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Abstract

Purpose –The breasts are mainly fatty and connective tissues with no muscles that directly support them, so
wearing sports bras is one of the most effective means of alleviating the discomfort of breast movement and
potential injury during vigorous physical exercise. However, the design and development processes of
traditional sports bras are time-consuming and costly. Hence, a novel method of simulating the static contact
pressure between a sports bra and women’s body based on the finite element (FE) and artificial neural network
(ANN) models is developed in this study to contribute to the design considerations of sports bras.
Design/methodology/approach – Three-dimensional FE models of a female subject and sports bras with
different fabric properties are developed to determine the amount of contact pressure exerted onto the body.
The FE results are then verified bymeasuring the amount of pressure exerted by the sports bra on the skinwith
pressure sensors. The Taguchi technique is used to effectively reduce the number of trials from 625 to only 25
cases. These 25 results obtained through FE modelling are then used to provide the training set for the ANNs.
Finally, a comparison between the FE and ANN results is carried out.
Findings –A novel model of the static contact pressure between a sports bra and human subject based on the
FE and ANN methods is presented in this paper. The root mean square error values show that there is only a
small difference between the FE and ANN results.
Originality/value – The ANN function established in this study can be used to predict the mechanical
behaviours of breasts and has a fundamental impact on the computer-aided design of functional garments in
general.
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1. Introduction
The breasts do not havemuscles or bones whichmeans that there is little anatomical support.
Therefore, excessive movement during physical activities can cause embarrassment,
discomfort, pain or even injury and sagging (Yu and Zhou, 2016). However, these can be
remedied by wearing sports bras, which are designed to control excessive breast movement
and reduce breast pain during vigorous activities. Sports bras have three major functions:
controlling excessive breast movement, managing heat and moisture and providing support
(Niemczyk et al., 2017). Therefore, a well-designed sports bra should exert adequate contact
pressure to limit the range of breast movement without causing discomfort to the wearer.
Traditional sports bra designs, however, have been very complex and prone to human error.
Hence, computational modelling is now on the verge of being more widely applied.
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The finite element (FE) method has been successfully and widely used to simulate many
issues, including those related to engineering, or product optimizing and testing, as discussed
in Sheng et al. (2018), who used the method to simulate and optimize the properties of a
building material, Han et al. (2017) to optimize electric machines and Mueller et al. (2017) to
examine dental implants. However, the FEmethod has been less frequently applied in research
on intimate apparel or activewear. Recently, breakthroughs in the FEmethod have beenmade
with its use to describe the biomechanical behaviours of breasts and bra–breast interactions
with a high degree of accuracy (Chen et al., 2013; Sun et al., 2019a, b). However, FE modelling
also has its issues because although the method provides detailed information and does not
require the involvement of human subjects, it is still computationally expensive and
time-consuming in most cases. Therefore, researchers have attempted to reduce the
computational complexity of FE modelling by using different model reduction techniques,
such as proper orthogonal (POD) or Karhunen–Lo�eve decompositions (Niroomandi et al.,
2008). However, one of the emerging new methods is machine learning (ML), which has been
used in awide range of applications (Bottou et al., 2018; Atta et al., 2019; Huang et al., 2019). ML
algorithms can be used to build a mathematical function with given data to make predictions
without background knowledge of the problem. The models trained by using ML algorithms
based on sample data can predict the desired quantities in real time with reasonably little bias
and variance. For instance, Mart�ın-Guerrero et al. (2016) examined the biomechanical
behaviours of the human liver and breast using tree-based ML methods and proved their
sufficiency and accuracy. Mart�ınez-Mart�ınez et al. (2017) also used tree-based methods, which
included decision tree, random forest and extremely randomized trees, to predict the
displacements of the breast under compression. Themean error of the predicted displacements
in the paper was under 2 mm, which is acceptable. Therefore, to further enhance efficiency in
this study, an ML approach is used to investigate the contact pressure between the bra and
breasts because FE modelling requires hours or even days to carry out the calculations.

