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Abstract15

Ride-sourcing drivers spend a significant portion of their service time being idle, during which16

they can move freely to search for the next customer. Such customer-searching movements,17

while not being directly controlled by ride-sourcing platforms, impose great impacts on the18

service efficiency of ride-sourcing systems and thus need to be better understood. To this pur-19

pose, we design a dynamic discrete choice framework by modeling drivers’ customer search20

as absorbing Markov decision processes. The model enables us to differentiate three latent21

search movements of idle drivers, as they either remain motionless, cruise around without22

a target area, or reposition towards specific destinations. Our calibration takes advantage of23

large-scale empirical datasets from Didi Chuxing, including the transaction information of24

five million passenger requests and the trajectories of 32,000 affiliated drivers. The calibration25

results uncover the variations of drivers’ attitudes in customer search across time and space.26

In general, ride-sourcing drivers do respond actively and positively to the repetitive market27

variations when idle. They are comparatively more mobile at high-demand hotspots while28

preferring to stay motionless in areas with long time of waiting being expected. Our results29

also suggest that drivers’ search movements are not confined to local considerations. Instead,30

idle drivers show a clear tendency of repositioning towards the faraway hotspots, especially31

during the evening when the demand cools down in the suburb. The discrepancies between32

full-time and part-time drivers’ search behavior are also examined quantitatively.33
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1 Introduction35

The maturity of mobile internet technology catalyzes on-demand ride-sourcing services provided36

by companies like Uber, Lyft, and DiDi Chuxing. Compared to traditional street-hailing taxi37

services, these emerging ride-sourcing services significantly reduce the meeting frictions between38

riders and drivers, and thus become unprecedentedly popular among urban travelers in recent39

years (Conway et al., 2018). The great success of ride-sourcing services has attracted a lot of40

interests on the analysis and management of such on-demand ride-hailing systems (see Wang41

and Yang, 2019 for a recent review). However, less attention has been paid to the behaviors of42

ride-sourcing drivers, partially due to the lack of access to service data. To better serve ride-43

sourcing drivers and facilitate a cohesive platform environment, it is crucial for system managers44

and policy-makers to understand drivers’ behaviors and concerns in service provision (see, e.g.,45

Sun et al., 2019; Xu et al., 2020). By virtue of comprehensive empirical data from Didi Chuxing,46

this paper thus aims to comprehend the behavior of ride-sourcing drivers in customer search,47

which constitutes a significant portion of drivers’ service time and strongly associates with their48

profitability.49

Many empirical studies have been carried out to investigate the customer-searching behav-50

ior of taxi drivers, who shares a significant similarity with drivers in ride-sourcing markets. A51

group of researchers from Hong Kong first applied multinomial logit (MNL) models to capture52

strategic zonal choices of Hong Kong taxi drivers’ customer search (see, e.g., Wong et al., 2014b,53

2015). They proposed a cell-based logit-opportunity model to tackle the local customer-searching54

behavior of taxis by considering the opportunities along search paths. Recently, Tang et al. (2019)55

argued that between different destination choices of vacant taxis, there are substantial overlaps56

in paths, which invalidate the use of MNL models. Instead, they proposed a mixed path size57

logit-based customer-searching model and tested its effectiveness in predicting routing choices58

over the trajectory of 36,000 taxis in Beijing. Although these static search models substantially fa-59

cilitate empirical calibrations, they fall short in capturing the dynamic choice behavior of drivers60

under the highly varying market conditions. Zheng et al. (2018) modeled vacant taxi drivers’ an-61

ticipatory behavior by using a time-dependent framework. However, their study focused on the62

one-shot decision choices of taxi drivers between urban areas and condensed-demand areas, such63

as airports and railway stations, and is unsuitable for behavioral calibration. One of the major64

difficulties in calibrating the search behavior is that drivers’ trajectories do not fully reflect their65

real preferences. It is common for drivers to get matched to passengers before reaching the actual66

cruising destinations, especially in app-based ride-hailing markets. Sometimes, drivers do not67

even have specific search destinations in mind. Therefore, we are in need of a behavioral model68

that can cope with the intense market variations and identify drivers’ latent search patterns with69

modeling differentiation.70

An alternative way of modeling drivers’ customer-searching movement is to formulate it71

as Markov decision process (MDP). Oftentimes, an MDP framework is coupled with learning72

approaches to seek for the optimal searching policy for idle drivers. Recently, Liu et al. (2013),73

Verma et al. (2017), Gao et al. (2018), and Lin et al. (2018) employed Q-learning to investigate the74

optimal dynamic routing strategy. This approach does not explicitly characterize the interven-75

ing opportunity, but instead implicitly incorporates it into the action rewards through learning.76

Besides, Qu et al. (2014), Rong et al. (2016), Yu et al. (2020), and Shou et al. (2020) specified77

structured reward functions based on various zonal features and then solved the problem using78

dynamic programming. However, the weights of different features were exogenously given to79

concretize certain search objectives. In general, these learning-based approaches aim at deriv-80
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ing the optimal policy of repositioning drivers for centralized control, and lack the behavioral81

implications of individual drivers.82

To fill this research gap, a dynamic discrete choice model is developed in this paper to in-83

vestigate the customer-searching behavior of ride-sourcing drivers. The model translates market84

conditions, including both supply and demand information, into a spatiotemporal continuum85

of opportunity values to idle drivers. Then, by adopting an absorbing MDP framework, we86

formulate and evaluate drivers’ manifold decisions underlying customer search. To foster a com-87

prehensive understanding, heterogeneous behavior among different driver types and time of day88

is further explored and compared. It is worth noting that our model differentiates three modes89

of search movements, respectively being staying motionless, cruising around without a target90

area, or repositioning towards a specific destination. These movements, although corresponding91

to completely different mentality of drivers, are challenging to separate through trajectory data.92

