (k)1 for k = 1, 2, . . . ,m. When there is no risk of confusion, we also write

I = ∪mk=1[τ
(k)
1 , τ

(k)
2 ]. Then the n jobs must be scheduled in the time space [0,+∞) \ I.

We denote the single-machine preemptive scheduling problem with forbidden intervals to

minimize the criterion f as (1, I)|pmtn|f .

Now let J = J A ∪ J B and let fA be an arbitrary regular scheduling criterion of

agent A. Given a threshold value y ∈ [Y (0), PB], we consider the more general constrained

problem 1|pmtn|fA :
∑
Y B
j ≤ y on instance J , which seeks to find a feasible schedule

σ to minimize fA(σ), subject to the constraint that
∑
Y B
j (σ) ≤ y. For this constrained

problem, He and Yuan (2019) showed that the B-jobs can be first scheduled before the

A-jobs are scheduled.

To schedule the B-jobs, we use j(y) ∈ {1, 2, . . . , nB} to denote the unique index such

that
∑j(y)−1

j=1 pBj < y ≤
∑j(y)

j=1 p
B
j ; in case y = 0, which requires Y (0) = 0, we just define

j(y) = 1. We call JBj(y) the critical B-job with respect to y. We decompose the critical

B-job JBj(y) into two parts JBEj(y) and JBYj(y) such that

pBYj(y) = y −
j(y)−1∑
j=1

pBj and pBEj(y) = pBj(y) − pBYj(y) =

j(y)∑
j=1

pBj − y.

6
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We call JBEj(y) and JBYj(y) the early part and the late part of JBj(y), respectively, corresponding

to y. Set J BE(y) = {JBEj(y), JBj(y)+1, J
B
j(y)+2, . . . , J

B
nB
} and J BY (y) = {JB1 , JB2 , . . . , JBj(y)−1, JBYj(y)}.

Then the parts of J BE(y) have the total processing time PB− y and the parts of J BY (y)

have the total processing time y.

He and Yuan (2019) provided a procedure, called Procedure(y), to schedule the B-jobs

preemptively such that all the parts of J BE(y) will be early and all the parts of J BY (y)

will be late. Recall that y ∈ [Y (0), PB].

Procedure(y): Determine j(y), JBj(y), J
BE
j(y), J

BY
j(y), J BE(y), and J BY (y). Generate a

schedule σB(y) for the B-jobs J B = J BE(y) ∪ J BY (y) in the following way:

(i) From time P ∗ > dBnB
, schedule the parts of J BY (y) consecutively in the order

JB1 , J
B
2 , . . . , J

B
j(y)−1, J

BY
j(y).

(ii) Schedule the parts of J BE(y) using the algorithm of Hariri et al. (1995) for solving
problem 1|pmtn|

∑
Yj on instance J BE(y), which can be stated as follows:

Beginning with time dBnB
, schedule the parts of J BE(y) backwards in the order

JBnB
, JBnB−1, . . . , J

B
j(y)+1, J

BE
j(y)

such that each part of J BE(y) is scheduled as late as possible, subject to its due date.

By setting P ∗ = P+1, He and Yuan (2019) showed that, for every problem 1|pmtn|fA :∑
Y B
j ≤ y on instance J A ∪ J B, where fA is a regular criterion for the A-jobs, there

exists an optimal schedule in which the B-jobs are scheduled by Procedure(y).

For the problems studied in this paper, any part of a job scheduled after time max{dAnA
, dBnB
}

must be late. Then we define P ∗ = 1 + max{dAnA
, dBnB
} and use this notation throughout

the paper.

Let σB(y) be the schedule for the B-jobs generated by Procedure(y). Then we have

the following lemma for our problem 1|pmtn|
∑
UA
j :

∑
Y B
j ≤ y.

Lemma 2.3. Consider problem 1|pmtn|
∑
UA
j :

∑
Y B
j ≤ y on instance J A ∪ J B. There

exists an optimal schedule for the problem in which the B-jobs are scheduled in the same
manner as that in σB(y).

For each y ∈ [Y (0), PB], we use IB(y) to denote the set of time intervals occupied

by the B-jobs in schedule σB(y). For scheduling the A-jobs, we regard each interval

of IB(y) as a forbidden interval, which cannot be occupied by any A-job. Note that

(1, IB(y))|pmtn|
∑
UA
j is the single-machine preemptive scheduling problem to minimize∑

UA
j with the set of forbidden intervals IB(y). From Lemma 2.3, the problem has the

optimal value U(y).
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For a schedule π on J = J A ∪ J B, we use πA to denote the subschedule of π for the

A-jobs and use πB to denote the subschedule of π for the B-jobs. A schedule π of J A∪J B

is called y-optimal if πB = σB(y) and πA is optimal for problem (1, IB(y))|pmtn|
∑
UA
j .

From Lemmas 2.2 and 2.3, we have the following result.

Lemma 2.4. Consider problem 1|pmtn|
∑
UA
j :

∑
Y B
j ≤ y on instance J A ∪J B and let

π be a y-optimal schedule. Then π is optimal for the problem. Moreover, if (u, y) is a
Pareto-optimal point, then π is a Pareto-optimal schedule corresponding to (u, y).