This study uses artificial neural networks (ANNs), which are efficient ML algorithms, to
predict the contact pressure between the body and sports bras with different fabric materials.
The mechanical properties of the fabric used in the sports bras are highlighted because the
optimization of comfort essentially involves the optimization of the fabric properties. In this
respect, the most critical fabric property is the elastic modulus. Hence, the inputs of these
ANNs are the different elastic moduli, and the output is the contact pressure at different
locations. An ML model is built with accurate FE results (Mart�ınez-Mart�ınez et al., 2017). To
obtain accurate FE results, several experiments are first conducted. Then, an FE model is
constructed and validated based on the experimental results. After an analysis of the FE
results, they are used to train a prediction model which is subsequently established by using
ANNs and require three sets of sample data: training, validation and testing sets. Finally, the
results obtained from the FE and ANNmodels are compared. The ANN function established
in this study can be used to predict the mechanical behaviours of the breasts and provide
design considerations for sports bras.

2 Experimental work
Four different experiments are conducted in this study which involve 3D scanning, motion
capturing, fabric tensile testing and pressure testing. A 50-year-old healthy female subject,
with a bra cup size of 75D based on themetric sizing system, was recruited to voluntarily take
part in the experiments.

The subject was scanned with a 3D laser body scanner (Vitus, Human Solutions,
Germany) to construct geometric models of her body and breasts. The subject gave
informed consent before taking part in the experiment, which was approved by the Human
Subjects Ethics Sub-committee of The Hong Kong Polytechnic University (Approval No.:
HSEARS20151207004).



As the accuracy of thematerial properties is crucial because they are the data inputted into
the FE model, the material coefficients and damping ratio of the breasts were determined
through a motion capture experiment which used 12 infrared cameras (Eagle Motion
Analysis Corporation, USA). Spherical retro-reflective markers were placed on the skin of the
subject to reflect the infrared rays for capturing displacement. The calibration of the cameras
was the first step in this experiment (Park et al., 2014). Then, the braless subject was asked to
stand still and upright with her arms outstretched, which was the initial static condition for
each cycle ofmovement. Third, the subject was asked to run on a treadmill until she reached a
steady speed. Fourth, she was instructed to raise her breasts gently with her hands and hold
them stationary after she stopped running. Then, she was to quickly remove her hands from
her breasts and let them fall, whichwould allow them to freely vibrate due to gravity load and
damping forces (Cai et al., 2018). The time-dependent coordinates of the markers were
recorded. The results were filtered, cleaned and smoothed by using EVaRT software (Motion
Analysis Corporation, USA) to remove noise before analysis took place. The damping ratio
was calculated by using a logarithmic decrement (δ) from the motion capture data, which is
0.273. The function is written as follows:

δ ¼ ln

�
yn

ynþ1

�
(1)

where yn is the amplitude at the nth peak of the damped waveform.
The damping ratio ζ is calculated as follows:

ζ ¼ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2 þ δ2

q (2)

Five different sports bras with different impact ratings (high, moderate and low) are used in
this study. The mechanical properties of the fabric of the sports bra were tested by using a
constant-rate-of-extension tester, Instron 4411 (US). The sports bra was divided into four
components, namely the shoulder straps, back panel, bra cup and elastic bra band (shown in
Figure 1), and the partswere individually sewn into loop specimens. The specimenswere then
loaded at a specified rate to a pre-set loop tension and unloaded at a specified rate to zero loop
tension. This cycle was repeated five times to find the mean value. The strain–stress
behaviour of the fabric samples in the direction of the actual stretch mainly influences the
amount of contact pressure. The direction of the stretch of the bra strap, bra cup and back
panel is in the wale direction, while that of the elastic bra band is in the course direction.
Hence, the FE model of sports bra fabric is assumed to be isotropic, and the Young’s moduli
from the experimental data are shown in Table 1 (Yu et al., 2016).

