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Applying population-flow-based spatial weight matrix in spatial1

econometric models: conceptual framework and application to COVID-192

transmission analysis3

4

Abstract5

This paper proposes a novel method for constructing an asymmetric spatial weight6

matrix and applies it to improve spatial econometric modeling. As opposed to7

traditional spatial weight matrices that simply consider geographic or economic8

proximity, the spatial weight matrix proposed in this study is based on large-volume9

daily population flow data. It can more accurately reflect the socio-economic10

interactions between cities over any given period. To empirically test the validity and11

accuracy of this proposed spatial weight matrix, we apply it to a spatial econometric12

model that analyzes COVID-19 transmission in Mainland China. Specifically, this13

matrix is used to address spatial dependence in outcome and explanatory variables, and14

to calculate the direct and indirect effects of all predictors. We also propose a practical15

framework that combines Instrumental Variable regressions and a Hausman test to16

validate the exogeneity of this matrix. The test result confirms its exogeneity, hence it17

can produce consistent estimates in our spatial econometric models. Moreover, we18

find that spatial econometric models using our proposed population-flow-based spatial19

weight matrix significantly outperform those using the traditional inverse distance20

weight matrix in terms of goodness-of-fit and model interpretation, thus providing21

more reliable results. Our methodology not only has implications for national epidemic22

control and prevention policies but can also be applied to a wide range of research to23

better address spatial autocorrelation issues.24
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1. Introduction1

Many phenomena in the real-world are spatially dependent. For example, economic2

development, meteorological conditions, air pollution and the spread of diseases between3

neighboring regions may correlate or interact with each other to a greater or lesser extent.4

Traditional econometric models assume the spatial dependence or spatial spillovers between5

research units to be zero, which may generate biased estimates of regression coefficients6

(Vega and Elhorst 2013). To empirically assess the magnitude and significance of the spatial7

dependence or spatial spillover effects, spatial econometric models have been widely used8

(LeSage 2008; ; Vega and Elhorst 2013). The interactions between spatial units in spatial9

econometric models are reflected through a spatial weight matrix (SWM), a square matrix of10

size N*N, with N being the number of research units being modeled. SWMs have played a11

vital role in deriving accurate models and estimates (Chen 2021). However, it is often12

challenging to select and construct an appropriate SWM that accurately reflects the spatial13

correlation and interactions between research units (Seya, Yamagata, and Tsutsumi 2013;14

Lam, and Souza 2020).15

Traditional forms of spatial weight matrices include contiguity-based SWM (Cliff and16

Ord 1975), inverse-distance-based SWM (Anselin 2001), economically-based SWM (Conley17

and Ligon 2002) and nested SWM that combined both geographic and economic distances18

(Fingleton and Le Gallo 2008). The contiguity-based SWM remains one of the most popular19

spatial weight matrices (Getis 2009). Although the contiguity-based SWM is relatively easy20

to build, it ignores the varying degrees of interactions among neighboring units. The21
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inverse-distance-based SWM assumes that the intensity of interactions depends on1

geographic distance (Getis 2009). However, in many contexts, geographic proximity may not2

fully reflect the relevant connections between spatial units. For instance, after Wuhan’s3

COVID-19 lockdown in January 2020, a SWM based on geographic proximity is4

inappropriate to capture the city’s actual connections with other cities. Furthermore, new5

transportation technologies such as high-speed rail have changed the effective distance and6

the frequency and intensity of interactions between two places in real space, altering the7

strength and scope of spillover effects (Yu, Chen and Zhu,. 2012; Zhu et al. 2015; Cao and8

Zhu, 2017; Ahlfeldt and Feddersen, 2018; Zhu, 2021). Another major limitation of these9

traditional SWMs is the symmetric assumption of spatial spillover effects, which may deviate10

from the actual spatial interaction processes. Therefore, more appropriate spatial weight11

matrices that account for the real socio-economic interactions induced and amplified by12

modern technological innovations (e.g., transportation, communication) are needed to better13

reflect the spillovers between research units.14

While most previous empirical studies focus on the application of spatial econometric15

models, only a few studies have introduced new ways to construct spatial weight matrices to16

better capture the underlying interaction process. For example, Case and Hines (1993) used17

income and racial composition to describe the associations between states. Zhang et al. (2009)18

proposed a co-movement SWM by accounting for the similarity of economic factors between19

regions. Getis and Aldstadt (2004) constructed a SWM based on the ��∗ local statistic. Emch20

et al. (2012) applied spatial proximity and social relationships separately to construct a SWM21
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and compare the spatial clustering pattern of disease transmission based on the two types of1

matrices. Taking into consideration the actual connections between spatial units, some studies2

have introduced actual population flow (e.g., Kordi and Fotheringham 2016) or flow intensity3

calculated based on GDP per capita and the number of people employed in different4

industries in connected cities (Li 2017) into the SWM. However, the above studies have5

mainly focused on the spatial interaction process itself. They do not apply their updated6

SWMs to improve spatial econometric models and illustrate the spillover effects generated by7

the spatial interaction processes.8

The major contributions of this research, therefore, lie not only in constructing an9

asymmetric SWM based on large-volume daily population flows between geographic units,10

but more importantly, in applying the new SWM to improve spatial econometric modeling11

and to provide more reliable estimates of the (direct and spillover) effects of key variables. In12

the modeling of various social, economic, and health outcomes, a population-flow-based13

SWM may better approximate the actual process of spatial interactions than traditional spatial14

weight matrices using inverse distance or contiguity. This improved SWM also accounts for15

potential asymmetric spatial spillover effects (i.e., spillover from A to B not equal to spillover16

from B to A). This is consistent with the fact that the flows of people, goods, and information17

between spatial units are likely to be asymmetrical due to geographical constraints (e.g., Xu18

et al. 2016) or the uneven level of development between spatial units (e.g., Parent and LeSage19

2006). In the empirical analysis of this paper, we construct the proposed SWM using20

real-time population flow data and apply it in spatial econometric models to analyze the21
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transmission of COVID-19 in Mainland China between January 11 and February 25, 20201

(excluding the two special administrative regions of Hong Kong and Macau and Taiwan2

region). By comparing the results of our model with an Ordinary Least Squares (OLS) model3

and spatial econometric model using inverse distance SWM, we find that the proposed model4

provides more reliable results that may better inform policy for epidemic control and5

prevention. In addition to application in infectious disease control, this methodology may also6

be applicable in investigating a variety of spatial outcomes that depend on human contact7

(e.g., economic, social, transportation, or public health studies).8

The remainder of this article is structured as follows. Section 2 provides a brief9

review of the literature on spatial econometrics as well as the specification of the SWM.10

Section 3 introduces the construction process of the population-flow-based SWM. An11

example of the application of the proposed SWM in spatial regression is presented in12

Section 4 and conclusions are presented in the final section.13

14

2. Literature review15

Spatial econometrics was first proposed by Paelinck and Klaassen (1979) to improve16

traditional econometric approaches by capturing the spatial dependence between observations17

(Elhorst 2014). It has been widely used in fields such as transportation (e.g., Szabó, and18

Török 2020), environmental studies (e.g., Lv, Chen, and Cheng 2019), economics (e.g., J. Li,19

and S. Li 2020), and public health (e.g., Ispriyanti, Prahutama, and Taryono 2018).20

https://onlinelibrary.wiley.com/doi/full/10.1002/jae.981


This is an author-produced, peer-reviewed version of this article.