Indeed, to the best of our knowledge, none of the previous studies has investigated or calibrated93

the driver behavior in this regard. Leveraging large-scale empirical datasets (with uninterrupted94

trajectories of 32,000 drivers and transaction information of five million trip requests), this study95

is dedicated to deepening our understanding of ride-sourcing drivers’ customer-searching be-96

havior and provide policy insights for the platform’s labor supply management.97

The remainder of this paper is organized as follows. Section 2 details the dynamic discrete98

choice model designed for learning ride-sourcing drivers’ customer-searching behavior, while99

Section 3 illustrates the data preparation for model calibration. Section 4 presents the results of100

parametric estimation and then interprets the behavioral implications of drivers in zonal search.101

At the end, Section 5 concludes the paper and points out an future research avenue.102

2 Dynamic Discrete Choice Model103

This section first introduces the dynamic discrete choice model that we formulate in line with104

ride-sourcing drivers’ customer-searching movements. We first dissect the process of how idle105

drivers search for customers, and then formulate a mathematical model to delineate drivers’106

sequential choice-making. The method for parametric estimation is also discussed.107

2.1 Drivers’ customer-searching movements108

When ride-sourcing drivers are idle, they enjoy full freedom of deciding where and how to109

search for the next customer based on the market condition they perceive. They may either110

remain motionless awaiting the next match, cruise around the neighborhood to actively search111

for customers, or reposition themselves towards a target hotspot. To cope with these different112

ways of customer search, we materialize idle drivers’ movements as cyclic decision-making by113

segmenting them into a series of steps. Within each step, a driver either stays in the current zone,114

or chooses her next destination from the finite set of adjacent zones and then moves forward. A115

series of choice decisions are made sequentially by a driver along a chain of connecting zones,116

until she successfully gets matched with a customer (see Figure 1 for a graphical explanation).117

For the convenience of behavioral analysis, we further treat the sequential movements as118

Markov decision processes, assuming that the decision-making of drivers at each step is inde-119

pendent of her previous choices. Notwithstanding, drivers do plan several steps ahead when120

making each zonal choice decision. Note that such a setting adheres well with that of the dy-121
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Figure 1: Sequential movements of idle drivers in customer search
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Figure 2: Decision-making processes of ride-sourcing drivers

namic discrete choice theory (Rust, 1987). We thus introduce absorbing Markov chains in this122

paper to describe the dynamic discrete choices of drivers under finite evaluation horizons.123

Figure 2 illustrates the cross-nested structure of drivers’ sequential searching choices. During124

the process, a driver at each stage can select to either rest for a while in the current zone or125

move to one of the adjacent zones, based on the expected utility of each choice. The process126

continues as the cumulative probability of being matched increases along the trajectory. Within127

each stage, the upper nest indicates three latent scenarios for drivers’ zonal choices: to either128

remain motionless, cruise nearby without a specific destination, or reposition toward a hotspot129

area. Correspondingly, the lower nest expands the potential zonal choices under each scenario.130

Built on such a cross-nested structure, our model differentiates the latent searching scenarios and131

describes drivers’ movements more precisely.132
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2.2 Model formulation133

We formulate the model based on the multinomial-type dynamic discrete choice model proposed134

by Rust (1987). Let zt be the location of a driver at time t. For brevity, we use zt as an abbreviation135

for vector (zt, t), which marks the state of an idle driver being at zone zt at time t. To facilitate136

understanding, we first present a base model for non-nested choice cases and then extend it to137

more complicated contexts of nested and cross-nested choices. The driver-specific indicators are138

omitted in this subsection for clarity.139

Base model140

With a non-nested choice structure, the expected utility of an idle driver VT(zt) at state zt141

under a time horizon of T adheres to the following relationship,142

VT (zt) = E

[
max

zt+1∈C(zt)

(
v (zt+1|zt; θ) + ρzt βVT (zt+1) + ε (zt+1)

)]
143

where C(zt) denotes the choice set of drivers at zt; ρzt is the probability of drivers remaining144

unmatched coming through state zt; β denotes a time-discounting factor (0 ≤ β ≤ 1). Specifically,145

on the right side, v (zt+1|zt; θ) represents the observed value of an idle driver transitioning from146

zt to zt+1, with θ being a vector of parameters; ρzt βVT (zt+1) denotes the discounted value of147

attaining the state zt+1; and ε(zt+1) entails the error associated with unobserved factors post148

state zt+1. Note that ρzt in the equation acts similarly as the survival probability in a general149

dynamic programming (Rust, 2016). In operations, drivers’ customer-searching movements are150

forced to termination once they receive matches from the platform. The probability ρzt thus151

captures the chance that drivers’ idleness continues for at least one more periods following zt. It152

is assumed that drivers’ customer-searching movements follow utility maximization in each step,153

and the values of a driver being matched during the search or reaching the end of a horizon are154

both set to zero in the model.155

Assuming that the error term ε follows a Gumbel distribution that has a scaling factor156

