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ABSTRACT 16 

Ride-sourcing services are increasingly popular because of their ability to accommodate on-17 
demand travel needs. A critical issue faced by ride-sourcing platforms is the supply-demand 18 
imbalance, as a result of which drivers may spend substantial time on idle cruising and picking 19 
up remote passengers. Some platforms attempt to mitigate the imbalance by providing relocation 20 
guidance for idle driverswho may have their own self-relocation strategies and decline to 21 
follow the suggestions. Platforms then seek to induce drivers to system-desirable locations by 22 
offering them subsidies. This paper proposes a mean-field Markov decision process (MF-MDP) 23 
model to depict the dynamics in ride-sourcing markets with mixed agents, whereby the platform 24 
aims to optimize some objectives from a system perspective using spatial-temporal subsidies 25 
with predefined subsidy rates, and a number of drivers aim to maximize their income by 26 
following certain self-relocation strategies. To solve the model more efficiently, we further 27 
develop a representative-agent reinforcement learning algorithm that uses a representative driver 28 
to model the decision-making process of multiple drivers. This approach is shown to achieve 29 
significant computational advantages, faster convergence, and better performance. Using case 30 
studies, we demonstrate that by providing some spatial-temporal subsidies, the platform is well 31 
able to balance a short-term objective of maximizing immediate revenue and a long-term 32 
objective of maximizing service rate, while drivers can earn higher income.  33 
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1. BACKGROUND 1 

The emergence of advanced information technologies and the surge in smartphone users 2 
enable the fast development of ride-sourcing services. Provided by transportation network 3 
companies (TNCs), such as Uber, Lyft, DiDi, and Grab, ride-sourcing services address 4 
individuals’ on-demand travel needs. A ride-sourcing market is analogous to a more efficient 5 
dial-hailing taxi market, in which passengers request services with a few clicks in smartphone 6 
apps. Unlike traditional taxi services with large meeting frictions due to street-hailing behaviors 7 
between drivers and passengers, ride-sourcing services enable passengers to be matched with 8 
drivers at a certain distance. Upon receiving a travel request from a passenger, the platform 9 
assigns the passenger to a near driver who then picks up and delivers the passenger. On one hand, 10 
the efficiency of supply-demand matching makes ride-sourcing systems indispensable in modern 11 
transportation systems. On the other hand, drivers may spend significant amounts of time on idle 12 
cruising1 (IC; i.e., waiting for dispatches) and on the way to pick up passengers. A market failure, 13 
called a “wild-goose chase” (WGC), even occurs when drivers are always dispatched to far-away 14 
passengers, and waste substantial time on picking them up. These lead to low effective earning 15 
rates of drivers and cause negative social externalities, such as exacerbating traffic congestion 16 
and increasing carbon dioxide emissions. 17 

The main cause of inefficient IC and the WGC phenomenon is the spatial-temporal 18 
supply-demand imbalance. If there is a lack of idle drivers in one region, the platform must call 19 
remote drivers to enter the region to mitigate the loss of passengers and revenue. However, these 20 
drivers may suffer from long pick-up time (i.e., as in WGC). By contrast, if there are insufficient 21 
passengers in one region, drivers may suffer from long idle time (i.e., as in IC). To tackle the 22 
issue of supply-demand imbalance, a number of approaches have been proposed, including but 23 
not limited to order dispatching (Xu et al., 2018; Yang et al., 2020a) and surge pricing (Zha et 24 
al., 2018). In particular, with the fast development of computational power and artificial 25 
intelligence technologies, researchers are paying increasing attention to the design and 26 
optimization of idle-vehicle relocation strategies for improving supply-demand balance (Rong 27 
et al., 2016; Yu et al., 2019; Lin et al., 2018). 28 

In practice, based on actual or predicted spatial-temporal information on supply/demand 29 
(Ke et al., 2019) and traffic conditions (Zhu et al., 2019a), idle drivers are advised/incentivized 30 
to cruise to regions with higher potential rewards. These rewards could be reflected by the saving 31 
on waiting/matching time (Hwang et al., 2015); increase in trip fares and income (Rong et al., 32 
2016; Shou et al., 2020a); increase in vehicle occupancy/utilization rate (Gao et al., 2018); and 33 
saving on idle-cruise distance and operational costs (Lin et al., 2018; Yu et al., 2019). These 34 
studies aim to generate optimal sequential movements for idle drivers to achieve some maximal 35 
system-wide total rewards over a time horizon. Dynamic gaming approaches, such as the Markov 36 
decision process (MDP), offer a convenient framework for formulating and solving these 37 
problems. In an MDP model, one or multiple players (also referred to as agents) interact with an 38 
environment. Each agent has a set of states and a set of actions. In each time slot, each agent 39 
chooses one action after it perceives the current state. Meanwhile, by taking an action, the agent 40 
receives a reward and their state will be updated by the current state, action, and the state 41 
transition law, moving to the next state. During a time horizon, agents attempt to seek out the 42 
optimal sequence of actions (determined by a policy that maps the current state to the action) 43 
that leads to maximal total rewards. In particular, an MDP model with multiple agents is referred 44 
to as a multi-agent MDP model. 45 

                                                 
1 We use “idle cruising” because in ride-sourcing markets some vacant vehicles are en route to pick up passengers. 
To distinguish this from traditional taxi markets, we note that these vehicles are vacant but not idle.  
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Although MDP-based approaches for idle-vehicle relocation have been established in 1 
recent studies, research gaps remain. For instance, none of the previous studies have examined 2 
the designs and analysis of spatial-temporal subsidies for ride-sourcing drivers with their own 3 
relocation strategies using an MDP framework. To be more specific, each driver aims to 4 
maximize their own earning by relocating to profitable regions, while the platform tries to 5 
incentivize drivers’ relocating behaviors to maximize overall system efficiency by subsidies. 6 
Clearly, the sequential decision-making of drivers and the platform interact with each other, 7 
resulting in a very complex multi-agent MDP with different (i.e., mixed) types of agents. To well 8 
formulate such a complex system, we propose a mean-field (MF)-MDP model, which can jointly 9 
analyze the platform’s spatial-temporal subsidies and idle drivers’ self-relocation strategies. We 10 
regard the platform as a major agent that pursues the subsidy to optimize some objectives from 11 
a system perspective—e.g., to maximize immediate revenue and/or the number of passengers 12 
served (service rate). A number of drivers are considered as minor agents who choose their self-13 
relocation strategies to maximize their income. The decisions of the platform directly affect the 14 
income and decisions of the drivers, while the decisions of the drivers, in turn, collectively affect 15 
the platform’s decisions via their average status (e.g., the spatial-temporal distribution of idle 16 
drivers), which is captured by the MF state. By using a simple stochastic process to approximate 17 
the MF state (instead of computing it based on each driver’s state), we are able to reduce the 18 
standard multi-agent MF-MDP model to a simplified MF-MDP model with only the platform 19 
and one representative driver as agents. We then develop a representative-agent reinforcement 20 
learning algorithm to solve the simplified model. We conduct a set of numerical studies to 21 
examine the performance of the proposed representative-agent algorithm. By performing 22 
sensitivity analysis, we further investigate the impacts of spatial-temporal subsidies on drivers’ 23 
self-relocation, drivers’ income, the number of passengers served, and the platform’s net 24 
revenue. The results suggest that by providing some spatial-temporal subsidies, the platform is 25 
able to achieve a higher total reward, while drivers can earn higher income. 26 

 27 
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 1 
Figure 1. Summary of this paper’s contributions  2 

 3 
We use the term non-MF-MDPs to denote MDPs in which the MF state of minor agents 4 

is not required to compute the dynamics (e.g., transition laws and states of agents) in the 5 
environment. The main distinctions between the proposed MF-MDP model and other non-MF-6 
MDP models, and the features of their targeting research problems are summarized in Figure 1. 7 

In a non-MF-MDP model, each agent makes decisions by perceiving the states of all 8 
other agents, which may render the algorithm hard to converge due to the high stochasticity and 9 
instability of the environment. In an MF-MDP model, the states of agents are averaged in each 10 
zone and each time interval, and each agent makes its decisions according to the averaged (mean-11 
field) state. This will help reduce the variance of the states and actions, and thus make the model 12 
easy to be trained. In describing a ride-sourcing system with one platform and multiple drivers, 13 
both non-MF-MDP models and standard MF-MDP models contain multiple agents (the platform 14 
and drivers). Naturally, these two models can be solved by multi-agent algorithms that treat each 15 
driver and the platform as an independent agent. The only difference is that agents in MF-MDP 16 
models could take the MF states as inputs for making actions, while non-MF-MDP models 17 
should be aware of the states of all other agents at each decision point.  18 

Additionally, in a complex system with a large number of drivers as agents, multi-agent 19 
algorithms need to identify the optimal policy for each specific agent, and the underlying solution 20 
space (i.e., the Cartesian product of each agent’s state-action set) could be so large that optimal 21 
strategies are hard to be identify. To address this critical issue, we then propose a simplified MF-22 
MDP model that uses a representative driver to make decisions for all independent drivers. In 23 
other words, the simplified MF-MDP model only identify optimal policies for the representative 24 
driver (minor player) and the platform (major player), resulting in a much smaller solution space. 25 
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By developing representative-agent solution algorithms, it could be much easier for simplified 1 
MF-MDP models to fast convergence to high-rewarding policies.  2 

The main contributions of this paper are:  3 

• We propose a generalized MF-MDP model to capture the interactive decisions between 4 
the platform and a group of drivers with different objectives in ride-sourcing markets; in 5 
contrast, previous studies in this domain generally assume that the platform has full 6 
control of ride-sourcing drivers or that the platform and drivers have the same objective.  7 

• We show theoretically that this generalized multi-agent MF-MDP model (also referred 8 
to as the standard MF-MDP) can be approximated by a simplified MF-MDP model that 9 
attempts to jointly identify the optimal policies of a platform and a representative driver. 10 
The simplified MF-MDP model offers computational advantages for solving multi-agent 11 
MDP models. 12 

• We formulate a specific MF-MDP model to design spatial-temporal subsidies with 13 
predefined subsidy rates for drivers with self-relocation strategies. A representative-agent 14 
reinforcement learning algorithm is developed to solve the simplified MF-MDP model. 15 
Numerical studies demonstrate the effectiveness of the proposed algorithms in a small 16 
market, and examine the influences of spatial-temporal subsidies on a few key measures. 17 
The rest of the paper is organized as follows. Section 2 reviews the literature on ride-18 

sourcing markets and, in particular, idle-vehicle relocation. Section 3 presents the generalized 19 
ride-sourcing MF-MDP model with the platform and drivers as mixed agents. We discuss the 20 
approximation of the MF state and the simplified MF-MDP model with theoretical properties 21 
and a dynamic programming approach. In Section 4, we adopt the proposed MF-MDP model 22 
and formulate the spatial-temporal subsidy problem. A representative-agent reinforcement 23 
learning algorithm is developed. We conduct a set of numerical studies in Section 5 and 24 
demonstrate the advantage of the representative-agent algorithm over conventional multi-agent 25 
algorithms and the potential impacts of the subsidies on the platform and drivers. In Section 6, 26 
we discuss different potential subsidy schemes. Section 7 concludes. 27 

 28 

2. LITERATURE REVIEW  29 

With the development and deployment of smartphone and information technologies, ride-30 
sourcing services have had substantial impacts on traditional taxis in terms of passengers’ mode 31 
choices and mobility efficiency, and therefore have received intensive attention from researchers 32 
across fields. General research problems include optimal operating strategy designs in terms of 33 
the trip fares charged to passengers and wages paid to drivers (Cachon et al., 2015; Castillo et 34 
al., 2017; Zha et al., 2016; Bai et al., 2019; Taylor, 2018; Yang et al. 2020b); implications of 35 
governmental policies and regulations (Yu et al., 2019); examination of the elasticities of labor 36 
supply with respect to driver income level (Sun et al., 2019a; Sun et al., 2019b); on-demand 37 
matching and dispatching strategies (Xu et al., 2017; Zha et al., 2018; Zhang et al., 2017; Lyu et 38 
al. 2019; Yang et al. 2020a); forecasting real-time demand and supply (Ke et al., 2017; Ke et al., 39 
2021; Yao et al., 2018; Zhu et al., 2021b); equilibrium in ride-pooling services (Ke et al., 2020); 40 
and the impact of ride-sourcing on public transit (Zhu et al., 2020). Readers may refer to Wang 41 
and Yang (2019) for a comprehensive review.  42 

One critical problem faced by ride-sourcing platforms is how to mitigate supply-demand 43 
imbalance over space and time, which is commonly observed due to the stochastic arrivals and 44 
heterogeneous distributions of both drivers and passengers. The supply-demand imbalance can 45 
be alleviated with the help of approaches such as spatial-temporal demand prediction (Ke et al., 46 
2021); fleet-size regulation (Yang et al., 2002; Lin et al., 2018); surge/spatial pricing and rewards 47 
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(Yang et al., 2010; Zha et al., 2018; Zuniga Garcia, 2019; Yang et al. 2020b); driver 1 
incentive/subsidy (Qian et al., 2017); efficient large-scale order dispatch (Xu et al., 2018; Li et 2 
al., 2019); and idle-vehicle relocation guidance (Rong et al., 2016; Yu et al., 2019).  3 

Of these methods, idle-vehicle relocation, which guides or incentivizes idle vehicles from 4 
regions with extra supply to locate to regions with inadequate supply, is attracting substantial 5 
attention. Braverman et al. (2019) propose a fluid-based optimization approach that controls the 6 
flow of empty vehicles to optimize system-wide network utility, measured by the availability of 7 
idle vehicles upon passenger arrivals. They show that the optimal utility obtained from a fluid-8 
based approach is an upper bound on the utility of a system with finite vehicles for any routing 9 
policy. Lin et al. (2018) propose a multi-agent deep reinforcement learning approach that controls 10 
the movements of idle vehicles. Using mobility data from DiDi, they show that their proposed 11 
multi-agent model significantly outperforms benchmark algorithms. In this study, the multi-12 
agent advanced actor-critic (A2C) algorithm shows its ability to solve large-scale multi-agent 13 
reinforcement learning problems based on a simulator calibrated by actual mobility data. Most 14 
studies on idle-vehicle relocation assume that the platform has full control of drivers/vehicles 15 
(e.g., Rong et al., 2016; Lin et al., 2018; Shou et al., 2020b). In reality, however, the ride-sourcing 16 
platform and drivers have different objectives: Drivers aim to maximize their individual rewards 17 
(measured by income, vehicle occupancy rate, etc.) by following certain self-relocation 18 
strategies, while the platform aims to maximize overall system performances (measured by net 19 
revenue, saving on matching times, number of passengers served, etc.) by using spatial-temporal 20 
subsidy/guidance strategies. In this manner, incentives (e.g., subsidies or other rewards to drivers) 21 
are critical to motivate drivers to move from demand-cool locations (with more supply than 22 
demand) to demand-hot locations (with more demand than supply). Although 23 
subsidies/incentives strategies have been implemented in some ride-sourcing companies, such 24 
as DiDi, they have not been fully examined in the literature, particularly in a MDP framework. 25 
Shou and Di (2020a) propose a multi-agent reinforcement learning paradigm to approximate the 26 
system’s equilibrating process in a routing game among atomic selfish agents on a network. Sous 27 
and Di (2020b) examine reward design scenarios with multiple drivers and a constant design 28 
across zones and time periods, in which the Bayesian optimization is adopted to find the optimal 29 
design strategy. Their model can help policymakers develop optimal operational and planning 30 
countermeasures under different environments. The two studies also consider mean-field 31 
approximation within the reinforcement learning algorithm only; in contrast, our model is a 32 
mean-field “oriented” that builds the ride-sourcing simulation based on mean-field information. 33 

From a modeling perspective, the difficulty in mitigating the supply-demand imbalance 34 
in ride-sourcing markets lies in the complicated dynamic decision processes of the platform, 35 
drivers, and passengers, as well as endogenous relationships between decisions and scenarios. 36 
Specifically, the platform’s strategies, such as order dispatching, idle-vehicle relocation, and 37 
dynamic pricing/subsidies, affect both supply and demand, which in turn affect the platform’s 38 
decisions. A promising option for capturing the dynamics of ride-sourcing markets is the family 39 
of MDP models, which can well describe the sequential interactions between agents and 40 
environment. For example, Xu et al. (2018) formulate an order-dispatching process for a ride-41 
sourcing system using an MDP model, with the order dispatch as action, the numbers of idle 42 
drivers and waiting passengers in each time/location as states, and the total gross merchandise 43 
volume (GMV) as reward. They propose a policy that simultaneously considers the immediate 44 
reward and long-term rewards, and demonstrate that the proposed policy based on the MDP 45 
model can substantially improve the per-day earnings of drivers. More recently, various MDP 46 
and reinforcement learning models (e.g., Wang et al., 2018; Li et al., 2019; Shou et al., 2020a; 47 
Jin et al., 2019) have been developed to enhance the supply-demand balance via better 48 
dispatching and idle-vehicle relocation strategies. However, as stated in Section 1, in a 49 
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complicated system with a huge number of drivers, it can be difficult to identify optimal policies 1 
for each specific driver. In addition, in most previous studies, drivers and the platform’s 2 
objectives are not necessarily coincident with each other. While these studies assume the 3 
platform’s reward is equal to the summation of the rewards of all drivers (which implies that the 4 
platform and drivers have the same objective), it is more interesting and realistic to ascertain the 5 
platform’s and drivers’ own policies in an environment where they mutually affect each other. 6 
To be more specific, drivers try to maximize their individual daily earning through self-relocation, 7 
while the platform attempts to maximize system-wide efficiency by paying subsidies to drivers 8 
based on location and time.  9 

Inspired by the aforementioned studies and research gaps, we propose a generalized MF-10 
MDP model to analyze the dynamics in ride-sourcing markets in which the platform and multiple 11 
drivers have different objectives and state-action sets. The MF-MDP model is new to 12 
transportation research questions which are solved by an MDP environment with interactive 13 
decisions between the mixed agents. According to the proposed model, we theoretically show 14 
that efficient algorithms can be developed by only considering the platform and a representative 15 
driver as agents in a simplified MF-MDP model. A specific MF-MDP model and a 16 
representative-agent reinforcement learning algorithm are developed to analyze the implications 17 
of spatial-temporal subsidies for drivers with self-relocation strategies. Our numerical results 18 
offer insights on the interactions between the platform’s subsidy and idle drivers’ self-relocation, 19 
as well as the influences of the intensity of subsidy on the platform’s spatial-temporal subsidy 20 
strategy and idle drivers’ self-relocation strategies.  21 

 22 

3. MEAN-FIELD MARKOV DECISION PROCESS MODEL FOR RIDE-SOURCING 23 
MARKETS 24 

In this section, we present a generalized MF-MDP model for depicting the interactive 25 
decision processes of the platform and drivers in ride-sourcing markets. With generalized 26 
definitions and formulas for states, actions, the MF state, state transition laws, and rewards for 27 
mixed agents, we present some properties of the MF-MDP model. We also discuss simplification 28 
of the model to reduce the number of agents for computational advantages. 29 

3.1 GENERAL CONCEPT OF THE MF-MDP MODEL 30 
The development of an MDP model should capture the particular feature of a research 31 

problem, which is depicted by the definition of states, actions, rewards of agents and the 32 
transition law (i.e., how the environment replies to agents’ actions). In a practical problem, the 33 
number of states and actions for an agent can be large. For instance, in idle-vehicle relocation 34 
problems, a driver’s state should include time and location and his/her actions may cover a list 35 
of locations/directions. Moreover, the transition law could involve complex computations that is 36 
executed based on spatial-temporal information of each agent and extra information of the 37 
environment. Given the large sets of states and actions and the complex transition for each agent, 38 
solving a multi-agent MDP model with a large number of agents results in a massive solution 39 
space and thus can be computationally prohibitive. The scenario can become more complicated 40 
when different types of agents (who may have distinct objectives) coexist in the environment, 41 
resulting in an MDP with mixed agents. To capture the interactions between a major agent and 42 
a number of minor agents who pursue their individual objectives, Huang et al. (2006) propose 43 
the concept of an MF-MDP model. In an MF-MDP model, the states and actions of the major 44 
agent can significantly affect the rewards and actions of minor agents. Meanwhile, each minor 45 
agent has a negligible impact on the rewards and actions of another minor agent or the major 46 
agent. Instead, the transitions, rewards, and actions of the major agent and a minor agent are 47 
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influenced by the mean-field (i.e., MF, average) state of all minor agents collectively (Gomes, 1 
2014). In this manner, the major agent or a specific minor agent does not distinguish any 2 
individual minor agent in the MF-MDP model, but considers the MF state when taking actions.  3 

