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Abstract: Solid oxide electrolysis cell (SOEC) is a novel approach to utilize excess 

renewable power to produce fuels and chemicals. However, the intermittence and 

fluctuation of renewable energy requires more advanced optimization strategy to make 

sure its performance in safety and cost-effectiveness. Here, we propose a hybrid model 

for the precise and quick optimization of the co-electrolysis process in the SOEC for 

syngas production, based on the multi-physics simulation (MPS) and deep learning 

algorithm. The hybrid model fully considers electrochemical/chemical reactions, 

mass/momentum transport and heat transfer, and presents a small relative error (< 1%) 

in most the cases (> 96%). Various targets including the single-objective, dual-objective 
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and multi-objective optimizations are evaluated with particular attentions on the 

reactant conversion rate and energy efficiency at different temperatures. The 

electrolysis efficiency is negatively correlated with the power supply in all strategies 

and thermal neutral condition (TNC) can be achieved at different temperatures, where 

1023 K, 1053 K, 1083 K and 1113 K are corresponded to the TNC power range of 10-

16 W, 14-23 W, 18-29 W and 22-37 W, respectively. This theory can be flexibly applied 

in the sustainable manufacturing and circular economy sectors and energy according to 

the optimization targets. 

Keywords: Solid oxidation electrolysis cell; Renewable powers; Numerical simulation; 

Deep learning; Co-electrolysis. 
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1. Introduction 

Our reliance on fossil fuels has led to a lot of global challenges such as climate 

change, environment pollution and energy crisis [1]. A systemic transition to clean 

energy is urgently needed to realize the net-zero economy and carbon-neutral society 

[2, 3]. Hydrogen-based energies are potential choices to replace fossil fuels as they are 

environmentally friendly and high-energy-density in mass [4, 5]. On the other hand, 

many scholars are working on electrochemical CO2 reduction into fuels or chemicals 

for cleaner provision of energy and achieving circular economies [6-8]. Therefore, co-

electrolysis of H2O and CO2 with renewable powers is crucial to achieve zero emission 

and meet global sustainable energy needs as it not only provides an alternative method 

for energy generation but also efficiently captures and reduces CO2 [9]. 

SOEC is a promising technology because of its high efficiency, fast kinetics and 

wide reactant selections [10, 11]. Compared with low temperature electrolysis 

technologies, the high operating temperature brings thermodynamic advantages and 

less overpotential losses especially in the co-electrolysis of H2O and CO2 [12, 13]. 

However, the high temperature operation also causes extra difficulties in thermal 

management and performance optimization in achieving a high-power density and 

energy efficiency [14]. With the change of operating parameters, SOECs can work in 

endothermic or exothermic status, which plays as a key indicator for its performance 

evaluation [15]. Optimization strategies are thus necessary to adjust the operating 

conditions and meet the desired criteria especially when directly driven by intermittent 

renewable powers [16-19].  



System-level simulation has proven that the combination of SOEC and renewable 

power like solar and wind energy can make full use of energy and get high cost-

effectiveness [20, 21]. But the exact operating conditions of SOEC when utilizing 

fluctuating renewable energies were not considered, which not only caused uncertainty 

in the production rate but also made it difficult to keep a safe operating environment 

with high energy efficiency. To solve this problem, dynamics models of SOEC were 

developed to investigate the effects of input power fluctuation on the SOEC 

temperature and efficiency [22-24]. To reduce the computing resources and make it 

applicable for the real-time optimization, Han et al. [25] also proposed a black-box 

model to represent the dynamic models to reduce cost and computing-time. Qiong et al. 

[26] further studied the single-target optimization such as the hydrogen production, 

energy consumption and compressor consumption for the SOEC. But these studies 

missed the real-time operating parameters with actual fluctuating power supply and 

lacked the competence for the multi-objective optimizations of SOECs. A new method 

is thus needed for the fast and accurate multi-objective optimization of SOECs with 

cost-effectiveness and high efficiency. 

Considering the highly coupled physical/chemical processes and complex 

operating conditions in the SOEC [27], multi-physics simulations (MPS) are widely 

adopted to investigate the performance at various parameters [28-31]. To meet the high 

calculation demands of MPS for the purpose of real-time optimization, its combination 

with artificial intelligence (AI) has been proposed [32-35]. Among the AI algorithms, 

machine learning (ML), fuzzy logic and heuristic optimization are the most commonly 



used [36], where deep neural networks (DNN) is regarded as an efficient tool in the 

field of non-linear systems [37, 38]. Due to the black-box nature, DNN is particularly 

suitable for the engineering applications [39, 40], and fast optimization can be achieved 

with the further combination with optimization algorithms such as genetic algorithm 

(GA) [41]. 