µ (µ ≥ 1) indicating the degree of independence for the unobserved confounders, yields the157

following choice probability (with parameter θ omitted for clarity, same below),158

PT (zt+1|zt) =
exp

(
µ
(
v (zt+1|zt) + ρzt βVT (zt+1)

))
∑z∈C(zt)

exp (µ (v (z|zt) + ρzt βVT (z)))
, ∀ zt+1 ∈ C (zt)159

where the expected value VT(·) of each choice can be derived as160

VT (zt) =
1
µ
· ln ∑

zt+1∈C(zt)

exp
(

µ
(

v (zt+1|zt) + ρzt βVT (zt+1)
))

161

The choice probability PT (zt+1|zt) is then utilized as a surrogate of the state transition probability162

from zt to zt+1, following the same treatment adopted by the recursive logit model (Fosgerau163

et al., 2013). It is worth noting that the time horizon T is incorporated to avoid the state explosion164

of a time-expanded network amid the varying market conditions. Behaviorally, it could be seen165

as the upper bound sensed by drivers for potential search duration. With the horizon T specified166

externally, the value of VT(zt) can be calculated via backward induction detailed in Section 2.3.167

Nested model168
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As shown by Figure 2, drivers’ customer-searching decisions in each step are decomposed as169

two levels of nests. They first make an upper-nest decision among stay, cruising, or repositioning,170

and then select an adjacent zone out of the lower nest to move one-step forward. Accordingly,171

we extend the above base model to accommodate such a context of a nested structure (with no172

cross alternatives). The value function under the nested choices is reformulated as follows,173

VT (zt) = E

[
max

l∈Cu(zt)

(
ε (l) + max

zt+1∈C(zt,l)

(
v (zt+1|zt) + ρzt βVT (zt+1) + ε (zt+1, l)

))]
174

where l is the choice in the upper nest Cu(·). Let ε (zt+1, l) = 1
µl

ε (zt+1) and the error term ε (zt+1)175

follow a standard Gumbel distribution. The value function and inclusive (log-sum) utility vu are176

given by177

VT (zt) = E

[
max

l∈Cu(zt)
(ε (l) + vu (l|zt) + εu (l))

]
178

vu (l|zt) =
1
µl

ln ∑
zt+1∈C(zt,l)

exp
(

µl

(
v (zt+1|zt) + ρzt βVT (zt+1)

))
, ∀ l ∈ Cu(zt)179

Again, assuming ε (l)+ εu (l) = 1
µn

ε (l) with ε (l) following a standard Gumbel distribution yields180

VT (zt) =
1

µn
ln ∑

l∈Cu(zt)

exp (µnvu (l|zt)) , (µl ≥ µn ≥ 1) (1)181

and the choice probability exhibits the following multiplicative form,182

PT (zt+1|zt) = PT (zt+1|l) · PT (l|zt)183

=
exp

(
µl
(
v (zt+1|zt) + ρzt βVT (zt+1)

))
∑z∈C(zt,l) exp (µl (v (z|zt) + ρzt βVT (z)))

· exp (µnvu (l|zt))

∑k∈Cu(zt) exp (µnvu (k|zt))
184

Cross-nested model185

Particularly, in each step, the zonal choices in the lower nest is cross shared by the two upper-186

nest intentions, i.e. cruising and repositioning. Further extensions for the cross-nested choices187

are obtained through generating functions. In the cases of nested logit (NL) and cross-nested188

logit (CNL), the generating functions are respectively given as follows (Train, 2009),189

NL : G(Y) =
K

∑
l=1

(
∑

z∈Bl

Yµl
z

) 1
µl

190

CNL : G(Y) =
K

∑
l=1

(
∑

z∈Bl

(αz,lYz)
µl

) 1
µl

191

where αz,l is an allocation parameter that reflects the likelihood of alternative z being a member192

of nest Bl with αzl ≥ 0 and ∑l αzl = 1; the function Yz characterizes exp (V(z)) in both models,193

where V(z) stands for the value of state z. In comparison, we have VT(zt) continue to hold as194

Eq. (1) and the log-sum (inclusive) utility vu under the cross-nested logit be respecified as195

vu (l|zt) =
1
µl

ln ∑
zt+1∈C(zt,l)

(
αzt+1,l exp

(
v (zt+1|zt) + ρzt βVT (zt+1)

))µl
, ∀ l ∈ Cu(zt) (2)196
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and the choice probability now sums over all the probability multiplications,197

PT (zt+1|zt) = ∑
l∈Cu(zt)

PT (zt+1|l) · PT (l|zt) (3)198

= ∑
l∈Cu(zt)

(
αzt+1,l exp

(
v (zt+1|zt) + ρzt βVT (zt+1)

))µl

∑z∈C(zt,l) (αz,l exp (v (k|zt) + ρzt βVT (k)))µl
· exp (µnvu (l|zt))

∑k∈Cu(zt) exp (µnvu (k|zt))
199

with µl ≥ µn ≥ 1.200

2.3 Model estimation201

All parameters in the model (θ, µ, β, α), collectively referred to as Θ, can be estimated by maxi-202

mizing the following log-likelihood (LL), i.e.,203

LL(Θ) = ∑
i,t

δi,t (zt+1|zt) · log PT (zt+1|zt; Θ)204

where δi,t indicates the choice made by individual driver i at state zt. The indicator equals to205