7

The construction of spatial weight matrices is the key to spatial econometric models.1

SWMs are designed to reflect the interactions between spatial units (Kostov 2010) and may2

take different forms depending on the rationales behind the scenes. The earliest form of the3

SWM was the contiguity-based SWM (Getis 2009). This category of SWMs can be further4

divided into first-order contiguity matrices and high-order contiguity matrices. First-order5

contiguity matrices assume that spatial interactions only occur between spatial units sharing a6

common border (first-order neighbors) and the strength of the interactions between all pairs7

of first-order neighbors is the same (Getis 2009). High-order contiguity matrices are8

constructed in a similar way. For example, if one unit is given, its second-order neighbors are9

defined as the neighbors of its first-order neighbors, and so on. Although easy to implement,10

the basic assumption of the contiguity-based approach that no variations exist in the degree of11

interactions among neighbors of the same order is only a simplified measure of spatial12

interactions in the real world. Another type of SWM is the inverse distance matrix, which13

constructs spatial weights using the distance between pairs of observations (Perret 2011).14

Following Tobler’s first law of geography (Tobler 1970), the underlying assumption of this15

approach is that the intensity of spatial relations among observations decreases as the distance16

between them increases. Most studies use the Euclidean distance between two spatial units to17

calculate spatial weights (e.g., Lu and Zhang 2011; Lv, Chen, and Cheng 2019), while other18

studies use alternative measures such as travel time (e.g., Conley and Topa 2002) or railway19

network distance (e.g., Lv, Chen, and Cheng 2019) to capture the physical proximity or travel20

costs between two units in the real world.21
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With high residential mobility and the development of advanced communication1

technologies in the modern world, geographic constraints have become weaker (Webber 1964;2

Wellman and Leighton 1979; Snyder 1995), and the influence of physical distance on the3

interactions among nodes in networks has declined (Conley and Topa 2002). To better4

capture the diverse spatial interaction processes that are not constrained by physical distance,5

some studies have used non-physical distance measures such as economic distance (Case et al.6

1994; Pietrzak 2010), trade volumes (Aten 1997; Cohen and Paul 2004),7

industrial structure proximity (Zhang, Chen and Wang 2009), social contacts (Conley and8

Topa 2002) and social network/relationships (Emch et al. 2012; Leenders 2002) to substitute9

for physical distance. The nested weights matrix that combines the inverse geographic10

distance and non-physical distance matrices is another way to account for various spatial,11

economic, technological and transportation proximity factors influencing the spatial12

interaction processes (Parent and LeSage, 2008). However, one significant limitation of all13

the aforementioned SWM is the assumption of symmetric spatial spillover effects (i.e., the14

impact from observation i to observation j is equal to the impact from j to i), which does not15

accurately describe the spatial and socio-economic interaction processes in the real world. To16

deal with this limitation, a number of studies have constructed asymmetrical nested weights17

matrices (Li et al. 2010; Zheng et al. 2019). This type of matrix considers both geographic18

and economic proximity, but the indicator selection and matrix definition are relatively19

subjective and cannot incorporate population flow into measures of spatial associations.20

Focusing on infectious disease transmission, neighborhood relationships, hydrologic21
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connectivity of villages (Gu and Spear 2006), and kinship relationships (Emch et al. 2012)1

have also been used to construct asymmetric SWMs.2

In the network analysis literature, network autocorrelations have been noticed and3

investigated by a growing body of studies. Black (1992) proposed a new method based on4

Moran’s I statistics to measure network autocorrelations and argued that weight matrices are5

essential to reflect network structures. Leenders (2002) used social distance to construct6

spatial weights and applied the SWM in spatial modeling of the dependence embedded in7

electoral behavior. Chun (2008) applied eigenvector spatial filtering to build a network link8

matrix that combines the influences of competing destinations and intervening opportunities9

on travel behavior and used the matrix in a spatial filtering interaction model to analyze10

interstate migration behavior in the U.S. Ermagun and Levinson (2018) used the properties11

of networks to construct a SWM for examining spatial dependence in traffic network analysis.12

These studies recognize the mechanism and sources of network autocorrelations and13

emphasize the importance of incorporating network autocorrelations in understanding these14

networks. But none of them apply their updated SWMs in spatial econometric models to15

explicitly examine the direct and spillover effects induced by these network autocorrelations.16

Other recent studies have incorporated actual population flows into the construction17

of spatial weight matrices. The flow of population is not only an important spatial interaction18

process but also facilitates other spatial spillover effects such as the transmission of ideas and19

beliefs (Leenders 2002; Homans 2013) as well as infectious diseases (Anderson 2013; Jia et20

al. 2020; Wei and Wang 2020;). Kordi and Fotheringham (2016) proposed a family of21
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localized spatially weighted interaction models (SWIM) including origin/destination-focused1

SWIM and flow-focused SWIM to address the spatial heterogeneity in spatial interactions2

using a geographical weighting approach; they proved that this method performed better in3

spatially nonstationary processes analysis. Moreover, the population flows between spatial4

units are usually asymmetric in nature and those areas with large net inflows or outflows may5

exert stronger spillover effects. For example, cities with more move-out population flow are6

more influential (Wei et al. 2018), serving as the critical nodes in the population flow7

network and influencing key properties of the network like clustering and transitivity (Xu et8

al. 2010; Alstott et al. 2014). These cities are highly associated with upsurges in epidemic9

transmission (Zhong and Bian 2016). Thus, a population-flow-based matrix not only better10

models the spatial interaction processes, but also better reflects the asymmetric nature of the11

interactions between spatial units. However, previous studies have mainly applied12

population-flow-based matrices to examine the spatial interaction process itself but have not13

incorporated these matrices into spatial regressions to model the actual channels of spatial14

spillover (i.e., human interactions) and further examine how the incorporation of15

population-flow-based matrices will improve spatial model specifications. The population16

flow data used in previous studies are usually yearly or monthly averages, while real-time17

data on daily population movement are seldom applied in spatial modeling.18

19
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3. Conceptual framework for constructing the SWM using population flow1

To fill in the research gaps, this paper proposes a method of constructing a SWM based on2

the volume of population flow between two cities and applies the matrix in spatial regressions3

to better capture the actual spatial interaction processes. Using the COVID-19 outbreak in4

Mainland China as an example, we construct a population-flow-based SWM based on Baidu5

population flow data obtained from Baidu Huiyan platform (https://qianxi.baidu.com/2020/)6

and apply it in spatial regressions to explore the influencing factors and the real transmission7

mechanisms in the spread of COVID-19.8

9

3.1 Theoretical framework10

Spatial weight matrices represent the interaction processes between geographic units such as11

cities, regions, and provinces. The definition of spatial weights is the key element of matrix12

construction (Leenders 2002). In this study, spatial weights based on population movement13

are defined as follows:14

��� = 1
������ �����

�
(1)15

where the ��� is the spatial weight of unit i towards unit j, ���� reflects the volume of16

population movement from city i to city j, k is the number of days in the period. Note that this17

is an asymmetrical weight matrix as ���� is not equal to ����. This overcomes a major18

shortcoming of traditional symmetrical spatial weight matrices that ignores the direction of19

population flow between city pairs.20
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1

