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Abstract

Blind source separation (BSS) method separates the desired signals from a mixed
observed signal by making full use of spatial information. Spatial information
refers the fact that the sources originate from different location in space and thus
provides the diversity for the separation. Similarly, this diversity can be further
enhanced by optimizing the sensor placement as opposed to a fixed location.
This paper aims to fill this research gap by proposing a sensor placement opti-
mization strategy to further improve the performance of BSS. As the problem
is non-convex in nature, a new hybrid descent optimization method is proposed
by embedding a gradient-based method into the genetic algorithm. The pro-
posed method benefits from the robustness of the genetic algorithm and the
fast convergence speed of the gradient-based method. Results show that the
optimized sensor placement greatly improves the separation performance of the
BSS system across the different reverberation times.

Keywords: Blind source separation; Sensor array network; Hybrid descent
algorithm; Genetic algorithm.

1. Introduction

The cocktail party effect which was coined by Cherry in the early fifties il-
lustrates humans’ ability to focus on a specific talker in a multi-talker situations
[1]. Part of the explanation for this focussing capability lies in the spatial sam-
pling performed by the two human ears. This spatial diversity makes use of the
fact that the origins of the desired and interfering signals originate from different
locations in space. With the development of communication equipments, speech
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separation or extraction may be realized electronically by sampling in space. A
classical and typical application scenario is when speech signals are recorded
by pre-mounted microphones in the wireless acoustic sensor network (WASN).
Two common popular methods to perform speech extraction are blind source
separation (BSS) and beamforming [2, 3, 4, 5]. The latter is very sensitive to
array model mismatch [6, 7, 3] and the former requires less assumptions of the
acoustic scene or system.

BSS involves extracting and recovering the underlying source signals from
multivariate statistical data [8]. It is widely used in the wireless digital com-
munication, image processing and recognition as well as geological spatial in-
formation processing. Blind implies that the source localization information is
not known. Generally, BSS manifests in two general cases. The first case is
the underdetermined situation where the number of sensors is less than that
of sources. Another is the determined or overdetermined situation where the
number of sensors is greater than or equal to the number of sources. In the
first case, nonnegative matrix factorization has received much attention [9]. For
the second case, independent component analysis (ICA) is the method most
commonly applied but requires use of higher-order statistics [10]. As opposed
to ICA, the second-order statistics (SOS) method is generally preferred to sep-
arate nonstationary signals due to its computational simplicity [11, 4, 12]. For
WASN settings, sensors can be placed in any suitable position without being
restricted by the wired connections and large number of sensor nodes. This
largely puts WASN in the overdetermined case. However, in any reverberant
environment, the situation quickly reverts to the underdetermined case.

With the assumption that source signals are statistically independent, ICA
methods separate source signals by expressing a set of random variables as a
linear combination of statistically independent variables [13]. ICA methods
have been widely applied in many field and a variety of the ICA methods have
been proposed. A neural network based ICA algorithms was presented in [14].
Hyvarinen and Oja proposed an ICA algorithm based on the negentropy maxi-
mization of random variables method [15]. Masnadi-Shirazi and Rao proposed a
state-based ICA method aimed to the non-stationarity of the signal [16]. With
the contribution of these pioneering authors, the theoretical framework and al-
gorithms for ICA methods have matured. However, there are still some unsolved
problems of ICA method due to its restricted assumptions or lack of information.
For instance, ICA algorithms perform poorly when the high-order statistics for
original signals are dependent or the stationarity condition is violated.

A SOS method has been proposed to separate nonstationary signals by joint
decorrelation [17, 4]. Compared to the higher-order method (ICA), this method
makes no assumption about the cumulative densities of signals and puts itself to
more robust second-order statistics. Owing to second-order processing only, this
method is computationally efficient. A fast convergent BSS algorithm based on
the SOS method was presented in [18]. An alternative beamspace SOS method
was introduced by [19] where a priori spatial information was embedded in the
formulation as a preprocessor to help improve the separation performance. The
performance of SOS method has been investigated in the case of reverberant
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acoustic environment [20].
Araki et al. established the equivalence between BSS and a set of adap-

tive beamformers [5]. This means that BSS is no other than a set of spatial
filters, albeit different in its formulation compared to a spatial filter. As such,
the performance of BSS is highly dependent on the configuration of the sensor
arrays similar to a beamformer. If so, the research question here is to ascertain
if there is an optimum sensor configuration for BSS. This is akin to viewing
sensor placement as a preprocessor for BSS to improve its separation capability.
However, the literature thus far have been limiting as the focus on BSS has been
for a fixed set of linear and non-linear array configurations [19, 21]. The sensor
placement investigation is particular relevant with the rise of wireless acoustic
sensor networks (WASN). In such a WASN setting, the configuration of multiple
cooperative devices may be exploited further to provide a better set of sensors
for the task at hand.