1 if the driver chose zt+1 and 0 otherwise. Note that given all the parameters Θ, the choice206

probabilities PT can be calculated through Eq. (3) using the expected utilities V T , which is207

treated as fixed via backward induction. As per the recursive Eqs. (1) and (2), the utilities V T
208

of preceding states at time t can be computed based on the succeeding states’ at t + 1. Since the209

terminating state value at the end of each horizon is prespecified as 0, we can thus recursively210

calculate the utility of all the states. The estimation of Θ can be carried out in a similar fashion as211

that for the network Generalized Extreme Value models (Daly and Bierlaire, 2006). The Student’s212

t-tests are conducted to examine the significance of parametric estimates in the model, while213

Watson and Westin pooling tests are applied for model comparisons (Watson and Westin, 1975).214

3 Data Description215

Two datasets from Didi Chuxing are used for model calibration. One records the trajectory216

information of drivers while the other contains the complete transaction information of trip217

requests from one medium-sized city in China, spanning over the 10 weekdays in August 7-18,218

2017.219

The trajectory data comprises the spatiotemporal records of 32,000 DiDi drivers. Each tra-220

jectory characterizes a series of status points of a particular driver recorded every 3 seconds221

throughout a nonstop customer-searching segment; and each status point consists of a times-222

tamp, longitude and latitude coordinates of a driver, as well as her service state at that moment,223

either being idle (waiting to be matched), deadheading (picking up a customer), or occupied224

(delivering a customer to the destinations). The entire city is partitioned into regular hexagonal225

lattices, each being side-connected with six adjacent ones. The major advantage for hexago-226

nal partition is that each unit has six symmetrically equivalent and unambiguous side-adjacent227

neighbors, while square partition results in two different types of neighboring, respectively be-228

ing side-connected or corner-connected. We map the latitude/longitude sequences to the 660-229

meter-side-length hexagonal lattices (Sahr et al., 2003) to produce the base sample for movement230

identification. Overall, the searching distances of idle drivers were not overwhelming in this231
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Figure 3: Histogram of drivers’ idle time staying in one zone

city. Above 80% of the trajectories in the dataset cover no more than 3 zones. The case when232

an idle driver remains in one specific zone for a duration exceeding a threshold κ is regarded233

as a “stay”, while the case that a driver repositions to a neighboring zone within κ is taken as234

a “move”. Those searching trajectories with a total duration less than κ are removed from our235

sample. Figure 3 plots the distribution of drivers’ consecutive idle time of staying at one single236

zone. We finalize the selection of κ to be four minutes to buffer the time needed by divers to wait237

for traffic signals and pass through zones.238

The transaction dataset contains the information of approximately five million request records.239

Each record comprises the timestamp when the trip gets requested, the origin/destination of the240

trip, the matching/pickup/delivery time of the passenger, the driver in service, and the trip fare.241

The transaction information is aggregated by hexagonal zones and time of day to produce var-242

ious covariates associated with the market conditions. It is worth noting that to overcome the243

sparsity of data under the high-granularity partition, this study does not differentiate between244

days. All the records fall in the same time interval across different days are merged together245

to create the within-day explanatory variables. Consequently, the coefficient estimation results246

likely reflect drivers’ behavior in response to the regular market variations from day to day rather247

than the transient and random fluctuations.248

As an overview of the datasets, Figures 4a and 4b visualize the spatial distributions of249

drivers’ movements and the number of orders being requested, respectively. In Figure 4a, the blue250

arrow represents the number of samples moving between two adjacent zones (“move” action),251

while the green circle refers to the number of samples staying in the current zone (“stay” action).252

Figure 4b shows the heat map of the number of orders averaged over all the five-minute intervals253

for each hexagonal zone. It can be observed that the variations of supply and demand are highly254

consistent in space. Figure 5 displays a boxplot for ratio ρzt that idle drivers remain unmatched in255

each 12-min interval of a day. As clearly shown by the figure, the matching probability of drivers256

changes drastically throughout a day. Following the searching processes detailed in Section 2,257

this essentially implies the time-varying range and composition of drivers’ zonal choices, thereby258
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(a) Drivers’ movements

(b) Order requests

Figure 4: Spatial distributions of a) drivers’ search trajectories and b) orders requested. The
blue arrows and the green circles in the top figure represent the number of “move” and “stay”
actions, with thicker arrows and larger circles standing for higher counts, respectively. The heat
map at the bottom illustrates the contrasts of ride requests over the space, with deeper colors
representing higher service demand.
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questing the need for a dynamic model to delineate the choice-making.259

In addition, depending on their service patterns, drivers considered in this study are di-260

vided into two classes, respectively as full-time and part-time drivers. Full-time drivers are those261

with the most extended service hours but also the highest earners and most profitable ones.262

They are mostly daytime workers and display very little within-group heterogeneity in terms of263

profitability. In contrast, part-time drivers are active for less amount of time and show signif-264

icant within-group disparities in driving and working experiences, as well as profitability and265

earnings.266

4 Model Estimation and Behavioral Interpretation267

A set of explanatory variables are generated from the above datasets and then fed into the dy-268

namic discrete choice model for parametric estimation. In this section, we base on the coefficient269

estimates to interpret drivers’ factorial focuses underlying the customer-searching movements.270

4.1 Parametric setup271

The following explanatory variables are generated to represent the variable market condition:272

• Trip fare TFt
z : The average trip fare of orders originated in zone z during time interval t;273