3.2 The construction of the SWM2

Based on the findings of existing studies, human mobility significantly contributes to the3

transmission of COVID-19 (Fang, Wang, and Yang 2020; Qiu, Chen, and Shi 2020; Wei et al.4

2021; Zhao et al. 2020). Hence, we use Baidu population flow data to construct the SWM in5

our spatial econometric model.6

The daily inter-city population flow indices were collected from the Baidu Migration7

Platform developed by Baidu, Inc. This database applies a location-based service (LBS)8

technology to record and visualize the population movement trajectories of all mobile internet9

users throughout Mainland China. The database encompasses around 80 percent of the total10

number of mobile phone users in Mainland China, thus providing a strong approximation of11

the actual population flow between and within cities (Wei et al. 2018). This dataset has been12

used in several geospatial analyses of COVID-19 transmission (e.g., Fang, Wang, and Yang13

2020; Qiu, Chen, and Shi 2020; Liu et al. 2020; Zhu and Guo 2021; Zhu and Tan 2021). For14

each pair of cities, the Baidu Migration Platform provides the daily population flow indices15

between them (including both the moving-out indices and moving-in indices1). For each city,16

the precise shares of outflows to the top 100 destinations are available, which on average17

cover over 97 percent outflows (Fang, Wang, and Yang 2020). This suggests that the data18

1 The moving-out indices and moving-in indices are based on the travel intensity between specific city-pairs. For example,
the moving-out index of Beijing to Tianjin is referred to the volume of population flow traveling from Beijing to Tianjin.
According to Baidu’s meta-data, population flow from city i to city j is considered as the move-out index for city i and the
move-in index for city j.
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should be able to accurately capture the real volume of population flows among cities during1

the research periods. For the remaining 3 percent of outflows to other destinations where2

precise values are not given, we follow the first law of geography (Tobler 1970) and adopt3

inverse distance weighted interpolation2 to estimate the outflow values for each remaining4

city. The specific process of population-flow weight matrix construction in this study is5

shown in Figure 1. Note that we also test the robustness of our results by alternatively using a6

gravity model to impute these missing values for the population-flow-based SWM, as shown7

in section 4.6.8

9

2 The inverse distance weighted interpolation follows the equation:

������������� ������������ =

1
����������2

∗ (100 − 1
��������� ������ ������_��� �������)

1
� 1
����������2

�

where Distance ij is the Euclidean distance between city i and city j; A is the number of destination cities with accurate

move-out indices for origin city i; V is the number of destination cities without accurate move-out indices for origin city i.
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Figure 1 The process of population-flow based SWM construction
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We take the averages of each element in the daily matrix of city pairs’ moving-out1

indices by periods as �������� =
1
�� �=1

�� ��������� , in which �� denotes the number of the2

days in period A. After min-max normalization, the matrix of city pairs’ moving-out indices3

was used as the SWM in the spatial models.4

5

4. Application of the SWM to COVID-19 transmission analysis6

COVID-19 was first identified in Wuhan, the capital city of Hubei Province. It rapidly spread7

outward across China and to other countries, posing a severe threat to human health.8

COVID-19 is transmitted through human-to-human contacts, including airborne and fomite9

transmissions (World Health Organization 2020). Therefore, human interactions are critical10

to the transmission of COVID-19.11

In this section, we use city pairs’ moving-out indices as the spatial weights in the12

construction of SWM and estimate the direct, indirect, and total impacts of different13

independent variables on the number of cumulative confirmed cases of COVID-19 in each14

city through spatial econometric models. Baidu started to publicly report daily population15

flow data on January 11, 2020; hence the period of our analyses can only start on this date.16

The first imported case in Mainland China was confirmed on February 26, 2020, when a17

traveler from Iran was reported positive in the Ningxia Hui Autonomous Region. From then18

on, more imported cases were confirmed among travelers from foreign countries,19

contributing to a new wave of outbreaks in Mainland China. Since the impacts of the20
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imported cases on pandemic transmission cannot be distinguished from those of other1

independent variables in this study, we only look at the period before February 26, 2020 to2

avoid interference from these imported cases. In addition, population (out) flows from Wuhan,3

the epicenter of the COVID-19 outbreak, slumped after the city’s lockdown at 10 am on4

January 23 and the implementation of strict nationwide prevention and control measures.5

Therefore, we divide the sample into two subperiods: 1) the period before the Wuhan6

lockdown (January 11–23, 2020), during which inter-city travel in Mainland China was7

normal; and 2) the post-lockdown period (January 24 – February 25, 2020). We implement8

spatial econometric analysis for these two periods separately to examine the different impacts9

of explanatory variables during the two periods.10

11

4.1 Spatial econometric models12

The transmission of COVID-19 is influenced by a wide variety of factors. Some studies have13

argued that coronavirus transmission is affected by geographical proximity, socioeconomic14

interactions, and the similarity of meteorological conditions across neighboring spatial units15

(Andersen et al. 2021; Sannigrahi et al. 2020). Therefore, spatial autocorrelation of virus16

transmission as well as of the independent variables need to be incorporated in spatial17

econometric models (e.g., spatial lag model [SLM], spatial error model [SEM] and spatial18

Durbin model [SDM]). This allows for more accurate estimation compared to an ordinary19
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least square (OLS) model. To correctly specify the model, the existence of spatial1

autocorrelation in the COVID-19 data must first be tested.2

The global Moran’s I index is widely used to detect spatial dependence (Moran 1950):3

� = �
�
∙ �=1

� ���∙(��−��)(��−��)�

�=1
� (��−��)2�

(2)4

where N is the number of cities; ��� represents an element of the SWM, which defines the5

spatial relationships between cities; W is the sum of all ���; ��(��) and �� is the specific6

variable in city i (j), and the �� denotes the mean of �. The value of Moran’s I does not range7

exactly from -1 to 1 but depends on the spatial weight matrix of the study area (De Jong,8

Sprenger and van Veen 1984). In general, a negative Moran’s I value indicates spatial9

dispersion, while a positive value indicates spatial clustering.10

Commonly used spatial econometric models include SLM, SEM, SDM, and the11

spatial Durbin error model (SDEM)3. Among these models, SLM accounts for spatial12

dependence in the dependent variable, while SEM accounts for spatial dependence in the13

error term (Gujarati 2021). The SDM is specifically designed to capture the spatial spillover14

effects of both the explanatory variables and the explained variable. It can also be treated as15

an unrestricted model that can be simplified into SLM and SEM by coefficient setting16

(LeSage 2008). The SDM can be denoted as:17

� = ���� + �� + ���� + � + � (3)18

3 According to Vega and Elhorst (2013), there are three other types of spatial econometric models: 1) the SLX (spatial lag of
X) model that includes spatial interactions of explanatory variables; 2) the SAC model that includes a spatially lagged
dependent and a spatially correlated error term; 3) the general nesting spatial (GNS) model that includes all three types of
spatial interaction effects.
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where Y is the total number of confirmed cases during each period (Period I or II, as1

previously defined) and X is a series of explanatory variables that may affect virus2

transmission. �� and �� are two spatial matrices constructed based on the population3

flow volume4 and the inverse of geographical distance between city pairs, respectively.4