In a standard MF-MDP (with one major agent and multiple minor agents), we need to 4 
compute the MF state via summarizing each minor agents’ state so as to obtain the transitions 5 
and rewards. This can be computationally intractable when the number of minor agents is huge. 6 
To improve the efficiency, the standard MF-MDP can be simplified by approximating the MF 7 
state in a stochastic process and using a representative agent to determine actions for multiple 8 
minor agents with the same objective, states, and action sets (Huang et al., 2006; Huang et al., 9 
2007). Once there are a large number of minor agents in the environment, the simplified MF-10 
MDP can well approximate the dynamic nature of the standard MF-MDP. Also, it can 11 
significantly reduce computational complexity and achieve more efficient solution by optimizing 12 
only one policy for the representative minor agent instead of determining a group of independent 13 
policies for each of the minor agents. Correspondingly, we propose representative-agent 14 
dynamic programing/reinforcement learning algorithms to solve simplified MF-MDPs (see the 15 
next section), while conventional DP/RL algorithms are adopted to solve standard MF-MDPs 16 
and non-MF-MDPs.  17 

Literature on the MF-MDP model (e.g., Huang et al., 2006; Huang et al., 2007) mainly 18 
focuses on the general conception, definitions, and mathematical propositions in a simple and 19 
stylized case; there is no discussion of how to configure and solve such a model when the 20 
environment is complicated. Inspired by the concept of the MF-MDP model, this paper aims to 21 
develop a MDP model that can well delineate the state-action transition laws in a system with 22 
one platform and a group of drivers whose actions mutually affect each other. At the beginning 23 
stage of MF-MDP studies, we develop a specific MF-MDP model for analyzing spatial-temporal 24 
subsidies for drivers with self-relocation strategies (see Section 4.1) and an efficient solution 25 
algorithm for the particular MF-MDP model (see Section 4.2). We demonstrate that the 26 
algorithm achieves significant computational advantages, faster convergence, and better 27 
performance on a small-scale market (see Section 5), and aim to examine the general 28 
performance on actual-size problems in near future.  29 

3.2 FORMULATION OF THE RIDE-SOURCING MF-MDP MODEL 30 
In a ride-sourcing market, the platform’s operational strategies play important roles in 31 

affecting the performance (e.g., daily income, waiting time for order matches, and distances en 32 
route to pick up passengers) and decisions (e.g., self-relocation and working hours) of drivers. 33 
However, if the number of drivers is large, the impact of each individual driver’s decisions and 34 
actions on the platform or other drivers is trivial and can be ignored without causing significant 35 
deviations in general. By contrast, the average (i.e., MF) state of all drivers collectively, which 36 
captures the spatial-temporal supply information, will significantly influence order 37 
matching/dispatching, performance (e.g., net revenue, vehicle occupied rate, and the number of 38 
passengers served), and other decisions (e.g., spatial-temporal pricing and subsidy) of the 39 
platform as well as those of each individual driver. Moreover, the platform sometimes chooses 40 
to display heat maps of its spatial-temporal surge pricing and/or subsidy and overall demand and 41 
supply to drivers on the app. In this manner, the state of the platform and the MF state of drivers 42 
are public information to drivers, who then process the information and take corresponding 43 
actions. Therefore, it is reasonable to describe the ride-sourcing market using an MF-MDP 44 
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model, in which the platform is regarded as the major agent and a number of drivers are treated 1 
as minor agents2.  2 

Suppose there is 1 platform and 𝑀𝑀 homogeneous drivers (i.e., state sets, action sets, and 3 
objectives are the same for drivers), and the planning horizon consists of 𝑇𝑇 time periods (i.e., 4 
time 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇}). Let 𝑺𝑺 and 𝑺𝑺𝑑𝑑 denote finite sets of the states of the platform and drivers, 5 
respectively. Let 𝑦𝑦𝑡𝑡 ∈ 𝑺𝑺 represent the state of the platform at time 𝑡𝑡; specifically, 𝑦𝑦𝑡𝑡 can be a 6 
vector that contains time index 𝑡𝑡, the spatial-temporal pricing, subsidies, and number of waiting 7 
passengers across different regions in the market at time 𝑡𝑡. We use 𝑦𝑦𝑑𝑑,𝑖𝑖

𝑡𝑡 ∈ 𝑺𝑺𝑑𝑑 to represent the 8 
state of driver 𝑖𝑖 ∈ {1,2, … ,𝑀𝑀} at time 𝑡𝑡 , which could include time index, their location, the 9 
number of loaded passengers, and the destination. Then the MF state of all drivers at any time 10 
period 𝑡𝑡 can be represented as a vector 𝒛𝒛𝑑𝑑𝑡𝑡  as follows: 11 

𝒛𝒛𝑑𝑑𝑡𝑡 = �𝑧𝑧𝑑𝑑,𝑠𝑠𝑑𝑑
𝑡𝑡 �

1×|𝑺𝑺𝑑𝑑|
 (1) 

𝑧𝑧𝑑𝑑,𝑠𝑠𝑑𝑑
𝑡𝑡 =

∑ I�𝑦𝑦𝑑𝑑,𝑖𝑖
𝑡𝑡 = 𝑠𝑠𝑑𝑑�𝑀𝑀

𝑖𝑖=1

𝑀𝑀
 (2) 

where I(·) denotes the identity function and we use 𝑯𝑯𝑑𝑑 to denote the feasible domain of MF state 12 
𝒛𝒛𝑑𝑑𝑡𝑡 , i.e., 𝒛𝒛𝑑𝑑𝑡𝑡 ∈ 𝑯𝑯𝑑𝑑. Intuitively, the MF vector 𝒛𝒛𝑑𝑑𝑡𝑡  represents the distribution of drivers’ states. For 13 
instance, if a driver’s state contains their current location and the occupancy of their vehicle, 14 
then the MF state captures the spatial distribution of all vacant vehicles and occupied vehicles. 15 

Let 𝑨𝑨 and 𝑨𝑨𝑑𝑑 denote finite sets of the actions of the platform and drivers, respectively. 16 
We use 𝑥𝑥𝑡𝑡 ∈ 𝑨𝑨 and 𝑥𝑥𝑑𝑑,𝑖𝑖

𝑡𝑡 ∈ 𝑨𝑨𝑑𝑑, respectively, to denote the actions of the platform and driver 𝑖𝑖 at 17 
time 𝑡𝑡 . The actions of the platform can include pricing or subsidy strategies (e.g., 1 for 18 
subsidizing and 0 for not offering subsidy), and the actions of a driver are their self-relocation 19 
directions.  20 

Following the conventions in discrete-time MDPs, the transition probability of a major 21 
or minor agent in the MF-MDP is determined by their current state and action and the MF state 22 
of the minor agents. Specifically, the state transition laws for the platform and a specific driver 23 
are denoted as 𝑄𝑄(· | ·) and 𝑄𝑄𝑑𝑑(· | ·) in Eqs. (3)–(4), where P(·) denotes the probability operator3.  24 

𝑄𝑄(𝑠𝑠′|𝑠𝑠,𝒉𝒉𝑑𝑑, 𝑎𝑎) = P(𝑦𝑦𝑡𝑡+1 = 𝑠𝑠′|𝑦𝑦𝑡𝑡 = 𝑠𝑠, 𝒛𝒛𝑑𝑑𝑡𝑡 = 𝒉𝒉𝑑𝑑 , 𝑥𝑥𝑡𝑡 = 𝑎𝑎)  (3) 

𝑄𝑄𝑑𝑑(𝑠𝑠𝑑𝑑′ |𝑠𝑠𝑑𝑑,𝒉𝒉𝑑𝑑, 𝑎𝑎𝑑𝑑) = P�𝑦𝑦𝑑𝑑,𝑖𝑖
𝑡𝑡+1 = 𝑠𝑠𝑑𝑑′ |𝑦𝑦𝑑𝑑,𝑖𝑖

𝑡𝑡 = 𝑠𝑠𝑑𝑑 , 𝒛𝒛𝑑𝑑𝑡𝑡 = 𝒉𝒉𝑑𝑑 , 𝑥𝑥𝑑𝑑,𝑖𝑖
𝑡𝑡 = 𝑎𝑎𝑑𝑑�  (4) 

The platform or a driver takes sequential actions to maximize their total rewards in 𝑇𝑇 25 
time periods, which can be measured by the net revenue, the number of passengers served, and 26 
so on. Let 𝑟𝑟 denote the reward of the platform, which is a function of the platform’s current state 27 

                                                 
2 Note that in real ride-sourcing markets, market conditions have strong time-varying patterns with peak and off-
peak hours, which indicate the nonstationary states and transitions in a day. However, if we consider a certain period 
of 2 to 3 hours, market conditions are more stable and thus can be approximately described using stationary states 
and transitions. Readers can refer to Figures 4 and 5 in Lyu et al. (2019) for demonstrations of daily temporal 
distributions of demand and supply in a real ride-sourcing market. If we consider a certain periode.g., 8 am to 10 
am during peak hours or 2 pm to 4 pm during off-peak hoursmarket conditions are quite stable and thus can be 
modeled as stationary MDP, with different transition matrices, respectively. 
3 In this paper, we use 𝑦𝑦𝑡𝑡 and 𝑦𝑦𝑑𝑑,𝑖𝑖

𝑡𝑡  (also 𝑦𝑦𝑑𝑑𝑡𝑡 ) to represent random variables of states, 𝑥𝑥𝑡𝑡 and 𝑥𝑥𝑑𝑑,𝑖𝑖
𝑡𝑡  (also 𝑥𝑥𝑑𝑑𝑡𝑡 ) random 

variables of actions, and 𝒛𝒛𝑑𝑑𝑡𝑡  (also 𝒛𝒛�𝑑𝑑𝑡𝑡 ) random variables of MF states in the MF-MDP model. We use 𝑠𝑠 and 𝑠𝑠𝑑𝑑 to 
represent values of random states, 𝑎𝑎 and 𝑎𝑎𝑑𝑑 values of random actions, and 𝒉𝒉𝑑𝑑 values of random MF states. 
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and action and the MF state of drivers. For a particular driver, the reward 𝑟𝑟𝑑𝑑 could be measured 1 
by their income, saving on idle-cruise distance, saving on operational costs, etc., and it is a 2 
function of their current state and action, the current state of the platform, and the current MF 3 
state4. The total rewards of the platform and a specific driver, which are also referred to as value 4 
functions, are given by 5 

𝑉𝑉𝜋𝜋(𝑠𝑠,𝒉𝒉𝑑𝑑) = E𝜋𝜋(∑ (𝜌𝜌)𝑡𝑡𝑟𝑟(𝑦𝑦𝑡𝑡,𝒛𝒛𝑑𝑑𝑡𝑡 , 𝑥𝑥𝑡𝑡)𝑇𝑇
𝑡𝑡=1 |𝑦𝑦1 = 𝑠𝑠, 𝒛𝒛𝑑𝑑1 = 𝒉𝒉𝑑𝑑) (5) 

𝑉𝑉𝑑𝑑
𝜋𝜋𝑑𝑑,𝑖𝑖(𝑠𝑠, 𝑠𝑠𝑑𝑑,𝒉𝒉𝑑𝑑) = E𝜋𝜋𝑑𝑑,𝑖𝑖�∑ (𝜌𝜌)𝑡𝑡𝑟𝑟𝑑𝑑�𝑦𝑦𝑡𝑡,𝑦𝑦𝑑𝑑,𝑖𝑖

𝑡𝑡 , 𝒛𝒛𝑑𝑑𝑡𝑡 , 𝑥𝑥𝑑𝑑,𝑖𝑖
𝑡𝑡 �𝑇𝑇

𝑡𝑡=1 �𝑦𝑦1 = 𝑠𝑠,𝑦𝑦𝑑𝑑,𝑖𝑖
1 = 𝑠𝑠𝑑𝑑, 𝒛𝒛𝑑𝑑1 = 𝒉𝒉𝑑𝑑� (6) 

where 𝑉𝑉𝜋𝜋 and 𝑉𝑉𝑑𝑑
𝜋𝜋𝑑𝑑,𝑖𝑖 denote the total rewards for the platform and driver 𝑖𝑖 given some specific 6 

initial states (i.e., 𝑦𝑦1 = 𝑠𝑠, 𝑦𝑦𝑑𝑑,𝑖𝑖
1 = 𝑠𝑠𝑑𝑑, and 𝒛𝒛𝑑𝑑1 = 𝒉𝒉𝑑𝑑), respectively; 𝜋𝜋 and  𝜋𝜋𝑑𝑑,𝑖𝑖 denote the policies 7 

(a mapping from states to actions) of the platform and the 𝑖𝑖 -th driver respectively; 𝑥𝑥𝑡𝑡 =8 
𝜋𝜋(𝑦𝑦𝑡𝑡, 𝒛𝒛𝑑𝑑𝑡𝑡 ) and 𝑥𝑥𝑑𝑑,𝑖𝑖

𝑡𝑡 = 𝜋𝜋𝑑𝑑,𝑖𝑖�𝑦𝑦𝑡𝑡,𝑦𝑦𝑑𝑑,𝑖𝑖
𝑡𝑡 , 𝒛𝒛𝑑𝑑𝑡𝑡 � represent the actions following the corresponding policies; 9 

𝜌𝜌 ∈ (0,1) is the discount factor that measures how the policy balances the trade-off between 10 
immediate reward and long-term rewards; and E𝜋𝜋(·) and E𝜋𝜋𝑑𝑑,𝑖𝑖

(·) are the expectation operators 11 
under policies 𝜋𝜋 and 𝜋𝜋𝑑𝑑,𝑖𝑖, respectively. 12 

Given specific formulas for rewards and state transition laws, a straightforward approach 13 
to solving the ride-sourcing MF-MDP model is to regard the platform and each driver as an 14 
agent, then try to solve the problem with a decentralized multi-agent MDP approach. However, 15 
the decentralized multi-agent MDP is generally hard to solve, especially when there are many 16 
agents. In reality, we will have a large number of minor agents (drivers). The distinct objectives 17 
of the major agent (platform) and minor agents (drivers) also render the solution-seeking process 18 
more unstable and intractable. Alternatively, we approximate the random MF vector 𝒛𝒛𝑑𝑑𝑡𝑡  as a 19 
stationary process and optimize an aggregate policy for all drivers. Namely, as 𝑀𝑀 → ∞, we have  20 
𝒛𝒛𝑑𝑑𝑡𝑡

𝑎𝑎.𝑠𝑠.
�� 𝒛𝒛�𝑑𝑑𝑡𝑡 . Similar approximations of asymptotic processes of homogeneous decision-makers 21 

have been adopted in studies of day-to-day traffic dynamics (Hazelton and Watling, 2004; Zhu 22 
et al., 2019b; Zhu et al., 2020a). In the simplified MF-MDP model, the platform takes actions 23 
according to policy 𝜋𝜋  (i.e., 𝑥𝑥𝑡𝑡 = 𝜋𝜋(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 ) ), and the decision processes of all drivers are 24 
determined by policy 𝜋𝜋𝑑𝑑 (i.e., 𝑥𝑥𝑑𝑑𝑡𝑡 = 𝜋𝜋𝑑𝑑(𝑦𝑦𝑡𝑡,𝑦𝑦𝑑𝑑𝑡𝑡 , 𝒛𝒛�𝑑𝑑𝑡𝑡 )) of a representative driver5. The MF state at 25 
the next time period depends on the current MF state and the platform’s state, which is simplified 26 
as an updating rule 𝒛𝒛�𝑑𝑑𝑡𝑡+1 = 𝑙𝑙𝑑𝑑(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 ). Note that the updating rule also incorporates the policies 27 
(for action taking) of the platform and the representative driver. Therefore, the standard multi-28 
agent MF-MDP model with 1 + 𝑀𝑀 agents can be reduced to a simplified MF-MDP model with 29 
only 2 agents:  30 

• The ride-sourcing platform that acts as a major agent to design the optimal policy to 31 
maximize its total rewards. The optimal value function is defined as 𝑉𝑉∗(𝑠𝑠,𝒉𝒉𝑑𝑑) =32 
max
𝜋𝜋

E𝜋𝜋(∑ 𝜌𝜌𝑡𝑡𝑟𝑟(𝑦𝑦𝑡𝑡, 𝒛𝒛𝑑𝑑𝑡𝑡 , 𝑥𝑥𝑡𝑡)𝑇𝑇
𝑡𝑡=1 |𝑦𝑦1 = 𝑠𝑠, 𝒛𝒛𝑑𝑑1 = 𝒉𝒉𝑑𝑑). 33 

• A representative driver who acts as a representative minor agent to pursue the optimal 34 
policy and maximize their total rewards. The total reward is regarded as the average total 35 

                                                 
4 With specific research problems in ride-sourcing markets, we sometimes need to incorporate the previous state 
(i.e., 𝑦𝑦𝑡𝑡−1 , 𝑦𝑦𝑑𝑑,𝑖𝑖

𝑡𝑡−1 , and 𝒛𝒛𝑑𝑑𝑡𝑡−1 ) into the formulas for rewards (i.e., 𝑟𝑟  and 𝑟𝑟𝑑𝑑 ). This is because the before-and-after 
changes in states may affect the reward. For instance, if a subsidy is offered to a driver upon a new match with a 
passenger, we must check the diver’s previous state and include the subsidy in the reward only if the current state 
is “matched/dispatched” and the previous state is “idle”. 
5 For convenience and clarity, we use notation without a driver index to denote the state (𝑦𝑦𝑑𝑑𝑡𝑡 ), action (𝑥𝑥𝑑𝑑𝑡𝑡 ), and policy 
(𝜋𝜋𝑑𝑑) of the representative driver in the simplified MF-MDP model. 
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rewards of all drivers. The optimal value function is defined as 𝑉𝑉𝑑𝑑∗(𝑠𝑠, 𝑠𝑠𝑑𝑑 ,𝒉𝒉𝑑𝑑) =1 
max
𝜋𝜋𝑑𝑑

 E𝜋𝜋𝑑𝑑(∑ 𝜌𝜌𝑡𝑡𝑟𝑟𝑑𝑑(𝑦𝑦𝑡𝑡,𝑦𝑦𝑑𝑑𝑡𝑡 , 𝒛𝒛𝑑𝑑𝑡𝑡 , 𝑥𝑥𝑑𝑑𝑡𝑡 )𝑇𝑇
𝑡𝑡=1 |𝑦𝑦1 = 𝑠𝑠, 𝑦𝑦𝑑𝑑1 = 𝑠𝑠𝑑𝑑 , 𝒛𝒛𝑑𝑑1 = 𝒉𝒉𝑑𝑑). 2 

The form of function 𝑙𝑙𝑑𝑑(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 ) determines the consistency between the approximated 3 
MF state 𝒛𝒛�𝑑𝑑𝑡𝑡  and the exact MF state 𝒛𝒛𝑑𝑑𝑡𝑡  (i.e., Eqs. (1)–(2)). A consistent approximation of the MF 4 
states is a critical requirement, such that the simplified MF-MDP model is able to represent the 5 
complex state transition and decision dynamics characterized by the standard MF-MDP. We 6 
discuss the consistency requirement in Section 3.3. 7 

3.3 OPTIMAL POLICIES AND THE CONSISTENCY REQUIREMENT 8 
An MDP model is generally solved by Bellman equations. We first illustrate the Bellman 9 

equations of the simplified MF-MDP model. An arbitrary MF state updating rule 𝑙𝑙𝑑𝑑(𝑦𝑦𝑡𝑡,𝒛𝒛�𝑑𝑑𝑡𝑡 ) is 10 
adopted without checking the consistency between 𝒛𝒛�𝑑𝑑𝑡𝑡  and 𝒛𝒛𝑑𝑑𝑡𝑡 . The following propositions are 11 
necessary to obtain the optimal policies with Bellman equations: 12 

Proposition 1. 𝑯𝑯𝑑𝑑 is a continuous and compact set.  13 

Proposition 2. Given a continuous reward function 𝑟𝑟(𝑦𝑦𝑡𝑡,𝒛𝒛�𝑑𝑑𝑡𝑡  , 𝑥𝑥𝑡𝑡) on 𝑯𝑯𝑑𝑑 , the value function 14 
𝑉𝑉𝜋𝜋(𝑠𝑠,𝒉𝒉𝑑𝑑) is continuous on 𝑯𝑯𝑑𝑑. 15 