This paper aims to fill the research gap by studying the effect of sensors
placement on the performance of BSS. Such study will enable the incorpora-
tion of optimized placement for improved spatial information to enable the best
source separation performance. As opposed to focusing on a specific configura-
tion, a hybrid descent method is proposed to optimize the performance of BSS
for the best sensor placement on the allowable placement space as the number
of sensors and the reverberation time (RT) change. The heuristic algorithm has
a good performance on solving the discrete optimization problem and provides
a good methodology to more away from local optima, but it becomes very slow
when approaching to stationary points. The hybrid descent method combining
the heuristic algorithm and gradient descent method was proposed to efficiently
solve the continuous optimization problem [25]. In this paper, we develop a
suitable hybrid descent method to tackle the design problem.

The results show that there is largely a demarcation point where the sen-
sors placement will have a certain configuration before and after a certain RT.
The results also reveal that the sensors tend to cluster on the desired source
when the RT is less than 200ms and spread out otherwise. Importantly, the
results consistently show a marked increase in the separation performance of
an optimized placement compared to a fixed linear placement. The converged
spatial locations serve as a useful guide for increasing the performance of source
separation.

The rest of this paper is organized as follows. The problem formulation is
given in Section 2. The ICA-based approach is introduced in Section 3. The
proposed hybrid descent optimization method is introduced in Section 4. The
simulation study is demonstrated in Section 5. Conclusion and potential future
extensions are presented in Section 6.

2. Notation and Problem formulation

The important symbols and scientific terms in this paper are listed on Table
1. We consider an enclosed room with acoustic reverberation. The locations
of N speech sources are denoted by γn where n = 0, . . . , N − 1. The location
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variables of M -elements acoustic sensor array are defined as δm, where m =
1, . . . ,M . Given the room dimension, sound speed, locations of sources and
sensors, the time domain room impulse responses (RIR) h(δm, γn) from the n-
th source to the m-th sensor can be generated by the image method [2]. Let sn
denote the signal at the source γn. At time t, the received signal from the n-th
source to the m-th sensor is given as

sm,n(t) =

L−1∑
τ=0

hm,n(τ)sn(t− τ) = h(δm, γn) ∗ sn (1)

where hm,n(τ) is the (τ + 1)-th element in vector h(δm, γn); L is the length of
the RIR vector; sn denotes the vector [sn(t), sn(t− 1), . . . , sn(t−L+ 1)]; and ∗
is the convolution operator. The observed signal at the m-th sensor is

xm(t) =

N−1∑
n=0

sm,n =

N−1∑
n=0

h(δm, γn) ∗ sn. (2)

The observed mixtures from the WASN is denoted by

x(t) = H� s (3)

where� is the element-wise convolution operator, x(t) = [x1(t), x2(t), . . . , xM (t)]T

and s denotes the vector [s0, s1 . . . , sN−1]T . The unmixing matrix H consists of
RIR vectors,

H =

 h(δ1, γ0)T · · · h(δM , γN−1)T

...
. . .

...
h(δM , γ0)T · · · h(δM , γN−1)T

 .
Since the convolution operation in the time domain becomes multiplication

in the frequency domain [22], the problem can be elegantly transformed to the
simple instantaneous case if the Fourier transform (STFT) is applied on the
observed signals. Rewriting Equation (3) in the frequency domain gives

X(f, k) = H(f)S(f, k) (4)

where X(f, k) and S(f, k) are the f -th subband transformations of x(t) and s
respectively. H(f) is a matrix containing the elements of the mixing matrix H
at the f -th subband and k is the frequency sampling index.

The objective here is to unmix the mixtures so as to recover the original
signal S(f, k) from X(f, k). Assuming that the f -th subband of the mixing
matrix is invertible, then the unmixing process is

Y(f, k) = W(f)X(f, k) (5)

where W(f) is the unmixing matrix in the f -th subband and Y(f, k) is the
estimated separated signals in the frequency domain. Substituting Equation
(4) into Equation (5), we derive

Y(f, k) = W(f)H(f)S(f, k). (6)
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Equation (6) shows that the separated signals Y(f, k) not only depends on the
unmixing matrix W(f) in the separation system but also relates to the mixing
matrix H(f) in the mixing matrix.