Because COVID-19 has clear evidence and characteristics of human-to-human transmission,5

it is more appropriate to use the population-flow-based matrix �� to capture the spatial6

interactions of this (outcome) variable. For spatially lagged explanatory variables, we use7

geographical distance �� as the weighting matrix because geographical proximity can8

better capture the spatial spillovers of our explanatory variables, e.g., socioeconomic factors9

and meteorological factors. � denotes the constant and � is the error term. When � = 0, no10

spatial lagged explanatory variables are embedded and the SDM is transformed into the SLM.11

To examine the potential endogeneity of the spatial weight matrix ��, we follow the12

method in Cheng and Lee (2017) and propose a linear regression model with an endogenous13

variable WY:14

� = � + �(��) + �� + � (4)15

where W is a N*N spatial weight matrix,WY is a N*1 column vector, and X is a N*k16

matrix. The spatial autoregressive term WY is an endogenous variable as it is affected by Y,17

regardless of whether W is endogenous or exogenous. Potentially we can adopt an18

4 During Period I, population flow between cities in China was not disrupted because it was only announced on January 20
that COVID-19 can be transmitted human-to-human and no further warnings on travel risks were announced until January
23. Moreover, Baidu did not publicly release daily population flow data until January 11. Therefore, in the models for Period
I, the spatial weight matrix is built based on the population flow volume during Period I. In the models for Period II, we still
use the population flow volume during Period I to account for the 14-day incubation period of the virus.
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Instrumental Variable (IV) model and useWX as a series of instrumental variables to address1

the endogenous WY, because WX is clearly correlated withWY. The key point affecting their2

validity as instruments lies in whether WX is also correlated with � (Greene 2012; Zhu 2011).3

If W is exogenous, then WX is uncorrelated with �; hence WX is a valid instrument. If W is4

endogenous, then WX is correlated with �; hence WX is no longer a valid instrument.5

Arguably, the inverse distance-based W is an exogenous SWM, which will lead to consistent6

2SLS estimates if used in the above model setting. This lays the foundation for a Hausman7

test which can help us determine whether there are systematic differences between the model8

using population-flow-based �� (potentially endogenous) and the model using inverse9

distance-based �� (known exogenous); that is, whether the population-flow-based �� is10

also exogenous. We follow a classic Hausman test specification where the null hypothesis is11

that �� is exogenous (i.e., no systematic differences between the two models), and the12

alternative hypothesis is that �� is endogenous. We first run the IV model using ��� as13

instrumental variables and store the estimation results, which should give us a consistent14

estimator because �� is known exogenous. We then rerun the model using ��� as15

instrumental variables and compare the estimation results to the previous model via the16

Hausman test. The statistic of our Hausman test is found to be negative (-15.69), which17

suggests that we cannot reject the null hypothesis (Baltagi 2008; Hsiao 2014; StataCorp18

2017). In other words, no systematic differences are found in the estimated coefficients19
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between the two models. Therefore, our population-flow-based �� proves to also be1

exogenous and hence should produce consistent estimates in our spatial econometric models.52

In addition to the Hausman test above serving as technical evidence for the3

exogeneity of our population-flow-based SWM, we also believe it is conceptually convincing4

based on our research design. During Period I, inter-city travel in Mainland China was not5

disrupted at all, because no warnings about travel risks were announced until January 23,6

2020 when the lockdown of Wuhan happened. Although virus transmission occurred during7

this period, population flow between cities was arguably exogeneous to the number of8

COVID-19 confirmed cases as life was normal at the time. In our Period II model, to account9

for the incubation period of the virus, we construct the SWM still based on population flow10

volume during Period I and use it for the spatial lagged dependent variable (i.e., total11

confirmed cases during Period II). This design further eliminates potential endogeneity of the12

weight matrix.13

14

5 Note that the exogeneity of our population-flow-based W depends on what outcome variable is used in the model. In our
models, daily COVID-19 case number is the outcome variable. In other models using socioeconomic variables as outcome
variables, the exogeneity of our population-flow-based W may be affected.
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4.2 Data source and variable selection1

4.2.1 City-level COVID-19 epidemiological data2

Daily COVID-19 infection data for the period from January 11 to February 25, 2020 in3

Mainland China was retrieved from the China Data Lab of Harvard Dataverse6. This data was4

scraped from the daily COVID-19 infection data on DXY.cn, one of the earliest open datasets5

developed to track the COVID-19 outbreak7. Some cities such as the Special Administrative6

Regions of Hong Kong and Macao are excluded from our analysis due to the lack of7

socio-economic data, Baidu population flow indices or meteorological variables. Note that8

Wuhan is also excluded because it is regarded as an outlier for the purposes of this study and9

may lead to biased results. The final number of cities contained in this study is 272. The10

number of cumulative confirmed cases is separately calculated for each of the two study11

periods (i.e., the pre-lockdown and post-lockdown periods) for each city and used as the12

dependent variable. For the Period II model, the cumulative confirmed cases of each city at13

the end of period I were included as an explanatory variable to represent their initial infection14

levels at the time of the Wuhan lockdown.15

16

6 https://doi.org/10.7910/DVN/MR5IJN

7 According to DXY.cn, the COVID-19 infection data they published was reported by 32 provincial-level Health

Commissions in China
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4.2.2 Baidu population flow Data1

As mentioned in Section 3.2, the population flow indices obtained from the Baidu population2

flow dataset reflect the daily population movements between cities in Mainland China.3

Meanwhile, the dataset also provides a daily within-city population flow index for each city.4

These two indices were used in this study as proxies for the intensity of inter-city and5

within-city population flow. Specifically, considering the significant level of infection risks6

due to population outflow from Wuhan (Qiu, Chen, and Shi 2020), the average population7

outflow originating from Wuhan towards each destination city8 was incorporated into the8

model as an important explanatory variable. Moreover, transportation research often relates9

residents’ travel demand to social and economic interactions (Zhou, Zhang and Zhu 2019;10

Zhu et. al 2020), hence within-city population flow should also be included as an explanatory11

variable.12

13

4.2.3 Socio-economic data14

Previous research on the development of epidemics has suggested that it is necessary to take15

socio-economic factors such as population, economic development, and medical resources16

8 To convert the two indices into the actual volume of person-movements in and out of each city, we use the daily number

of people traveling into and out of Hong Kong provided by the Hong Kong Immigration Department to calibrate and

calculate the number of people that each moving-in index and moving-out index unit corresponds to. Using this data, we

estimate that one index unit in the move-in index and move-out index corresponds to 71,121 person-movements. This

estimated converting factor is constant across all cities and is used to calculate the actual daily volume of population inflow

and outflow of each city.
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into consideration since they can greatly affect social interactions, residents’ behavior, and1

pandemic diagnosis effectiveness, thereby influencing the transmission of COVID-192

(Oyedotun and Moonsammy 2021; Qiu et al. 2020; Zhai et al. 2021). The socio-economic3

variables selected include the total population of urban areas, GDP per capita and licensed4

doctors per capita for each city collected from the latest version of the China City Statistic5

Yearbook (2018).6

7

4.2.4 Natural meteorological data8

As meteorological conditions potentially play a role in the transmission of contagious9

diseases (Li et al. 2019; Shi et al. 2020), this study also considers natural meteorological10

factors including average daily temperature, average daily wind speed, and average daily air11

quality index (AQI). Meteorological data were acquired from the China Meteorological Data12