Along this line, here we perform a case study on photovoltaic-SOEC integrated 

system to demonstrate the effectiveness of the proposed concept. Photovoltaic is chosen 

because of its economic benefits in power generation, but its intermittent power 

generation nature requires solutions in the direct utilization in the electrolysis process 

[42, 43]. In this study, to solve the challenges, a hybrid model by combining 

experimental data, MPS, DNN and GA is developed to quickly and accurately obtain 

the best working conditions corresponding to the fluctuating power supply under 

different optimization objectives.  

2. Model development 

As shown in Fig. 1, we choose output power data in a typical day from a 

photovoltaic power station as the input profile of power supply. We assume the total PV 

power is evenly dispersed into the SOEC units by a transformer. With a certain input 

power from PV, the applied voltage in SOEC can be set as the values needed. The 

proposed scheme includes the development of MPS model with the validation of 

experimental data, the extension of database with the scanning sets of input/output 

parameters for the training of DNN model, and the GA prediction of optimized 

parameters of SOEC at different strategies.  



 

Fig. 1. Schematic of the hybrid model. 

 

2.1 Development of MPS model 

Based on the experimental data [44], the thicknesses of cathode support layer (Ni-

YSZ), cathode active layer (Ni-ScSZ), electrolyte (ScSZ) and anode (LSM-ScSZ) in 

the tubular SOEC are 760μm, 10μm, 10μm and 15μm, respectively. Key properties 

of the SOEC material and reaction parameters used in the model are listed in Table 1 & 

2.  

 

Table 1. Properties of the adopted materials 

Parameters Value or expression Unit 

Conductivity   



𝜎𝑆𝑐𝑆𝑍 
69,200 × 𝑒

−9681
𝑇  

S m-1 

𝜎𝑌𝑆𝑍 
33,400 × 𝑒

−10300
𝑇  

S m-1 

𝜎𝑁𝑖 4.2×106-1,065.3T S m-1 

𝜎𝐿𝑆𝑀 4.2×107exp(-1,150/T) S m-1 

Porosity   

𝜀𝑎 0.36  

𝜀𝑐 0.36  

Tortuosity   

𝜏𝑎 3  

𝜏𝑐 3  

Triple Phase Boundary   

STPB 2.14×105 m-1 

Heat Conductivity   

𝜆𝑎 9.6 W m-1 K-1 

𝜆𝑐 6.23 W m-1 K-1 

𝜆𝑒𝑙 2.7 W m-1 K-1 

Heat Capacity   

𝐶𝑝,𝑎 420 J kg-1 K-1 

𝐶𝑝,𝑐 390 J kg-1 K-1 

𝐶𝑝,𝑒𝑙 300 J kg-1 K-1 

Density   

𝜌𝑎 6,570 Kg m-3 

𝜌𝑐 6,870 Kg m-3 

𝜌𝑐𝑙 2,000 Kg m-3 

 

Table 2. Kinetics of reactions. 

Electrochemical Reaction   

io 
𝛽 ⋅ exp(−

𝐸𝑎

𝑅𝑇
)  

Am-2 

𝛽 3.3×108 Am-2 

𝐸𝑎 1.2×105 J mol-1 

𝜕𝐻2𝑂 0.6  

𝜕𝐶𝑂2 0.6  

Chemical Reaction   

𝑅𝑊𝐺𝑆𝑅 
𝐾𝑠𝑓 (𝑃𝐻2𝑂𝑃𝐶𝑂 −

𝑃𝐻2𝑃𝐶𝑂2
𝐾𝑝𝑠

) 
mol m-3s-1 

𝐾𝑠𝑓 
 0.0171exp(

−103191

𝑅𝑇
) 

Pa -2s-1 

𝐾𝑝𝑠 
𝑒𝑥𝑝 (−0.2935𝑍

3 + 0.6351𝑍2

+4.1788𝑍 + 0.31
) 

 

Z 1000

𝑇
− 1 

 



In this section, we present a concise introduction of the governing equations. For 

model simplification, below assumptions and boundary conditions are adopted in the 

MPS model while more detailed conditions of the MPS model development can be 

found in our previous work [45, 46] . 