Proposition 3. Given a continuous reward function 𝑟𝑟𝑑𝑑(𝑦𝑦𝑡𝑡,𝑦𝑦𝑑𝑑𝑡𝑡 , 𝒛𝒛�𝑑𝑑𝑡𝑡 , 𝑥𝑥𝑑𝑑𝑡𝑡 ) on 𝑯𝑯𝑑𝑑, the value function  16 
𝑉𝑉𝑑𝑑
𝜋𝜋𝑑𝑑(𝑠𝑠, 𝑠𝑠𝑑𝑑,𝒉𝒉𝑑𝑑) is continuous on 𝑯𝑯𝑑𝑑. 17 

where Proposition 1 is straightforward because 𝒛𝒛𝑑𝑑𝑡𝑡  is continuous as 𝑀𝑀 goes to infinity, and given 18 
specific policies 𝜋𝜋 and 𝜋𝜋𝑑𝑑 , the reward functions (i.e., 𝑟𝑟 and 𝑟𝑟𝑑𝑑) and the corresponding value 19 
functions (i.e., 𝑉𝑉𝜋𝜋 and 𝑉𝑉𝑑𝑑

𝜋𝜋𝑑𝑑) are continuous, leading to Propositions 2 and 3.  20 

The optimal policy for the platform can be solved based on the following Bellman 21 
equation: 22 

𝑉𝑉∗(𝑠𝑠,𝒉𝒉𝑑𝑑) = max
𝑎𝑎∈𝑨𝑨

 �𝑟𝑟(𝑠𝑠,𝒉𝒉𝑑𝑑 ,𝑎𝑎) + 𝜌𝜌� 𝑄𝑄(𝑠𝑠′|𝑠𝑠,𝒉𝒉𝑑𝑑, 𝑎𝑎)𝑉𝑉(𝑠𝑠′,𝒉𝒉𝑑𝑑′ )
𝑠𝑠′∈𝑺𝑺

� (7) 

where 𝒉𝒉′ = 𝑙𝑙𝑑𝑑(𝑠𝑠,𝒉𝒉𝑑𝑑). In light of Proposition 2, the existence of an optimal policy 𝜋𝜋∗ for Eq. 23 
(7) is guaranteed. Suppose the optimal policy 𝜋𝜋∗ has been implemented in the simplified MF-24 
MDP model. The Bellman equation for the representative driver is given by 25 

𝑉𝑉𝑑𝑑∗(𝑠𝑠, 𝑠𝑠𝑑𝑑,𝒉𝒉𝑑𝑑) = max
𝑎𝑎𝑑𝑑∈𝑨𝑨𝑑𝑑

 

⎩
⎪
⎨

⎪
⎧ 𝑟𝑟𝑑𝑑(𝑠𝑠, 𝑠𝑠𝑑𝑑 ,𝒉𝒉𝑑𝑑 ,𝑎𝑎𝑑𝑑) +

𝜌𝜌 � 𝑄𝑄(𝑠𝑠′|𝑠𝑠,𝒉𝒉𝑑𝑑, 𝑎𝑎)𝑄𝑄𝑑𝑑(𝑠𝑠𝑑𝑑′ |𝑠𝑠𝑑𝑑,𝒉𝒉𝑑𝑑, 𝑎𝑎𝑑𝑑)𝑉𝑉𝑑𝑑(𝑠𝑠′, 𝑠𝑠𝑑𝑑′ ,𝒉𝒉𝑑𝑑′ )
𝑠𝑠′∈𝑺𝑺,
𝑠𝑠𝑑𝑑
′ ∈𝑺𝑺𝑑𝑑 ⎭

⎪
⎬

⎪
⎫

 (8) 

where 𝑎𝑎 = 𝜋𝜋∗(𝑠𝑠,𝒉𝒉𝑑𝑑). 26 

Similarly, based on Proposition 3, given 𝜋𝜋∗, the optimal policy 𝜋𝜋𝑑𝑑∗  exists for Eq. (8). In 27 
other words, there is an optimal policy group (𝜋𝜋∗,𝜋𝜋𝑑𝑑∗) that simultaneously satisfies Eqs. (7)–(8). 28 

Next, we seek the specific formula of 𝑙𝑙𝑑𝑑(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 ) for a consistent approximation of the 29 
MF state. The basic idea is to identify some updating rule of the exact MF state 𝒛𝒛𝑑𝑑𝑡𝑡  in the 30 
simplified MF-MDP model, then adapt this rule to the approximated MF state 𝒛𝒛�𝑑𝑑𝑡𝑡 . Based on Eq. 31 
(2), we obtain the asymptotic 𝒛𝒛𝑑𝑑𝑡𝑡  as 𝑀𝑀 goes to infinity: 32 
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lim
𝑀𝑀→∞

𝑧𝑧𝑑𝑑,𝑠𝑠𝑑𝑑
𝑡𝑡 = lim

𝑀𝑀→∞

∑ I�𝑦𝑦𝑑𝑑,𝑖𝑖
𝑡𝑡 = 𝑠𝑠𝑑𝑑�𝑀𝑀

𝑖𝑖=1

𝑀𝑀
𝑎𝑎.𝑠𝑠.
�� P(𝑦𝑦𝑑𝑑𝑡𝑡 = 𝑠𝑠𝑑𝑑)  (9) 

To examine the asymptotic property of 𝒛𝒛𝑑𝑑𝑡𝑡  under the optimal policy group (𝜋𝜋∗,𝜋𝜋𝑑𝑑∗), we 1 
introduce the following theorem, which is valid for any function 𝒛𝒛�𝑑𝑑𝑡𝑡+1 = 𝑙𝑙𝑑𝑑(𝑦𝑦𝑡𝑡,𝒛𝒛�𝑑𝑑𝑡𝑡 ). 2 

Theorem 1. Let policy group (𝜋𝜋∗,𝜋𝜋𝑑𝑑∗) denote the optimal policies of Eqs. (7)–(8); the underlying 3 
vector (𝑦𝑦𝑡𝑡,𝑦𝑦𝑑𝑑𝑡𝑡 , 𝒛𝒛�𝑑𝑑𝑡𝑡 ) forms a stationary Markov process. 4 

Proof. The policy group provides stationary mapping from states to actions, such that 𝑥𝑥𝑡𝑡 =5 
𝜋𝜋∗(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 ) and 𝑥𝑥𝑑𝑑𝑡𝑡 = 𝜋𝜋𝑑𝑑∗(𝑦𝑦𝑡𝑡,𝑦𝑦𝑑𝑑𝑡𝑡 , 𝒛𝒛�𝑑𝑑𝑡𝑡 ) . The state transition probability from state (𝑠𝑠, 𝑠𝑠𝑑𝑑,𝒉𝒉𝑑𝑑) to 6 
state (𝑠𝑠′, 𝑠𝑠𝑑𝑑′ ,𝒉𝒉𝑑𝑑′ ) is given by 7 

P(𝑦𝑦𝑡𝑡+1 = 𝑠𝑠′,𝑦𝑦𝑑𝑑𝑡𝑡+1 = 𝑠𝑠𝑑𝑑′ , 𝒛𝒛�𝑑𝑑𝑡𝑡+1 = 𝒉𝒉𝒅𝒅′ |𝑦𝑦𝑡𝑡 = 𝑠𝑠,𝑦𝑦𝑑𝑑𝑡𝑡 = 𝑠𝑠𝑑𝑑 , 𝒛𝒛�𝑑𝑑𝑡𝑡 = 𝒉𝒉𝑑𝑑) 

= 𝑄𝑄�𝑠𝑠′|𝑠𝑠,𝒉𝒉𝑑𝑑 ,𝜋𝜋∗(𝑠𝑠,𝒉𝒉𝑑𝑑)�𝑄𝑄𝑑𝑑�𝑠𝑠𝑑𝑑′ |𝑠𝑠𝑑𝑑,𝒉𝒉𝑑𝑑 ,𝜋𝜋𝑑𝑑∗(𝑠𝑠, 𝑠𝑠𝑑𝑑,𝒉𝒉𝑑𝑑)�I�𝒉𝒉𝒅𝒅′ = 𝑙𝑙𝑑𝑑(𝑠𝑠,𝒉𝒉𝑑𝑑)� 
(10) 

where the LHS only depends on the current state (𝑠𝑠, 𝑠𝑠𝑑𝑑 ,𝒉𝒉𝑑𝑑). 8 

∎ 9 

 In light of Theorem 1, the asymptotic 𝑧𝑧𝑑𝑑,𝑠𝑠𝑑𝑑
𝑡𝑡  and P(𝑦𝑦𝑑𝑑𝑡𝑡 = 𝑠𝑠𝑑𝑑) are also Markov processes. 10 

Based on the transition law, the formula of P(𝑦𝑦𝑑𝑑𝑡𝑡+1 = 𝑠𝑠𝑑𝑑′ ) is given by  11 

P(𝑦𝑦𝑑𝑑𝑡𝑡+1 = 𝑠𝑠𝑑𝑑′ ) = � P(𝑦𝑦𝑑𝑑𝑡𝑡 = 𝑠𝑠𝑑𝑑)𝑄𝑄𝑑𝑑�𝑠𝑠𝑑𝑑′ |𝑠𝑠𝑑𝑑, 𝒛𝒛�𝑑𝑑𝑡𝑡 ,𝜋𝜋𝑑𝑑∗(𝑦𝑦𝑡𝑡, 𝑠𝑠𝑑𝑑, 𝒛𝒛�𝑑𝑑𝑡𝑡 )�
𝑠𝑠𝑑𝑑∈𝑺𝑺𝑑𝑑

  (11) 

Eq. (11) is summarized as a matrix product form: 12 

𝒛𝒛𝑑𝑑𝑡𝑡+1 = 𝒛𝒛𝑑𝑑𝑡𝑡 𝑸𝑸�𝑑𝑑(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 )  (12) 

where 𝑸𝑸�𝑑𝑑(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 ) = �𝑄𝑄𝑑𝑑�𝑠𝑠𝑑𝑑′ |𝑠𝑠𝑑𝑑, 𝒛𝒛�𝑑𝑑𝑡𝑡 ,𝜋𝜋𝑑𝑑∗(𝑦𝑦𝑡𝑡, 𝑠𝑠𝑑𝑑, 𝒛𝒛�𝑑𝑑𝑡𝑡 )��
|𝑺𝑺𝑑𝑑|×|𝑺𝑺𝑑𝑑|

 is a probability transition matrix of 13 
the MF state. Let 𝒛𝒛�𝑑𝑑1 = 𝒛𝒛𝑑𝑑1  and 𝑙𝑙𝑑𝑑(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 ) = 𝒛𝒛�𝑑𝑑𝑡𝑡 𝑸𝑸�𝑑𝑑(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 ); for any 𝑡𝑡 ∈ 𝑻𝑻, we can obtain the 14 
following equation by iteratively substituting Eq. (12) and 𝑙𝑙𝑑𝑑(𝑦𝑦𝑡𝑡,𝒛𝒛�𝑑𝑑𝑡𝑡 ). 15 

𝒛𝒛�𝑑𝑑𝑡𝑡+1 = 𝒛𝒛�𝑑𝑑1 �𝑸𝑸�𝑑𝑑�𝑦𝑦𝑡𝑡
′ , 𝒛𝒛�𝑑𝑑𝑡𝑡

′�
𝑡𝑡

𝑡𝑡′=1

= 𝒛𝒛𝑑𝑑1 �𝑸𝑸�𝑑𝑑�𝑦𝑦𝑡𝑡
′ , 𝒛𝒛�𝑑𝑑𝑡𝑡

′�
𝑡𝑡

𝑡𝑡′=1

= 𝒛𝒛𝑑𝑑𝑡𝑡+1 (13) 

Therefore, we conclude that E𝜋𝜋∗,𝜋𝜋𝑑𝑑
∗ (𝒛𝒛�𝑑𝑑𝑡𝑡 ) = 𝒛𝒛𝑑𝑑𝑡𝑡  and the consistency requirement for the 16 

approximation of MF states reduces to the following updating rule: 17 

𝒛𝒛�𝑑𝑑𝑡𝑡+1 = 𝑙𝑙𝑑𝑑#(𝑦𝑦𝑡𝑡,𝒛𝒛�𝑑𝑑𝑡𝑡 ) = 𝒛𝒛�𝑑𝑑𝑡𝑡 𝑸𝑸�𝑑𝑑(𝑦𝑦𝑡𝑡,𝒛𝒛�𝑑𝑑𝑡𝑡 )  (14) 

where superscript # means that the updating rule is consistent. 18 

We refer to the combination of the optimal policies for the platform and the representative 19 
driver and the consistent updating rule for MF states, i.e., �𝜋𝜋∗,𝜋𝜋𝑑𝑑∗ , 𝑙𝑙𝑑𝑑#(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 )�, as a consistent 20 

optimal solution of the simplified MF-MDP model. Note that �𝜋𝜋∗,𝜋𝜋𝑑𝑑∗ , 𝑙𝑙𝑑𝑑#(𝑦𝑦𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 )� satisfies Eqs. 21 
(7), (8), and (14) simultaneously. The consistency of the stochastic process depicted in Eq. (14) 22 
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requires a soft policy for the representative driver, i.e., 𝑎𝑎𝑑𝑑|𝜋𝜋𝑑𝑑~P�𝑥𝑥𝑑𝑑𝑡𝑡+1 = 𝑎𝑎𝑑𝑑|𝜋𝜋𝑑𝑑(𝑦𝑦𝑡𝑡,𝑦𝑦𝑑𝑑𝑡𝑡 , 𝒛𝒛�𝑑𝑑𝑡𝑡 )�. In 1 
contrast to a “hard” policy that selects a deterministic action given the observed state, a “soft” 2 
policy is a probabilistic distribution over the action set, and the agent stochastically selects an 3 
action according to the distribution given any observed state. The design of the soft policy 4 
enables the model to use a single policy to represent the aggregate actions of all drivers, rather 5 
than determining different policies for each driver.  6 

The generalized MF-MDP model and its theoretical guarantees in terms of simplification 7 
and optimal solution seeking allow us to formulate and solve a variety of research questions in 8 
ride-sourcing markets. For instance, we can use this model to delineate the dynamics of a ride-9 
sourcing market in which drivers (minor agents) have self-relocating behaviors for maximizing 10 
their individual earnings while a platform tries to achieve a more efficient system by imposing  11 
spatial-temporal pricing/subsidy strategies (see Section 4). As described in this subsection, the 12 
simplified MF-MDP model contributes to the solution algorithm of MDPs with multiple mixed 13 
agents. However, due to complex interactions between the platform and drivers, the formulas of 14 
𝑄𝑄(· | ·), 𝑄𝑄𝑑𝑑(· | ·), 𝑟𝑟 and 𝑟𝑟𝑑𝑑  can be complicated. Moreover, the solution space with respect to 15 
states, actions, and time periods can be extremely large. Therefore, it is generally difficult to 16 
obtain exact optimal policies via solving the Bellman equations. A typical method is to use 17 
simulations to approximate the interactions between the environment and agents, and attempt to 18 
find close-optimal policies through reinforcement learning-based algorithms (Wang et al., 2018; 19 
Li et al., 2019; Jin et al., 2019; Shou et al., 2020b). The idea of a soft policy6 for the representative 20 
driver and the consistent updating rule for the approximated MF state are valuable for designing 21 
computationally efficient simulation processes.  22 

 23 

4 DESIGN AND ANALYZE SUBSIDIES FOR DRIVERS WITH SELF-RELOCATION 24 

In this section, we substantialize the proposed generalized MF-MDP model in a specific 25 
research problem in which a platform tries to better allocate spatial-temporal subsidies for drivers, 26 
while drivers attempt to maximize their individual earnings by self-relocation. The formulation 27 
(in terms of states, actions, and rewards) of this model is introduced in Section 4.1, while a 28 
representative-agent reinforcement learning algorithm for solving the model is developed in 29 
Section 4.2. 30 

4.1 FORMULATION OF THE SPECIFIC RIDE-SOURCING MF-MDP MODEL 31 
In this subsection, we provide definitions and intuitive explanations of the states, actions, 32 

and rewards of the platform and drivers, and introduce a matching rule between passengers and 33 
drivers. Readers can refer to Appendix A for detailed mathematical formulations of the state 34 
transition laws, order-matching probabilities, and rewards. 35 

In a ride-sourcing market with spatial-temporal imbalance between demand and supply. 36 
We use a hexagonal zone system, which has been used in some previous studies (Ke et al., 2019; 37 
Xu et al. 2018; Lin et al., 2018) and DiDi’s ride-sourcing simulator (Xu et al. 2017). There are 38 
𝑂𝑂 hexagonal zones, passenger demand is exogenous, and driver supply can be characterized by 39 
the MF state 𝒛𝒛𝑑𝑑𝑡𝑡  of 𝑀𝑀  drivers (also by the approximate state 𝒛𝒛�𝑑𝑑𝑡𝑡  in the simplified MF-MDP 40 
model). Other notation is the same as in the generalized model in Section 3. The platform could 41 
lose passengers in zones with high demand and insufficient idle vehicles. To increase net revenue 42 
                                                 
6  The soft policy maps a state to a probability distribution over all possible actions. Given a MF state, the 
representative driver takes a stochastic action based on a probability distribution that is determined by the soft policy. 
In this way, we can approximate the collective behavior/decision of a group of drivers by using one representative 
driver at the expense of a small measuring error, especially when the number of drivers is large.   
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and the number of passengers served, the platform may offer spatial-temporal (time- and zone-1 
based) subsidies to incentivize idle drivers to move from demand-cool zones to demand-hot 2 
zones. Meanwhile, drivers design their self-relocation strategies to increase their own income.  3 

We begin with the states and actions of the platform. To model the subsidy strategy across 4 
different zones, the state of the platform is characterized by an 1 + 𝑂𝑂 dimensional vector 𝒔𝒔 =5 
[𝑡𝑡, 𝑠𝑠1, … , 𝑠𝑠𝑂𝑂], where 𝑠𝑠𝑜𝑜 ∈ {0,𝛽𝛽} denotes the subsidy in zone 𝑜𝑜 ∈ {1,2, … ,𝑂𝑂} such that 0 and 𝛽𝛽 6 
refer to “no subsidy” and “offering a subsidy,” respectively, and 𝛽𝛽 is a predefined amount of 7 
subsidy per ride (i.e., subsidy rate). In theory, we allow 𝛽𝛽 to be non-positive values in the model, 8 
and 𝛽𝛽 = 0  means a “non-subsidy” strategy and 𝛽𝛽 < 0  indicates that drivers pay an extra 9 
“charge” rather than get subsidies. If zone 𝑜𝑜 is subsidized at time 𝑡𝑡, drivers who are matched and 10 
dispatched to passengers originating from zone 𝑜𝑜 at time 𝑡𝑡 will be offered the same amount of 11 
subsidy (such a scheme is referred to as a uniform subsidy scheme). The platform’s action with 12 
respect to subsidy is represented by a vector 𝒂𝒂 = [𝑎𝑎1, … , 𝑎𝑎𝑂𝑂], where 𝑎𝑎𝑜𝑜 ∈ {0,𝛽𝛽}. Therefore, we 13 
have 𝑺𝑺 = �[𝑡𝑡, 𝑠𝑠1, … , 𝑠𝑠𝑂𝑂]�𝑠𝑠𝑜𝑜 ∈ {0,𝛽𝛽}, 𝑜𝑜 ∈ {1,2, … ,𝑂𝑂}, 𝑡𝑡 ∈ {1,2, … ,𝑇𝑇}�  and 𝑨𝑨 =14 
�[𝑎𝑎1, … , 𝑎𝑎𝑂𝑂]�𝑎𝑎𝑜𝑜 ∈ {0,𝛽𝛽}, 𝑜𝑜 ∈ {1,2, … ,𝑂𝑂}�. In this manner, both the state vector 𝒔𝒔 and the action 15 
vector 𝒂𝒂 represent the spatial distribution of subsidy, and the state of the platform for the next 16 
time period is identical to its current action. Eq (A.1) in Appendix A gives a mathematical 17 
formula of the state transition law 𝑄𝑄(𝒔𝒔′|𝒔𝒔,𝒂𝒂). 18 