• Number of requests NRt
z: The total number of requests sent out in zone z during time274

interval t;275

• Pickup time PTt
z: The average pickup time of passengers requesting for trips in zone z276

during time interval t;277

10



• Matching probability MPt
z: The ratio of idle drivers receiving matches in zone z during278

time interval t.279

To be consistent with the movement threshold κ, the time granularity for the four market vari-280

ables are set as 4 minutes. The first three variables are further normalized to distributions with281

zero mean and unit standard deviation. It is also verified that the partial correlation among282

the explanatory variables is fairly low, and collinearity should not be a concern here. All these283

variables are then invited to construct the observed utility v (zt+1|zt) in Eq. (2) as follows1,284

v (zt+1|zt, θ) = θTFTFt
zt+1

+ θNRNRt
zt+1

+ θPTPTt
zt+1

+ θMP MPt
zt+1

+ θSZ1(zt+1 = zt)285

where coefficient θ represents drivers’ sensitivity to different factors. Specifically, θSZ is a move-286

ment constant that indicates drivers’ preference for remaining motionless when idle; 1(·) char-287

acterizes an indication function that values 1 when the condition within the bracket holds and 0288

otherwise.289

To better capture the strategic movements of idle drivers, we introduce another variable290

—distance to the hotspot DHh
z —that calculates the Euclidean distance from the centroid of zone291

z, where the driver stays, to that of the hotspot h. The hotspot areas are carefully selected in each292

of the five periods of a day, i.e. morning (6AM-10AM), daytime (10AM-4PM), evening (4PM-293

8PM), night (8PM-11PM), and midnight (11PM-6AM). For each zone, we sum up the number of294

requests by 20-min intervals and then calculate the 80th-percentile and the maximum counts in295

each separate period. A zone is then identified as a hotspot in the period if the 80th-percentile296

count falls below the maximum by less than 10 percent. The selected hotspots are mostly down-297

town areas, commercial areas in the suburb, and railway stations, which are further categorized298

into the downtown-hotspot area (DTH) and the outer-hotspot area (OUH). Our cross-nested logit299

model treats these two hotspot categories separately in the upper nest, and the variable DHh
z cal-300

culates the distance to the closest hotspot in each category. The allocation parameter αzt,l in Eq.301

(3) are specified as follows:302

αzt,h =
exp

(
γDHDHh

zt

)
S

, ∀ h ∈ {DTH, OUH}303

αzt,c =
exp

(
γNRNRt

zt

)
S

304

S = exp
(

γDHDHDTH
zt

)
+ exp

(
γDHDHOUH

zt

)
+ exp

(
γNRNRt

zt

)
305

where αzt,h and αzt,h denote the weights for the target-specific repositioning and aimless-cruising306

movements, respectively; the coefficients γ represent a set of parameters that indicate drivers’307

sensitivity to the factors in different searching categories. We note that the factor specifications308

for allocation parameters above are refined through stepwise selections from a list of variables.309

The choice set of drivers C(zt) at each state is extracted from the observations, and the310

scaling factor µn is set to 1. Meanwhile, the sample is split evenly into two for the purpose of311

learning and validation. We employ the Nelder–Mead method, one of the best-known algorithms312

for derivative-free optimization of unconstrained problems, to estimate the parameters.313

1Note that many other factors, such as drivers’ home location, parking availability, and traffic congestion etc., may
dictate drivers’ customer-search movements but are omitted in this study due to our data limitation. Once available,
they are advised to be incorporated to reduce the potential omitted variable bias in result interpretation.

11



Table 1: Model comparisons for different evaluation horizons T

Horizon T (step) 0 (static) 1 2 3 4 5
LL -112,311 -112,235 -112,221 -112,220 -112,220 -112,220

LL (validation) -109,803 -109,743 -109,726 -109,724 -109,724 -109,724

Table 2: Model comparisons for juxtaposed nest structures and granularities of ρzt

Nest structure Cross-nested Nested Plain
ρzt ’s updating frequency 4 min 2 h Never 4 min 4 min

LL -112,221 -112,266 -112,261 -112,253 -112,875
LL (validation) -109,726 -109,758 -109,755 -109,761 -110,440

4.2 Model refinement314

With the value functions specified, we then refine the selection of critical parameters and struc-315

tures in the model, i.e., the horizon of evaluation T, the updating frequency of the probability316

ρzt , and the nest structure.317

Table 1 compares the models under a set of different evaluation horizons T, based on the318

sample of full-time drivers. As shown in the table, the LLs in validation follow the same trend as319

that from model estimations, relieving the concerns for overfitting. The LL for the model when320

T = 0 (a static model) appears the lowest, implying the relative superiority of our proposed321

dynamic choice model. Besides, the LL increases constantly as T grows from 0 to 2, and stays322

constant afterwards. Considering the computational efficiency, we adopt T = 2 in the final323

implementation to account for the ahead-planning behavior of drivers in customer search.324

Table 2 compares the models with different updating frequencies of ρzt and juxtaposed nest325

structures. First, for the cross-nested case, we present three models where ρzt gets updated326

every 4 minutes, 2 hours, and never (by fixing ρzt to 1), respectively. According to the LLs, the327

model with the most frequently updated ρzt works the best. Then, we zoom out to compare328

the modeling effectiveness of different nest structures. The nested logit model keeps only the329

stay/leave options in the upper nest (therefore, with no crossings in the zonal alternatives), while330

the plain structure practices the most basic logit model. The utility specifications of both models331

include the hotspot variables DHh
z by linear combinations. Not surprisingly, the cross-nested332

model outperforms the other two and is thus selected for our later analyses.333

4.3 Full-time versus part-time drivers334

Based on the cross-nested model, we apply the pooling test by Watson and Westin (1975) to ex-335

amine whether full-time and part-time drivers in general behave differently in customer search.336