2.3 The structure of the forbidden intervals

We first consider the forbidden intervals set IB(Y (0)) that consists of the time intervals

occupied by the B-jobs in schedule σB(Y (0)). Following He and Yuan (2019), we assume

that

IB(Y (0)) = {h1, h2, . . . , hm},

where hi = [τ
(i)
1 , τ

(i)
2 ] is the i-th interval, i = 1, 2, . . . ,m, such that

0 ≤ τ
(1)
1 < τ

(1)
2 < τ

(2)
1 < τ

(2)
2 < · · · < τ

(m)
1 < τ

(m)
2 . (6)

From the implementation of Procedure(Y (0)), we have

τ
(m)
1 = P ∗ and τ

(m)
2 = P ∗ + Y (0). (7)

For each y ∈ [Y (0), PB], we define i(y) as the maximum index in {1, 2, . . . ,m − 1} such

that y − Y (0) ≥
∑i(y)−1

i=1 (τ
(i)
2 − τ

(i)
1 ) and let τ(y) ∈ [τ

(i(y))
1 , τ

(i(y))
2 ) be such that y − Y (0) =∑i(y)−1

i=1 (τ
(i)
2 − τ

(i)
1 ) + (τ(y)− τ (i(y))1 ). From the implementation of Procedure(y), we have

IB(y) = {[τ(y), τ
(i(y))
2 ], [τ

(i(y)+1)
1 , τ

(i(y)+1)
2 ], . . . , [τ

(m−1)
1 , τ

(m−1)
2 ], [P ∗, P ∗ + y]}. (8)

Equivalently, we also have IB(y) = {[τ(y), τ
(i(y))
2 ], hi(y)+1, hi(y)+2, . . . , hm−1, [P

∗, P ∗ + y]}.

3 Two subroutines

In this section we introduce two subroutines that we will repeatedly use in our final

algorithm. The first subroutine is implied in Wan et al. (2016), while we develop the

second subroutine from an algorithm in Zhao and Yuan (2019).
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3.1 The first subroutine

Let J = {J1, J2, . . . , Jn} be a job instance, where d1 ≤ d2 ≤ · · · ≤ dn. Given k ∈
{1, 2, . . . , n}, we use TPE(J , k) to denote the problem to schedule the jobs of J on a

single machine to minimize the total processing time of the early jobs (TPE) under the

restriction that exactly k jobs are early. When no ambiguity will occur, we also use

TPE(J , k) to denote the optimal value of the problem. For the case where the problem

is infeasible, we define TPE(J , k) = +∞. According to Wan et al. (2016), the following

algorithm, which we call “Subroutine TPE(J , k)”, solves problem TPE(J , k).

Subroutine TPE(J , k): For solving problem TPE(J , k).

Step 1. From time 0, schedule the jobs one by one in the EDD order J1, J2, . . . , Jn.

When encountering a tardy job, delete the first longest job from the scheduled jobs. This

procedure is repeated until one of the following two situations occurs:

(S1) exactly k early jobs are scheduled,

(S2) all the jobs are processed but fewer than k jobs are early.

Step 2. If (S2) occurs, the problem is infeasible. Then terminate the algorithm. If (S1)

occurs, let Sl be the set of the k early jobs determined in Step 1, where l is the largest

index of the early jobs, and go to Step 3.

Step 3. For j = l + 1, l + 2, . . . , n, do the following iteratively:

Pick the first longest job Je ∈ Sj−1∪{Jj}. Set Sj := (Sj−1∪{Jj})\{Je} and j := j+1.

Then repeat this procedure.

Step 4. From time 0, schedule the jobs in Sn in increasing order of their indices. Then

terminate the algorithm.

By comparison, Subroutine TPE(J , k) has the same time complexity as that of

Moore’s algorithm. Thus, Subroutine TPE(J , k) runs in O(n log n) time. In fact, Wan et

al. (2016) presented a procedure for single-machine scheduling with forbidden intervals

that is more general than Subroutine TPE(J , k). Then the following lemma is implied

from Lemma 3.7 in Wan et al. (2016).

Lemma 3.1. Subroutine TPE(J , k) solves problem TPE(J , k) in O(n log n) time.

We also use the following lemma, which can be observed directly from the meaning of

TPE(J , k), for the subsequent analysis.
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Lemma 3.2. Suppose that k′ < k′′ ≤ n and TPE(J , k′) < +∞. Then we have

TPE(J , k′) < TPE(J , k′′).

Thus, TPE(J , k), when it is finite, is strictly increasing in k.

3.2 The second subroutine

Let J = {J1, J2, . . . , Jn}. Zhao and Yuan (2019) presented the following algorithm B-

SRPT to solve problem 1|pmtn|
∑
Uj on instance J and showed that the time complexity

of BSRPT is O(n log n).