Next, we introduce the states and actions of drivers. To comprehensively describe a 19 
driver’s different status (e.g., idle, on the way to pick up passengers, delivering passengers), we 20 
formulate a driver’s state as a six-dimensional vector 𝒔𝒔𝑑𝑑 = [𝑡𝑡, 𝑠𝑠𝑑𝑑1, 𝑠𝑠𝑑𝑑2, 𝑠𝑠𝑑𝑑3, 𝑠𝑠𝑑𝑑4, 𝑠𝑠𝑑𝑑5]. Here, 𝑠𝑠𝑑𝑑1 ∈21 
{0,1,2}  denotes the current task of the driver/vehicle with 0 , 1 , and 2  representing “idle,” 22 
“picking up a passenger,” and “delivering a passenger,” respectively; 𝑠𝑠𝑑𝑑2 ∈ {1,2, … ,𝑇𝑇} denotes 23 
the remaining time periods before finishing the current status; 𝑠𝑠𝑑𝑑3 ∈ 𝑶𝑶 denotes the idling zone 24 
in which the driver is idle and waiting for a match; and 𝑠𝑠𝑑𝑑4 ∈ 𝑂𝑂 and 𝑠𝑠𝑑𝑑5 ∈ 𝑂𝑂 denote the origin 25 
and destination of the current passenger order, respectively. The value of 𝑠𝑠𝑑𝑑2 depends on the 26 
travel time on the zone network. The action of the driver is the destination zone of self-relocation. 27 
Given the driver’s current idling zone 𝑜𝑜 (i.e., 𝑠𝑠𝑑𝑑3 = 𝑜𝑜), the set of their actions (i.e., 𝑨𝑨𝑑𝑑|𝑜𝑜) is 28 
represented by set 𝑱𝑱𝑜𝑜, which is the set of adjacent zones of 𝑜𝑜 plus 𝑜𝑜 itself. The action 𝑎𝑎𝑑𝑑 = 𝑜𝑜 29 
means the driver will stay in the current zone, and other actions 𝑎𝑎𝑑𝑑 ∈ 𝑱𝑱𝑜𝑜/𝑜𝑜 indicate that the driver 30 
will relocate to an adjacent zone. A self-relocation action is only needed when the driver has no 31 
picking-up or delivering tasks and is not on the way of cruising to an adjacent zone, i.e., when 32 
𝑠𝑠𝑑𝑑1 = 0 and 𝑠𝑠𝑑𝑑2 = 0 (referred to as a “purely idle” state). Therefore, one only optimizes policies 33 
in the “purely idle” state-action space (i.e., the Cartesian product of set {𝒔𝒔𝑑𝑑 ∈ 𝑺𝑺𝑑𝑑|𝑠𝑠𝑑𝑑1 = 0, 𝑠𝑠𝑑𝑑2 =34 
0} and the action set). Given a large number of drivers, drivers with the “purely idle” state are in 35 
different pairs of (𝑡𝑡, 𝑠𝑠𝑑𝑑3) that could uniformly distribute across the spatial-temporal domain of the 36 
scenario, making the state-action-reward transitions in the learning process non-sparse. 37 
Furthermore, a state with 𝑠𝑠𝑑𝑑1 = 0  and 𝑠𝑠𝑑𝑑2 > 0  indicates a “self-relocating” state with a 38 
relocation destination such that no action is needed until he/she arrives at the destination and 39 
becomes purely idle. Following Eq. (4), the state transition law for a driver, i.e., 40 
𝑄𝑄𝑑𝑑(𝒔𝒔𝑑𝑑′ |𝒔𝒔𝑑𝑑 ,𝒉𝒉𝑑𝑑 ,𝑎𝑎𝑑𝑑), depends on its current state and action as well as the MF state of drivers; 41 
detailed formulas are given by Eqs. (A.2)–(A.5) in Appendix A. 42 

Next, we introduce the order-matching rule between drivers and passengers. If a driver is 43 
in a “purely idle” or “self-relocating” state, they have a chance to be matched with a passenger. 44 
Therefore, the state transition probability of the driver is substantially affected by the matching 45 
rule. Generally, the platform considers a maximal matching radius that only prevents passengers 46 
from being matched with far away drivers. A larger radius allows a lager flexibility in matching; 47 
namely, a larger pool of candidate idle drivers is generated for each passenger, and thus the 48 
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matching rate becomes larger; this also indicates a smaller passengers’ expected waiting time. 1 
However, since some distant drivers may be matched to passengers, a larger matching radius 2 
will increase the average pick-up time. MDP-based models in the literature usually adopt a small 3 
matching radius so that drivers and passengers can be matched only if they are in the same zone 4 
(e.g., Shou et al., 2020b). Such matching rules ignore the cross-region dispatching and picking-5 
up events that are commonly observed in ride-sourcing services, and thus are more suitable for 6 
taxi markets rather than for ride-sourcing markets. To allow cross-region matching between 7 
passengers and drivers, in this paper we propose an edge-based matching rule in calculating 8 
transition laws (Figure 2). Termination “edge-based” means that we allow drivers in zone 𝑜𝑜 to 9 
be matched with passengers in zones 𝑜𝑜′ ∈ 𝑱𝑱𝑜𝑜; if the driver is matched with a passenger in zone 10 
𝑜𝑜′ = 𝑜𝑜, they immediately pick up the passenger and start the delivering task; if the driver is 11 
matched with a passenger in an adjacent zone 𝑜𝑜′ ∈ 𝑱𝑱𝑜𝑜/𝑜𝑜, they must spend some time on the 12 
picking up task before delivering the passenger. For simplicity, we assume that drivers and 13 
passengers in each hexagonal zone is uniformly distributed (which does not mean that they are 14 
uniform across the network with many zones). The edge-based rule matches drivers and 15 
passengers near each common edge between zone 𝑜𝑜 and its adjacent zones 𝑜𝑜′ ∈ 𝑱𝑱𝑜𝑜/𝑜𝑜.  16 

 17 
Figure 2. Edge-based matching.  18 

 Let 𝑀𝑀𝑜𝑜 denote the number of idle drivers in zone 𝑜𝑜 (i.e., with state 𝑠𝑠𝑑𝑑1 = 0 and 𝑠𝑠𝑑𝑑3 = 𝑜𝑜); 19 
𝑁𝑁𝑜𝑜 the number of passengers with origin in zone 𝑜𝑜; and 𝑒𝑒𝑜𝑜𝑜𝑜′ the common edge between two 20 
hexagonal zones 𝑜𝑜 and 𝑜𝑜′ . At each time period, 𝑀𝑀𝑜𝑜  is obtained from the MF state and 𝑁𝑁𝑜𝑜  is 21 
observable and thus exogenously given. We illustrate the number of matches near edge 𝑒𝑒𝑜𝑜𝑜𝑜′ 22 
using a simple example. Taking the zone indices in Figure 2, for instance, 𝑱𝑱4 = {2,5,7,6,3,1,4}, 23 
𝑱𝑱4/{4} = {2,5,7,6,3,1}, and we match drivers and passengers near edge 𝑒𝑒14. With uniformly 24 
distributed demand and supply, there are 𝑀𝑀4

6
 idle drivers and 𝑁𝑁4

6
 passengers near 𝑒𝑒14 in zone 4, 25 

and 𝑀𝑀1
6

 idle drivers and 𝑁𝑁1
6

 passengers near this edge in zone 1. Therefore, there are a total of  26 
𝑀𝑀1+𝑀𝑀4

6
 idle drivers and 𝑁𝑁1+𝑁𝑁4

6
 passengers to be matched near edge 𝑒𝑒14; for these passengers and 27 

drivers, we allow a driver/passenger in zone 4 to be matched with passengers/drivers in either 28 
zone 1 or zone 4. Based on a matching rule in Yu et al. (2019), the number of matches near 𝑒𝑒14 29 
is approximated as min �𝑀𝑀1+𝑀𝑀4

6
 , 𝑁𝑁1+𝑁𝑁4

6
�. Similar to this example, we can compute the number of 30 

matches near an arbitrary edge.  31 
To approximate the matching probabilities of a driver, we assume that the numbers of 32 

matched passengers and drivers are proportional to the corresponding demand and supply near 33 
the common edge. To continue with the example above, if a driver is in zone 1, the probability 34 
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that they are near edge 𝑒𝑒14 equals 1
6
, and the probability that they get a passenger order near edge 1 

𝑒𝑒14 is 1
6

min�𝑀𝑀1+𝑀𝑀4
6  ,𝑁𝑁1+𝑁𝑁46 �

𝑀𝑀1
6 +𝑀𝑀4

6

=
min�𝑀𝑀1+𝑀𝑀4

6  ,𝑁𝑁1+𝑁𝑁46 �

𝑀𝑀1+𝑀𝑀4
. Detailed formulas for calculating the number of 2 

matches and driver-side matching probabilities are given in Eqs. (A.6)–(A.9) in Appendix A. 3 
We need the MF state to compute 𝑀𝑀𝑜𝑜  (also denoted as 𝑀𝑀𝑜𝑜(𝒉𝒉𝑑𝑑) in Eq. (A.7)) and then the 4 
matching probabilities; this explains why the state transition law of a driver depends on the MF 5 
state, i.e., 𝑄𝑄𝑑𝑑(𝒔𝒔𝑑𝑑′ |𝒔𝒔𝑑𝑑,𝒉𝒉𝑑𝑑, 𝑎𝑎𝑑𝑑). To our best knowledge, this paper is among the first idle vehicle 6 
relocation studies that consider cross-zone matches with the proposed edge-based matching rule. 7 

Last, we discuss the rewards for the platform and drivers. We consider that the platform’s 8 
objective is to maximize a weighted sum of the net revenue and the service rate, which is defined 9 
by the number of passengers served divided by the total passenger demand. Intuitively, the 10 
service rate reflects passengers’ satisfaction, and a low service rate may cause a decrease in 11 
passenger demand in the long run and affect the platform’s market share. Our motivation to set 12 
this objective structure is that the platform usually needs to make a trade-off between net revenue 13 
(short-term benefits) and customer service rate (long-term interests). To be more specific, the 14 
reward (also referred to as the objective value) of the platform is formulated by  15 
𝑟𝑟(𝒚𝒚𝑡𝑡 = 𝒔𝒔, 𝒛𝒛𝑑𝑑𝑡𝑡 = 𝒉𝒉𝑑𝑑 , 𝒛𝒛𝑑𝑑𝑡𝑡−1 = 𝒉𝒉𝑑𝑑′ ) = 𝑟𝑟1(𝒉𝒉𝑑𝑑) − 𝑟𝑟2(𝒔𝒔,𝒉𝒉𝑑𝑑 ,𝒉𝒉𝑑𝑑′ ) + 𝜇𝜇𝑟𝑟3(𝒔𝒔,𝒉𝒉𝑑𝑑,𝒉𝒉𝑑𝑑′ ) , where 𝑟𝑟1  refers to 16 
the commission withheld from trip fares by the platform; 𝑟𝑟2 is the amount of subsidies offered 17 
to drivers; 𝑟𝑟3 is the service rate; and 𝜇𝜇 denotes the weight of the service rate for the platform7. In 18 
addition to the MF state of drivers and the state of the platform, the calculation of 𝑟𝑟 involves the 19 
following predefined variables: the ride-sourcing trip fare per time period (i.e., trip fare rate) 𝛼𝛼, 20 
commission rate for the platform 𝜂𝜂, and total passenger demand across the entire operational 21 
horizon 𝑁𝑁. Readers can refer to Eqs. (A.10)–(A.13) in Appendix A for detailed formulas for 𝑟𝑟1, 22 
𝑟𝑟2, and 𝑟𝑟3. 23 

A driver’s objective is to maximize the total income. The reward (referred to as income) 24 
for a particular driver is the sum of the trip fare and subsidy offered by the platform, i.e.,  25 
𝑟𝑟𝑑𝑑�𝒚𝒚𝑡𝑡 = 𝒔𝒔,𝒚𝒚𝑑𝑑,𝑖𝑖

𝑡𝑡 = 𝒔𝒔𝑑𝑑 ,𝒚𝒚𝑑𝑑,𝑖𝑖
𝑡𝑡−1 = 𝒔𝒔𝑑𝑑′ � = 𝑟𝑟𝑑𝑑1(𝒔𝒔𝑑𝑑) + 𝑟𝑟𝑑𝑑2(𝒔𝒔, 𝒔𝒔𝑑𝑑 , 𝒔𝒔𝑑𝑑′ ) , where 𝑟𝑟𝑑𝑑1  and 𝑟𝑟𝑑𝑑2  denote the 26 

income from the trip fare and the subsidy, respectively. The income from fare is provided 27 
gradually during the delivery task, while the subsidy is a one-time reward upon a match if the 28 
origin of the passenger is subsidized. Similar to 𝑟𝑟, we need 𝛼𝛼 and 𝜂𝜂 to compute 𝑟𝑟𝑑𝑑 . Detailed 29 
formulas for 𝑟𝑟𝑑𝑑1 and 𝑟𝑟𝑑𝑑2 are given in Eqs. (A.14)–(A.16) in Appendix A. 30 

To sum up, we provide the formulation of a specific standard MF-MDP model, in which 31 
the MF state of drivers is mainly used to compute the order-matching probabilities. As a result, 32 
the MF state directly determines drivers’ state transition law and the platform’s reward; it also 33 
affects the matching outcome of an individual driver and their reward. Approximation of the MF 34 
state and simplification of the MF-MDP model play an important role in solution-finding. For 35 
the simplified MF-MDP model, the states, actions, transition laws, and rewards for the 36 
representative driver are the same as for an arbitrary driver in the standard model. In light of Eq. 37 
(14), the consistent updating rule for the approximated MF state is 𝑸𝑸�𝑑𝑑(𝒚𝒚𝑡𝑡, 𝒛𝒛�𝑑𝑑𝑡𝑡 )=𝑸𝑸�𝑑𝑑(𝒛𝒛�𝑑𝑑𝑡𝑡 ), which 38 
can be summarized based on Eqs. (A.4)–(A.5). 39 

4.2 SOLUTION ALGORITHMS 40 
Given the state transition laws for the platform and drivers in Eqs. (A.1)–(A.5), the order-41 

matching probabilities in Eqs. (A.6)–(A.9), and the rewards in Eqs. (A.10)–(A.16), we have a 42 
specific formulation of a standard MF-MDP model with multiple mixed agents. Although the 43 

                                                 
7 As stated in footnote 3, we consider the previous state 𝒛𝒛𝑑𝑑𝑡𝑡−1 in the formulation of 𝑟𝑟 and consider 𝒚𝒚𝑑𝑑,𝑖𝑖

𝑡𝑡−1 in 𝑟𝑟𝑑𝑑. 
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rewards of the platform and drivers and the state transition law of the platform have deterministic 1 
formulas, drivers’ state changes are dependent on the stochastic order-matching process with 2 
numerous possible outcomes (e.g., different origins and destinations of passenger orders), 3 
making it difficult to obtain an exact solution via Bellman equations. As discussed in Section 3, 4 
reinforcement learning algorithms can be adopted to solve such a multi-agent MF-MDP model 5 
with large state and action sets, complex state transition laws, and reward formulas. We consider 6 
two solution-seeking approaches below. 7 

• The multi-agent approach, which solves the standard MF-MDP model with 1 platform 8 
and 𝑀𝑀 drivers. In a reinforcement learning algorithm, each of the 1 + 𝑀𝑀 agents learns 9 
their own decision policy8, which can be characterized by Q-tables, neural networks, etc. 10 
An agent takes actions based on their policy and updates the parameters of the policy via 11 
their experiences under the actions. The MF states 𝒛𝒛𝑑𝑑𝑡𝑡  are summarized based on the states 12 
of all drivers (Eq. (2)). 13 

• The representative-agent approach, which solves the simplified MF-MDP model with 14 
one platform and one representative driver. In a reinforcement learning algorithm, we 15 
create two decision policies: one for the platform and the other for the representative 16 
driver. The representative driver takes actions based on a soft policy and updates the 17 
parameters via experiences under the actions. We adopt the approximated MF state 𝒛𝒛�𝑑𝑑𝑡𝑡 , 18 
which is updated according to the previous approximated MF state (𝑸𝑸�𝑑𝑑(𝒛𝒛�𝑑𝑑𝑡𝑡 ) summarized 19 
based on Eqs. (A.4)–(A.5)). 20 
The multi-agent approach is proposed as a benchmark that solves the standard MF-MDP 21 

model. With a large 𝑀𝑀, the MF space is continuous and compact, and Propositions 1 to 3 are 22 
valid for the representative-agent approach. Comparing with the benchmark, the representative-23 
agent approach meets the consistency requirement with respect to the MF state and could be 24 
faster in terms of computation and identifying the optimal policies.  25 

In this paper, the two approaches are implemented via the A2C algorithm, one of the most 26 
popular reinforcement learning algorithms (Mnih et al., 2016). For each agent, the A2C 27 
algorithm establishes two networks (also referred to as a group of networks): one policy network 28 
(or critic network) that observes the current states and generates policy, and one value network 29 
(or actor network) that evaluates the performance of the policy. Both networks are parameterized 30 
multi-layer neural networks, and their parameters (e.g., 𝜃𝜃𝑝𝑝 for the policy network and 𝜃𝜃𝑣𝑣 for the 31 
value network) are updated iteratively. The parameters of the value network 𝜃𝜃𝑣𝑣 can be updated 32 
by minimizing a loss function 𝐿𝐿(𝜃𝜃𝑣𝑣) defined as follows (Lin et al., 2018):  33 

𝐿𝐿(𝜃𝜃𝑣𝑣) = �𝑉𝑉𝜃𝜃𝑣𝑣(𝑦𝑦𝑡𝑡) − �𝑟𝑟(𝑦𝑦𝑡𝑡, 𝑥𝑥𝑡𝑡) + 𝜌𝜌𝑉𝑉𝜃𝜃𝑣𝑣′  (𝑦𝑦
𝑡𝑡)��

2
  (15) 

where 𝜃𝜃𝑣𝑣 denote the parameters of the value network to be updated, 𝜃𝜃𝑣𝑣′  denote the parameters of 34 
the targeted value network, and 𝑟𝑟(𝑦𝑦𝑡𝑡,𝑥𝑥𝑡𝑡) be the current reward. As for the policy network, 35 
parameters 𝜃𝜃𝑝𝑝 are updated using a gradient descent rule 𝜃𝜃𝑝𝑝 ← 𝜃𝜃𝑝𝑝 + 𝛿𝛿∇𝜃𝜃𝑝𝑝𝐺𝐺(𝜃𝜃𝑝𝑝), where 𝛿𝛿 is the 36 
learning rate and ∇𝜃𝜃𝑝𝑝𝐺𝐺(𝜃𝜃𝑝𝑝) represents the gradient given below.  37 

∇𝜃𝜃𝑝𝑝𝐺𝐺�𝜃𝜃𝑝𝑝� = ∇𝜃𝜃𝑝𝑝 log𝜋𝜋𝜃𝜃𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡) �𝑥𝑥𝑡𝑡 + 𝜌𝜌𝑉𝑉𝜃𝜃𝑣𝑣′(𝑦𝑦
𝑡𝑡+1) − 𝑉𝑉𝜃𝜃𝑣𝑣′(𝑦𝑦

𝑡𝑡)�  (17) 

                                                 
8 Note that although the drivers are homogeneous, their optimal policies can differ. That is, idle drivers who are in 
the same zone might have different self-relocation destinations; otherwise, they would relocate to the same 
destination and compete with each other for passengers, which would result in a small matching probability and a 
low average income.  
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where 𝜋𝜋𝜃𝜃𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦𝑡𝑡) refers to the action taken by the agent given state 𝑦𝑦𝑡𝑡 according to the policy 1 
𝜋𝜋 parameterized by 𝜃𝜃𝑝𝑝, 𝑥𝑥𝑡𝑡 + 𝜌𝜌𝑉𝑉𝜃𝜃𝑣𝑣′(𝑦𝑦

𝑡𝑡+1) − 𝑉𝑉𝜃𝜃𝑣𝑣′(𝑦𝑦
𝑡𝑡) is an advantage function used to reduce the 2 

variance of the value function and approximate the policy gradient9. 3 
The algorithm for the multi-agent approach is shown in Algorithm 1, which is referred to 4 

as the multi-agent actor-critic (MAC) algorithm (i.e., the benchmark algorithm). As mentioned 5 
previously, in the MAC algorithm each driver or the platform has a specific group of networks 6 
to characterize their own policy, which leads to a total of 1 + 𝑀𝑀  groups of networks. The 7 
algorithm for the representative-agent approach is shown in Algorithm 2, which is referred to as 8 
the representative-agent actor-critic (RAC) algorithm. In the RAC algorithm, we propose two 9 
groups of networks: one for the platform and the other for the representative driver. In both MAC 10 
and RAC algorithms, 𝑁𝑁𝐸𝐸 , 𝑁𝑁𝑆𝑆 , and 𝐷𝐷  denote the maximal number of learning epochs, the 11 
maximal number of learning samples, and the replay memory, respectively10. Note that in the 12 
MAC algorithm, index 𝑖𝑖 denotes driver ID. We must simulate the transitions of each individual 13 
driver (i.e., steps 3.2 to 3.7, including states, actions, and rewards) based on the individual policy 14 
𝜋𝜋𝑑𝑑,𝑖𝑖; in the RAC algorithm, we simulate the transitions of the representative driver (i.e., steps 15 
3.2 to 3.7) according to the soft policy 𝜋𝜋𝑑𝑑  and use index 𝑗𝑗  to represent the indices of the 16 
simulated transitions regardless of the ID of a specific driver who experiences the transition. In 17 
steps 4.4 to 4.6 in the MAC algorithm, each driver learns and updates the parameters of their 18 
own value network and policy network, via a mini-batch of samples extracted from the replay 19 
memory. In the RAC algorithm, the representative driver learns and updates the soft policy in 20 
steps 4.4 to 4.6. 21 