Figure 1.
Sports bra sketch



Five pressure tests were conducted and their results were compared with the numerical
results to validate the FE and ANNmodels. Female researchers ensured that the subject had
donned the bra samples correctly. The pressure exerted onto the subject was then measured
in triplicate with the Novel Pliance-X system, as shown in Figure 2. The contact pressure
changes with each breath taken by the subject and with each small movement made. In this
study, the tested pressure value is calculated by averaging the values during the
stationary phase.

3. Finite element model and verification
A three-dimensional FE modelling approach was used to simulate the contact conditions
between the sports bra and the body by using an FE software (MSC Marc 2014, US).
Three-dimensional ten-node quadratic elements were used to model the breasts and body.
The bra was meshed with quadrangular shell elements. Based on preliminary calculations
with different element lengths, the geometric model of the body contained a total of 119,510
elements, in which the model of the breasts had 22,931 elements. The methods for building
and validating the FE contact models for the interaction between the body and sports bra
made reference to our previous study (Liang et al., 2019), which provided the basis of
this paper.

3.1 Determining material coefficients of breasts
Based on previous studies (Samani and Plewes, 2004; Sun et al., 2019a, b), a Mooney–Rivlin
material model was used to construct themodel of the breasts by usingMarc. The generalized
Mooney–Rivlin polynomial function of strain energy, which is used in Marc, is written as:

W ¼
XN
i;j¼1

CijðI1 � 3ÞiðI2 � 3Þj þ
XN
i�1

1

Di

ðI3 � 1Þ2i (3)

where W is the strain energy potential; I3 is the elastic volume ratio or third strain invariant;

Fabric Young’s modulus/MPa

Bra 1 Strap 2.3159
Cup fabric 0.3344
Elastic band 1.5732
Back panel 4.2027

Bra 2 Strap 1.8372
Cup fabric 0.9626
Elastic band 3.0017
Back panel 0.5973

Bra 3 Strap 7.2167
Cup fabric 0.3101
Elastic band 2.5339
Back panel 0.6363

Bra4 Strap 5.8943
Cup fabric 0.3597
Elastic band 1.7695
Back panel 0.7771

Bra 5 Strap 1.3324
Cup fabric 0.9474
Elastic band 0.9127
Back panel 0.5502

Table 1.
Material properties of
the sports bra fabrics



Cij is a factor related to the shear behaviour of thematerial;Di is the compressibility behaviour
of the material; and N is order of the polynomial. I1 and I2 are the first and second strain
invariants of the components of the left Cauchy–Green deformation tensorB, which is written
as Equations 4 and 5.

I1 ¼ trðBÞ (4)

I2 ¼ 1

2

h
ðtrðBÞÞ2 � tr

�
B2
�i

(5)

where B 5 F. FT, and F is a deformation gradient.
In this study, five coefficients (C01, C02, C10, C11 and C20) are used to define the Mooney–

Rivlin material model which accurately describe the biomechanical behaviour of the breasts.
A series of computing analyses were done to determine the appropriate coefficients of

the breasts. The initial sets of the coefficients of the Mooney–Rivlin material model for the
breasts and layer of subcutaneous tissues were based on the assumptions in Samani and
Plewes (2004). To obtain the five actual coefficients for the subject in this study, iterative
changes to the inputted coefficients were made to simulate breast displacement during
running and compare the results with the experimental data. In this study, there are smaller
displacements in the x- and z-directions versus the predominant displacement in the y-
direction during treadmill running. Also, there are relatively more errors in the x- and z-
directions due to shoulder rotation and body waggle. Thus, the displacements in the x- and
z-directions were omitted. The criterion for the difference is the root mean square error
(RMSE):

Figure 2.
Pressure tests



RMSE ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

�
nYexp;i � nYFEM ;i

nYexp;i

�2

vuut (6)

where nYexp is the experimental rate of change in the y-direction of the nipple of the subject,
nYFEM is the rate of change in the y-direction of the nipple from the FE analysis results and n
is the number of sample data points.