BSRPT: Re-number the jobs such that d1 ≤ d2 ≤ · · · ≤ dn. Starting with time dmax = dn,

schedule the jobs preemptively and backwards using the strategy that, at any decision point

τ (when a job is fully scheduled in the interval [τ, dmax] or a smaller due date appears),

schedules an uncompleted job with a due date having at least τ (if any) of the shortest

unscheduled processing time. Finally, the unscheduled parts of the jobs at time 0 are

re-scheduled at the end of the schedule.

Let us consider the scheduling problem (1, I)|pmtn|
∑
Uj on instance J , where I =

{hk = [τ
(k)
1 , τ

(k)
2 ] : k = 1, 2, . . . ,m} is a set of m forbidden intervals as described in

Section 2.2. For convenience, we use Jj = (pj, dj) to indicate each job Jj of J . In

the preprocessing procedure, we re-number the jobs such that d1 ≤ d2 ≤ · · · ≤ dn. By

applying algorithm BSRPT to solve problem 1|pmtn|
∑
Uj in Zhao and Yuan (2019),

we use the following algorithm, denoted as “Subroutine FB(I)-BSRPT”, to solve the

scheduling problem (1, I)|pmtn|
∑
Uj on instance J , where FB(I) means that I is the

set of forbidden intervals.

Subroutine FB(I)-BSRPT: Apply algorithm BSRPT on instance J in the idle time

space [0,+∞) \ I to schedule the jobs preemptively, with ties being broken by choosing the

job with the largest index.

The following theorem can be established based on the proof of Theorem 2.7 in Yuan

and Lin (2005b).

Theorem 3.1. Given I and J , Subroutine FB(I)-BSRPT generates an optimal schedule
for problem (1, I)|pmtn|

∑
Uj in O(n log n+m) time.

Proof. For each k ∈ {1, 2, . . . ,m}, we set Hk = |h1| + |h2| + · · · + |hk−1|, which is the
total length of the first k−1 forbidden intervals h1, h2, . . . , hk−1. Then we modify the due

10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



dates of the jobs in J in the following way:

d̃j =


dj, if dj ≤ τ

(1)
1 ,

τ
(i)
1 −Hi−1, if τ

(i)
1 ≤ dj ≤ τ

(i)
2 for some i ∈ {1, 2, . . . ,m},

dj −Hi, if τ
(i)
2 ≤ dj ≤ τ

(i+1)
1 for some i ∈ {1, 2, . . . ,m− 1}.

We define a new instance J̃ by setting J̃ = {J̃j = (pj, d̃j) : 1 ≤ j ≤ n}.
For each schedule σ for problem (1, I)|pmtn|

∑
Uj on instance J , we define σ̃ as the

schedule for problem 1|pmtn|
∑
Uj on instance J̃ that is obtained from σ by removing the

m forbidden intervals of I and replacing J by J̃ . Based on the proof of Theorem 2.7 in
Yuan and Lin (2005b), σ is an optimal schedule for problem (1, I)|pmtn|

∑
Uj on instance

J if and only if σ̃ is an optimal schedule for problem 1|pmtn|
∑
Uj on instance J̃ . By the

definition of the modified due dates, for each j ∈ {1, 2, . . . , n}, dj−d̃j represents the length
of the forbidden time space before time dj. Thus, σ is a schedule generated by Subroutine
FB(I)-BSRPT on instance J if and only if σ̃ is a schedule for J generated by Subroutine
BSRPT on instance J̃ . From Zhao and Yuan (2019), algorithm BSRPT generates an
optimal schedule for problem 1|pmtn|

∑
Uj. Consequently, Subroutine FB(I)-BSRPT

generates an optimal schedule for problem (1, I)|pmtn|
∑
Uj.

Finally, since we have a total of m forbidden intervals, the time complexity of Sub-
routine FB(I)-BSRPT is O(m) plus the time complexity O(n log n) of BSRPT, i.e.,
O(n log n+m). The theorem follows.

4 Pareto-optimal points

Recall the notation Y (0), IB(Y (0)), and IB(y) for y ∈ (Y (0), PB], which were defined in

Sections 2.2 and 2.3 and will be repeatedly used in the sequel. We introduce some new

notation in the following definition.

Definition 4.1. Let y ∈ (Y (0), PB] and let τ ∈ (0, dAnA
].

• For each i = 1, 2, . . . ,m− 1, we define Y (i) = Y (0) + |h1| + |h2| + · · · + |hi| and U (i) =
U(Y (i)). Then we have Y (0) < Y (1) < · · · < Y (m−1) = PB and U (0) ≥ U (1) ≥ · · · ≥ U (m−1).

Note that τ(Y (i)) = τ
(i+1)
1 , which is the left endpoint of the interval hi+1.

• We define

τ ∗(y) =

{
τ(y), if y /∈ {Y (1), Y (2), . . . , Y (m−1)},

τ
(i)
2 , if y = Y (i) for some i ∈ {1, 2, . . . ,m− 1}.

Recall that τ(y) is the left endpoint of the first interval of IB(y). Then we have

τ ∗(y) = τ
(i)
1 + (y − Y (i−1)) if y ∈ (Y (i−1), Y (i)] for some i. (9)
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• m∗ is the smallest index in {0, 1, . . . ,m− 1} such that U (m∗) = U (m−1).