The restricted model applies a unified set of coefficients for both types of drivers, while the alter-337

native model specifies two separate sets of coefficients. The likelihood-ratio (LR) test statistic is338

significant at the 1% level, which confirms the heterogeneous searching behavior among different339

types of drivers. The specific parametric estimation as well as the significance of each estimate340

are presented in Table 3. The left two sets of columns respectively summarize the estimates of341

Θ for full-time and part-time drivers, while the right two columns present the two classes of342

drivers’ comparative differences ∆Θ in response to the various factors.343
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Table 3: Coefficient estimates of a cross-nested model with two types of drivers

Param. Est. Full-time Θ̂ Part-time Θ̂ Difference ∆Θ̂
Coef. t-Stat. Coef. t-Stat. Coef. t-Stat.

Utility parameter
θTF 0.02 2.40† 0.05 3.83∗ 0.03 1.77
θNR 0.08 37.02∗ 0.06 21.40∗ -0.01 -3.77∗
θPT -0.02 -3.11∗ 0.08 7.91∗ 0.10 8.27∗
θMP 1.00 18.29∗ 0.60 8.00∗ -0.40 -4.30∗
θSZ 1.70 199.62∗ 1.78 135.86∗ 0.09 5.45∗

Allocation parameter
γDH -3.68 -8.00∗ -3.17 -6.25∗ 0.51 0.74
γNR 0.52 8.46∗ 0.45 6.13∗ -0.07 -0.78

Discount β 0.31 23.08∗ 0.17 7.46∗ -0.14 -5.30∗
Scaling µl 1.74 68.90∗ 1.91 39.22∗ 0.17 3.16∗

Observations 166,171 83,778 249,188
LL(0) -184,763 -93,047 -277,810

Final LL -112,221 -53,042 -165,264
LL (validation) -109,726 -52,217 -161,942

Adjusted ρ2 0.39 0.43 0.41
Notes: The left two sets of columns show the coefficient estimates respectively for full-time and part-
time drivers, while the rightmost two columns present the differences in drivers’ response between the
two classes of drivers (i.e. the part-time drivers’ minus the full-time drivers’ counterparts). The former
results are estimated using separate datasets corresponding to each driver type, while the latter uses
the full set of data.
† - Significance to the 5% level;
∗ - Significance to the 1% level.

As shown by Table 3, most of the coefficient estimates Θ̂ are significant at the 1% level for344

both full-time and part-time drivers, with intuition-consistent signs. This implies an encourag-345

ing fact that in general ride-sourcing drivers do respond actively and positively to the repetitive346

market variations. The only counter-intuitive result is that θ̂PT is positive for part-time drivers.347

It means that part-time drivers tend to drive to the area with longer pickup time for passengers.348

In fact, different from the rest explanatory variables, the metric of passengers’ pickup time PTt
z349

is obscure to drivers, and the estimate θ̂PT may embody drivers’ response to other market factors350

in relevant. For instance, the negative θ̂PT of full-time drivers may partially reflect their aversion351

to the congested areas in zonal choice, while the counter-intuitively positive θ̂PT for part-time352

drivers could be that they prefer the areas where they can match to customers in a wider space353

(higher matching opportunity but longer pickup time), or the areas with more condensed cus-354

tomer demand but also more congestion in usual. Besides, as revealed specifically by our model,355

drivers’ searching movements are not confined to the local considerations. Instead, they show356

a clear tendency of repositioning towards the faraway hotspots, which strengthens significantly357

as they move closer to those areas. It is highly probable that drivers take the distant hotspots as358

back-up options given the certainty of receiving quick matches therein, similar to the inclination359

of taxi drivers for taxi stands outside the city center (Szeto et al., 2019). But as a result, all the360

supply of idle drivers at the neighborhood of a hotspot might be drained up, causing deceptive361

supply shortage in local regions.362
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While drivers of different groups hold consistent preferences for the various factors in cus-363

tomer search, there is a significant disparity between full-time and part-time drivers in response364

sensitivity. In contrast to full-time drivers, drivers work in part-time are much less sensitive to365

the number of requests and the matching probability in zonal search. This is consistent with366

our intuition that full-time drivers are more experienced in service provision and can thus re-367

spond scrupulously under different circumstances. Interestingly, part-time drivers characterize368

a significantly lower discount factor β compared to full-time drivers. In accordance with the369

role of β as a time-discounting factor, this implies that full-time drivers are more far-sighted by370

planning ahead, while part-time drivers focus more on the near-future opportunities. Mean-371

while, the scaling parameter µl for full-time drivers is significantly lower, meaning that their372
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Figure 6: Comparisons of drivers’ behavioral responses across the time of a day. On each pa-
rameter, the estimate Θ̂ corresponding to the daytime period (10:00 AM-4:00 PM) is set as the
baseline, while the relative deviations ∆Θ̂ of the other time periods are tested. The dots present
the absolute value of estimates Θ̂ across different periods, while the error bars around indicate
the standard deviations for ∆Θ̂.
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customer-searching movements are dictated more strongly by unobserved confounders.373