By minimizing the RMSE, the simulated results and the experimental data can reach an
agreement, which corresponds to the optimum solution of the material coefficients [4]. Eight
trial sets of the material coefficients of the breasts were run in Marc, and the corresponding
relative RMSEs were calculated. The optimum material coefficients of the Mooney–Rivlin
material for the model of the breasts are C015 0.108 kPa, C025 1.18 kPa, C105 0.094 kPa,
C115 0.82 kPa and C205 0.84 kPa. This set of coefficients provides the lowest RMSE, which
is 0.0405%. The entire process is schematically shown in Figure 3.

Figure 3.
Determination of
material coefficients of
the breasts



3.2 Contact surface and boundary conditions
TheMarc software offers two types of contact – gluing and touching. In this study, the type of
contact used is touching because there may be relative sliding at the contact interface
between the sports bra and the body. To reduce the computational time, node-to-segment
contact was used to construct the contact model due to its rapid convergence rate.

The initial equilibrium position of the model of the breast does not incorporate external
forces. Hence, the first step was to apply an inverse gravity load to the model of the breast,
which was based on the subject in a standing position. To simulate the contact pressure
between the sports bra and body, the first problem that had to be solved is penetration. To do
so, themodel of the bodywas first geometrically reduced and then expanded, and the process
is shown in Figure 4 (Liang et al., 2019).

3.3 Model validation
The goal of this study is to predict the contact pressure between the wearer and sports bras
with different material properties. Therefore, the static contact pressure simulated by using
the corresponding FE models was compared with that from the experiments with the five
sports bra samples to validate the accuracy of the FE model in this study, which is shown in
Table 2. The correlation coefficient and RMSE between the values shown are 0.882 and
0.0329, respectively, which means that there is a good correlation between the experimental
and predicted values (Figure 5).

Figure 4.
Boundary conditions of

the FE model



4. Artificial neural network building
The FE models provided good simulated results for the contact pressure between the sports
bra and the body. The FE data were subsequently used to train the ANN model. The results
were obtained under certain conditions as follows: (1) the FEmodel of the body is based on the
same subject (a 50-year-old woman with a bra cup size of 75D), and (2) the FE models of the
sports bra are based on the same design, which is a vest-style sports bra.

4.1 Data set generation
ANN modelling requires three sets of data – a training set, a validation set and a testing set,
which were prepared with the FEmodels. The training set was used to fit every parameter of
the ANN model. The validation set was used to evaluate the model which terminated when
there are too many errors. The testing set was used to evaluate the final model. To generate
the three sets of data, the sample data were split at a ratio of 70:15:15.

Sports bra Position Contact pressure fromFEM/kPa
Contact pressure from experiments/

kPa

Bra 1 Shoulder 1.403 1.417
Underarm 2.004 2.000
Bottom of the cup 0.802 0.700

Bra 2 Shoulder 1.426 1.417
Underarm 1.585 1.583
Bottom of the cup 0.634 0.600

Bra 3 Shoulder 1.741 1.583
Underarm 1.741 2.833
Bottom of the cup 0.390 0.700

Bra 4 Shoulder 2.151 2.083
Underarm 1.792 1.833
Bottom of the cup 0.717 0.900

Bra 5 Shoulder 1.431 1.460
Underarm 1.113 1.083
Bottom of the cup 0.477 0.650

Table 2.
Comparison between
the contact pressures
from numerical and
experimental work

Figure 5.
Comparison between
the contact pressures
from numerical and
experimental work



The sports bra has four components: the shoulder straps, back panel, bra cup and elastic
bra band, which means that there are four parameters. When investigating the effect of the
different fabrics, each parameter has five levels of the Young’s modulus, thus resulting in
545 625 full-factorial experimental runs. Therefore, the Taguchi method was used to reduce
the number of experiments which is a powerful method to reduce the number of full-factorial
runs. A standard orthogonal array (OA) of four parameters and five levels was selected, and
25 FEmodels were simulated to provide the training set for the ANNmodel. These runs were
made with different sets of parameters and at different levels. As the training set consisted of
70% of the sample data, ten more sets of data were needed, and of these, five sets were
calculated with the tested material properties of the five sports bra samples and the other five
sets were calculated with random material properties. Table 3 shows the contact pressure at
three different locations obtained from the 35 FE runs.