• We use σA(y) to denote the schedule of the A-jobs obtained by Subroutine FB(IB(y))-
BSRPT for problem (1, IB(y))|pmtn|

∑
UA
j on instance J A. Moreover, we use σ(y) =

(σA(y), σB(y)) to denote the schedule of J A ∪ J B in which the A-jobs are scheduled by
σA(y) and the B-jobs are scheduled by σB(y). Then σ(y) is a y-optimal schedule.

• We use J A(y)(τ) to denote the parts of the A-jobs that are not scheduled in the time
interval [τ, dAnA

] in the schedule σA(y). For example, consider an A-job JAj ∈ J A. If JAj
is fully scheduled in [τ, dAnA

], then J A(y)(τ) contains no part of JAj . If no part of JAj is

scheduled in [τ, dAnA
], then JAj ∈ J A(y)(τ). If a part of JAj , denoted by JAj′ , with 0 < pAj′ < pAj

is scheduled in [τ, dAnA
], then the remaining part of JAj , denoted by JAj′′ = JAj \ JAj′ , is

contained in J A(y)(τ). Note that pAj = pAj′ + pAj′′. Then we have 0 < pAj′′ < pAj . In most

cases, we just consider the parts set J A(y)(τ ∗(y)) in our discussion.

• For a schedule π and a time interval [s, t], we use π|[s,t] to denote the restriction of π on
[s, t], and also call π|[s,t] the subschedule of π on [s, t]. We also use J A(π|[s,t]) to denote
the parts of the A-jobs in the subschedule π|[s,t]. For the case where s ≥ t, we define π|[s,t]
and J A(π|[s,t]) as an empty schedule and an empty set, respectively.

•We use ν(y, τ) to denote the number of parts of J A(y)(τ) that are early in the subschedule
σA(y)|[0,τ ] or, equivalently, that are fully scheduled in the interval [0, τ ] in the schedule σA(y).

The following lemma establishes some useful properties for the notation introduced in

Definition 4.1.

Lemma 4.1. (i) For each (u, y) ∈ Ω(J A,J B), we have Y (0) ≤ y ≤ Y (m∗) and U (m∗) ≤
u ≤ U (0). Moreover, (U (0), Y (0)) ∈ Ω(J A,J B) and (U (m∗), y) ∈ Ω(J A,J B) for some
y ∈ [Y (0), Y (m∗)].

(ii) If Y (0) < y′ < y′′ ≤ PB, then for every time point τ ≥ τ ∗(y′′), we have σA(y
′)|[τ,dAnA

] =

σA(y
′′)|[τ,dAnA

] and J A(y′)(τ) = J A(y′′)(τ).

(iii) Suppose that Y (i−1) < y ≤ Y (i) for some i ∈ {1, 2, . . . ,m − 1}. Then for each

τ ∈ [τ ∗(y), τ
(i)
2 ], we have J A(y)(τ) = J A(y)(τ

(i)
2 ) = J A(Y (i))(τ

(i)
2 ) and ν(y, τ) ≤ ν(Y (i), τ

(i)
2 ).

(iv) For every i ∈ {1, 2, . . . ,m−1} and every two non-negative integers k1 and k2 with

k1 < k2 and TPE(J A(Y (i)), k1) < +∞, we have TPE(J A(Y (i)), k1) < TPE(J A(Y (i)), k2).

(v) For every y ∈ (Y (0), PB], we have TPE(J A(y), ν(y, τ ∗(y))) ≤ τ ∗(y).

Proof. (i) follows by noting (from Lemma 2.2) that, if (u, y) is a Pareto-optimal point,
then y is the minimum value in [Y (0), PB] = [Y (0), Y (m−1)] such that u = U(y).

(ii) follows from the implementation of Subroutines FB(IB(y′))-BSRPT and FB(IB(y′′))-
BSRPT.

(iii) follows from (ii) and from the fact that τ ∗(Y (i)) = τ
(i)
2 and [τ ∗(y), τ

(i)
2 ] is a forbidden

interval for the schedule σA(y) of the A-jobs if y < Y (i).
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(iv) follows from the fact that TPE(J A(Y (i)), k) (if it is a finite number) is strictly

increasing in k since each part of J A(Y (i)) (if it is non-empty) has a positive processing
time.

(v) follows from the fact that we already have ν(y, τ ∗(y)) early parts of J A(y)(τ ∗(y))
in the subschedule σA(y)|[0,τ∗(y)]. The lemma follows.

Now we assume that Ω(J A,J B) = {(u1, y1), (u2, y2), . . . , (uK , yK)} such that u1 >

u2 > · · · > uK and y1 < y2 < · · · < yK . From Lemma 4.1(i), we have (u1, y1) =

(U (0), Y (0)), uK = U (m∗), and yK ≤ Y (m∗). If m∗ = 0, then (u1, y1) = (U (0), Y (0)) is the

unique Pareto-optimal point, and we have nothing to do.

In general, we may suppose that m∗ ≥ 1. Our goal is to present a method to determine

the points (ui, yi) for i = 2, 3, . . . , K. The following lemma plays this role.