Theoretically, given unlimited computational power, the MAC algorithm might learn the 22 
optimal self-relocation policy for each driver by conducting extensive simulations and sampling 23 
sufficient transitions over the huge solution space, which contains all feasible policies for each 24 
driver and the platform. However, computational resources are generally limited in practice, and 25 
thus it is nearly impossible to generate a massive number of samples for all possible transitions. 26 
In addition, one driver’s self-relocation policy will affect other drivers’ rewards, which is 27 
reflected by the impact of the MF state on the matching outcomes of each time period. Limited 28 
computational power and complicated competitive relationships between drivers make it 29 
difficult for the MAC to find the right pathway and obtain close-optimal policies for all drivers. 30 
By contrast, the RAC algorithm has a smaller solution space (the Cartesian product of the 31 
platform’s and the representative driver’s state-action set), and thus could identify a close-32 
optimal solution more efficiently, which may provide solutions better than those obtained with 33 
the MAC.  34 
Algorithm 1. Multi-Agent Actor-Critic (MAC) to solve the standard MF-MDP model 35 

1. Initialize the value network with a fixed value table. 
For 𝑛𝑛𝑒𝑒 = 1 to 𝑁𝑁𝐸𝐸 do:  
   2. Reset simulator, get initial state 𝒚𝒚1, �𝒚𝒚𝑑𝑑,𝑖𝑖

1 �
𝑀𝑀

, and 𝒛𝒛𝑑𝑑1 . 
   3. Stage one: collecting experience. 
   For 𝑡𝑡 = 1 to 𝑇𝑇 do: 
      3.1. Decide action 𝑥𝑥𝑡𝑡 based on policy 𝜋𝜋, and execute 𝑥𝑥𝑡𝑡. 
      For 𝑖𝑖 = 1 to 𝑀𝑀 do: 

                                                 
9 Note that Eqs. (15)–(18) give the basic formulas of the A2C algorithm. When adopting the A2C algorithm in the 
MF-MDP model, 𝑟𝑟, 𝑉𝑉𝜃𝜃𝑣𝑣 , 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  are calculated based on the definitions and formulas in Section 3 and Section 4.1. 
10 These are general terminations in reinforcement learning. A learning epoch refers to an iteration for the algorithm 
to simulate the transitions of the agents and update the parameters of their policies, and a replay memory is used to 
store and sample the simulated transitions. 
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         3.2. Decide action 𝑥𝑥𝑑𝑑,𝑖𝑖
𝑡𝑡  based on policy 𝜋𝜋𝑑𝑑,𝑖𝑖, and execute 𝑥𝑥𝑑𝑑,𝑖𝑖

𝑡𝑡 . 
      End for. 
      3.3. Based on �𝒚𝒚𝑑𝑑,𝑖𝑖

1 �
𝑀𝑀

 and 𝒛𝒛𝑑𝑑𝑡𝑡 , compute 𝑄𝑄𝑑𝑑(· | ·) for the simulator. 
      3.4 Run the simulator and observe next state 𝒚𝒚𝑡𝑡+1 and �𝒚𝒚𝑑𝑑,𝑖𝑖

𝑡𝑡+1�
𝑀𝑀

. 
      3.5. Summarize 𝒛𝒛𝑑𝑑𝑡𝑡+1 based on �𝒚𝒚𝑑𝑑,𝑖𝑖

𝑡𝑡+1�
𝑀𝑀

. 
      End for. 
      3.6. Observe reward 𝑟𝑟𝑡𝑡(𝒚𝒚𝑡𝑡,𝒛𝒛𝑑𝑑𝑡𝑡 , 𝒛𝒛𝑑𝑑𝑡𝑡−1), �𝑟𝑟𝑑𝑑𝑡𝑡�𝒚𝒚𝑡𝑡,𝒚𝒚𝑑𝑑,𝑖𝑖

𝑡𝑡 ,𝒚𝒚𝑑𝑑,𝑖𝑖
𝑡𝑡−1��

𝑀𝑀
.  

      3.7. Store transitions �𝒚𝒚𝑡𝑡, 𝑥𝑥𝑡𝑡 ,𝒚𝒚𝑡𝑡+1, 𝑟𝑟𝑡𝑡(·)� and ��𝒚𝒚𝑑𝑑,𝑖𝑖
𝑡𝑡 , 𝑥𝑥𝑑𝑑,𝑖𝑖

𝑡𝑡 ,𝒚𝒚𝑑𝑑,𝑖𝑖
𝑡𝑡+1, 𝑟𝑟𝑑𝑑𝑡𝑡(·)��

𝑀𝑀
 to 𝐷𝐷.  

   End for. 
   4. Stage two: learning the experiences. 
   For 𝑛𝑛𝑠𝑠 = 1 to 𝑁𝑁𝑆𝑆 do:  
      4.1. Sample a mini-batch of transitions �𝒚𝒚𝑡𝑡, 𝑥𝑥𝑡𝑡 ,𝒚𝒚𝑡𝑡+1, 𝑟𝑟𝑡𝑡(·)� from 𝐷𝐷. 
      4.2. Update the platform’s value networks by minimizing 𝐿𝐿(𝜃𝜃𝑣𝑣). 
      4.3. Update the platform’s policy networks as 𝜃𝜃𝑝𝑝 ← 𝜃𝜃𝑝𝑝 + 𝛿𝛿∇𝜃𝜃𝑝𝑝𝐺𝐺(𝜃𝜃𝑝𝑝).  
      For 𝑖𝑖 = 1 to 𝑀𝑀 do: 
         4.4. Sample a mini-batch of transitions �𝒚𝒚𝑑𝑑,𝑖𝑖

𝑡𝑡 , 𝑥𝑥𝑑𝑑,𝑖𝑖
𝑡𝑡 ,𝒚𝒚𝑑𝑑,𝑖𝑖

𝑡𝑡+1, 𝑟𝑟𝑑𝑑𝑡𝑡(·)� from 𝐷𝐷. 
         4.5. Update the 𝑖𝑖th driver’s value networks by minimizing 𝐿𝐿(𝜃𝜃𝑣𝑣). 
         4.6. Update the 𝑖𝑖th driver’s policy networks as 𝜃𝜃𝑝𝑝 ← 𝜃𝜃𝑝𝑝 + 𝛿𝛿∇𝜃𝜃𝑝𝑝𝐺𝐺(𝜃𝜃𝑝𝑝).  
      End for. 
   End for. 
End for. 
5. Finish. 

Algorithm 2. Representative-Agent Actor-Critic (RAC) to solve the simplified MF-MDP model 1 

1. Initialize the value network with a fixed value table.  
For 𝑛𝑛𝑒𝑒 = 1 to 𝑁𝑁𝐸𝐸 do:  
   2. Reset simulator, get initial state 𝒚𝒚1, �𝒚𝒚𝑑𝑑,𝑗𝑗

1 �
𝑀𝑀

, and 𝒛𝒛�𝑑𝑑1 = 𝒛𝒛𝑑𝑑1 .  
   3. Stage one: collecting experience. 
   For 𝑡𝑡 = 1 to 𝑇𝑇 do: 
      3.1. Decide action 𝑥𝑥𝑡𝑡 based on policy 𝜋𝜋, and execute 𝑥𝑥𝑡𝑡. 
      3.2. Decide actions �𝑥𝑥𝑑𝑑,𝑗𝑗

𝑡𝑡 �
𝑀𝑀

 based on soft policy 𝜋𝜋𝑑𝑑, and execute �𝑥𝑥𝑑𝑑,𝑗𝑗
𝑡𝑡 �

𝑀𝑀
. 

      3.3. Based on �𝒚𝒚𝑑𝑑,𝑗𝑗
1 �

𝑀𝑀
 and 𝒛𝒛�𝑑𝑑𝑡𝑡 , compute 𝑄𝑄𝑑𝑑(· | ·) for the simulator. 

      3.4. Observe next state  𝒚𝒚𝑡𝑡+1 and �𝒚𝒚𝑑𝑑,𝑗𝑗
𝑡𝑡+1�

𝑀𝑀
. 

      3.5. Calculate 𝒛𝒛�𝑑𝑑𝑡𝑡+1 based on 𝑄𝑄𝑑𝑑(· | ·) and 𝒛𝒛�𝑑𝑑𝑡𝑡 . 
      3.6. Observe reward 𝑟𝑟𝑡𝑡(𝒚𝒚𝑡𝑡,𝒛𝒛�𝑑𝑑𝑡𝑡 , 𝒛𝒛�𝑑𝑑𝑡𝑡−1), �𝑟𝑟𝑑𝑑𝑡𝑡�𝒚𝒚𝑡𝑡,𝒚𝒚𝑑𝑑,𝑗𝑗

𝑡𝑡 ,𝒚𝒚𝑑𝑑,𝑗𝑗
𝑡𝑡−1��

𝑀𝑀
.  

      3.7. Store transitions (𝒚𝒚𝑡𝑡,𝑥𝑥𝑡𝑡 ,𝒚𝒚𝑡𝑡+1, 𝑟𝑟𝑡𝑡) and ��𝒚𝒚𝑑𝑑,𝑗𝑗
𝑡𝑡 , 𝑥𝑥𝑑𝑑,𝑗𝑗

𝑡𝑡 ,𝒚𝒚𝑑𝑑,𝑗𝑗
𝑡𝑡+1, 𝑟𝑟𝑑𝑑𝑡𝑡(·)��

𝑀𝑀
 to 𝐷𝐷. 

   End for. 
   4. Stage two: learning the experiences. 
   For 𝑛𝑛𝑠𝑠 = 1 to 𝑁𝑁𝑆𝑆 do: 
      4.1. Sample a mini-batch of transitions �𝒚𝒚𝑡𝑡, 𝑥𝑥𝑡𝑡 ,𝒚𝒚𝑡𝑡+1, 𝑟𝑟𝑡𝑡(·)� from 𝐷𝐷. 
      4.2. Update the platform’s value networks by minimizing 𝐿𝐿(𝜃𝜃𝑣𝑣). 
      4.3. Update the platform’s policy networks as 𝜃𝜃𝑝𝑝 ← 𝜃𝜃𝑝𝑝 + 𝛿𝛿∇𝜃𝜃𝑝𝑝𝐺𝐺(𝜃𝜃𝑝𝑝).  

      4.4. Sample a mini-batch of transitions ��𝒚𝒚𝑑𝑑,𝑗𝑗
𝑡𝑡 , 𝑥𝑥𝑑𝑑,𝑗𝑗

𝑡𝑡 ,𝒚𝒚𝑑𝑑,𝑗𝑗
𝑡𝑡+1, 𝑟𝑟𝑑𝑑𝑡𝑡(·)��

𝑀𝑀
 from 𝐷𝐷. 
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      4.5. Update the representative driver’s value network by minimizing 𝐿𝐿(𝜃𝜃𝑣𝑣). 
      4.6. Update the representative driver’s policy network as 𝜃𝜃𝑝𝑝 ← 𝜃𝜃𝑝𝑝 + 𝛿𝛿∇𝜃𝜃𝑝𝑝𝐺𝐺(𝜃𝜃𝑝𝑝).  
   End for.  
End for.  
5. Finish. 

 1 

5. NUMERICAL STUDY 2 

In this section, we conduct a set of numerical experiments with the MF-MDP model and 3 
algorithms developed in Section 4. We show (1) the computation time, converging speed for 4 
learning policies, and converged total rewards for the agents of the RAC algorithm compared 5 
with the benchmark MAC algorithm; (2) the impact of spatial-temporal subsidies on drivers’ 6 
relocation strategies; and (3) the platform’s different spatial-temporal subsidy strategies that 7 
balance the trade-offs between net revenue and service rate. 8 

5.1 SCENARIO SETTINGS  9 
The zone network of the ride-sourcing market is illustrated in Figure 3. Zone IDs are 10 

shown in the center of the hexagons, and travel times (number of time periods) between adjacent 11 
zones are shown via underlined numbers near edges. For instance, a driver needs 2 time periods 12 
to travel between zone 1 and zone 2. In this small town with 7 zones, we assume that zone 4 is 13 
a residential area, zone 7 is a business area, and zone 2 has a railway station. Due to the huge 14 
computational costs, numerical studies with a small network were usually adopted in 15 
reinforcement learning-related studies. For example, Mao et al. (2020) divide Manhattan into 8 16 
zones and examine drivers’ optimal repositioning among these zones. Braverman et al. (2019) 17 
use a nine-region network with parameters calibrated by DiDi data to evaluate their proposed 18 
empty-car routing policy. Moreover, by using a small network, we can observe clear patterns of 19 
drivers’ sequential actions and better understand how self-relocation is affected by subsidies. 20 

 21 

 22 
Figure 3. Network of the numerical study.  23 

We consider a general ride-sourcing market that consists of both tidal and periodic 24 
passenger demand. The pattern of deterministic passenger demand is shown in Figure 411. We 25 
consider a total of 40 time periods in the operational horizon, and each period represents 5 26 
minutes. First, there is tidal demand between zone 4 and zone 7 (see Figure 4(a)), such that 27 
passengers go from the residential area to the business center at time periods 1–20 (red bars) and 28 

                                                 
11 Note that the ticks on the horizontal axis, i.e., time index, refer to “time point,” while demand is generated during 
time periods. Therefore, for instance, time period 15 refers to the period between time index 15 and time index 16. 
The same representations are adopted in Figure 6.  
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return at time periods 21–40 (blue bars). Each tidal demand has a peak period—i.e., during time 1 
periods 8–13 and 28–33. Second, also in Figure 4(a), we assume that since some passengers 2 
live in zone 4 but work outside the small town, there is ride-sourcing demand from zone 4 to 3 
zone 2 at time periods 1–20 (light pink bars); and since some passengers work in zone 7 but live 4 
out of town, there is ride-sourcing demand from zone 7 to zone 2 at time periods 21–40 (light 5 
blue bars). Third, in Figure 4(b), for every 10 time periods (50 minutes), a train arrives at zone 6 
2, and passengers from the train either go to work (red bars before time index 20) or home (blue 7 
bars after time index 20). We use this demand setting because it reflects general scenarios with 8 
both demand-hot areas, demand-cold areas, tide demand, and periodic demand. Based on the 9 
edge-based matching rule, idle drivers in zones 1, 3, 5, 6 can also get passenger orders. However, 10 
the matching probability at zones 1, 3, 5, 6 would be much lower than that at zones 2, 4, and 7. 11 
In this case, there are trade-offs in the market with competing drivers: a driver can idly cruise to 12 
zone 4 to ensure a high matching probability; alternatively, the driver can stay in zones 1 or 5 13 
such that he/she has a low probability of getting an order from zone 4 or zone 2 (at time periods 14 
when a train arrives). 15 

 
(a) Tidal demand in zones 2, 4 and 7 

 
(b) Periodic demand in zone 2 

Figure 4. Passenger demand.  16 

Other exogenous parameters are set as follows: commission rate 𝜂𝜂 = 0.20, trip fare rate 17 
𝛼𝛼 = 10 CNY per time period, and discount factor 𝜌𝜌 = 0.8. Based on the numerical settings and 18 
definitions of states and actions, the cardinality of the platform’s state-action set is 2,560; the 19 
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cardinality of the state-action set for a driver to take actions (i.e., in a purely idle state) is 1,16011F

12. 1 
With multiple drivers, since agents take actions independently, the cardinality of the solution 2 
space (containing the state-action sets for all the agents) can be as large as 2,560 × 1,160𝑀𝑀, 3 
which makes it difficult to solve via the MAC algorithm. In contrast, for the RAC algorithm, the 4 
cardinality of the solution space reduces to 2,560 × 1,160. 5 

The hyperparameters of the algorithms for all subsequent numerical studies are as 6 
follows. In the RAC algorithm, for the platform agent, we establish a simple three-layer fully 7 
connected network with 24 neurons in the hidden layer for the value network and a three-layer 8 
fully connected network with 24 neurons in the hidden layer for the policy network. Similarly, 9 
for the representative driver agent, we use a three-layer fully connected network with 24 neurons 10 
in the hidden layer for both the value and policy networks. The activations of all hidden units are 11 
ReLu, while output layers of the value function approximation networks and policy networks 12 
use Linear and Softmax activations, respectively. The same policy and value network structures 13 
are used for each driver agent and the platform agent in the MAC algorithm. For both algorithms, 14 
the learning rate of the policy network is set at 0.001, and the learning rate of the value network 15 
is set at 0.01. 16 

We consider two experiments. First, the platform implements a non-subsidy strategy (i.e., 17 
𝛽𝛽 = 0). We use different numbers of drivers (i.e., 𝑀𝑀 = 1, 10, 50, and 100) in the market to 18 
evaluate the performance (in terms of achieved total rewards) and efficiency (in terms of 19 
computation time) of the MAC and RAC algorithms. Second, we assume there are 100 drivers 20 
serving in the market and the platform must design the spatial-temporal subsidy strategy to 21 
maximize its total objective value, which is a weighted sum of net revenue and service rate (see 22 
Eq. (A.10)). A range of subsidy rates (i.e., 𝛽𝛽 = 0, 2, 4, 6, and 8 CNY per ride) and weights of 23 
the service rate (i.e., 𝜇𝜇 = 0, 20,000, and 40,000 CNY) are tested13. This is to investigate how 24 
the spatial-temporal subsidy affects the self-relocation strategies of drivers, as well as the supply-25 
demand situation, and examine how the platform’s subsidy strategy varies with different weights 26 
for service rate. The execution programming codes for the two experiments are the same except 27 
for the settings of number of drivers and subsidy rates. Therefore, the specific amount of 28 
subsidies have no impact on the computational time and the results in Section 5.2 well support 29 
the performance of the proposed algorithms. 30 

5.2 PERFORMANCE OF THE REPRESENTATIVE-AGENT ALGORITHM 31 
In the first experiment, we test the computation time for the RAC and MAC algorithms 32 

for drivers to pursue high-rewarding self-relocation strategies without subsidies. Simulation of 33 
the environment (i.e., calculating the matching probabilities and sampling the matchings, 34 
rewards, and transitions) and reinforcement learning algorithms are conducted on an HP Z4G4 35 
workstation with 12 Inter I7-7800 processors and four 16-GB rams.  36 

                                                 
12 For the platform, since three zones (2, 4, and 7) have passenger demand, we can ignore zones without demand in 
set 𝑺𝑺; therefore, there are 23 possible states and 23 possible actions, and the cardinality of the state-action set is 
23 × 23 × 40 = 2560. For a driver, we consider purely idle states such that a driver must take a relocation action. 
If the driver is in zone 4 or 7, then they have 3 relocation destinations; once they are in zone 1 or 3, then they have 
4 relocation destinations; and if the driver is in zone 2, 5, or 6, they have 5 relocation destinations. Therefore, the 
cardinality of a driver’s state-action set is (3 × 2 + 4 × 2 + 5 × 3) × 40 = 1,160.  
13 In both experiments, we assume that drivers are purely idle and uniformly distributed in zones at the beginning 
of the simulation. The platform would not allow a high subsidy rate that causes low net revenue for a single ride. 
Since the platform’s net revenue for an order from zone 4 to zone 7 is 0.2 × 10 × 6 = 12 CNY (𝛼𝛼 = 10 CNY per 
time period and 𝜂𝜂 = 0.2), the maximal subsidy rate is set as 8 CNY per ride and the net revenue after offering a 
subsidy is 12 − 8 = 4 CNY per ride. 
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In Table 1, we present the computation time for one learning epoch, which consists of 1 
simulating the order matches, actions, and states in the environment; storing agents’ transitions; 2 
and updating the knowledge and value networks of agents (i.e., steps 3 and 4 in Algorithms 1 3 
and 2). We note that the RAC algorithm is slower than the MAC algorithm when 𝑀𝑀 = 1; this is 4 
because the RAC algorithm must derive a comprehensive soft policy that covers all of the state-5 
action sets of the representative driver; in contrast, the MAC algorithm updates 1 driver’s policy 6 
based on their own experienced states and actions, ignoring policies that are conditional on 7 
unvisited states. As 𝑀𝑀 increases, the time for computing the MF state and updating each agent’s 8 
policy and value networks will get longer, so that the computation time notably increases for the 9 
MAC algorithm. By contrast, the RAC algorithm only computes an approximated MF state and 10 
updates the policy and value networks for the representative driver, and the computation time 11 
gets much longer as 𝑀𝑀  increases. As a result, with 𝑀𝑀 = 50 or 100 , we note that the RAC 12 
algorithm is significantly faster than the MAC algorithm. 13 