Service Centre9, which includes hourly records of meteorological elements of each13

meteorology observation. We first calculated the daily data by averaging the hourly data of14

each day for each variable. For each city where meteorological data were not available, the15

value of each meteorological variable was imputed using the Empirical Bayesian Kriging16

inverse distance weighted interpolation in ArcGIS (Krivoruchko and Gribov 2019)10. We17

9 http://data.cma.cn/

10 Kriging is a type of statistical technique for optimal spatial prediction, which has been used widely in meteorological

applications, agriculture, geosciences and many other disciplines due to its minimized prediction error. Compared with

classical Kriging methods, the Empirical Bayesian Kriging is more robust by accounting for the errors introduced by the

estimation of the Semivariogram model (Krivoruchko and Gribov 2019).
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then further aggregate the daily meteorological data into the two defined periods for each city1

using the average values of each meteorological element.2

AQI is based on the level of six atmospheric pollutants (SO2, NO2, PM2.5, PM10, CO,3

O3) measured at all monitoring stations throughout every city. Each record includes4

information on the daily average, maximum, minimum, and standard deviation values of AQI.5

In this study, we will use the daily average AQI to represent the air quality conditions of each6

research unit.7

The descriptive statistics of all the variables are given in Table 1. Because of their8

skewed distributions, the dependent variables and some of the explanatory variables are9

transformed into logarithms in the models (e.g., total population, GDP per capita, doctors per10

capita, total number of confirmed cases in Period Ⅰ).11

[Table 1 Descriptive Statistics of the Dependent and Independent Variables]12

4.3 Spatial autocorrelation tests and model selection13

The spatial autocorrelation test results are illustrated in Table 2. The significantly positive14

values of Moran’s I indices suggest the existence of strong spatial autocorrelation for the15

dependent variable during both periods. These results imply that the OLS estimates are16

invalid and justify the use of spatial models to address the spatial dependence of the number17

of cumulative confirmed cases of COVID-19.18

The SWM constructed with Baidu population flow data is applied to capture the19

spatial interaction of the dependent variable in our model, while the inverse distance weight20

matrix is used to capture that of our explanatory variables such as socioeconomic factors and21
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natural meteorological conditions. Following the general-to-specific rule for spatial1

econometric modeling (Elhorst 2014), we apply a two-stage testing procedure to select the2

most appropriate model, with results reported in Table 3.3

First, the Lagrange Multiplier (LM) tests (LM-lag and LM-error) and the robust LM4

tests are applied to spatial models for Period I and Period II, respectively. For Period I, the5

LM test results are all significant at the 99 percent percent confidence level when the6

population-flow-based weight matrix (��) is applied in the spatial model but are all7

insignificant when the inverse geographic distance matrix (��) is used. This indicates that8

when the inverse geographic distance matrix (��) is used for the spatial models, neither9

spatial error model (SEM) nor spatial lag model (SLM) performs better than the non-spatial10

model (i.e., OLS model) for Period I. Meanwhile, because the Moran’s I indices suggest the11

existence of strong spatial autocorrelation for the dependent variable, these insignificant LM12

test results prove that the inverse geographic distance matrix fails to capture the spatial13

autocorrelation identified in Period I. On the other hand, when the population-flow-based14

weight matrix (��) is used, both SEM and SLM outperform the non-spatial model for Period15

I, suggesting �� is able to accurately capture the spatial autocorrelation.16

For Period II, the LM-lag and LM-error tests and the robust LM tests using different17

weight matrices (i.e., �� and ��) are all significant. They suggest that both �� and ��18

capture the spatial autocorrelation in this Period and that both SLM and SEM outperform the19

non-spatial OLS model.20
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Second, the Likelihood Ratio (LR) test for the spatial common factors between SLM1

and SDM is conducted to verify if the SDM should be simplified to an SLM (Elhorst 2010;2

Seldadyo, Elhorst and Haan 2010). Based on the LR test results in Table 3, SDM can be3

degenerated to SLM for Period I, while SDM is preferred to SLM for Period II.4

[Table 2 Results of Global Moran’s I tests of spatial autocorrelation for dependent variables5
based on Population-flow weight matrix]6

7

[Table 3 Results of LM tests, Robust LM tests and LR tests]8

9

4.4 Results10

Table 4 reports the empirical results of the two study periods. The spatial models outperform11

the OLS model in terms of the Goodness-of-Fit (R2) values in both periods. Additionally, the12

coefficients of spatially lagged cumulative confirmed cases are significant in models for both13

periods (before and after Wuhan’s lockdown). This indicates that the COVID-19 outbreak in14

a city significantly affected the number of cases in its adjacent cities due to population flow,15

and inversely, was affected by the COVID-19 incidence in its surrounding areas due to the16

spillover effects. Therefore, spatial autocorrelation exists in the number of COVID-1917

confirmed cases across cities and spatial econometric models (SLM and SDM) are more18

effective and reliable than the non-spatial model (OLS model) for analyzing the potential19

determinants of COVID-19 transmission. Additionally, the global Moran’s I test for residuals20

of the spatial econometric models indicates that no significant spatial autocorrelation in21

residuals exists (see Appendix 1).22
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[Table 4 Empirical results for OLS and spatial econometric models]1
2

According to LeSage and Pace (2010), using point estimates of spatial regression3

models to estimate the spatial spillover effects may lead to incorrect conclusions because of4

feedback loop effects. They also pointed out that partial derivative interpretation of the5

impacts from a dependent variable to an independent variable can provide a more valid basis6

to interpret spatial effects. Hence, to reveal the exact spatial spillover effects, we estimate7

each independent variable’s direct, indirect, and total effects in the spatial econometric8

models separately. The decomposed results are illustrated in Table 5.9

[Table 5 Estimation results for decomposition of the spatial effects]10
11

The results suggest that the total urban population had a positive direct effect on the12

number of cumulative confirmed cases during both periods, indicating that a larger13

population increases the locally confirmed cases in that city after controlling for the effects of14

other factors. In other words, epidemic control is more challenging in larger cities than in15

smaller cities. Specifically, this positive direct effect is stronger after Wuhan’s lockdown.16

One possible reason is that COVID-19 transmission within cities gradually became severe17

during this period and a larger population base implies higher chances of virus transmission.18

Positive indirect impacts of a city’s total population on adjacent cities’ cumulative confirmed19

cases are only found in Period I, which may indicate the effectiveness of nationwide20

prevention and control measures swiftly adopted by other cities after the Wuhan lockdown11.21

11 After January 24, different levels of prevention and control measures (i.e., the shutdown of public transport and public
places, the lock down of residential buildings/neighborhoods, and the set-up of checkpoints to control the population
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GDP per capita shows no direct impact on the local COVID-19 situation during1