Lemma 4.2. Let i ∈ {1, 2, . . . ,m∗}. Then we have the following three statements.

(i) There is a point (uzi , yzi) ∈ Ω(J A,J B) such that uzi = U (i) and yzi ≤ Y (i).

(ii) If U (i−1) = U (i), then there is no point (u, y) ∈ Ω(J A,J B) such that y ∈
(Y (i−1), Y (i)].

(iii) If U (i−1) > U (i), then for each u ∈ {U (i), U (i) + 1, . . . , U (i−1) − 1}, we have
(u, Y (u)) ∈ Ω(J A,J B), where

Y (u) = TPE(J A(Y (i−1))(τ
(i)
1 ), ν(Y (i−1), τ

(i)
1 ) + U (i−1) − u)− τ (i)1 + Y (i−1). (10)

Proof. (i) and (ii) follow directly from Lemma 2.2. To prove (iii), note that U (i) ≤ u ≤
U (i−1) − 1. We first show the following inequalities

Y (i−1) < Y (u) ≤ Y (i). (11)

In fact, since u < U (i−1), we have ν(Y (i−1), τ
(i)
1 ) < ν(Y (i−1), τ

(i)
1 ) + U (i−1) − u. If

TPE(J A(Y (i−1))(τ
(i)
1 ), ν(Y (i−1), τ

(i)
1 ) + U (i−1) − u) ≤ τ

(i)
1 , then there is a schedule of the

parts of J A(Y (i−1))(τ
(i)
1 ) such that more than ν(Y (i−1), τ

(i)
1 ) early parts are scheduled in the

interval [0, τ
(i)
1 ]. This contradicts the optimality of schedule σA(Y

(i−1)) for J A(Y (i−1))(τ
(i)
1 )

in the interval [0, τ
(i)
1 ]. Thus, we have

TPE(J A(Y (i−1))(τ
(i)
1 ), ν(Y (i−1), τ

(i)
1 ) + U (i−1) − u) > τ

(i)
1 . (12)

From (10) and (12), we obtain that Y (i−1) < Y (u). This proves the first inequality in
(11).

From Lemma 4.1(ii), we obtain that σA(Y
(i))|

[τ
(i)
2 ,dAnA

]
= σA(Y

(i−1))|
[τ

(i)
2 ,dAnA

]
and J A(Y (i))(τ

(i)
2 ) =

J A(Y (i−1))(τ
(i)
2 ) = J A(Y (i−1))(τ

(i)
1 ). Since u ≥ U (i), from the meaning of ν(Y (i), τ

(i)
2 ), we
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have ν(Y (i−1), τ
(i)
1 ) + U (i−1) − u ≤ ν(Y (i−1), τ

(i)
1 ) + U (i−1) − U (i) ≤ ν(Y (i), τ

(i)
2 ). Thus, we

have
TPE(J A(Y (i−1))(τ

(i)
1 ), ν(Y (i−1), τ

(i)
1 ) + U (i−1) − u)

= TPE(J A(Y (i))(τ
(i)
1 ), ν(Y (i−1), τ

(i)
2 ) + U (i−1) − u)

≤ TPE(J A(Y (i))(τ
(i)
2 ), ν(Y (i), τ

(i)
2 ))

≤ τ
(i)
2 ,

(13)

where the two inequalities follow from Lemmas 3.2 and 4.1(v), respectively. From (10)

and (13), we obtain that Y (u) ≤ Y (i−1) + τ
(i)
2 − τ

(i)
1 = Y (i). This proves the second

inequality in (11).

From (11), we have τ
(i)
1 < τ ∗(Y (u)) ≤ τ

(i)
2 . From (10) and from the definition of τ ∗(y)

for y ∈ (Y (i−1), Y (i)] in (9), we directly have

τ ∗(Y (u)) = TPE(J A(Y (i−1))(τ
(i)
1 ), ν(Y (i−1), τ

(i)
1 ) + U (i−1) − u). (14)

From Lemma 4.1(ii), we have σA(Y
(i))|[τ∗(Y (u)),dAnA

] = σA(Y
(i−1))|[τ∗(Y (u)),dAnA

]. Thus, the

number of early A-jobs scheduled in the interval [τ ∗(Y (u)), dAnA
] in σA(Y (u)) is the same as

that in σA(Y
(i−1)), which equals nA − U (i−1) − ν(Y (i−1), τ

(i)
1 ).

We now consider the number of parts of J A(Y (u))(τ ∗(Y (u))) fully scheduled in the
interval [0, τ ∗(Y (u))] in σA(Y (u)). From Lemma 4.1(ii)-(iii), we have

J A(Y (i−1))(τ
(i)
1 ) = J A(Y (i−1))(τ ∗(Y (u))) = J A(Y (u))(τ ∗(Y (u))).

It follows that

TPE(J A(Y (i−1))(τ
(i)
1 ), ν(Y (i−1), τ

(i)
1 ) + U (i−1) − u)

= TPE(J A(Y (u))(τ ∗(Y (u))), ν(Y (i−1), τ
(i)
1 ) + U (i−1) − u).