Table 1. Computation Time for One Learning Epoch (seconds) 14 

 𝑀𝑀 = 1 𝑀𝑀 = 10 𝑀𝑀 = 50 𝑀𝑀 = 100 

MAC  1.98 27.19 347.3 1654 

RAC 2.59 8.17 35.5 85.9 

The performance of the two algorithms can be measured by the increase in average driver 15 
income (i.e., the average value of the total income for 𝑀𝑀 drivers) over learning epochs. In the 16 
experiment, the number of total epochs is 1,000 ; within each epoch, we conduct either 1 17 
simulation or 10 simulations (i.e., for each 𝑛𝑛𝑒𝑒, to repeat step 3 in Algorithms 1 and 2 for 10 times 18 
before going to step 4, such that more samples of transitions can be generated) to update the 19 
policy and value networks. Although global optimality is not guaranteed with reinforcement 20 
learning algorithms, the 10-simulation case provides much faster convergence and higher total 21 
rewards than the 1-simulation case. The disadvantage is that the computation time for each epoch 22 
will be longer as the number of simulations increases.  23 

We illustrate the performance of the two algorithms with different numbers of drivers in 24 
Figure 5. When 𝑀𝑀 = 1, the MAC algorithm with 10 simulations (referred to as 10-MAC) results 25 
in higher average driver income than the RAC algorithm with 10 simulations (10-RAC; see 26 
Figure 5(a)). This reflects the ineffectiveness of a soft policy in the simplified MF-MDP model 27 
when the number of drivers is small. In addition, average driver income grows slowly with the 28 
1-MAC and 1-RAC algorithms (i.e., by conducting 1 simulation within each epoch), because it 29 
is difficult for the transitions observed in 1 simulation to cover a large state-action set of the 30 
driver (see Figure 5(a)). When 𝑀𝑀 = 10 , the RAC algorithm begins to demonstrate its 31 
advantages. In Figure 5(b), we see that the 10-RAC algorithm converges much faster and leads 32 
to higher average driver income than the 10-MAC algorithm. Unlike the 𝑀𝑀 = 1 scenario, the 1-33 
RAC algorithm under 𝑀𝑀 = 10  can also achieve high average driver income because more 34 
transitions are sampled and used to update the policy and value networks of the representative 35 
driver. As 𝑀𝑀 increases to 50, on one hand, the 10-MAC algorithm encounters its bottleneck (at 36 
around 132 CNY per driver) and can barely increase average income further (see Figure 5(c)). 37 
On the other hand, the 10-RAC algorithm still outperforms the other algorithms, but its gaps in 38 
both convergence speed and final average income from the 1-RAC algorithm become smaller. 39 
This is because with a large 𝑀𝑀, 1 simulation during an epoch can generate sufficient samples of 40 
transitions. Finally, in Figure 5(d) under 𝑀𝑀 = 100 , the 1-MAC algorithm never improves 41 
average driver income due to insufficient transitions sampled over the large solution space, and 42 
we still observe the bottleneck for the 10-MAC algorithm (at around 128 CNY per driver). Also, 43 
the advantage of the 10-RAC algorithm over the 1-RAC algorithm becomes negligible. Based 44 
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on these findings, we conclude that with a large number of drivers, the RAC algorithm is capable 1 
of identifying policies to further improve average total rewards compared with the MAC 2 
algorithm on a small-scale network. In addition, a small number of simulations within one epoch 3 
is sufficient for the RAC algorithm to quickly converge to a policy that leads to high average 4 
total rewards. We aim to examine the MAC and RAC algorithms on real-world networks in near 5 
future studies. 6 

 
(a) 𝑀𝑀 = 1 

 
(b) 𝑀𝑀 = 10 

 
(c) 𝑀𝑀 = 50 

 
(d) 𝑀𝑀 = 100 

Figure 5. Performance of the MAC and RAC algorithms  7 

5.3 SPATIAL-TEMPORAL SUBSIDIES AND DRIVERS’ SELF-RELOCATION 8 

In the second experiment, we retain the ride-sourcing market that contains 100 drivers 9 
and let the platform to pursue rewardable spatial-temporal subsidy strategies with some 10 
predefined 𝛽𝛽. As described in Section 5.1, we assume the platform assigns weights to the service 11 
rate in the objective and adopts different subsidy rates. Namely, a zero weight (e.g., 𝜇𝜇 = 0) for 12 
the service rate indicates that the platform is only concerned with net revenue; a medium weight 13 
(e.g., 𝜇𝜇 = 20,000) implies a balance between net revenue and the service rate; and a large weight 14 
(e.g., 𝜇𝜇 = 40,000) indicates that the platform mainly focuses on the service rate in the objective. 15 
As stated previously, the subsidy rates 𝛽𝛽 range from 0 to 8 CNY per ride in steps of 2 CNY per 16 
ride. For each combination of parameters (i.e., 𝜇𝜇  and 𝛽𝛽), we pursue the platform’s optimal 17 
subsidy strategy with respect to the total objective value in terms of drivers’ self-relocation. We 18 
use the RAC algorithm to solve the simplified MF-MDP model for different combinations of 𝜇𝜇 19 
and 𝛽𝛽 . To balance computational cost and performance (i.e., for both the platform and the 20 
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representative driver), the number of epochs is set at 1,000 and 2 simulations are conducted 1 
within each epoch (i.e., a 2-RAC algorithm is adopted). 2 

Table 2. Results with Spatial-temporal Subsidies for the Entire Horizon 3 
(a) Total objective value (weighted sum of net revenue and service rate) for the platform  4 

 𝛽𝛽 = 0 𝛽𝛽 = 2 𝛽𝛽 = 4 𝛽𝛽 = 6 𝛽𝛽 = 8 

𝜇𝜇 = 0 3,189 3,186 3,179 3,190 3,194 

𝜇𝜇 = 20,000 13,616 13,735 13,859 13,930 13,689 

𝜇𝜇 = 40,000 24,112 24,490 24,677 24,830 24,964 

(b) Average driver income (CNY per driver) 5 

 𝛽𝛽 = 0 𝛽𝛽 = 2 𝛽𝛽 = 4 𝛽𝛽 = 6 𝛽𝛽 = 8 

𝜇𝜇 = 0 127.55 127.49 127.35 127.72 127.87 

𝜇𝜇 = 20,000 127.84 131.61 134.27 134.64 128.80 

𝜇𝜇 = 40,000 127.68 132.43 136.55 136.16 136.10 

(c) Total net revenue for the platform (CNY)  6 

 𝛽𝛽 = 0 𝛽𝛽 = 2 𝛽𝛽 = 4 𝛽𝛽 = 6 𝛽𝛽 = 8 

𝜇𝜇 = 0 3,189 3,186 3,179 3,190 3,194 

𝜇𝜇 = 20,000 3,196 3,095 3,159 3,110 3,189 

𝜇𝜇 = 40,000 3,192 3,050 3,077 2,950 2,804 

 (d) Service rate in the market 7 

  𝛽𝛽 = 0 𝛽𝛽 = 2 𝛽𝛽 = 4 𝛽𝛽 = 6 𝛽𝛽 = 8 

𝜇𝜇 = 0 51.5% 51.3% 50.8% 51.1% 51.3% 

𝜇𝜇 = 20,000 52.1% 53.2% 53.5% 54.1% 52.5% 

𝜇𝜇 = 40,000 52.3% 53.6% 54.0% 54.7% 55.4% 

 (e) Total subsidies offered by the platform (i.e., earned by all drivers) (CNY) 8 

 𝛽𝛽 = 0 𝛽𝛽 = 2 𝛽𝛽 = 4 𝛽𝛽 = 6 𝛽𝛽 = 8 

𝜇𝜇 = 0 0.0 0.6 4.2 2.4 3.8 

𝜇𝜇 = 20,000 0.0 117.7 158.4 210.0 29.6 

𝜇𝜇 = 40,000 0.0 208.3 269.2 356.2 479.2 

(f) Average subsidies per matched order (CNY) 9 

 𝛽𝛽 = 0 𝛽𝛽 = 2 𝛽𝛽 = 4 𝛽𝛽 = 6 𝛽𝛽 = 8 

𝜇𝜇 = 0 0.00 0.00 0.01 0.01 0.01 

𝜇𝜇 = 20,000 0.00 0.33 0.44 0.58 0.08 

𝜇𝜇 = 40,000 0.00 0.58 0.75 0.97 1.29 

(g) Average number of driver delivery/pickup time periods 10 



 

   26 

 

 𝛽𝛽 = 0 𝛽𝛽 = 2 𝛽𝛽 = 4 𝛽𝛽 = 6 𝛽𝛽 = 8 

𝜇𝜇 = 0 15.9/3.0 15.9/3.0 15.9/2.9 16.0/2.9 16.0/2.9 

𝜇𝜇 = 20,000 16.0/3.0 16.3/3.0 16.6/3.1 16.6/3.1 16.1/3.0 

𝜇𝜇 = 40,000 16.0/2.9 16.3/3.1 16.7/3.2 16.6/3.2 16.4/3.1 

 1 

Results of this experience are illustrated in Table 2. From the 1,000 epochs with fixed 𝜇𝜇 2 
and 𝛽𝛽 in the 2-RAC algorithm, we select 5 epochs with the highest platform objective values 3 
and summarize the average metrics14. The relation between 𝛽𝛽 and the metrics with a fixed 𝜇𝜇 can 4 
be obtained; the total subsidies offered (i.e., Table 2(e)) reflect the platform’s subsidy strategy.  5 

When 𝜇𝜇 = 0, the total amount of subsidies offered to drivers under different values of 𝛽𝛽 6 
is small (i.e., Table 2(e)); this indicates that the platform prefers not to provide subsidies, and 7 
drivers pursue high-rewarding self-relocation strategies without subsidies. As a result, the total 8 
objective value for the platform, total net revenue for the platform, average driver income, and 9 
service rate (i.e., Tables 2(a)–2(d)) across different values of 𝛽𝛽 are more or less the same. Note 10 
that the reinforcement learning algorithm cannot guarantee the global optimal, and the small 11 
differences between the values are mainly due to simulation noise. The “non-subsidy” result 12 
under 𝜇𝜇 = 0 is foreseeable for two reasons: (1) the commission rate is low, so that the platform, 13 
which only retains a positive but small net revenue for an order, might not afford a large subsidy 14 
rate; and (2) a small subsidy rate might not motivate enough drivers to change their self-15 
relocation strategies in order to gain sufficient benefits from alleviating supply-demand 16 
imbalance. Therefore, the increased commission withheld by the platform cannot cover the 17 
subsidies offered to drivers, which leads to a loss in net revenue while implementing subsidy 18 
strategies.  19 

If the platform has a balanced weight with 𝜇𝜇 = 20,000, its total objective value first 20 
increases and then decreases with 𝛽𝛽 (see Table 2(a)). Based on Table 2(d) and Table 2(e), we 21 
note that as 𝛽𝛽 increases from 0 CNY to 6 CNY per ride, the increased subsidy improves the 22 
service rate; however, once 𝛽𝛽 = 8 CNY per ride, the subsidy becomes cost-ineffective because 23 
the benefits gained from the enhanced weighted service rate cannot offset the revenue loss caused 24 
by subsidy provisions, and thus the platform is inclined to adopt a non-subsidy strategy.  25 

If the platform mainly prefers a high service rate (i.e., 𝜇𝜇 = 40,000), a subsidy less than 26 
or equal to 8 CNY per ride is always cost-effective for improving the total objective value by 27 
reshaping drivers’ self-relocation strategies and increasing the service rate (see Table 2(a), Table 28 
2(d), and Table 2(e)). 29 

                                                 
14 Table 2(a), 2(c) and 2(d) shows the total reward, net revenue, and service rate of the platform, respectively, 2(b) 
the average income (net revenue) of drivers (i.e., total income divided by 100 drivers), 2(g) the average time periods 
in delivery/pickup task for drivers (i.e., total number of delivery/pickup times divided by 100 drivers), 2(e) and 2(f) 
are subsidy related metrics. A value of 0.6 in Table 2(e) under 𝜇𝜇 = 0 and 𝛽𝛽 = 2 is obtained. This is because for the 
5 epochs (i.e., a total of 10 simulations) with the highest platform’s objective values, the total amount of subsidies 
offered by the platform to all the drivers in the entire horizon is 6 CNY; dividing 6 by 10 simulations, we get 0.6. 
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(a) Baseline scenario 

 
(b) Subsidy scenario 

Figure 6. Served Rides across the Time Horizon and Zones 1 

 We refer to 𝜇𝜇 = 0 and 𝛽𝛽 = 0 as the baseline scenario, in which the platform’s objective 2 
consists of only net revenue, and refer to 𝜇𝜇 = 40,000 CNY and 𝛽𝛽 = 8 CNY per ride as the 3 
subsidy scenario in which the platform focuses more on the service rate. Comparing the subsidy 4 
scenario with the baseline scenario, spatial-temporal subsidies can lead to a 6.7% and 7.6% 5 
increase in the average driver income and the service rate, respectively (see Table 2(b) and Table 6 
2(d)). We show the spatial-temporal number of passengers served (i.e., matched demand) in 7 
Figure 6. Time periods with subsidies are denoted using 𝛽𝛽 in Figure 6(b): The platform provides 8 
subsidies at zone 4 at time periods 9–12 and 16–19. Motivated by the subsidy, some drivers 9 
“postpone” service by idle cruising before the target (i.e., demand-hot) zone is subsidized but 10 
relocating to (and thus arriving at) the target zone in time periods with subsidies. As denoted by 11 
“postpone” in Figure 6(b), fewer passengers are served at time periods 7–8 and 13 due to the 12 
idle cruising and postponing phenomenon; instead, more passengers are served during time 13 
periods with subsidies. There are 148 passengers served during time periods 1–15 under both 14 
scenarios. In contrast, due to the postponement of services, the number of passengers served after 15 
time index 15 notably increases from 195 to 223. These results imply that a platform with an 16 
emphasis on service rate has the foresight to mitigate the imbalance between driver supply and 17 
passenger demand. 18 
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(a) baseline at 𝑡𝑡 = 3 

 
(b) subsidy at 𝑡𝑡 = 3 

 
(c) baseline at 𝑡𝑡 = 9 

 
(d) subsidy at 𝑡𝑡 = 9 

 
(e) baseline at 𝑡𝑡 = 13 

 
(f) subsidy at 𝑡𝑡 = 13 

 
(g) baseline at 𝑡𝑡 = 23 

 
(h) subsidy at 𝑡𝑡 = 23 

Figure 7. Spatial-temporal idle supply and self-relocation policies. 1 
 To better understand how drivers’ self-relocation strategies are affected in the subsidy 2 
scenario, we provide the spatial-temporal idle driver supply and soft self-relocation policies in 3 
the simplified MF-MDP model in Figure 7. Black numbers at the top/bottom of the zones 4 
represent zone IDs; colored numbers at the center of each zone denote the numbers of idle drivers; 5 
and arrows with small underlined numbers denote relocation destinations and corresponding 6 
proportions in percentage (i.e., the soft policy). Blue, yellow, and red represent zones with a low 7 
matching probability (in demand-cold zones), a medium matching probability (in zones adjacent 8 
to demand-hot zones), and a high matching probability (in demand-hot zones), respectively. Note 9 
that the instances reported in Figure 7 are from a single simulation with the highest objective 10 
value for the platform. At 𝑡𝑡 = 3, idle drivers in the baseline scenario move to either zone 2 or 11 
zone 4 to pick up passengers (see Figure 7(a)); in the subsidy scenario, some drivers in zones 6 12 
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and 7 have diverse relocation directions (e.g., drivers in zone 7 have a 60% chance of staying). 1 
One reason might be that they first cruise around and wait, then try to arrive at zone 4 at 𝑡𝑡 ∈2 
{9,10,11,12} to earn subsidies. Because of this phenomenon, at 𝑡𝑡 = 9, the number of idle drivers 3 
adjacent to zone 4 in the subsidy scenario is notably higher than in the baseline scenario. The 4 
postponing phenomenon also happens at 𝑡𝑡 = 13, when some drivers perceive the upcoming 5 
subsidies at 𝑡𝑡 ∈ {16,17,18,19} and decide not to immediately serve passengers in zone 2 (see 6 
Figure 7(f) and Figure 7(b)). The benefits of the postponing phenomenon can be partially 7 
observed in Figures 7(g)–7(h). In the baseline scenario, drivers in the first half of the operational 8 
horizon keep relocating to zones 2 and 4 to serve passengers. This results in a shortage of supply 9 
during time periods 9–11 and 14–17 (see Figure 6(a)), as well as peak arrivals of idle drivers at 10 
zone 7 at an early time in the second half of the operational horizon (e.g., time period 23 in 11 
Figure 7(g)). In contrast, in the subsidy scenario, some drivers are inclined to idly cruise and 12 
postpone their services so that the supply becomes smooth across zones and time periods, 13 
especially during the second half of the operational horizon. Consequently, the supply-demand 14 
imbalance in this case study is alleviated due to the implementation of spatial-temporal subsidies. 15 
  16 

6 DISCUSSION OF SUBSIDY SCHEMES 17 

The numerical studies in Section 5 offer in-depth insights for ride-sourcing platforms 18 
about the effectiveness of a uniform subsidy scheme in addressing supply-demand imbalance. In 19 
such a scheme, the platform predetermines the amount of subsidy per order (i.e., subsidy rate) 20 
and offers this amount of subsidy to drivers once they are matched with passengers whose origins 21 
are the subsidized zones. The strategy of spatial-temporal subsidies under the uniform scheme is 22 
largely affected by the objective of the platform. If the platform only cares about the immediate 23 
net revenue, the effectiveness of this subsidy scheme could be limited. This is because for a 24 
single order, the subsidy rate generally does not exceed the commission withheld by the platform 25 
(otherwise the platform earns negative net revenue for an order). Thus, the amount of subsidy 26 
offered to a driver is much smaller than they earn from the trip fare and is unattractive to drivers, 27 
who may not be motivated to move to the designated zones. In this case, offering subsidies could 28 
cause a loss in net revenue because the subsidy provision is higher than the commission gain; 29 
therefore, the platform would prefer a non-subsidy strategy. By contrast, if the platform pursues 30 
a high service rate (i.e., number of passengers served), it would like to offer a subsidy sufficient 31 
to stimulate drivers to demand-hot zones despite the reduction in immediate revenue. The latter 32 
case might occur when a platform expands its business and competes with others. An example 33 
is the price war between DiDi and Uber in mainland China in 2016 before they consolidated. 34 

However, the uniform subsidy scheme is not superior in improving the service rate and 35 
net revenue of the platform simultaneously. This is because the platform provides the same 36 
amount of subsidies to different drivers: (1) those who already have desirable self-relocation 37 
strategies such that they could relocate to demand-hot zones even without subsidies, and (2) 38 
those who are incentivized by subsidies but would not relocate to demand-hot zones if no 39 
subsidies were provided. Therefore, subsidies offered to drivers belonging to the first type would 40 
not generate more net revenue for the platform, and only subsidies offered to drivers in the 41 
second type would help mitigate the supply-demand imbalance and improve the service rate. 42 

To thoroughly examine the designs of spatial-temporal subsidies for drivers with certain 43 
self-relocation strategies, a number of tasks must be relayed left to the future studies. Different 44 
subsidy schemes must be examined and evaluated based on the ride-sourcing MF-MDP model. 45 
Below, we provide a few sample schemes with the potential advantages and feasibility: 46 
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• Surge subsidy (or zone-based) scheme, in which the platform provides higher subsidies 1 
at zones with greater supply-demand imbalance. Once there is super large passenger 2 
demand in a hot area, the platform could offer irresistible subsidies to drivers who 3 
relocate to and then serve passengers in the area. The revenue loss due to high subsidy 4 
provision could be offset by the improvement in the service rate, since sufficient drivers 5 
will be attracted to the hot area to accommodate the high service needs. 6 