Period I, but illustrates significant and positive spillover effects during Period II. This result2

suggests that proximity to economically advanced cities may increase the chances of3

epidemic transmission for surrounding cities. Significant and positive direct effects of4

licensed doctors per capita are identified in the pre-lockdown period (Period I) but not the5

after-lockdown period (Period II). The results for Period I indicates that a 1 percent percent6

rise in licensed doctors per capita was directly associated with a 99.96 percent increase in7

cumulative confirmed cases. While this result may sound counterintuitive, it is likely that8

cities with more medical resources were more effective in terms of diagnosing patients with9

symptoms of COVID-19. Conversely, some patients may not have been diagnosed effectively10

in areas with low levels of healthcare. In Period Ⅱ, with progress in identification techniques11

and enhancement of nationwide publicity about COVID-19, the accuracy of diagnosis in12

most places in Mainland China had improved, and most cities had the resources needed to13

make diagnoses efficiently and correctly. This may explain why the number of licensed14

doctors per capita does not show significant direct impacts in Period II. Additionally, its15

significant and positive indirect impacts during Period I but negative indirect impacts during16

Period II imply that the medical resources of a city have significant spillover effects that help17

nearby cities diagnose and control COVID-19.18

As for the three natural meteorological variables and AQI, only average humidity19

shows significant positive direct effects on the number of cumulative confirmed cases in both20

entering the city) were implemented by most of the cities, especially for cities in Hubei province and some cities with
relatively more confirmed cases like Wenzhou, Hangzhou, and Harbin (Fang, Wang, and Yang 2020).
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periods. This is consistent with the findings in studies by Doğan et al. (2020), and Chien and1

Chen (2020). Meanwhile, average temperature shows positive direct effects and negative2

indirect effects in Period II. Note that the specific correlation between meteorological3

conditions and the COVID-19 pandemic is still controversial (Harmooshi, Shirbandi, and4

Rahim 2020; McClymont and Hu 2021) and needs to be further explored. Even so, this study5

provides evidence that meteorological variables are significant contributing factors in6

COVID-19 transmission and exhibit spillover effects on the COVID situation in surrounding7

regions.8

One point worth noting is that the index of travel intensity within cities shows no9

significant effects in the Period I model but is found to exert significant and negative direct,10

indirect, and total impacts in the Period II model. The insignificant impact of within-city11

travel flow in the first period may be explained by the lag in COVID-19 transmission from12

Wuhan. That is, in the early stages of the pandemic (i.e., prior to Wuhan’s lockdown), most13

cities only had a small number of confirmed cases so within-city travel flows would have a14

relatively weak impact on the spread of the disease. However, with the increasingly serious15

situation of the COVID-19 pandemic in Period II, local governments began to take different16

control and prevention measures, including suspending public transportation, closing public17

places and factories, and locking down communities. Cities with more severe local outbreaks18

generally implemented more strict control and preventative measures, resulting in lower19

intra-city travel intensity. In addition, the significant spillover effects of within-city travel20

may be explained by policy imitation and referencing between neighboring cities.21
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Population outflow from Wuhan is positively associated with local COVID-191

cumulative confirmed cases as well as cases in surrounding cities during both periods. This2

result indicates that population outflow from Wuhan, the outbreak source region, posed high3

risks to destination cities and adjacent cities. This also suggests the lockdown policy4

implemented in the region effectively prevented the further spread of COVID-19, which is5

consistent with the conclusions of studies by Liu et al. (2020), , Qiu, Chen and Shi (2020) and6

Yang et al. (2020).7

Unsurprisingly, the direct and indirect impacts of cumulative confirmed cases in8

Period I are significantly positive in Period II, suggesting that the more cumulative confirmed9

cases were present in a city before the lockdown of Wuhan, the more serious the outbreak10

situation in the city would be during Period Ⅱ. A higher initial infection level generally11

means a greater possibility for human-to-human transmissions in the later stage. The strong12

indirect effects further emphasize the necessity of control measures in neighboring cities near13

those hotspots.14

15

4.5 SWM performance comparison16

In this section, we further compare the performance of the spatial econometric models using17

different SWMs for each period.18

1) The Period I model19
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Regardless of whether the population-flow-based SWM or inverse distance SWM was1

used, the global Moran’s I tests for Period I consistently exhibit significantly positive values2

(see section 4.3), confirming the existence of spatial autocorrelation in the dependent variable.3

However, as mentioned in section 4.3, LM tests and robust LM tests indicate that spatial4

models (e.g., SLM, SEM) based on inverse distance SWM fail to capture such spatial5

autocorrelation in the dependent variable and these models perform no better than the OLS6

model. On the other hand, spatial models using population-flow-based SWM for the spatial7

lagged dependent variable successfully address the spatial autocorrelation issue, with the8

model residuals exhibiting no systematic spatial pattern at a 95 percent confidence level (see9

Appendix 1).10

2) The Period II model11

As discussed earlier, our Period II spatial econometric model uses12

population-flow-based SWM for the spatially lagged dependent variable and inverse distance13

SWM for the spatially lagged independent variable. To validate the model results, we further14

estimate the Period II model using only the inverse distance SWM for both spatially lagged15

dependent and independent variables and compare the performance of these two models16

(results provided in Appendix 2).17

Compared with the model using only inverse distance SWM, the model employing18

mixed SWMs (i.e., inverse distance SWM for the independent variables and19

population-flow-based SWM for the dependent variable) has a higher R-square. Although20
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there is no major difference across the two models in terms of the significance level of1

explanatory variables, the decomposition of direct and indirect effects does suggest that the2

model using only inverse distance SWM fails to capture the indirect effects of most3

explanatory variables, whereas the model employing mixed SWMs has done well. These4

comparisons thus confirm the robustness of our results.5

6

4.6 Additional robustness checks7

Finally, we further conduct two robustness checks using: 1) symmetric8

population-flow-based SWM12 derived from the average of population move-in and9

move-out within each city pair; 2) (asymmetric) population-flow-based SWM with missing10

values imputed by a gravity model (Wilson 1974)13, rather than the inverse distance weighted11

interpolation. Compared with the original asymmetric population-flow-based SWM12

12 Based on our original population-flow-based SWM (before normalization), we calculate the value of element in
symmetric population-flow-based SWM as:

��� =
1
2

������_��� ������� +������_��� ������� = ���

where the ��� is the spatial weight of unit i towards unit j, and ��� is the spatial weight of unit j towards unit i;
������_��� ������� is the index that reflects the volume of population traveling from city i to city j ;
������_��� ������� is the index that reflects the volume of population traveling from city j to city i .

13 The gravity model used in this paper can be expressed as follows:

��� =
���������

�����
������

�����������

where the ��� is the spatial weight of unit i towards unit j; ���� (����) is the GDP of city i (city j); ���� (����) is the
total population of city i (city j); ���������� �� �ℎ� geographic distance between city i and city j.