Exp.
no.

FE parameters/MPa FE results/KPa

Young’s
modulus of

cup

Young’s
modulus of

strap

Young’s
modulus of
back panel

Young’s
modulus of

band

Contact
pressure on
shoulder

Contact
pressure at
the bottom
of cup

Contact
pressure
under arm

1 0.2 2 1 1 1.230 0.2459 0.8607
2 0.2 4 2 2 1.349 0.2362 1.349
3 0.2 6 3 3 1.401 0.2802 1.401
4 0.2 8 4 4 1.612 0.3281 1.881
5 0.2 10 5 5 2.261 0.4230 1.938
6 0.4 2 2 3 2.034 0.3515 1.743
7 0.4 4 3 4 2.342 0.5313 2.342
8 0.4 6 4 5 2.623 0.5747 2.248
9 0.4 8 5 1 2.383 0.5983 1.589
10 0.4 10 1 2 2.705 0.4057 1.803
11 0.5 2 3 5 1.757 0.4562 2.109
12 0.5 4 4 1 2.126 0.5252 1.701
13 0.5 6 5 2 2.479 0.5361 1.983
14 0.5 8 1 3 2.979 0.4964 1.986
15 0.5 10 2 4 3.120 0.6201 2.080
16 0.6 2 4 2 1.936 0.5227 1.936
17 0.6 4 5 3 2.743 0.6428 2.400
18 0.6 6 1 4 3.018 0.5311 2.156
19 0.6 8 2 5 3.286 0.8286 2.300
20 0.6 10 3 1 2.775 0.6775 1.665
21 0.8 2 5 4 2.687 0.5375 2.687
22 0.8 4 1 5 2.730 0.6768 2.184
23 0.8 6 2 1 3.024 1.008 1.344
24 0.8 8 3 2 3.626 1.209 2.015
25 0.8 10 4 3 4.164 1.249 2.915
26 0.3344 2.3159 4.2027 1.5732 1.403 0.802 2.004
27 0.9626 1.8372 0.5973 3.0017 1.426 0.634 1.585
28 0.3101 7.2167 0.6363 2.5339 1.741 0.390 1.741
29 0.3597 5.8943 0.7771 1.7695 2.151 0.717 1.792
30 0.9474 1.3324 0.5502 0.9127 1.431 0.477 1.113
31 0.3100 1.8270 3.5000 1.5700 1.944 0.5326 1.166
32 0.3100 1.8270 0.4400 2.7500 2.322 0.5220 1.935
33 0.4000 7.2000 4.2000 3.0000 2.900 0.6451 2.250
34 0.3100 6.5000 0.4370 1.5700 2.100 0.4791 2.000
35 0.3100 5.5000 0.4370 1.5700 2.024 0.6287 1.214

Table 3.
Finite element

parameters and results



4.2 ANN structure
A multilayer neural network that uses a backpropagation algorithm was used. The
Levenberg–Marquardt learning algorithm, which is one of the most rapid and often applied
backpropagation algorithms, was used to establish a predictionmodel. The basic functions of
this algorithm are shown as follows (Hagan and Menhaj, 1994):

H ¼ JTJ (7)

Then, the gradient can be calculated with:

g ¼ JTe (8)

where H is a Hessian matrix; J is a Jacobian matrix that contains the first derivatives of the
network errors with respect to the weights and biases; and e is a vector of the network errors.

Through this approximation, the Levenberg–Marquardt algorithm can be written as:

xkþ1 ¼ xk � ½JTJ þ μI �−1JTe (9)

where m is a scalar.
Furthermore, the multilayer structure included an input layer of four nodes (four inputs:

Young’s moduli of the four components of the sports bras), two hidden layers and an output
layer of three nodes (the predicted contact pressure at three different locations), as shown in
Figure 6.