Assumption： 

(1) Gases in SOEC are all ideal gases. 

(2) Electrochemical reactions only take place at triple-phase boundaries. 

(3) Heat loss including thermal radiation and thermal convection between the SOEC 

and environment is neglected. 

(4) H2/H2O and CO/CO2 are the main reactants in electrochemical reactions. 

Boundary condition： 

(1) At the chamber inlets of anode and cathode, the values of inlet gas flow rate, inlet 

gas composition, inlet gas temperature are set. 

(2) At the outlets of chamber at anode and cathode, free flow condition is set. 

(3) At the outside surfaces of the anode and cathode, the values of applied voltage are 

set. 

(4) At the ends of electrodes and outside surface of the SOEC, zero flux and thermal 

insulation are set. 

2.1.1. Electrochemical reactions 

 The mixture of H2O and CO2 flows through the cathode channel, and they are 

reduced as shown in Eqs. (1)-(2).  

𝐻2𝑂 + 2e− = 𝐻2 + 𝑂2−           （1） 



𝐶𝑂2 + 2𝑒− = 𝐶0 + 02−             （2） 

O2- ions then are transported to the anode, where electrons are released and O2 is 

generated as shown in Eq. (3). 

𝑂2− = 0.5𝑂2 + 2𝑒−          （3） 

The applied voltage can be calculated by Eq. (4). 

𝑉 = 𝐸𝑒𝑞 + 𝜂𝑎𝑐𝑡 + 𝜂𝑜ℎ𝑚𝑖𝑐         （4） 

Where, calculations of the 𝐸𝑒𝑞  for H2O and CO2 are given in Eqs. (5) and (6), 

respectively, and   calculations of the 𝜂𝑎𝑐𝑡  is shown in Eq. (7), and 𝜂𝑜ℎ𝑚𝑖𝑐  is 

calculated by Ohm’s law as given in Eqs. (8) and (9). 

𝐸𝑒𝑞,𝐻2𝑂 = 𝐸𝑒𝑞,𝐻2𝑂
0 +

𝑅𝑇

2𝐹
𝑙𝑛 [

𝑃𝐻2
𝐿,𝐶(𝑃𝑂2

𝐿,𝐴)1/2

𝑃𝐻2𝑂
𝐿,𝐶 ]          (5) 

𝐸𝑒𝑞,𝐶𝑂2 = 𝐸𝑒𝑞,𝐶𝑂2
0 +

𝑅𝑇

2𝐹
𝑙𝑛 [

𝑃𝐶𝑂
𝐿,𝐶(𝑃𝑂2

𝐿,𝐴)1/2

𝑃𝐶𝑂2
𝐿,𝐶 ]           (6) 

𝑖 = 𝑖0 {𝑒𝑥𝑝 (
𝛼𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
) − 𝑒𝑥𝑝 (−

(1−𝛼)𝑛𝐹𝜂𝑎𝑐𝑡

𝑅𝑇
)}          (7) 

𝑖1 = −𝜎1
𝑒𝑓𝑓

𝛻(∅1)        (8) 

𝑖𝑠 = −𝜎𝑠
𝑒𝑓𝑓

𝛻(∅𝑠)        (9) 

2.1.2 Chemical reactions 

 The reversible water-gas shift reaction (WGSR) is also considered as shown in Eq. 

(10) 

𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2             (10) 

2.1.3 Mass/momentum transport 

 Considering the Knudsen diffusion and free molecule diffusion in channels and 

porous layers, the mass transport of the gas species is calculated as shown in Eq. (11). 



𝑁𝑖

𝐷
𝑖𝑘
𝑒𝑓𝑓 + ∑

𝑦𝑖𝑁𝑗

𝐷
𝑖𝑗
𝑒𝑓𝑓

𝑛
𝑗=1.𝑗≠𝑖 = −

1

𝑅𝑇
(𝛻(𝑦𝑖𝑃) +

𝐵0𝑦𝑗𝑃

𝜇𝐷
𝑖𝑘
𝑒𝑓𝑓 𝛻𝑃)        (11) 

The mentum transport is calculated as shown in Eq. (12). 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝑢𝛻𝑢 = −𝛻𝑝 + 𝛻𝜇 [(𝛻𝑢 + (𝛻𝑢)𝑇) −

2

3
𝜇𝛻𝑢] −

𝜀𝜇𝑢

𝑘
         (12) 

2.1.4 Heat transfer 

 The heat transfer process is calculated as shown in Eq. (13). 