We first select city-pairs with accurate move-out indices in our dataset to estimate �, �, �, �, ��� � based on the equation
above. We then use the estimation results to impute move-out indices for city-pairs without accurate move-out indices.
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elaborated in previous sections, the estimation results using these two alternative SWMs1

show no major differences in terms of the statistical significance and the coefficient estimates2

of key explanatory variables but have slightly lower model R-squares (around 5 percent3

lower) (see Appendices 3 and 4). These comparisons suggest that spatial econometric models4

using the original asymmetric population-flow-based SWM produce robust results with better5

goodness of fit, and thus better capture the role of spatial interactions in COVID-196

transmission.7

8

5. Conclusions9

This paper proposes an innovative method of constructing SWM based on the real-time10

population flow data into spatial econometric models. Unlike traditional SWMs which only11

consider geographic or economic proximity, the matrix in this study introduces travel volume12

as the measure of connection between city pairs, aiming to better approximate the impact of13

social interactions. City pairs with more intensive travel interactions are defined as closely14

connected even if they are geographically far from each other, such as in the case of Sanya15

and Beijing. Incorporating the population-flow-based SWM into spatial econometric16

modeling improves classical spatial economic theory by more accurately approximating the17

spatial interaction processes underlying the spillover effects of spatial outcomes. The18

proposed method can be applied to a wide range of economic and social research, including19

environment, public health, demography, and social welfare studies.20
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In the application part of this study, we adopt spatial econometric models based on the1

population-flow-based SWM and traditional geographical distance-based SWM to examine2

the potential transmission determinants of COVID-19 in Mainland China. Our sample is from3

January 11 to February 25, 2020, covering the critical episodes of both the initial spread and4

the peak of infections before the first imported case being reported in Mainland China.5

Considering the changes in population flow from the epicenter of the outbreak as well as the6

widespread use of prevention and control measures, we divide the whole research period into7

two subperiods using the date of Wuhan lockdown (January 23, 2020). The results reveal that8

the advanced health care system played an essential role in the early diagnosis and control of9

the epidemic. We also find that spatial autocorrelation should be considered when exploring10

the correlation between meteorological conditions and diseases. Furthermore, the results11

confirm the significant time-lagged effects of traveler outflows from the outbreak source12

region on pandemic transmission (Qiu, Chen and Shi, 2020). Interestingly, according to the13

results of the Period II model, we find that the population outflow from Wuhan is14

significantly associated with a higher number of local cumulative confirmed cases as well as15

the number of cases in surrounding cities due to positive spillover effects. These results16

emphasize the importance of checking the entire records of travel routes for local17

governments.18

There are two limitations in this study. First, due to data availability, we use only Baidu19

population flow data as our data source of the population flow between and within cities.20

Although it has been demonstrated that Baidu population flow data captures the real-time21
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actual population flow through Baidu LBS with relative accuracy, this still excludes the1

movement of those people who do not use electronic devices, such as elderly people and2

young children. Second, even though the data of over 200 cities can be obtained from the3

Baidu Migration Platform, the precise moving-out indices of each source-city are only4

available for the top 100 destinations. As a result, the data in this paper may not accurately5

reflect smaller flows of population between cities. Hence, the analytical approach of this6

paper can still be extended when more reliable data resources become available for future7

research.8
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1

Table 1 Descriptive Statistics of the Dependent and Independent Variables2

Variable Note Obs. Mean
Std.
Dev.

Min Max

Total number of
confirmed cases in
Period Ⅰ

Number of cumulative
confirmed cases in Period Ⅰ

272 3.165 30.139 0 495

Total population
Total population of urban area
(ten thousand)

272 174.529 234.2 16 2465

GDP per capita GDP per capita (RMB) 272 74992.32 37511.13 19212 217313
Doctors per capita Licensed doctors per capita 272 0.004 0.002 0.001 0.010
Average temperature
during Period Ⅰ

Average daily temperature
during Period Ⅰ (℃)

272 2.02 8.92 -18.90 22.56

Average humidity
during Period Ⅰ

Average daily
relative humidity during Period
Ⅰ (％)

272 75.18 9.499 32.08 90.19

Average wind speed
during Period Ⅰ

Average daily wind speed
during Period Ⅰ (m/s)

272 1.90 0.36 1.24 3.20

Average air quality
index during Period Ⅰ

Average air quality index
during Period Ⅰ

272 95.93 46.69 26.40 237.00

Within-city population
flow index during
Period Ⅰ

Index of travel intensity within
cities during Period Ⅰ

272 5.33 0.66 2.89 7.18

Population from Wuhan
during Period Ⅰ

Population from Wuhan during
Period Ⅰ (thousand)

272 206.54 774.21 0 8024.92

Total number of
confirmed cases in
Period Ⅱ

Number of cumulative
confirmed cases in Period Ⅱ

272 271.39 2859.74 0 46946

Average temperature
during Period Ⅱ

Average daily temperature
during Period Ⅱ (℃)

272 4.48 7.62 -15.17 20.79

Average humidity
during Period Ⅱ

Average daily
relative humidity during Period
Ⅱ (％)

272 69.10 11.16 29.30 84.61

Average wind speed
during Period Ⅱ

Average daily wind speed
during Period Ⅱ (m/s)

272 2.21 0.425 1.24 3.91

Average air quality
index during Period Ⅱ

Average air quality index
during Period Ⅱ

272 68.42 26.42 24.65 140.28

Within-city population
flow index in Period Ⅱ

The average index of travel
intensity within cities in Period
Ⅱ

272 2.65 0.70 0.65 4.96
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1

Table 2 Results of Global Moran’s I tests of spatial autocorrelation for dependent variables2
based on Population-flow weight matrix3

Global Moran’s I statistics
Total number of confirmed cases during Period Ⅰ 0.48 ***
Total number of confirmed cases during Period Ⅱ 0.21***

4

Table 3 Results of LM tests, Robust LM tests and LR tests5

Model specification Period I Period II

Weight matrix: Population-flow
weight matrix

LM-lag test 11.39*** 8.94***

LM-error test 6.93*** 7.79***

Robust LM-lag test 14.44*** 5.95***

Robust LM-error test 3.2*** 4.79**

Weight matrix: Inverse
geographic distance matrix

LM-lag test 0.01 54.92***

LM-error test 0.16 34.81***

Robust LM-lag test 0.18 23.36***

Robust LM-error test 0.34 3.24**

LR test statistics between SDM
and SLM

12.99 126.24***

Note: 1. *** p<0.01, ** p<0.05, * p<0.1. This paper uses the traditional cutoff value of6
p<0.05 to determine statistical significance.7
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1

Table 4 Empirical results for OLS and spatial econometric models2
Period I (before lockdown)
Cumulative cases (January 11 -
January 23)

Period II (after lockdown)
Cumulative cases (January 24 -
February 25)

MODEL OLS SLM OLS SDM
Total population (log) 0.44*** 0.34*** 0.46*** 0.42***
GDP per capita (log) 0.12 0.16* -0.17 -0.11
Doctors per capita (log) 117.70*** 99.64*** 8.34 32.01
Average temperature 0.01 -0.01 0.02** 0.06***
Average wind speed 0.11 0.18 -0.12 0.12
Average humidity 0.01** 0.01** 0.04*** 0.03***
Average air quality index -0.01*** -0.01*** 0.01** 0.01
Within-city population flow
index

-0.05 -0.04 -0.68*** -0.56***

Population from Wuhan
during Period Ⅰ

0.01*** 0.01*** 0.01*** 0.01***

Total number of confirmed
cases during Period Ⅰ (log)

0.41*** 0.32***

Constant -4.06*** -4.20*** 1.60* -22.85**
W*Total population (log) -1.70*
W*GDP per capita (log) 3.78***
W*Doctors per capita (log) -1,792.00***
W*Average temperature -0.20**
W*Average wind speed -0.84
W*Average humidity -0.07
W*Average air quality index 0.05**
W*Within-city population
flow index

-0.33

W*Population from Wuhan
during Period Ⅰ

0.01***

WG*Total number of
confirmed cases during Period
Ⅰ (log)

2.48**

WP*Total number of
confirmed cases during Period
Ⅰ (log)