5. Results and discussion
A comparison was made between the FE-simulated results and the ANN-predicted contact
pressure of all the data sets. Table 4 shows the RMSEs of the FE versus the ANN results. The
equation of the RMSE for this problem is shown in Equation (10). The RMSE values indicate
that there is only a small difference between the FE and ANN results, especially for the
contact pressure on the shoulder.

RMSE ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

�
PFEM ;i � PANN ;i

PFEM ;i

�2

vuut (10)

where PFEM is the contact pressure determined with the FE model, PANN is the contact
pressure predicted by ANN and n is the number of sample data points.

Since the ANN function was already established, obtaining all 625 sets of data or any
desired results was simple and fast. Some of the ANN results are used to investigate the
relationship between the contact pressure and the elastic modulus of the sports bra, as shown
in Figure 7, and the data easily show the effect of the elasticmodulus of each component of the
bra on the contact pressure. TheYoung’smodulus of the other three components was selected
at the same level (the highest or lowest level). The elasticities of the shoulder strap and bra cup
fabric have the greatest effects on pressure. However, their effects are reduced as the elastic
modulus of the other three bra components decreased. The back panel has basically no effect
on the contact pressure. The elastic bra band effectively changes the contact pressure under
the arm. However, it has much less influence on the contact pressure at the shoulder and
bottom of the bra cup than the shoulder strap and cup fabric. Hence, it is more important to
choose relatively rigid fabrics for the shoulder strap and bra cupwhen designing high-impact
sports bras. When combined with research on the pressure comfort of bras, the results
obtained herein can directly guide the selection of sports bra fabrics. The successful
optimization of the algorithmnot onlywill optimize thematerial modulus of sports bra fabrics



but also will provide the means for future research on pressure comfort, functional garments,
wearable products and sports activities. Ultimately, this computer-aided method addresses a
common need of the female population, so it has global relevance and applicability.

6. Conclusion
This paper presents a novel FE-method-based ML approach to predict the contact pressure
between a sports bra and the wearer. With appropriate material coefficients and boundary
conditions, the experimental results show that FE simulation can accurately calculate contact
pressure between a sports bra and the body. Hence, the FE results can be used as input data to
establish an ANN model. ANNs are an effective tool for making predictions. Specifically, the
ANN results of the contact pressure, which uses a Levenberg–Marquardt learning algorithm,
are in good agreement with the corresponding FE results based on the calculated RMSEs.

There are nevertheless limitations of this study. First is the lack of consideration of breast
displacement during physical activities. A well-designed effective sports bra must limit the
movement of the breasts relative to the body, which is the function of a sports bra. Future
work on building an ML model should consider breast displacement as a criterion. Second is
the limitation of sports bra style. Both the FE and ANN models are based on the same
compression sports bra which is a vest-style garment. Encapsulation sports bras are also
popular in the market and future works should also consider other styles of sports bras.

In general, the prediction system discussed in this paper can be used to calculate the
contact pressure between a sports bra and body within a limit of allowable errors. This
provides a more efficient, accurate and robust strategy for solving not only the complex
problems of body–bra interactions but also other design applications where the materials
properties are highly nonlinear and viscoelastic. The results can be directly used for the
selection of sports bra materials, which can positively benefit a large percentage of the
world’s female population. The study of sports bras is also important for the well-being of
women during physical activities, which are unique from that of men due to their different
physiology.

Predicted contact pressure RMSE

Contact pressure on shoulder 0.0211
Contact pressure at the bottom of cup 0.0649
Contact pressure under arm 0.0404

Figure 6.
The ANN structure

Table 4.
RMSE between the FE

results and ANN
results



Figure 7.
Effects of sports bra
fabrics with different
elastic moduli. (a)
Effect of elastic
modulus of the cups on
contact pressures at
three points. (b) Effect
of elastic modulus of
straps on contact
pressures at three
points. (c) Effect of
elastic modulus of back
panels on contact
pressures at three
points. (d) Effect of
elastic modulus of
bands on contact
pressures at three
points
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