𝜌𝐶𝑃𝑢 ⋅ 𝛻𝑇 + 𝛻 ⋅ (−𝜆𝑒𝑓𝑓𝛻𝑇) = 0          (13) 

2.2 Development of deep neural networks (DNN) 

 DNN is a typical artificial intelligence technology modeled after the biological 

neural networks, which can get a quick and accurate output through a given input 

without knowing the actual function between the input and output. Its network structure 

consists of an input layer, multiple hidden layers, and an output layer in which the 

connection between each layer is a series of weight matrix that is crucial for DNN. The 

outputs from the prior layer are propagated to the next layer as inputs by the activation 

function like ReLu. 

 In this particle, a six-hidden-layer back-propagation DNN is built with four inputs 

and four outputs while 256 neurons are used in each hidden layer. Linear is chosen as 

activation function in input layer and output layer while ReLU is chosen as activation 

function in hidden layers. The variables in input layer are the operating voltage, the 

current density, the inlets temperature and the cathode inlet gas composition. 

Meanwhile, the outputs in output layer are the cathode inlet gas flow rate, the cathode 

outlet gas composition (H2 and CO) and the heat generation.  

The training set, validation set and testing set account for 60%, 20%, 20%, respectively, 



which constitute a 30090 x 8 data matrix. The epoch and batch size are set as 1000 and 

50, respectively.  

 As the parameters have different orders of magnitude ranging from 10-2 to 103, the 

parameters are firstly normalized to the same range as shown in Eq. (14) to eliminate 

the influence of unit and scale differences between different features and get high 

accuracy of DNN. 

𝑥𝑖 = 0.8 (
𝑥−min

max−min
) + 0.2        (14) 

Here, xi, x, max, and min are the value after normalization, the true value, the minimum 

value and the maximum value, respectively. 

2.3 Genetic algorithm 

GA is a method to search for optimal solution by simulating nature evolution. When 

solving complex combinatorial optimization problems, it can quickly obtain better 

optimization results compared with some conventional optimization algorithms. In this 

work, the population, generation, crossover and mutation rate of GA are set as 200, 200, 

0.8 and 0.01 respectively. The optimization criterion varies from the different 

optimization strategies in section 3.2 – 3.4. 

3.Results and discussion 

3.1 Model validation 

As shown in Table s1, the MPS model was validated by the comparison between 

the simulation results and experimental data at the same operating conditions. Good 

agreements were achieved at both 973 K (r = 0.994) and 1023 K (r = 0.992) as shown 

in Fig. 2(a). A database was then built based on the proposed MPS model to extend the 



primary operating parameters (temperature, gas composition, operating voltage, flow 

rate) and the primary performance parameters (power consumption, heat generation, 

conversion rate, etc.). The operating parameters of database are listed in Table s1 and 

the MPS results are listed in Table 3. 

For the DNN model, the predicted results showed a small relative error (< 1%) in 

almost all cases (> 96%) as shown in Fig. 2(b). In the training set, it shows a high 

correlation coefficient (0.99983) and low root-mean-square errors (RMSE) (0.00226). 

As well as in the testing set, the correlation coefficient and RMSE are 0.99978 and 

0.00254, respectively. 

 

 

Fig. 2. (a). The simulation data and experiment data at different temperatures, (b). the 

values of relative errors in predicting the cathode gas flow rate, H2 generation, H2 and 

CO generation, heat generation using DNN, the change of loss (c) and RMSE (d) in 

training and testing sets with increasing epochs. 



Table 3. The results of MPS model. 

Parameter Value Unit 

Current density 38.06 - 30309.6 A cm-2 

H2 generation 0.02 - 87.52 % 

total conversion rate 1 - 98.89 % 

Heat generation -1.46 - 6.97 W 

 

3.2 Single objective optimization strategy 

3.2.1 Minimum absolute heat generation  

Thermal-neutral condition (TNC) is a state where the heat generated or absorbed 

by SOEC reaches to zero in which it can keep its high efficiency without extra operation. 