• Distance-based subsidy scheme, in which the subsidy rate is proportional to the travel 7 
distance of the ride order or a subsidy is applied only if the travel distance of the order 8 
exceeds some threshold. Such a scheme could be beneficial once there is an insufficient 9 
supply of long-distance passenger demand. 10 

• Origin-destination-based subsidy scheme, in which the platform offers heterogeneous 11 
subsidies based on the origin and destination of the ride order. For instance, the platform 12 
could provide a high subsidy for trips that originate at a demand-cold area and terminate 13 
at a demand-hot area. Consequently, the supply-demand imbalance could be improved 14 
as the overall driver supply at demand-cold areas is incentivized to relocate to demand-15 
hot areas. We can employ the MF-MDP model to determine the critical rules with respect 16 
to subsidy rates and the characteristics of origins/destinations.  17 

• Performance-based (or driver-based) subsidy scheme, in which the platform offers 18 
subsidies according to drivers’ performance and behaviors. For instance, the platform 19 
could only offer subsidies to drivers who would not relocate to demand-hot zones without 20 
incentives. Although this subsidy scheme can reduce the subsidy provided to drivers with 21 
high-rewarding self-relocation strategies, it could be controversial due to potential 22 
discrimination concerns. 23 
All of these subsidy schemes merit analysis using the MF-MDP model to gain 24 

comprehensive insights into the pros and cons of diverse spatial-temporal subsidies in ride-25 
sourcing markets. Furthermore, we would examine spatial-temporal subsidies in more realistic 26 
scenarios in terms of a large-scale zone network, passenger demand derived from actual data, 27 
and a flexible setting of subsidy levels. Real-world public datasets can be used to generate large-28 
scale ride-sourcing scenarios. Although the current edge-based matching rules (Eqs. A.(6)–A.(9)) 29 
analytically capture the cross-zone matching feature of ride-sourcing markets, it can be 30 
computational inefficient for large-scale analyses when calculating the joint probability 31 
distribution of matching results. We aim to improve the efficiency of the edge-based matching 32 
rule for real-world scenarios in future studies. In addition, the predefined subsidy rates (i.e., 33 
either 0  or 𝛽𝛽 ) in this paper could underestimate the effectiveness of a subsidy due to the 34 
inflexibility of implementing heterogeneous subsidies at different locations and with different 35 
traveling distances. Instead, we can predefine a few subsidy levels and apply reinforcement 36 
learning (e.g., the RAC) algorithms to pursue the optimal subsidy level in each time period to 37 
maximize the total rewards. 38 
 39 

7 CONCLUSIONS 40 

In this paper, we propose a generalized MF-MDP model to capture sequential and 41 
interactive decision processes in a ride-sourcing environment with the platform as the major 42 
agent and multiple drivers as minor agents. The MF-MDP model is particularly suitable for 43 
research questions in which the major agent (platform) and minor agents (drivers) have distinct 44 
objectives. The decisions/actions of the platform can directly affect the drivers’ states, while the 45 
drivers’ actions can influence the platform’s state and drivers’ average state, which is referred to 46 
as the MF state. An approximation of the MF state is employed to simplify the model, such that 47 
we only need to optimize the policies for the platform and one representative driver instead of 48 
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the policies for the platform and all individual drivers (as in the standard MF-MDP model). 1 
Consequently, computational complexity can be notably reduced when there are a large number 2 
of drivers in the environment.  3 

In particular, we adopt the MF-MDP model to design the platform’s spatial-temporal 4 
subsidy strategies with a predefined subsidy rate for drivers who have self-relocation strategies. 5 
A representative-agent reinforcement learning algorithm is proposed to solve the MF-MDP 6 
model. Using numerical studies, we demonstrate that due to the significant reduction of the 7 
number of agents and solution space, the representative-agent algorithm demonstrates significant 8 
computational advantages and fast convergence and achieves higher rewards, compared with the 9 
conventional multi-agent algorithm. In addition, we investigate the potential impact of spatial-10 
temporal subsidies on drivers’ self-relocation strategies and the resulting platform’s objective 11 
values and drivers’ income. Based on a uniform subsidy scheme, our results suggest that 12 
subsidies can improve the service level (number of passengers served) by incentivizing idle 13 
drivers to locations with overfull passenger demand and insufficient driver supply. On one hand, 14 
if the platform only pursues net revenue (measured commission withheld from trip fares by the 15 
platform minus the amount of subsidies offered to drivers), a subsidy strategy with predefined 16 
subsidy levels is cost-ineffective due to a large reduction in net revenue from a single order 17 
versus a small increase in the number of passengers served. On the other hand, when the platform 18 
pays more attention to the number of passengers served (in order to improve the customer 19 
satisfaction rate), it is more willing to offer sufficient subsidies to stimulate drivers to demand-20 
hot zones and achieve a better supply-demand balance. In this case, the spatial-temporal subsidy 21 
strategy leads to a win-win situation in which both average driver income and the platform’s 22 
total objective value are notably improved. 23 

This paper makes three major contributions to the literature. First, unlike previous ride-24 
sourcing MDP models that assume the platform has full control of drivers, the proposed MF-25 
MDP model considers interactive decision processes between the platform and drivers. Second, 26 
the simplified MF-MDP model with the representative-agent algorithm is shown to be a good 27 
alternative to multi-agent MDP models, which are generally computationally expensive. The 28 
mean-field approximation not only saves computational resources but also achieves higher 29 
rewards with a faster convergence in our research problem. This is mainly due to the special 30 
characteristic of a ride-sourcing market, in the sense that the number of drivers is so large that 31 
the platform can consider the mean-field state of all drivers without tracking the individual state 32 
of each driver. Third, our model describes the interactions between the platform’s spatial-33 
temporal subsidy strategies and drivers’ self-relocation strategies; in contrast, most previous 34 
studies investigate either the impact of platform-side incentives or idle-vehicle relocation 35 
problems separately without considering their interplay. 36 

There are several important directions for future research. First, some deep learning-37 
based algorithms and MF simulation approaches can be developed to further enhance 38 
performance and reduce computational complexity. We are particularly interested in developing 39 
edge-based matching rules that are both capable of depicting cross-zone matching processes and 40 
powerful for large-scale multi-agent problems in practically relevant scenarios. Second, based 41 
on the generalized ride-sourcing MF-MDP model, we will examine the impacts of other subsidy 42 
schemes, such as surge subsidy schemes over time and zones, distance-based subsidy schemes, 43 
and origin-destination-based subsidy schemes. These subsidy schemes are expected to mitigate 44 
supply-demand imbalance more efficiently than the uniform subsidy scheme that offers the same 45 
amount of subsidy to drivers upon matches with passengers from subsidized regions. Third, the 46 
framework can be extended to investigate ride-sourcing markets coupled with public transit 47 
services, and identify optimal coordination between ride-sourcing drivers who aim to improve 48 
their earnings by self-relocation and public transit operators who attempt to design transit 49 
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schedules to improve transit usage. For example, the platform’s knowledge of bus services’ 1 
timeline could incentivize drivers to relocate to transit stations at the appropriate time, as a result 2 
of which the cooperation and substituting effect between ride-sourcing and public transit services 3 
could be enhanced. 4 
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 26 

APPENDIX A: FORMULAS FOR THE SPECIFIC MF-MDP MODEL 27 

In this appendix we provide detailed formulas for state transition laws, matching 28 
probability, and rewards in the MF-MDP model developed in Section 4. 29 

First, we illustrate the state transition laws of the platform and a driver in the standard 30 
MF-MDP model (or the representative driver in the simplified MF-MDF model). With the state 31 
vector 𝒔𝒔 = [𝑡𝑡, 𝑠𝑠1, … , 𝑠𝑠𝑂𝑂] and the action vector = [𝑎𝑎1, … ,𝑎𝑎𝑂𝑂], the state transition law for the 32 
platform is given by 33 

𝑄𝑄(𝒔𝒔′|𝒔𝒔,𝒂𝒂) = �1 , 𝒔𝒔′ = [𝑡𝑡 + 1, 𝑎𝑎1, … ,𝑎𝑎𝑂𝑂],∀𝒂𝒂 ∈ 𝑨𝑨
0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   (A.1) 

An intuitive explanation of Eq. (A.1) is that the state of the platform for the next time index 34 
equals its action vector. 35 

With a state vector 𝒔𝒔𝑑𝑑 = [𝑡𝑡, 𝑠𝑠𝑑𝑑1, 𝑠𝑠𝑑𝑑2, 𝑠𝑠𝑑𝑑3, 𝑠𝑠𝑑𝑑4, 𝑠𝑠𝑑𝑑5]  and an action 𝑎𝑎𝑑𝑑 ∈ 𝑱𝑱𝑠𝑠𝑑𝑑3 , the state 36 
transition law for a driver has different formulas according to the current task 𝑠𝑠𝑑𝑑1 and remaining 37 
time 𝑠𝑠𝑑𝑑2. Note that for the following formulas, we need 𝒔𝒔𝑑𝑑 , 𝒔𝒔𝑑𝑑′ ∈ 𝑺𝑺𝑑𝑑, and 𝒉𝒉𝑑𝑑 ∈ 𝑯𝑯𝑑𝑑. 38 
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• The driver is picking up a passenger, i.e., 𝒔𝒔𝑑𝑑 = [𝑡𝑡, 1, 𝜏𝜏, 𝑜𝑜, 𝑜𝑜′, 𝑜𝑜′′] , 𝜏𝜏 > 0 , 𝑜𝑜, 𝑜𝑜′, 𝑜𝑜′′ ∈1 
{1,2, … ,𝑂𝑂}, and 𝑜𝑜 ≠ 𝑜𝑜′ ≠ 𝑜𝑜′′ 2 

𝑄𝑄𝑑𝑑(𝒔𝒔𝑑𝑑′ |𝒔𝒔𝑑𝑑,𝒉𝒉𝑑𝑑 ,𝑎𝑎𝑑𝑑) = �
1 , 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,1, 𝜏𝜏 − 1, 𝑜𝑜, 𝑜𝑜′, 𝑜𝑜′′], 𝜏𝜏 > 1
1 , 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,2, 𝜏𝜏𝑜𝑜′𝑜𝑜′′ ,𝑜𝑜′, 𝑜𝑜′, 𝑜𝑜′′], 𝜏𝜏 = 1
0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (A.2) 

where 𝜏𝜏𝑜𝑜′𝑜𝑜′′  denotes the average travel time from zone 𝑜𝑜′  to zone 𝑜𝑜′′ , which is 3 
exogenous. The first line means that the driver still needs more than one time period to 4 
finish the current picking-up task; therefore the new remaining time 𝑠𝑠𝑑𝑑2′  decreases by one, 5 
while the other dimensions of the state vector remain unchanged. The second line means 6 
that the driver is about to finish a picking-up task and will immediately change the task 7 
to delivering the passenger; then the new remaining time 𝑠𝑠𝑑𝑑2′  becomes the average travel 8 
time between the origin zone and the destination zone, the new task 𝑠𝑠𝑑𝑑1′  becomes 2, and 9 
the new idling zone becomes the current picking-up destination, which is identical to the 10 
origin of the passenger (i.e., 𝑠𝑠𝑑𝑑3′ = 𝑠𝑠𝑑𝑑4 = 𝑜𝑜′). 11 

• The driver is delivering a passenger, i.e., 𝒔𝒔𝑑𝑑 = [𝑡𝑡, 2, 𝜏𝜏, 𝑜𝑜, 𝑜𝑜, 𝑜𝑜′] , 𝜏𝜏 > 0 , 𝑜𝑜, 𝑜𝑜′ ∈12 
{1,2, … ,𝑂𝑂}, and 𝑜𝑜 ≠ 𝑜𝑜′. 13 

𝑄𝑄𝑑𝑑(𝒔𝒔𝑑𝑑′ |𝒔𝒔𝑑𝑑 ,𝒉𝒉𝑑𝑑 ,𝑎𝑎𝑑𝑑) = �
1 , 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,2, 𝜏𝜏 − 1, 𝑜𝑜, 𝑜𝑜, 𝑜𝑜′], 𝜏𝜏 > 1 
1 , 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,0,0, 𝑜𝑜′, 𝑜𝑜′, 𝑜𝑜′], 𝜏𝜏 = 1 
0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (A.3) 

The first line means that the driver needs more than one time period to finish the current 14 
delivering task and the new remaining time 𝑠𝑠𝑑𝑑2′  decreases by one, while the other 15 
dimensions of the state vector remain the same. The second line indicates that if the driver 16 
is about to finish a delivering task, the new state becomes a purely idle state (i.e., 𝑠𝑠𝑑𝑑1′ =17 
0  and 𝑠𝑠𝑑𝑑2′ = 0 ). Since there is no passenger order, we let 𝑠𝑠𝑑𝑑3′ = 𝑠𝑠𝑑𝑑4′ = 𝑠𝑠𝑑𝑑5′ = 𝑜𝑜′  for 18 
convenience. 19 

• The driver is purely idle, i.e., 𝒔𝒔𝑑𝑑 = [𝑡𝑡, 0,0, 𝑜𝑜, 𝑜𝑜, 𝑜𝑜], and 𝑜𝑜 ∈ {1,2, … ,𝑂𝑂}. 20 

𝑄𝑄𝑑𝑑(𝒔𝒔𝑑𝑑′ |𝒔𝒔𝑑𝑑,𝒉𝒉𝑑𝑑 ,𝑎𝑎𝑑𝑑) =

⎩
⎪
⎨

⎪
⎧𝑚𝑚𝑜𝑜,𝑜𝑜′,𝑜𝑜′′(𝒉𝒉𝑑𝑑)
𝑚𝑚𝑜𝑜,𝑜𝑜,𝑜𝑜′′(𝒉𝒉𝑑𝑑)
𝑢𝑢𝑜𝑜(𝒉𝒉𝑑𝑑)
𝑢𝑢𝑜𝑜(𝒉𝒉𝑑𝑑)

0

, 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,1, 𝜏𝜏𝑜𝑜𝑜𝑜′ ,𝑜𝑜, 𝑜𝑜′, 𝑜𝑜′′]
, 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,2, 𝜏𝜏𝑜𝑜𝑜𝑜′′ ,𝑜𝑜, 𝑜𝑜, 𝑜𝑜′′] 

, 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,0,0, 𝑜𝑜, 𝑜𝑜, 𝑜𝑜],𝑎𝑎𝑑𝑑 = 𝑜𝑜
, 𝒔𝒔𝑑𝑑
′ = �𝑡𝑡 + 1,0, 𝜏𝜏𝑜𝑜𝑎𝑎𝑑𝑑 − 1, 𝑜𝑜,𝑎𝑎𝑑𝑑, 𝑎𝑎𝑑𝑑�,𝑎𝑎𝑑𝑑 ≠ 𝑜𝑜

, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (A.4) 

where 𝑚𝑚𝑜𝑜,𝑜𝑜′,𝑜𝑜′′(𝒉𝒉𝑑𝑑) denotes the probability of getting a matched passenger order at zone 21 
𝑜𝑜 with the origin and destination of the passenger being 𝑜𝑜′  and 𝑜𝑜′′ , respectively, and 22 
𝑢𝑢𝑜𝑜(𝒉𝒉𝑑𝑑)  denotes the probability of not being matched at zone 𝑜𝑜 . Generally, both 23 
𝑚𝑚𝑜𝑜,𝑜𝑜′,𝑜𝑜′′(𝒉𝒉𝑑𝑑) and 𝑢𝑢𝑜𝑜(𝒉𝒉𝑑𝑑) depend on the MF state of drivers and the exogenous passenger 24 
demand. More specific formulas for the probabilities are given later in this appendix. The 25 
first line in the equation implies that the origin of the newly matched passenger is 26 
different from the driver’s current idling zone (i.e., 𝑠𝑠𝑑𝑑4′ = 𝑜𝑜′ ≠ 𝑠𝑠𝑑𝑑3 = 𝑜𝑜); therefore, a 27 
picking-up task is needed and we have 𝑠𝑠𝑑𝑑1′ = 1 and 𝑠𝑠𝑑𝑑2′ = 𝜏𝜏𝑜𝑜𝑜𝑜′. In the second line, the 28 
matched passenger and the driver are in the same zone (i.e., 𝑠𝑠𝑑𝑑4′ = 𝑠𝑠𝑑𝑑3 = 𝑜𝑜) and we 29 
assume the picking-up process can be ignored; therefore, the driver will directly start to 30 
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deliver the passenger (i.e., 𝑠𝑠𝑑𝑑1′ = 2). The third line indicates that the driver is still not 1 
matched and their action is to stay in the current idling zone (i.e., 𝑎𝑎𝑑𝑑 = 𝑜𝑜); therefore the 2 
state of the driver will remain unchanged. In the fourth line, the driver is not matched and 3 
will relocate to zone 𝑎𝑎𝑑𝑑; we let 𝑠𝑠𝑑𝑑4′ = 𝑠𝑠𝑑𝑑5′ = 𝑎𝑎𝑑𝑑 for convenience, and let 𝑠𝑠𝑑𝑑2′ = 𝜏𝜏𝑜𝑜𝑎𝑎𝑑𝑑 − 1 4 
because we assume the driver is already in the middle of the self-relocating state (i.e., no 5 
time is wasted by stopping the vehicle to load or drop off passengers). 6 

• The driver is in a self-relocating state, i.e., 𝒔𝒔𝑑𝑑 = [𝑡𝑡, 0, 𝜏𝜏, 𝑜𝑜, 𝑜𝑜′, 𝑜𝑜′], 𝜏𝜏 > 0, and 𝑜𝑜 ≠ 𝑜𝑜′. 7 

𝑄𝑄𝑑𝑑(𝒔𝒔𝑑𝑑′ |𝒔𝒔𝑑𝑑,𝒉𝒉𝑑𝑑 ,𝑎𝑎𝑑𝑑) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑚𝑚𝑜𝑜,𝑜𝑜′′,𝑜𝑜′′′(𝒉𝒉𝑑𝑑)
𝑚𝑚𝑜𝑜,𝑜𝑜′,𝑜𝑜′′′(𝒉𝒉𝑑𝑑)
𝑚𝑚𝑜𝑜,𝑜𝑜′,𝑜𝑜′′′(𝒉𝒉𝑑𝑑)
𝑚𝑚𝑜𝑜,𝑜𝑜,𝑜𝑜′′′(𝒉𝒉𝑑𝑑)
𝑢𝑢𝑜𝑜(𝒉𝒉𝑑𝑑)
𝑢𝑢𝑜𝑜(𝒉𝒉𝑑𝑑)

0

, 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,1, 𝜏𝜏𝑜𝑜𝑜𝑜′′ ,𝑜𝑜, 𝑜𝑜′′, 𝑜𝑜′′′]
, 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,1, 𝜏𝜏 − 1, 𝑜𝑜, 𝑜𝑜′, 𝑜𝑜′′′], 𝜏𝜏 > 1

, 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,2, 𝜏𝜏𝑜𝑜′𝑜𝑜′′′ , 𝑜𝑜′, 𝑜𝑜′, 𝑜𝑜′′′], 𝜏𝜏 = 1
, 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,2, 𝜏𝜏𝑜𝑜𝑜𝑜′′′ , 𝑜𝑜, 𝑜𝑜, 𝑜𝑜′′′]

, 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,0, 𝜏𝜏 − 1, 𝑜𝑜, 𝑜𝑜′, 𝑜𝑜′], 𝜏𝜏 > 1
, 𝒔𝒔𝑑𝑑′ = [𝑡𝑡 + 1,0,0, 𝑜𝑜′, 𝑜𝑜′, 𝑜𝑜′], 𝜏𝜏 = 1 

, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

  (A.5) 