Notation Definition
s·(·) source signals in time domain
x·(·) received signals in time domain
γ· locations of speech sources
δ· locations of acoustic sensors

h(·, ·) room impulse responses (RIR) in time domain
H mixing matrix in time domain

H(·) mixing matrix in frequency domain
W(·) unmixing matrix in frequency domain
X(·, ·) observed signals in frequency domain
Y(·, ·) separated signals in frequency domain

RX(·, ·) covariance matrix of the observed signals in frequency domain
RY (·, ·) covariance matrix of the separated signals in frequency domain
ρ(·, ·) correlation function
δ the vector representing location variables for all the sensors
Lδ lower bound of location variables
Uδ upper bound of location variables

P̂·(·) spectral power estimate
SUPPI suppression measure
PESQ perceptual evaluation of speech quality
T60 reverberation time (RT)
Talgo iteration index in Algorithm 1
J iteration index in Algorithm 2

Table 1: The list of symbols and scientific terms

3. Second-order separation method

In order to derive the optimal unmixing matrix W(f), the BSS with second-
order statistics method is adopted [19, 4]. The SOS method exploits the non-
stationarity of the source signals to provide more information to separate the
sources [4, 5]. To be specific, the covariance matrix of the non-stationary source
signals, at different time intervals, are assumed to be linearly independent. As
such, the additional diversity can be used to perform the separation process.
In this case, the covariance matrix RX(f, k) of the observed mixtures can be
estimated on N successive intervals as

RX(f, n) =
1

P

P−1∑
k=0

X(f, nP + i)X(f, nP + i)H (7)

where n = 0, . . . , N −1; P is the length of the interval for estimating the covari-
ance matrix; and (·)H is the Hermitian transpose operator. By the projection

5



of the unmixing matrix W(f), the covariance matrix RY (f, k) of the separated
output is calculated by

RY (f, n) =
1

P

P−1∑
k=0

Y(f, nP + i)Y(f, nP + i)H

=
1

P

P−1∑
k=0

W(f)X(f, nP + i)X(f, nP + i)HW(f)H

= W(f)RX(f, n)W(f)H. (8)

If the source signals are successfully separated, the estimated source signal
will be statistically independent which results in the covariance matrix RY (f, k)
to be a diagonal matrix. Then, the BSS problem can be posed as a least square
optimization problem which is formulated as follows [4],

Wopt(f) = arg min
W(f)

N∑
n=1

‖E(f, n)‖2F (9)

where

E(f, n) = RY (f, n)−Λ(f, n)

= W(f)RX(f, n)W(f)H −Λ(f, n)

and ‖ · ‖2F is the squared Frobenius norm operator. The diagonal matrix Λ(f, n)
represents the power of each source. If the field is homogeneous, all sources have
the same power. Then, Λ(f, n) = S(f, n)I where S(f, n) is the power constant
of the source and I is the identity matrix. The homogeneous assumption can
be achieved by pre-whitening operation in [23].

With the implementation of the gradient descent method, the gradient up-
date scheme with respect to the optimization problem in Equation (9) is denoted
by

W(m+1)(f) = W(m)(f)− 2µ

N−1∑
n=0

[
W(m)(f)RX(f, n)W(m)H(f)−Λ(f, n)

]
W(m)(f)RX(f, n)

(10)

where µ is the step-size and m is the iteration index. We set The convergence
analysis of this method has been well studied in [19].

4. Sensor placement optimization method

4.1. Proposed optimization strategy

The hybrid descent method is proposed to solve the long standing sensor
placement problem for a blind signal separation system. The result of the inves-
tigation shows that there is an optimized placement for the sensors for BSS to
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Figure 1: The proposed sensor placement optimization process where the separation system
is optimized through the optimal spatial placement.

best separate the target signal. As the nature of the problem is continuous and
highly non-convex, the hybrid descent method was proposed to prevent local
optima. To the best of the authors’ knowledge, this paper is the first to apply
the hybrid descent method to solve the sensor placement optimization for the
BSS system.