By using (14), we conclude that

τ ∗(Y (u)) = TPE(J A(Y (u))(τ ∗(Y (u))), ν(Y (i−1), τ
(i)
1 ) + U (i−1) − u). (15)

From Lemmas 3.1 and 3.2, and from (15), the number of early parts of J A(Y (u))(τ ∗(Y (u)))

scheduled in the interval [0, τ ∗(Y (u))] in σA(Y (u)) is ν(Y (i−1), τ
(i)
1 )+U (i−1)−u, i.e., ν(Y (u), τ ∗(Y (u))) =

ν(Y (i−1), τ
(i)
1 ) + U (i−1) − u.

From the above analysis, the number of early jobs in σA(Y (u)) is

nA − U(Y (u))

= ν(Y (u), τ ∗(Y (u))) + nA − U (i−1) − ν(Y (i−1), τ
(i)
1 )

= ν(Y (i−1), τ
(i)
1 ) + U (i−1) − u+ nA − U (i−1) − ν(Y (i−1), τ

(i)
1 )

= nA − u.
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Consequently, we have
U(Y (u)) = u. (16)

To complete the proof, it suffices to establish the following claim.

Claim 1. For every y with Y (0) < y < Y (u), U(y) > u.

From (16), we know that u is the optimal value of problem 1|pmtn|
∑
UA
j :

∑
Y B
j ≤

Y (u). Thus, for every y with Y (0) < y < Y (u), U(y) ≥ u. In the following we prove that
U(y) 6= u.

If y ≤ Y (i−1), then U(y) ≥ U(Y (i−1)) = U (i−1) > u, as required.

Suppose in the following that y > Y (i−1). From (11), we have Y (i−1) < y < Y (u) ≤
Y (i). This means that

τ
(i)
1 < τ ∗(y) < τ ∗(Y (u)) ≤ τ

(i)
2 . (17)

From Lemma 4.1(ii), we have σA(y)|[τ∗(y),dAnA
] = σA(Y (u))|[τ∗(Y (u)),dAnA

] and J A(y)(τ ∗(y)) =

J A(Y (u))(τ ∗(Y (u))). Thus, we can re-write (15) as

τ ∗(Y (u)) = TPE(J A(y)(τ ∗(y)), ν(Y (i−1), τ
(i)
1 ) + U (i−1) − u). (18)

Given the relation τ ∗(y) < τ ∗(Y (u)) in (15) and the relation in (18), from the defini-

tion of TPE(J , k) (or from Lemma 3.2), fewer than ν(Y (i−1), τ
(i)
1 ) + U (i−1) − u parts of

J A(y)(τ ∗(y)) = J A(Y (u))(τ ∗(Y (u))) are early in schedule σA(y)|[0,τ∗(y)]. Since ν(Y (i−1), τ
(i)
1 )+

U (i−1) − u is the number of early parts of J A(Y (u))(τ ∗(Y (u))) scheduled in the interval
[0, τ ∗(Y (u))] in σA(Y (u)), we conclude that U(y) > u. This proves Claim 1.

From Lemma 2.2, (16) and Claim 1 enable us to conclude that (u, Y (u)) is a Pareto-
optimal point. The result follows.

As a direct consequence of Lemma 4.2, we have the following theorem.

Theorem 4.1. For the instance J A ∪ J B,

Ω(J A,J B) = {(U (0), Y (0))} ∪ {(u, Y (u)) : u = U (m∗), U (m∗) + 1, . . . , U (0) − 1}, (19)

where Y (u) is defined in (10).

5 Polynomial-time algorithm

We are ready to present our algorithm to solve problem 1|pmtn|#(
∑
UA
j ,

∑
Y B
j ). Our

algorithm is based on Theorem 4.1 and the analysis in previous sections. Note that we

need not determine the value m∗ before we generate the set Ω(J A,J B). Moreover, for

each y ∈ [Y (0), PB], we use σ(y) = (σA(y), σB(y)) to denote the schedule for J A ∪ J B in

which the subschedule for the A-jobs is σA(y) and the subschedule for the B-jobs is σB(y).
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Algorithm 5.1. For problem 1|pmtn|#(
∑
UA
j ,

∑
Y B
j ).

Input: The job instance J = J A ∪ J B, where J A = {JA1 , JA2 , . . . , JAnA
} and J B =

{JB1 , JB2 , . . . , JBnB
}.

Preprocessing: Re-number the A-jobs in the EDD order such that dA1 ≤ dA2 ≤ · · · ≤ dAnA

with ties being broken by the LPT rule. Re-number the B-jobs in the EDD order with

the B-jobs having the same due date being merged such that dB1 < dB2 < · · · < dBnB
.

Step 1: Do the following:

(1.1) Generate schedule σB0 that schedules the B-jobs in the order JB1 ≺ JB2 ≺ · · · ≺
JBnB

in the interval [0, PB] without idle times. Then calculate the value Y (0) = Tmax(σ
B
0 ).