We then proceed to examine whether drivers’ searching behavior varies in time by allowing374

the coefficients to change by periods of time. To ensure the validity of calibration over the seg-375

mented datasets, we fix the discounting factor β and allocation factor γ in each sub-model to the376

value estimated previously using the full sample. Figure 6 displays the parametric estimates of377

full-time and part-time drivers across the time of a day, respectively. According to the figure, the378

two classes of drivers again exhibit very similar temporal patterns in response to the various fac-379

tors. They both show higher preference on the trip fare during the daytime, while focusing more380

on the matching probability in the evening. Such a behavioral transition adheres with the nature381

of ride-sourcing markets, as the travel demand becomes much more sparse and heterogeneous382

spatially after the evening peak, when drivers need to switch searching goals to first secure the383

chances of getting matched. Meanwhile, the estimates of the movement coefficient θSZ indicate384

that drivers prefer to stay motionless in the afternoon and evening (specifically, from 10:00 AM385

to 11:00 PM), while moving more actively at late night and early morning. This contrast partially386

results from the fact that many drivers start their shifts before the morning peak and end at late387

night. During those periods, the searching behavior of drivers can be vastly influenced by their388

inclination to either reposition towards ideal service areas or move back home.389

4.4 Space-time-dependent preference of searching movements390

Applying the calibrated model above, we then derive the choice probabilities of full-time drivers391

at different locations and periods to further investigate how their latent behavior adapts to the392

variable market conditions. We note that full-time drivers constitute the majority of labor supply393

in the ride-sourcing service, characterizing a group comparable to the traditional taxi drivers. To394

yield comparable choice probabilities across time, we drop the outer-hotspot choices from the395

upper nest across the periods and then estimate the coefficients using models with a consistent396

upper nest.397

Figure 7 and 8 visualize the zonal choice probabilities of full-time drivers at different areas398

in two typical periods to highlight the difference of drivers’ latent searching movements between399

daytime and nighttime. Figure 7 first presents the probabilities for drivers in each zone to repo-400

sition to the downtown hotspot when being idle, with larger and darker pies marking the higher401

probabilities (same for the figures presented later in this section). As can be seen clearly, idle402

drivers, except for those at the few zones on the outskirt of the city, prefer less the choice of repo-403

sitioning to the downtown hotspot during the daytime. In contrast, as the suburban market cools404

down significantly during the evening, idle drivers show much stronger willingness to reposition405

and escape the potentially long time of wait therein. Such insights are also suggested by Figure406

8, which details the contrasts by visualizing the stepwise choice probabilities over the space.407

Each arrow denotes the choice of moving from the origin zone towards a neighboring zone, and408

again darker color indicates that the corresponding movement is chosen with a higher probability409

among all the choices available at the origin. Connecting all these preferences pictures the move-410

ment tendency of idle drivers within the spatial market. It can be easily observed that compared411

to the daytime (Figure 8a,b), idle drivers during the nighttime show much higher preferences412

for moving rather than staying motionless (Figure 8c,d). Meanwhile, the upward(downward)413

arrows in the south(north) side carry darker colors, which essentially implies the inclination of414

idle drivers moving to the central area to receive matches more easily. The pattern of drivers415

gathering from the suburban areas to the downtown is greatly strengthened at night. Similar416

behaviors were also observed and reported by Wong et al. (2014a, 2015) for taxi drivers in Hong417
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(b) Nighttime

Figure 7: Choice probability of idle drivers repositioning towards the downtown in each zone,
with larger and darker pies representing the higher probabilities. The dotted circles in the center
mark the downtown area of the city.

Kong.418

Figure 9 and 10 display the choice probabilities of full-time drivers for staying motionless419

and cruising around the neighborhood, respectively, at four representative periods of a day.420

Interestingly, we find that drivers are consistently more mobile in the central areas compared421

to the suburbs. At those regions with rarer travel demand, ride-sourcing drivers prefer to stay422

motionless rather than moving and searching for customers, which somehow differs from that423

of taxi drivers. As per Wong et al. (2014a), taxi drivers do not show a clear preference for424

traveling towards taxi stands and waiting there for customers at the low-demand areas. In fact,425

we suspect that such an attitudinal difference between ride-sourcing and taxi drivers might be426

due to the nature of search frictions under the two ride-hailing modes. Taxi drivers mainly serve427

customers waving on the curbside and can thus improve their service efficiency substantially428

through local hunting (Zhang et al., 2014). In contrast, the app-based e-hailing services eliminate429

the physical barriers between drivers and passengers in matching, under which zonal search of430

drivers does not necessarily increase the chances of being matched but pushes up the operational431

costs, especially in places with sparse trip demand.432

The temporal variations of choice probabilities are also intriguing. For example, the cruising433

behavior of drivers appears weakly in a wide range of areas during the morning peak (Figure434