As mentioned in Section II, the output of the convolutive BSS model depends
on both the mixing system and the separation system. The mixing system
highly depends on array configurations. Given a fixed array configuration, the
separation system is optimized using the SOS method. The aim of this paper
is to propose an optimization technique to optimize sensor placement so as
to improve the separation performance. By doing so, the full diversity of the
spatial information can be fully utilized. To do so, we introduce a hybrid descent
method to optimize the mixing system via the change of the sensor locations.
As we can see from Figure 1, the performance of separation system is used to
optimize the array configuration. The optimized array in return can improve
the separation performance. The propagation of speech sound in reverberant
environment is not instantaneous but rather a convolutive mixtures as a result
of different room impulse responses (RIRs) between each source speech and
sensor. Given the information of the speaker locations, sensor locations and
other coefficients of acoustic scene, RIRs related to a small room can be modelled
by using the image method [24]. By the adoption of RIRs, the mixing process
of acoustic signals can be represented in Equation (2). In reality, however, we
can only receive the mixed signals rather than derive the explicit form of RIRs
due to the lack of speaker locations or coefficients of acoustic scene.

4.2. Optimization problem formulation

In order to optimize the mixing system without the knowledge of RIRs, we
formulate the optimization problem as

δopt = arg max
δ∈∆

g(δ) (11)

s.t. Lδ ≤ δ ≤ Uδ (12)
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where g(δ) = ρ(ym, s0), δ = [δ1, δ2, . . . , δM ]T is the vector representing the
location variables for all the sensors, Lδ and Uδ are respectively the lower bound
and upper bound of location variables which depend on the room dimension,
ρ(ym, s0) is the correlation function between ym and s0, ym is m-th output of
the convolutive BSS model in which m ∈ [1, 2, . . . ,M ], and s0 is the desired
speech. Given a candidate solution δ̃, convolutive BSS method generates the
optimal separated signals using the corresponding mixtures xδ̃(t). Since the
mixing matrix is unknown in the optimization process, the gradient related to
the problem in Equation (11) cannot be expressed in an explicit form. Therefore,
its global maxima cannot be directly located using a gradient-based approach
and a better global optimization technique should be developed [25].

There are two major points to note when finding the global optima. The
solution should avoid local optima and the optimization technique has the speed
of convergence to approach stationary points. The heuristic method could find
the global optima due to its capability of avoiding the local optima [26]. In
reality, it is used to find the global optima without pre-defined precision due
to its slow convergence rate. One of the reasons for the slow convergence is
because the heuristic method becomes slow when it tries to approach or descent
to stationary points. On the other hand, a gradient-based numerical method
is much more efficient in finding a stationary point such that it can be used
to speed up the local search. Since the location variables impact the objective
value via the change of the RIR vector, it is difficult to write an explicit form of
Equation (11) with respect to the location variables. The optimization problem
is highly nonlinear and is essentially nonconvex with respect to the location
variables. To solve the aforementioned issues, this paper proposes an efficient
hybrid descent algorithm embedding a gradient-based numerical optimization
algorithm into the heuristic method. The heuristic method is used to locate a
descent point from a previous converged local solution and the gradient-based
numerical algorithm is used to find better local optima. By doing so, we can
retain the robustness of the heuristic method and the convergence speed of
gradient-based numerical method.

4.3. Proposed hybrid descent algorithm

There is a variety of heuristic methods such as the genetic algorithm [27],
Tabu search algorithm [28], simulated annealing algorithm [29] and so forth.
The main difference between these methods is the way to traverse the whole
parametric space to reach a global peak in the case of unevenly distributed,
nonuniform, multiple-peak space [30]. In this paper, we propose the use of ge-
netic algorithm. The genetic algorithm was developed in [31] to solve the sensor
placement problem in the beamformer configuration design. Comparing to oth-
ers, the genetic algorithm has a nice parallel computation structure in which
the candidate solution is generated by the random perturbation of a population
rather than by moving from one point to the next. Apart from that, a large
number of independent individuals in one generation enable the genetic algo-
rithm to traverse the whole parametric space efficiently. The proposed sensor
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placement optimization method is stated in Algorithm 1. The details of ge-
netic algorithm are illustrated in Algorithm 2. The hyperparameters used in
Algorithm 1 and 2 are listed on Table 2.

Hyperparameter 2 sensors 3 sensors 4 sensors
Population size 100 120 200

StallGenerations (Jstall) 10 10 10
MaxGenerations (Jmax) 40 20 20

Elite rate 0.05
Crossover rate 0.8
Mutation rate 0.2

Function Tolerance (ζ) 1× 10−6

Maximum iteration in Algorithm 1 (Tmax) 20

Table 2: Hyperparameters in Algorithm 1 and 2

Algorithm 1 Hybrid descent method for the BSS model

1: Set the hyperparameters for the genetic algorithm and Talgo = 0. Setup an
initial solution δInitial.