(1.2) Invoke Procedure(Y (0)) to obtain schedule σB(Y (0)) of the B-jobs. Determine

the intervals IB(Y (0)) = {h1, h2, . . . , hm} occupied by the B-jobs in σB(Y (0)), where hl =

[τ
(l)
1 , τ

(l)
2 ] is the l-th interval, l = 1, 2, . . . ,m, as described in (6).

(1.3) Invoke Subroutine FB(IB(Y (0)))-BSRPT for problem (1, IB(Y (0)))|pmtn|
∑
UA
j on

instance J A to obtain schedule σA(Y
(0)). Determine the value U (0) =

∑nA

j=1 U
A
j (σA(Y

(0))).

Set σ(Y (0)) = (σA(Y
(0)), σB(Y (0))). Then (U (0), Y (0)) is the first Pareto-optimal point and

σ(Y (0)) is the corresponding Pareto-optimal schedule.

(1.4) Set i := 1 and set Ω(J A,J B) := {(U (0), Y (0))}. Go to Step 2.

Step 2: If i = m, then go to Step 5. If i ≤ m− 1, then go to Step 3.

Step 3: Do the following:

(3.1) Set Y (i) = Y (i−1) + |hi| and IB(Y (i)) = {hi+1, hi+2, . . . , hm−1, [P
∗, P ∗ + Y (i)]}.

(3.2) Invoke Subroutine FB(IB(Y (i)))-BSRPT for problem (1, IB(Y (i)))|pmtn|
∑
UA
j on

instance J A to obtain schedule σA(Y
(i)). Determine the value U (i) =

∑nA

j=1 U
A
j (σA(Y

(i))).

(3.3) If U (i−1) = U (i), then set i := i + 1 and go to Step 2. If U (i−1) > U (i), then go

to Step 4.

Step 4: Determine J A(Y (i−1))(τ
(i)
1 ) and ν(Y (i−1), τ

(i)
1 ) from schedule σA(Y

(i−1)).

For each u ∈ {U (i), U (i)+1, . . . , U (i−1)−1}, invoke Subroutine TPE(J A(Y (i−1))(τ
(i)
1 ), ν(Y (i−1), τ

(i)
1 )+

U (i−1) − u) to determine the value TPE(J A(Y (i−1))(τ
(i)
1 ), ν(Y (i−1), τ

(i)
1 ) + U (i−1) − u). Cal-

culate the value Y (u) in the following way

Y (u) = TPE(J A(Y (i−1))(τ
(i)
1 ), ν(Y (i−1), τ

(i)
1 ) + U (i−1) − u)− τ (i)1 + Y (i−1).

Generate schedule σ(Y (u)) = (σA(Y (u)), σB(Y (u))). Then (u, Y (u)) is a Pareto-optimal point

and σ(Y (u)) is the corresponding Pareto-optimal schedule.
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Set Ω(J A,J B) := Ω(J A,J B) ∪ {(u, Y (u)) : u = U (i), U (i) + 1, . . . , U (i−1) − 1} and

i := i+ 1. Go to Step 2.

Step 5: Output Ω(J A,J B) and, for each (u, Y (u)) ∈ Ω(J A,J B), the schedule σ(Y (u)).

Remark: Note that the operations in Algorithm 5.1 can be re-arranged so that the

repeated computations are reduced. But this does not affect the overall time complexity

of the algorithm.

Theorem 5.1. Algorithm 5.1 solves problem 1|pmtn|#(
∑
UA
j ,

∑
Y B
j ) in O(nnA log nA +

nB log nB) time.

Proof. The correctness of Algorithm 5.1 is guaranteed by Lemma 2.3, Lemma 4.2, and
Theorem 4.1. We next estimate the running time of Algorithm 5.1.

The Preprocessing procedure takes O(nA log nA+nB log nB) time, which is dominated
by the final time complexity. Moreover, the following facts are implied in the previous
sections.

• Y (0) can be determined in O(nB log nB) time.

• Procedure(Y (0)) runs in O(nB) time. Then the forbidden intervals set IB(Y (0)) =
{h1, h2, . . . , hm} can be determined in O(nB) time.

• With IB(Y (0)) being given, for each y ∈ (Y (0), PB], the items τ(y), τ ∗(y), and IB(y)

can be determined in O(nB) time.

• With IB(Y (0)) being given, Subroutine FB(IB(Y (0)))-BSRPT runs in O(nA log nA +

nB) time. As a result, the schedule σ(Y (0)) = (σA(Y
(0)), σB(Y (0))) can be obtained in

O(nA log nA + nB) time.

• With σA(Y
(0)) being given, for each y ∈ (Y (0), PB], τ(y) is the left endpoint of

the first interval in IB(y) and we have σA(y)|[τ(y),dAnA
] = σA(Y

(0))|[τ(y),dAnA
]. Thus, Subrou-

tine FB(IB(y))-BSRPT can be implemented from time τ(y) for scheduling the parts of
J A(y)(τ(y)) in the interval [0, τ(y)] in O(nA log nA) time. Then the time complexity for
generating the schedule σ(y) = (σA(y), σB(y)) is O(nA log nA) time.

• Given a set of parts of the A-jobs J ′ and a positive integer k, the value TPE(J ′, k)
can be determined by Subroutine TPE(J ′, k) in O(nA log nA) time.