0.74***

WP*Total number of
confirmed cases during Period
Ⅱ (log)

0.30**

R-square 0.45 0.50 0.67 0.79
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Observations 272 272 272 272

Note: *** p<0.01, ** p<0.05, * p<0.1. This paper uses the traditional cutoff value of p<0.051
to determine statistical significance.2

3

Table 5 Estimation results for decomposition of the spatial effects4
Effect Period I (before

lockdown) cumulative
cases
(January 11 -January 23)

Period II (after
lockdown) cumulative
cases
(January 24 - February
25)

Total population (log) Direct 0.34*** 0.42***
Indirect 0.07** -1.78*
Total 0.41*** -1.36

GDP per capita (log) Direct 0.16* -0.11
Indirect 0.03 4.02***
Total 0.19* 3.92

Doctors per capita (log) Direct 99.96*** 30.15
Indirect 20.41** -1907.21***
Total 120.37*** -1877.05***

Average temperature Direct -0.01 0.06***
Indirect -0.01 -0.21**
Total -0.02 -0.16**

Average wind speed Direct 0.18 0.11
Indirect 0.04 -0.89
Total 0.21 -0.78*

Average humidity Direct 0.01** 0.03***
Indirect 0.01* -0.07
Total 0.02** -0.04*

Average air quality index Direct -0.01*** 0.01
Indirect -0.01*** 0.05**
Total -0.02*** 0.05**

Within-city population flow
index

Direct -0.04 -0.55***
Indirect -0.01 -0.39
Total -0.05 -0.94

Population from Wuhan during
Period Ⅰ

Direct 0.01*** 0.01***
Indirect 0.01** 0.01***
Total 0.02*** 0.02***

Total number of confirmed cases
during Period Ⅰ (log)

Direct 0.33***
Indirect 2.66**
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Total 2.98**

Note: *** p<0.01, ** p<0.05, * p<0.1. This paper uses the traditional cutoff value of p<0.051
to determine statistical significance.2

3
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Appendix 1 Global Moran’s I of residuals based on Population-flow weight matrix1

Global Moran’s I P-value

Residuals of SLM for Period I (before
lockdown)

-0.05 0.06

Residuals of SDM for Period II (after
lockdown)

0.04 0.08

2

Appendix 2 Period II SDM using only the inverse distance SWM for both spatially lagged dependent and3
independent variables4

Appendix 2.1 Coefficient Estimates5
MODEL SDM
Total population (log) 0.56***
GDP per capita (log) -0.15
Doctors per capita (log) 53.58
Average temperature 0.06***
Average wind speed 0.05
Average humidity 0.03**
Average air quality index 0.01
Within-city population flow index -0.53***
Population from Wuhan during Period Ⅰ 0.01***
Total number of confirmed cases during Period Ⅰ (log) 0.38***
Constant -18.59*
W*Total population (log) -1.75*
W*GDP per capita (log) 3.20***
W*Doctors per capita (log) -1,730.00***
W*Average temperature -0.23***
W*Average wind speed -0.97
W*Average humidity -0.07
W*Average air quality index 0.04*
W*Within-city population flow index 0.09
W*Population from Wuhan during the Period Ⅰ 0.01***
W*Total number of confirmed cases during Period Ⅰ (log) 2.51**
W*Total number of confirmed cases during Period Ⅱ (log) 0.78***
R-square 0.75
Observations 272

Appendix 2.2 Decomposition of the spatial effects6
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Effect Coefficient
Total population (log) Direct 0.53***

Indirect -5.91
Total -5.37

GDP per capita (log) Direct -0.09
Indirect 13.85
Total 13.76

Doctors per capita (log) Direct 21.68
Indirect -7580.86
Total -7559.18

Average temperature Direct 0.06***
Indirect -0.81
Total -0.75

Average wind speed Direct 0.03
Indirect -4.16
Total -4.12

Average humidity Direct 0.03**
Indirect -0.22
Total -0.20

Average air quality index Direct 0.01
Indirect 0.18
Total 0.18

Within-city population flow index Direct -0.53***
Indirect -1.43
Total -1.96

Population from Wuhan during Period Ⅰ Direct 0.01***
Indirect 0.01
Total 0.01

Total number of confirmed cases during Period Ⅰ (log) Direct 0.43***

Indirect 12.62

Total 13.05

1

2
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Appendix 3 Estimated spatial effects using symmetric population-flow-based SWM derived from the average of1
population move-in and move-out within each city pair2

Effect Period I Period II
Total population (log) Direct 0.34*** 0.49***

Indirect 0.09** -1.77*
Total 0.40*** -1.28

GDP per capita (log) Direct 0.13 -0.14
Indirect 0.04 3.82***
Total 0.17 3.68***

Doctors per capita (log) Direct 85.98*** 37.55
Indirect 26.51** - 2008.35***
Total 112.49*** -1970.81***

Average temperature Direct -0.01 0.06***
Indirect -0.01 -0.18**
Total -0.02 -0.13**

Average wind speed Direct 0.18 0. 06
Indirect 0.05 -0.78
Total 0.23 -0.71

Average humidity Direct 0.01** 0.03***
Indirect 0.01* -0.06
Total 0.02** -0.03

Average air quality index Direct -0.01*** 0.01
Indirect -0.01** 0.06***
Total -0.01*** 0.06***

Within-city population flow
index

Direct 0.01 -0.51***
Indirect 0.01 -0.69
Total 0.02 -1.20

Population from Wuhan during
Period Ⅰ

Direct 0.01*** 0.01***
Indirect 0.01** 0.01***
Total 0.01*** 0.02***

Total number of confirmed cases
during Period Ⅰ (log)

Direct 0.35***
Indirect 2.77***
Total 3.12**

R2 0.47 0.76

Note: *** p<0.01, ** p<0.05, * p<0.1.3

4
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Appendix 4 Estimated spatial effects using asymmetric population-flow-based SWM with missing values1
imputed by a gravity model2

Effect Period I Period II
Total population (log) Direct 0.31*** 0.46***

Indirect 0.09*** -1.62
Total 0.40*** -1.16

GDP per capita (log) Direct 0.14 -0.16
Indirect 0.04 1.33**
Total 0.18 1.17

Doctors per capita (log) Direct 90.33*** 41.24
Indirect 27.61** -1253.95**
Total 117.94*** -1212.70***

Average temperature Direct -0.01 0.03**
Indirect -0.01 -0.22**
Total -0.01 -0.19**

Average wind speed Direct 0.16 0. 09
Indirect 0.05 -0.19
Total 0.21 -0.11

Average humidity Direct 0.01* 0.03***
Indirect 0.01* -0.02
Total 0.02** -0.01

Average air quality index Direct -0.01*** -0.01
Indirect -0.01** 0.02
Total -0.01*** 0.01

Within-city population flow
index

Direct -0.01 -0.55***
Indirect -0.01 -0.45
Total -0.01 -0.99

Population from Wuhan during
Period Ⅰ

Direct 0.01*** 0.01***
Indirect 0.01** 0.01***
Total 0.01*** 0.02***

Total number of confirmed cases
during Period Ⅰ (log)

Direct 0.36***
Indirect 2.60***
Total 2.96***

R2 0.48 0.76

Note: *** p<0.01, ** p<0.05, * p<0.1.3

4
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