This condition is also associated with the small peak-temperature-gradient (PTG), 

which is key to keep SOEC from thermal damage in the long-term operation. To achieve 

the TNC at different conditions, the performance of SOEC with minimum absolute heat 

generation is studied.  

 The operating voltage kept a similar changing tendency with the fluctuation of 

power supply, which significantly affects the minimum heat generation at 1023 K as 

shown in Fig. 3(a). A small heat generation (< 0.5 W) was possible in the period before 

10:20 and after 12:30, but it could increase to a very large value (2.5 W) at 11:00, which 

would impair the efficiency and cause thermal damage. A higher operating temperature 

(1113 K) could significantly reduce the minimum heat generation especially at high 

input power conditions as shown in Fig. 3(b). Through optimization, the minimum heat 

generation could be limited between -0.7 W and 0.3 W during the whole day operation. 

It should be noted that a negative heat generation means additional heat supply to the 

SOEC is required, which can increase the electrical efficiency but auxiliary equipment 

is needed. 



The effects of different operating temperature can be further interpreted by Fig. 3(c) 

& (d). The operating voltage showed a dominant influence in this strategy while other 

operating parameters changed accordingly as shown in Table s2. With the increase of 

cathode inlet temperature, the kinetics of electrochemical reactions were significantly 

increased. As a result, smaller voltages were needed at the same power supply, and 

more heat was consumed in the endothermic electrochemical processes. A higher inlet 

gas temperature contributed to a larger power range for the TNC, where 1023 K, 1053 

K, 1083 K and 1113 K were corresponded to the TNC power range of 10-16 W, 14-23 

W, 18-29 W and 22-37 W, respectively.  

 

 

Fig. 3. The minimum absolute heat generation strategy. (a) the operating voltage and 

heat generation at 1023K - time relationship, (b) the operating voltage and heat 

generation at 1113K - time relationship, (c) the operating voltage changing with power 

at different temperatures, (d) the heat generation changing with power at different 

temperatures. 



3.2.2 Maximum electrolysis efficiency 

Electrolysis efficiency, as shown in Eq. (15), is vital to the economic operation of 

SOECs. A high efficiency (> 100%) not only fully utilizes the input electricity power, 

but also uses thermal energy as the drive force for the additional fuel generation. When 

combined with a concentrated solar thermal storage system, operating at such a high 

efficiency can bring more economic benefits. 

𝜂 =
𝛥𝐻𝐻+𝛥𝐻𝐶

𝑄𝑒𝑙+𝑄𝑡ℎ
                             (15) 

Here, 𝜂  is electrolysis efficiency, 𝛥𝐻𝐻  and 𝛥𝐻𝐶  are the high calorific value of 

hydrogen and carbon monoxide, respectively, 𝑄𝑒𝑙  and 𝑄𝑡ℎ  are the total electrical 

energy and total heat energy applied in system. 

 It can be observed in Fig. 4(a) & (b), the electrolysis efficiency decreased with 

growth of applied voltage. At 1023 K, the highest maximum efficiency (122%) was 

achieved at 7:00 and 17:00 while the lowest maximum efficiency (94%) was found at 

11:00, indicating the importance of external heat energy supply at the beginning and 

ending phase. With the increasing operating temperature to 1113 K, the lowest 

maximum electrolysis efficiency was further increased to 99%, indicating that the 

additional thermal energy supply is needed during almost the whole period. The 

increase of gas temperature at inlets presented a stronger effect at smaller power 

supplies as can be seen from Fig. 4(c) & (d). Similarly, the operating voltage is the most 

important indicator. The voltage decreased by 0.09V and 0.1V, respectively, with the 

increasing temperature from 1023 K to 1113 K. In the meanwhile, the efficiency 

increased by 6.2% and 3.8% at 10 W and 40 W cases, respectively. Due to the negative 



correlation of electrolysis efficiency and heat generation, a low H2O composition (10%) 

and a high flow rate (> 500 SCCM) were favored while achieving the maximum 

electrolysis efficiency as shown in Table s3. 

 

Fig. 4. The maximum electrolysis efficiency strategy. (a) the operating voltage and 

electrolysis efficiency at 1023 K - time relationship, (b) the operating voltage and 

electrolysis efficiency at 1113 K - time relationship, (c) the operating voltage changing 

with power at different temperatures, (d) the electrolytic efficiency changing with 

power at different temperatures.  