• The other operations in Algorithm 5.1 are non-dominating in the aspect of time
complexity.

From the above facts, we can observe that Step 1 runs in O(nA log nA + nB) time
and, for each i ∈ {1, 2, . . . ,m}, Step 3 runs in O(nA log nA) time, and Step 4 runs in
O((U (i−1)−U (i))nA log nA) time. Note that m ≤ nB and

∑m−1
i=1 (U (i−1)−U (i)) ≤ U (0) ≤ nA.

Then the time complexity of Algorithm 5.1 is

O(nA log nA + nB log nB) +O(nBnA log nA) +O(nAnA log nA),
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which can be simplified as O(nnA log nA + nB log nB). The result follows.

Now we give an instance to demonstrate the execution of Algorithm 5.1. Let J =

{JA1 , JA2 , . . . , JA6 , JB1 , . . . , JB4 } be the instance displayed in Table 1.

Table 1: The job instance J
JXi JA1 JA2 JA3 JA4 JA5 JA6 JB1 JB2 JB3 JB4
pXi 3 4 2 5 7 2 5 5 6 3
dXi 4 7 12 15 21 26 4 10 18 25

Note that P ∗ = 1 + max{dAnA
, dBnB
} = 1 + max{25, 26} = 27. Let Ω = Ω(J A,J B).

The key steps in applying Algorithm 5.1 to solve the instance are as follows:

(i) Generate the schedule σB0 = (JB1 , J
B
2 , J

B
3 , J

B
4 ) and calculate the Y -value Y (0) =

Tmax(σ
B
0 ) = 1. Then generate the schedule σB(Y (0)), and the forbidden intervals IB(Y (0)) =

{h1, h2, h3, h4, h5} is determined, where h1 = [0, 4], h2 = [5, 10], h3 = [12, 18], h4 = [22, 25],

and h5 = [27, 28]. Then, for each y ∈ (Y (0), PB] = (1, 19], σB(y) and IB(y) can be easily

generated. The forbidden intervals of IB(Y (0)) = IB(1) are displayed in Figure 1.

(ii) Generate the schedule σA(Y
(0)) = σA(1) and calculate the U -value U (0) =

∑
UA
j (σA(1)) =

4. Then σ(1) = (σA(1), σB(1)) is a Pareto-optimal schedule corresponding to (4, 1) ∈ Ω, as

displayed in Figure 2.

(iii) Calculate Y (1) = Y (0) + |h1| = 5, generate σA(5), and calculate the U -value U (1) =

U(5) = 3. The schedule σA(5) is displayed in Figure 3.

(iv) Now U (0) = 4 > 3 = U (1). Calculate Y (3) = 4 and generate σA(4). Then

σ(4) = (σA(4), σB(4)) is a Pareto-optimal schedule corresponding to (3, 4) ∈ Ω, as displayed

in Figure 4.

(v) Calculate Y (2) = Y (1) + |h2| = 10, generate σA(10), and calculate the U -value

U (2) = U(10) = 2. The schedule σA(10) is displayed in Figure 5.

(vi) Now U (1) = 3 > 2 = U (2). Calculate Y (2) = 7 and generate σA(7). Then

σ(7) = (σA(7), σB(7)) is a Pareto-optimal schedule corresponding to (2, 7) ∈ Ω, as displayed

in Figure 6.

(vii) Calculate Y (3) = Y (2) + |h3| = 16, generate σA(16), and calculate the U -value

U (3) = U(16) = 0. The schedule σA(16) is displayed in Figure 7.

(viii) Now U (2) = 2 > 0 = U (3). For u = U (2) − 1 = 1, we calculate Y (u) =

Y (1) = 11, and generate σA(11). Then σ(11) = (σA(11), σB(11)) is a Pareto-optimal schedule
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corresponding to (1, 11) ∈ Ω, as displayed in Figure 8.

(ix) For u = U (3) = 0, calculate Y (u) = Y (0) = 16 and generate σA(16). Then

σ(16) = (σA(16), σB(16)) is a Pareto-optimal schedule corresponding to (0, 16) ∈ Ω, as

displayed in Figure 9.

(x) Finally, we conclude that Ω = {(4, 1), (3, 4), (2, 7), (1, 11), (0, 16)} and σ(1), σ(4), σ(7), σ(11),

and σ(16) are the corresponding Pareto-optimal schedules.

Figure 1: The forbidden intervals of IB(1).

Figure 2: Schedule σ(1) corresponding to (4, 1) ∈ Ω.

Figure 3: Schedule σA(5) corresponding to U (1) = 3.
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Figure 4: Schedule σ(4) corresponding to (3, 4) ∈ Ω.

Figure 5: Schedule σA(10) corresponding to U (2) = 2.

Figure 6: Schedule σ(7) corresponding to (2, 7) ∈ Ω.

Figure 7: Schedule σA(16) corresponding to U (3) = 0.

Figure 8: Schedule σ(11) corresponding to (1, 11) ∈ Ω.

Figure 9: Schedule σ(16) corresponding to (0, 16) ∈ Ω.
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