10a), and then almost disappears afterward (Figure 10b). Later, starting from the evening peak,435

while the cruising effect remains weak in the suburbs, it rebounds in the downtown as well436

as around the railway station (at the southeast corner) and intensifies in the evening up until437

midnight. Such a trend agrees well with those of taxi drivers, who are reported to be more438

willing to circulate within local regions during the morning peak but prefer to wait motionlessly439

for customers at the evening peak (Wong et al., 2015). Again, such time-varying behavior of440

drivers could also be a result of their strategic reaction to the changeable contrasts between441
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Figure 8: Choice probability of idle drivers on stepwise movements in zonal search during the
a, b) daytime and c, d) nighttime. Compared to the daytime, idle drivers during the nighttime
show a much higher tendency to move rather than stay motionless. Further, the pattern of
drivers gathering from the suburban areas to the downtown is greatly strengthened at night.
The upward(downward) arrows in the south(north) side carry darker colors compared to the
north(south), which indicates drivers’ inclination to move towards the central area.
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(a) Morning peak
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(b) Midday
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(c) Evening peak
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Figure 9: Choice probability of idle drivers staying motionless in each zone
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(a) Morning peak (b) Midday

(c) Evening peak (d) Midnight

Figure 10: Choice probability of idle drivers cruising nearby in each zone. Note that the three
pies in the right corner carry the sizes corresponding to the probability levels of 0.3, 0.6, and 0.9
for reference.
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supply and demand at different time and locations in the market. For the idle drivers at hotspots,442

zigzagging in space may substantially lessen their matching time, given the relatively denser fleet443

supply and thus more fierce competition there (see Figure 4a). But the same strategy could lead444

to marginal improvements for ride-sourcing drivers in the cases with both demand and supply445

being sparse in space. It would be worthwhile to empirically verify these hypotheses in the446

future, to help reinforce the supply management of app-based ride-hailing services and yield447

more desirable guidance for idle drivers.448

5 Conclusion and discussion449

To the best of our knowledge, this paper is among the first attempts to investigate ride-sourcing450

drivers’ customer-searching behavior. A dynamic discrete choice model has been proposed to451

rationalize the time-dependent search movements of idle drivers within the spatial market. The452

proposed model enables us to evaluate the impacts of spatiotemporal market conditions and un-453

derstand the searching behavior of different classes of drivers. In particular, our model considers454

the unobservable intentions behind drivers’ searching movements. Based on two large-scale455

datasets from real-world operations, we calibrate drivers’ context-aware sensitivity to various456

factors in their decision-making when idle. Statistical testing results confirm that there exists457

a significant disparity between full-time and part-time drivers, and drivers’ preferences in cus-458

tomer search vary across time and space. The supply management of ride-sourcing platforms459

could be further enhanced by accounting for these differentiated preferences of drivers:460

• In general, ride-sourcing drivers respond actively to the repetitive market variations, with461

full-time drivers being more sensitive and far-sighted compared to part-time drivers. Plat-462

forms could thus customize searching guidance by accenting opportunities in nearby and463

broader spaces for part-time and full-time drivers, respectively.464

• Catering better to drivers’ time-dependent appetites, ride-hailing platforms need to vary465

the strategies for supply management. Drivers in idle prefer to stay motionless during466

the daytime but become significantly more mobile late at night actively seeking matching467

opportunities. Correspondingly, monetary incentives can be essential in stimulating idle468

drivers to reposition favorably in the day, while sharing information that helps reduce their469

idle time may be more welcomed when the market cools down at night.470

• Drivers’ aversion to the moving cost gives rise to their profound propensity to stay mo-471

tionless when idle, especially in the suburbs where matching opportunities are scarce. It is472

thus difficult and costly to reposition idle drivers out of those less demanded areas. Once473

ended up there, drivers may be trapped with a long time of idleness. Such weak “self-474

adjustments” of idle drivers stress the importance of demand rationing for supply manage-475

ment. As customer trips deeply shape the supply availability in space, strategic pricing and476

matching that account for riders’ destinations are critical for efficient circulation of supply477

resources.478

• Customer-searching movements of drivers are not confined to local considerations. Instead,479

they show a clear tendency of repositioning towards faraway targets, and such inclination480

rises significantly as they stay closer to hotspot areas. As a result, compared to coldspots481

and hotspots, the supply at the middle ground can be relatively unsustainable. It may be482

drained up by hotspots, causing deceptive supply shortages. Hence, the platform may need483
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to pay more attention to the areas surrounding hotspots to prevent overwhelmed supply484

rebalancing.485

• On the whole, ride-sourcing drivers in the city do not cruise vigorously in local, as online486

matching overcomes the physical obstacles in customer search. Cruising behavior only gets487

intense isolatedly in the evening near the downtown and the railway station, where drivers488

strive to win over other competitors by moving inches closer to potential riders. The intense489

cruising in those few circumstances essentially signifies the mismatch of overall supply490

and demand therein. Appropriately, platforms should discourage drivers from dwelling491

in those oversupplied areas or adopt more transparent matching mechanisms to ease the492

fruitless competition.493

The outcomes of this study suggest that multifaceted concerns/attitudes of drivers, other494

than regular market factors, can significantly dictate their customer-searching behavior. All these495

complexities and uncertainties of drivers in idle/searching movements pose challenges to the496

system operations. Therefore, to improve the supply management in the market, some ride-497

sourcing platforms have started recruiting contracted drivers, who are required to follow the498

platform’s matching and repositioning instructions and paid with fixed income (Dong et al.,499

2020). One of the promising future topics is thus to investigate how to effectively utilize such a500

group of contractors and turn them into system actuators/controllers. Differentiated matching501

and repositioning of contractors could be effective in addressing the spatial imbalance of supply502

and demand, and substantially improve the efficiency of a ride-hailing system (Yang et al., 2020).503
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