 

3.2.3 Maximum conversion rate 

 Conversion rate is an essential indicator for the performance of SOECs. A high 

conversion rate means more H2 and CO will be generated with the same condition at 

cathode inlet, which can bring more economic benefits. The conversion rate is expected 

to be as high as possible to get more products in industrial manufacture. 

The operating voltage kept a similar changing tendency with the fluctuating power 



supply, which significantly affected the maximum conversion rate at 1023 K as shown 

in Fig. 5(a). The smaller applied voltage was needed at high temperature (1113K) while 

the highest conversion rate, nearly 100%, was found at 11:00 as shown in Fig. 5(b). The 

maximum conversion rate remained over 60% from 10:20 to 11:55 at both temperatures.  

 Further research on the effects of temperature can be seen from Fig. 5(c) & (d). 

The maximum conversion rate is strongly affected by supply power while it shows little 

difference at different temperature. When the supply power reached to 40W, the 

maximum conversion rates at all temperatures nearly achieved 100% which means all 

the reactants are electrolyzed. Especially, the operating voltage showed an obvious 

transition at 33W because of the change of gas flow rate at cathode inlet. Moreover, the 

operating conditions of gas composition of H2O remained 90% while the gas flow rate 

remained the lowest (300 SCCM) at small power supplies and grew slowly with the 

increase of power supplies when power supply was higher than 33W, as shown in Table 

s4. 



 

Fig. 5. The maximum conversion rate strategy. (a) the operating voltage and conversion 

rate of H2 and CO at 1023 K - time relationship, (b) the operating voltage and 

conversion rate at 1113 K - time relationship, (c) the operating voltage changing with 

power at different temperatures, (d) the conversion rate changing with power at 

different temperatures. 

 

3.3 Dual-objective optimization strategy 

The indicators to evaluate the performance of SOEC are not limited to single object. 

The operation condition of maximum electrolysis efficiency contributes to a low 

conversion rate and low ratio of H2:CO, which will affect the performance of SOECs. 

However, to bring more economic benefits, not only high electrolysis efficiency but 

also high conversion rate and high ratio of H2 and CO are needed. 

 

3.3.1 Maximum electrolysis efficiency while keeping the ratio of H2:CO > 2:1 

 Since the caloricity of H2 is higher than CO, a high ratio of H2:CO is expected 



while keeping maximum electrolysis efficiency. Because of the limiting condition of 

the generation ratio of H2: CO, more H2O was needed in cathode gas composition, 

causing a lower applied voltage and electrolytic efficiency at a certain output power 

compared with the strategy in Section 3.2.2 (Fig. 4(c) & Fig. 6(c)). It can be observed 

in Fig.6 (a)&(b), the highest operating voltage and the lowest electrolytic efficiency 

were 1.47 V, 91% (1023 K) and 1.3 V, 97% (1113 K), respectively, in the case of the 

highest power supply at 11:00. On the other hand, the increase of inlet gas temperature 

and power supplies presented a stronger effect at the maximum electrolytic efficiency 

(Fig. 6(d)). The operating voltage grew with the increase of supply power while the 

inlet gas composition of H2O remained 90% to keep the ration of H2:CO > 2:1 as shown 

in Table s5.  

 

Fig. 6. Maximum electrolysis efficiency while keeping the ratio of H2:CO > 2:1. (a) 

the operating voltage and electrolysis efficiency at 1023 K - time relationship, (b) the 



operating voltage and electrolysis efficiency at 1113 K - time relationship, (c) the 

operating voltage changing with power at different temperatures, (d) the electrolytic 

efficiency changing with power at different temperatures. 

 

3.3.2 Maximum conversion rate while keeping electrolysis efficiency>90% 

 Similarly, the operating conditions of the strategy of maximum conversion rate as 

shown in Fig. 5, contribute to a low electrolysis efficiency especially at high supply 

power. It follows that high heat generation affects the performance of SOECs. 

 Since the limited of the electrolysis, the conversion rate at low temperature (1023K) 

cannot achieve 100% even with the highest supply power, while the conversion rate at 

high temperature (1113K) got to 100% at 11:00 with the electrolysis efficiency of 91.6% 

as shown in Fig.7 (a)&(b). Compared with the strategy of maximum conversion rate at 

section 3.2.3, the restriction of electrolysis efficiency showed a great effect on the 

operating voltage and maximum conversion rate when the supply power was higher 

than 33W at low temperature (1023K & 1053K), conversely, the performance at high 

temperature (1083K & 1113K) was almost identical with the latter (Fig. 7(c) & (d)). 