In the first line, the driver is matched with a passenger whose origin 𝑠𝑠𝑑𝑑4′ = 𝑜𝑜′′ is different 8 
from either the driver’s current idling zone 𝑠𝑠𝑑𝑑3 = 𝑜𝑜 or the self-relocation destination 9 
𝑠𝑠𝑑𝑑4 = 𝑜𝑜′; therefore, the driver begins a picking-up task and moves to zone 𝑜𝑜′′ (i.e., 𝑠𝑠𝑑𝑑1′ =10 
1  and 𝑠𝑠𝑑𝑑4′ = 𝑜𝑜′′ ). The second line indicates that if the self-relocation destination 11 
coincides with the origin zone of the matched passenger (i.e., 𝑠𝑠𝑑𝑑4′ = 𝑠𝑠𝑑𝑑4 = 𝑜𝑜′), the new 12 
remaining time 𝑠𝑠𝑑𝑑2′  decreases by one because we regard the driver as already in the 13 
middle of the picking-up task (i.e., 𝑠𝑠𝑑𝑑1′ = 1). To continue with the case 𝑠𝑠𝑑𝑑4′ = 𝑠𝑠𝑑𝑑4 = 𝑜𝑜′, 14 
the third line means that if drivers are leaving the self-relocating state (i.e., 𝑠𝑠𝑑𝑑2 = 𝜏𝜏 = 1), 15 
they immediately load the passenger and begin the delivering task (i.e., 𝑠𝑠𝑑𝑑1′ = 2). In the 16 
fourth line, both the matched passenger and driver are in zone 𝑜𝑜 (i.e., 𝑠𝑠𝑑𝑑4′ = 𝑠𝑠𝑑𝑑3 = 𝑜𝑜) and 17 
a delivering task starts. The fifth and sixth lines indicate that the driver is not matched 18 
with passengers, such that he/she either remains in the self-relocating state (the fifth line) 19 
or becomes purely idle in zone 𝑜𝑜′ (i.e., 𝑠𝑠𝑑𝑑1′ = 0, 𝑠𝑠𝑑𝑑2′ = 0, and 𝑠𝑠𝑑𝑑3′ = 𝑜𝑜′ for the sixth line). 20 

 21 

Note that the MF vector 𝒉𝒉𝑑𝑑  is used in 𝑄𝑄𝑑𝑑(𝒔𝒔𝑑𝑑′ |𝒔𝒔𝑑𝑑 ,𝒉𝒉𝑑𝑑 ,𝑎𝑎𝑑𝑑)  to calculate the matching 22 
probabilities 𝑚𝑚𝑜𝑜,𝑜𝑜′,𝑜𝑜′′(𝒉𝒉𝑑𝑑) and 𝑢𝑢𝑜𝑜(𝒉𝒉𝑑𝑑). Next, we provide detailed formula related to the number 23 
of matches and matching probabilities. According to the edge-based matching rule in Section 24 
4.1, the number of matches near an arbitrary edge 𝑒𝑒𝑜𝑜𝑜𝑜′, which is denoted by 𝑘𝑘𝑒𝑒𝑜𝑜𝑜𝑜′  is given by 25 

𝑘𝑘𝑒𝑒𝑜𝑜𝑜𝑜′(𝒉𝒉𝑑𝑑) = min �
𝑀𝑀𝑜𝑜(𝒉𝒉𝑑𝑑)
𝐸𝐸𝑜𝑜

+
𝑀𝑀𝑜𝑜′(𝒉𝒉𝑑𝑑)
𝐸𝐸𝑜𝑜′

,
𝑁𝑁𝑜𝑜
𝐸𝐸𝑜𝑜

+
𝑁𝑁𝑜𝑜′

𝐸𝐸𝑜𝑜′
�  (A.6) 

𝑀𝑀𝑜𝑜(𝒉𝒉𝑑𝑑) = 𝑀𝑀�ℎ𝑑𝑑,[𝑡𝑡,0,0,𝑜𝑜,𝑜𝑜,𝑜𝑜] + � ℎ𝑑𝑑,�𝑡𝑡,0,𝜏𝜏,𝑜𝑜,𝑜𝑜′,𝑜𝑜′�
𝜏𝜏>0,𝑜𝑜′∈𝑱𝑱𝑜𝑜/𝑜𝑜

�  (A.7) 

where 𝐸𝐸𝑜𝑜 denote the number of edges of zone 𝑜𝑜, and assuming hexagonal zones, the value of 𝐸𝐸𝑜𝑜 26 
is 6 unless the zone is located at the boundary of the network; and ℎ𝑑𝑑,𝑠𝑠𝑑𝑑  is the scalar value in 𝒉𝒉𝑑𝑑 27 
and represents the proportion of drivers in state 𝑠𝑠𝑑𝑑  (i.e., 𝑧𝑧𝑑𝑑,𝑠𝑠𝑑𝑑

𝑡𝑡 = ℎ𝑑𝑑,𝑠𝑠𝑑𝑑  in Eq. (2)), such that 28 
ℎ𝑑𝑑,[𝑡𝑡,0,0,𝑜𝑜,𝑜𝑜,𝑜𝑜] denotes the proportion of purely idle drivers and ℎ𝑑𝑑,�𝑡𝑡,0,𝜏𝜏,𝑜𝑜,𝑜𝑜′,𝑜𝑜′� the proportion of 29 
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drivers in self-relocating states at time 𝑡𝑡 (see Eq. (A.5)). Since 𝑘𝑘𝑒𝑒𝑜𝑜𝑜𝑜′  is only used to calculate 1 
matching probabilities in this paper, we allow the value of  𝑘𝑘𝑒𝑒𝑜𝑜𝑜𝑜′  to be a non-integer. 2 

Since the numbers of matched passengers and drivers are proportional to the demand and 3 
supply near the common edge, and drivers and passengers are uniformly distributed in the zones 4 
(see Section 4.1), we have the formulas for 𝑚𝑚𝑜𝑜,𝑜𝑜′,𝑜𝑜′′(𝒉𝒉𝑑𝑑) and 𝑢𝑢𝑜𝑜(𝒉𝒉) as follows: 5 

𝑚𝑚𝑜𝑜,𝑜𝑜′,𝑜𝑜′′(𝒉𝒉𝑑𝑑) =

⎩
⎪⎪
⎨

⎪⎪
⎧ 1

𝐸𝐸𝑜𝑜

𝑘𝑘𝑒𝑒𝑜𝑜𝑜𝑜′(𝒉𝒉𝑑𝑑)
𝑀𝑀𝑜𝑜(𝒉𝒉𝑑𝑑)
𝐸𝐸𝑜𝑜

+ 𝑀𝑀𝑜𝑜′(𝒉𝒉𝑑𝑑)
𝐸𝐸𝑜𝑜′

𝑁𝑁𝑜𝑜′

𝑁𝑁𝑜𝑜 + 𝑁𝑁𝑜𝑜′

𝑁𝑁𝑜𝑜′𝑜𝑜′′

𝑁𝑁𝑜𝑜′
, 𝑜𝑜′ ∈ 𝑱𝑱𝑜𝑜/𝑜𝑜

� �
1
𝐸𝐸𝑜𝑜

𝑘𝑘𝑒𝑒𝑜𝑜𝑜𝑜′′′(𝒉𝒉𝑑𝑑)
𝑀𝑀𝑜𝑜(𝒉𝒉𝑑𝑑)
𝐸𝐸𝑜𝑜

+ 𝑀𝑀𝑜𝑜′′′(𝒉𝒉𝑑𝑑)
𝐸𝐸𝑜𝑜′′′

𝑁𝑁𝑜𝑜
𝑁𝑁𝑜𝑜 + 𝑁𝑁𝑜𝑜′′′𝑜𝑜′′′∈𝑱𝑱𝑜𝑜/𝑜𝑜

�
𝑁𝑁𝑜𝑜𝑜𝑜′′

𝑁𝑁𝑜𝑜
, 𝑜𝑜′ = 𝑜𝑜

  

 

(A.8) 

𝑢𝑢𝑜𝑜(𝒉𝒉𝑑𝑑) = 1 − � 𝑚𝑚𝑜𝑜,𝑜𝑜′,𝑜𝑜′′(𝒉𝒉𝑑𝑑)
𝑜𝑜′∈𝑱𝑱𝑜𝑜,𝑜𝑜′′∈𝑶𝑶

 (A.9) 

where 𝑁𝑁𝑜𝑜′𝑜𝑜′′ denotes exogenous passenger demand from zone 𝑜𝑜′ to zone 𝑜𝑜′′. In the first line we 6 
calculate the probability of matching an adjacent passenger in zone 𝑜𝑜 (i.e., picking-up is needed); 7 

the term 1
𝐸𝐸𝑜𝑜

 denotes the probability that the driver is near edge 𝑒𝑒𝑜𝑜𝑜𝑜′; the term 
𝑘𝑘𝑒𝑒𝑜𝑜𝑜𝑜′

𝑀𝑀𝑜𝑜/𝐸𝐸𝑜𝑜+𝑀𝑀𝑜𝑜′/𝐸𝐸𝑜𝑜′
 the 8 

chance of getting a match for drivers who are near edge 𝑒𝑒𝑜𝑜𝑜𝑜′; the term 
𝑁𝑁𝑜𝑜′

𝑁𝑁𝑜𝑜+𝑁𝑁𝑜𝑜′
 the probability that 9 

the origin of the matched passenger is zone 𝑜𝑜′; and the term 
𝑁𝑁𝑜𝑜′𝑜𝑜′′
𝑁𝑁𝑜𝑜′

 the chance that the matched 10 

passenger’s destination is 𝑜𝑜′′ . The second line denotes the probability of matching a local 11 
passenger in zone 𝑜𝑜 (i.e., direct delivery without picking-up), in which we sum the matching 12 
probabilities from all common edges between zone 𝑜𝑜 and its adjacent zones (i.e., the summation 13 
term for 𝑜𝑜′′′ ∈ 𝑱𝑱𝑜𝑜/𝑜𝑜); the explanation for each term is similar to that for the first line. The 14 
unmatched probability equals one minus all matched probabilities in zone 𝑜𝑜 (i.e., Eq. (A.9)). 15 

Last, we show the detailed calculation of 𝑟𝑟(𝒔𝒔,𝒉𝒉𝑑𝑑 ,𝒉𝒉𝑑𝑑′ )  and 𝑟𝑟𝑑𝑑(𝒔𝒔, 𝒔𝒔𝑑𝑑 , 𝒔𝒔𝑑𝑑′ ) . The 16 
decomposition of the platform reward 𝑟𝑟(𝒔𝒔,𝒉𝒉𝑑𝑑 ,𝒉𝒉𝑑𝑑′ ) is given by 17 

𝑟𝑟(𝒔𝒔,𝒉𝒉𝑑𝑑 ,𝒉𝒉𝑑𝑑′ ) = 𝑟𝑟1(𝒉𝒉𝑑𝑑) − 𝑟𝑟2(𝒔𝒔,𝒉𝒉𝑑𝑑 ,𝒉𝒉𝑑𝑑′ ) + 𝜇𝜇𝑟𝑟3(𝒔𝒔,𝒉𝒉𝑑𝑑,𝒉𝒉𝑑𝑑′ ) (A.10) 

𝑟𝑟1(𝒉𝒉𝑑𝑑) =  𝜂𝜂𝜂𝜂𝜂𝜂 � ℎ𝑑𝑑,�𝑡𝑡,2,𝜏𝜏,𝑜𝑜,𝑜𝑜,𝑜𝑜′�
𝜏𝜏,𝑜𝑜,𝑜𝑜′

 (A.11) 

𝑟𝑟2(𝒔𝒔,𝒉𝒉𝑑𝑑 ,𝒉𝒉𝑑𝑑′ )

=  𝛽𝛽𝛽𝛽� � ℎ𝑑𝑑,�𝑡𝑡,1,𝜏𝜏𝑜𝑜′𝑜𝑜,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�
𝑜𝑜,𝑜𝑜′,𝑜𝑜′′|𝑠𝑠𝑜𝑜=𝛽𝛽

+ � �ℎ𝑑𝑑,�𝑡𝑡,2,𝜏𝜏𝑜𝑜𝑜𝑜′′ ,𝑜𝑜,𝑜𝑜,𝑜𝑜′′� − ℎ𝑑𝑑,�𝑡𝑡−1,1,1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�
′ �

𝑜𝑜,𝑜𝑜′,𝑜𝑜′′|𝑠𝑠𝑜𝑜=𝛽𝛽

+ � �ℎ𝑑𝑑,�𝑡𝑡,1,𝜏𝜏−1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′� − ℎ𝑑𝑑,�𝑡𝑡−1,1,𝜏𝜏,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�
′ �

𝑜𝑜,𝑜𝑜′,𝑜𝑜′′,𝜏𝜏>1|𝑠𝑠𝑜𝑜=𝛽𝛽

� 

(A.12) 
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𝑟𝑟3(𝒔𝒔,𝒉𝒉𝑑𝑑 ,𝒉𝒉𝑑𝑑′ )

=
𝑀𝑀
𝑁𝑁
� � ℎ𝑑𝑑,�𝑡𝑡,1,𝜏𝜏𝑜𝑜′𝑜𝑜,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�
𝑜𝑜,𝑜𝑜′,𝑜𝑜′′

+ � �ℎ𝑑𝑑,�𝑡𝑡,2,𝜏𝜏𝑜𝑜𝑜𝑜′′ ,𝑜𝑜,𝑜𝑜,𝑜𝑜′′� − ℎ𝑑𝑑,�𝑡𝑡−1,1,1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�
′ �

𝑜𝑜,𝑜𝑜′,𝑜𝑜′′

+ � �ℎ𝑑𝑑,�𝑡𝑡,1,𝜏𝜏−1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′� − ℎ𝑑𝑑,�𝑡𝑡−1,1,𝜏𝜏,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�
′ �

𝑜𝑜,𝑜𝑜′,𝑜𝑜′′,𝜏𝜏>1

� 

(A.13) 

In Eq. (A.11), the commission withheld during one time period is calculated based on the 1 
proportion of drivers who are performing delivery task ℎ𝑑𝑑,�𝑡𝑡,2,𝜏𝜏,𝑜𝑜,𝑜𝑜,𝑜𝑜′�  (i.e., the proportion of 2 
drivers in state [𝑡𝑡, 2, 𝜏𝜏, 𝑜𝑜, 𝑜𝑜, 𝑜𝑜′]); the total number of drivers 𝑀𝑀; commission rate 𝜂𝜂; and trip fare 3 
rate 𝛼𝛼. In Eq. (A.12), the proportion of drivers who are offered subsidies consists of three terms: 4 
ℎ𝑑𝑑,�𝑡𝑡,1,𝜏𝜏𝑜𝑜′𝑜𝑜,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′� denotes newly matched/dispatched drivers who are currently neither in nor self-5 
relocating to the subsidized zones but will pick up passengers there; ℎ𝑑𝑑,�𝑡𝑡,2,𝜏𝜏𝑜𝑜𝑜𝑜′′ ,𝑜𝑜,𝑜𝑜,𝑜𝑜′′� −6 
ℎ𝑑𝑑,�𝑡𝑡−1,1,1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�
′  denotes newly matched/dispatched drivers who are currently in the subsidized 7 

zones; and ℎ𝑑𝑑,�𝑡𝑡,1,𝜏𝜏−1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′� − ℎ𝑑𝑑,�𝑡𝑡−1,1,𝜏𝜏,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�
′  ( 𝜏𝜏 > 1 ) denotes newly matched/dispatched 8 

drivers who are coincidentally in the process of self-relocating to the subsidized zones. In Eq. 9 
(A.13), the service rate is calculated via the number of drivers 𝑀𝑀, the proportion of drivers who 10 
are newly matched, and the total number of passenger demand 𝑁𝑁. Note that in Eqs. (A.12)–11 
(A.13), the term ℎ𝑑𝑑,�𝑡𝑡,2,𝜏𝜏𝑜𝑜𝑜𝑜′′ ,𝑜𝑜,𝑜𝑜,𝑜𝑜′′� also includes previously dispatched drivers who just finished 12 
picking-up tasks at subsidized zone 𝑜𝑜 (i.e., the term ℎ𝑑𝑑,�𝑡𝑡−1,1,1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�

′ ); therefore, we need a 13 
subtraction, ℎ𝑑𝑑,�𝑡𝑡,2,𝜏𝜏𝑜𝑜𝑜𝑜′′ ,𝑜𝑜,𝑜𝑜,𝑜𝑜′′� − ℎ𝑑𝑑,�𝑡𝑡−1,1,1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�

′ , to only count newly matched drivers. 14 
Similarly, the term ℎ𝑑𝑑,�𝑡𝑡,1,𝜏𝜏−1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′� also includes previously dispatched drivers who are on the 15 
way to pick up passengers in zone 𝑜𝑜 (i.e., the term ℎ𝑑𝑑,�𝑡𝑡−1,1,𝜏𝜏,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�

′ , 𝜏𝜏 > 1), and we need a 16 
subtraction to exclude these drivers15.  17 

The decomposition of a driver’s one-step reward 𝑟𝑟𝑑𝑑(𝒔𝒔, 𝒔𝒔𝑑𝑑 , 𝒔𝒔𝑑𝑑′ ) is as follows: 18 

𝑟𝑟𝑑𝑑(𝒔𝒔, 𝒔𝒔𝑑𝑑 , 𝒔𝒔𝑑𝑑′ ) = 𝑟𝑟𝑑𝑑1(𝒔𝒔𝑑𝑑) + 𝑟𝑟𝑑𝑑2(𝒔𝒔, 𝒔𝒔𝑑𝑑 , 𝒔𝒔𝑑𝑑′ ). (A.14) 

𝑟𝑟𝑑𝑑1(𝒔𝒔𝑑𝑑) = �(1 − 𝜂𝜂)𝛼𝛼 , 𝑠𝑠𝑑𝑑1 = 2
0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (A.15) 

𝑟𝑟𝑑𝑑2(𝒔𝒔, 𝒔𝒔𝑑𝑑 , 𝒔𝒔𝑑𝑑′ ) = �
𝛽𝛽
𝛽𝛽

, 𝑠𝑠𝑑𝑑1 = 2, 𝑠𝑠𝑑𝑑1′ = 0, 𝑠𝑠𝑑𝑑3 = 𝑜𝑜, 𝑠𝑠𝑜𝑜 = 𝛽𝛽
, 𝑠𝑠𝑑𝑑1 = 1, 𝑠𝑠𝑑𝑑1′ = 0, 𝑠𝑠𝑑𝑑3 = 𝑜𝑜, 𝑠𝑠𝑜𝑜 = 𝛽𝛽

0 , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (A.16) 

In the first line of Eq. (A.15), we assume the fare is uniformly collected when the driver is 19 
delivering the passenger, i.e., 𝑠𝑠𝑑𝑑1 = 2. For instance, if a driver delivers a passenger from time 𝑡𝑡1 20 
to 𝑡𝑡2 (i.e., 𝑠𝑠𝑑𝑑1 = 2 for 𝑡𝑡 ∈ {𝑡𝑡1, … , 𝑡𝑡2}), the driver will receive an income of (1 − 𝜂𝜂)𝛼𝛼 for each 21 
time period during the delivering task, and the total income from trip fare equals 22 
(𝑡𝑡2 − 𝑡𝑡1 + 1)(1 − 𝜂𝜂)𝛼𝛼. In Eq. (A.16), a subsidy 𝛽𝛽 for drivers is executed immediately after the 23 

                                                 
15  Based on Eq. (A.2), for drivers who are in state [𝑡𝑡 − 1,1,1, 𝑜𝑜′, 𝑜𝑜, 𝑜𝑜′′]  at time 𝑡𝑡 − 1 , their states become 
[𝑡𝑡, 2, 𝜏𝜏𝑜𝑜𝑜𝑜′′ , 𝑜𝑜, 𝑜𝑜, 𝑜𝑜′′] at time 𝑡𝑡. Therefore, these drivers are counted in the term ℎ𝑑𝑑,�𝑡𝑡,2,𝜏𝜏𝑜𝑜𝑜𝑜′′ ,𝑜𝑜,𝑜𝑜,𝑜𝑜′′�. Still based on Eq. 

(A.2), for drivers who are in state [𝑡𝑡 − 1,1, 𝜏𝜏, 𝑜𝑜′, 𝑜𝑜, 𝑜𝑜′′]  (𝜏𝜏 > 1 ) at time 𝑡𝑡 − 1 , their states become [𝑡𝑡, 1, 𝜏𝜏 −
1, 𝑜𝑜′, 𝑜𝑜, 𝑜𝑜′′], and these drivers are counted in the term  ℎ𝑑𝑑,�𝑡𝑡,1,𝜏𝜏−1,𝑜𝑜′,𝑜𝑜,𝑜𝑜′′�. 
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task switches from “idle” to “picking-up” or “delivering” (i.e., 𝑠𝑠𝑑𝑑1′ = 0 and 𝑠𝑠𝑑𝑑1 ≠ 0) and the 1 
origin of the matched passenger is subsidized (i.e., 𝑠𝑠𝑑𝑑3 = 𝑜𝑜 and 𝑠𝑠𝑜𝑜 = 𝛽𝛽); the first line indicates 2 
that the matched passenger is local (i.e., 𝑠𝑠𝑑𝑑3 = 𝑠𝑠𝑑𝑑4 ); and the second line that the matched 3 
passenger is in an adjacent zone (i.e., 𝑠𝑠𝑑𝑑3 ≠ 𝑠𝑠𝑑𝑑4). 4 

 5 
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