Similarly, the operating inlet gas composition of H2O kept 90% and the operating inlet 

gas flow remained 300 SCCM at first while it increased with the growth of the supply 

power after 33W as shown in Table s6. 



 

Fig. 7. Maximum conversion rate while keeping electrolysis efficiency>90%. (a) the 

conversion rate and electrolysis efficiency at 1023 K - time relationship, (b) the 

conversion rate and electrolysis efficiency at 1113 K - time relationship, (c) the 

operating voltage changing with power at different temperatures, (d) the conversion 

rate changing with power at different temperatures. 

 

3.4 Multi-objective optimization strategy 

A high production rate is usually desired especially in the industrial-level 

applications. In this section, we proposed different strategies to find the largest gas flow 

rate while keeping the ratio of H2:CO > 2:1 and electrolysis efficiency>90%. 

Interestingly, while keeping the ratio of H2:CO > 2:1 and electrolysis 

efficiency>90%, the maximum gas flow rate can reach to 600 SCCM with any supply 

power, which means SOECs can work on the condition of 600 SCCM gas flow rate in 

the whole day. Moreover, the electrolysis efficiency at 1023K got to minimum (91.2%) 

with conversion rate of maximum (40.1%) and the electrolysis at 1113K got to 



minimum (97.1%) with conversion rate of maximum (42.7%) at 11:00 as shown in Fig. 

8(a) & (b). In general, the maximum conversion rates at both temperatures were more 

than 40% while we chose the largest gas flow rate, which can achieve high production. 

Further research on the effect of temperature is shown in Fig. 8(c) & (d). The 

electrolysis efficiency showed a positive correlation to the temperature at high supply 

power, while the operating voltage decreased with the growth of temperature. When the 

supply power was 40W, the operating voltage got to 1.47V at 1023K with electrolysis 

efficiency of 91.2% while it only needed 1.31V at 1113K with electrolysis efficiency 

of 97.1%. Especially, when SOECs changed from endothermic state to exothermic state, 

the operating voltage showed a small drop while changing with the increase of supply 

power. The maximum operating fluid flow rate came to 600 SCCM with the inlet 

composition of H2O as shown in Table s7. 

 



Fig. 8. Maximum gas flow rate while keeping the ratio of H2:CO > 2:1 and electrolysis 

efficiency>90%. (a) the electrolysis efficiency and conversion rate at 1023 K - time 

relationship, (b) the electrolysis efficiency and conversion rate at 1113 K - time 

relationship, (c) the operating voltage changing with power at different temperatures, 

(d) the electrolysis efficiency changing with power at different temperatures. 

 

4. Conclusion 

 In summary, we have developed a hybrid model to quickly simulate the operating 

parameters of SOECs when it works with a fluctuating renewable power supply, aiming 

at a safe and cost-effective operation by performing different optimizing strategies. We 

find the operating voltage is positively correlated with the input power at all 

temperatures and a higher inlet gas temperature contributes to a lower operating voltage 

in all the optimization strategies. Thermal neutral condition (TNC) can be achieved at 

different temperatures, where 1023 K, 1053 K, 1083 K and 1113 K are corresponded to 

the TNC power range of 10-16 W, 14-23 W, 18-29 W and 22-37 W, respectively. In the 

single object optimization strategy, the lowest maximum electrolysis efficiency is 94% 

at 1023K and 99% at 1113K, and highest maximum conversion rate can reach 100% at 

11:00 with the highest power supply. But in multiple optimization objectives, target 

parameters such as the electrolysis efficiency and conversion rate can be slightly lower 

than that in the single object optimization. In the three-objective optimization, the 

highest conversion rate and the electrolysis efficiency only reach 40.1% and 91.2% at 

1023K, respectively. 

 The combination of the experimental data, multi-physics simulation, artificial 

intelligence and optimization algorithm provides a novel method of model-based 

control systems for fast and accurate prediction and optimization of SOECs. This 



method performs well in both single-objective optimization and multi-objective 

optimization and provides an advanced solution to the requirement for real-time 

optimization to complex control systems with proper modification. 

5. Data and code availability 

The database built based on validated MPS and the code for DNN are available at 

https://github.com/sw1122/SOEC-AI-Haoran-Xu. 
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