2: repeat
3: Execute the genetic algorithm (Algorithm 2) to get the improved solution

δ̃.
4: Starting from δ̃, execute the sequential quadratic programming (SQP)

method to derive the local optima δopt.
5: if g(δInitial) < g(δopt) then
6: δInitial = δopt;
7: g(δInitial) = g(δopt);
8: Talgo = Talgo + 1;
9: else

10: break;
11: end if
12: until Talgo > Tmax

In Step 17 of Algorithm 2, there are two stopping criteria stated below.

• J > Jmax where Jmax is the hyperparameter denoting the maximum gen-
eration number in the genetic algorithm.

• Jstall < J ≤ Jmax and 1
J−Jstall

∑J
j=J−Jstall [g(δ(j)) − g(δ(j−1))] < ζ where

ζ is the hyperparameter denoting the function tolerance of the average
change of the objective function value in the last Jstall generations.

It is noted that, in Step 2 of Algorithm 2, the genetic algorithm is kicked
off from different initial points. Compared to the simulated annealing method,
the genetic algorithm has a stronger ability to traverse the whole parametric
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Algorithm 2 Genetic algorithm

1: g(δ̃) = g(δInitial); δ̃ = δInitial; J = 1.
2: Generate the initial population with the constraint in Inequality 12 via the

random perturbations of δ̃.
3: repeat
4: Optimize the unmixing matrix W(f) for each individuals in the popula-

tion using Equation 10.
5: Calculate the maxima of ρ(ym, s0) for each individuals where m ∈

[1, 2, . . . ,M ].
6: Scale the values of objective function for the J-th generation.
7: Store the optimize solution of the J-th generation δ(J).
8: Store the elite population E consisting of the individuals with the objective

function value great than or equal to the 5-th percentile.
9: Recombine pairs of individuals whose objective function values are be-

tween the 5-th and 81-th percentiles and store this sub-population C.
10: Randomly permutate the individuals whose objective function values are

less than 81-th percentile and store this sub-population M. The permu-
tated individuals should satisfy the constraint in Inequality 12.

11: Construct the population of the next generation as {E ; C;M}.
12: if g(δ̃) < g(δ(J)) then
13: δ̃ = δ(J);
14: g(δ̃) = g(δ(J));
15: end if
16: J = J + 1.
17: until Stopping criteria have been satisfied.

space because the genetic algorithm can explore the search space in many di-
rections simultaneously and it can be parallelized [32]. Three key parts of the
genetic algorithm includes the evaluation of the objective function (Step 4 and
5), crossover operation (Step 9) and mutation operation (Step 10). The three
parts above can be parallel computed by assigning a fraction of the population
to different threads [33]. The genetic algorithm can speed up by using more
threads.

5. Experimental Results and Discussions

5.1. Experimental settings

In this section, we illustrate the performance of our convolutive BSS method
in a simulated room. We consider a 6m × 6m × 3m square office room with the
RT (T60) chosen as 0ms, 100ms, 200ms, 300ms, 400ms and 500ms. The size of
our simulated room is a common specification for a conference room or a tiny
lecture theater. This mimics the use of a separation system in those settings.
Note that the proposed algorithm is not limited by any given dimensions of a
room. The absorption coefficients for all room boundaries are set to be the same.
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Figure 2: (Example) One RIR vector when T60 = 300ms

The sound velocity is equal to 343 m/s. The sensors and speakers are modelled
by the image-source method [24]. The acoustic transfer between a source and
a receiver can be characterized by the RIR vector which is shown in Figure 2.
Figure 3a displays our acousitc scene. The heights of sensors and sources are 1.5
meters. The horizontal coordinates of signal of interest (SOI) and interference
signal (INT) are (1.5, 4.5) and (1.5, 1.5) respectively. The number of sensors in
the BSS model is chosen as 2, 3 and 4. The horizontal coordinates of sensors are
varied in the area encircled by the black dashed line. Furthermore, both source
speech and interference speech contain 6.25s voice signals sampled at 8kHZ.
The objective function of optimizing convolutive BSS model is the interference
suppression. Let P̂Y (ω) be the spectral power estimate of the source signal.
Let P̂Ỹ (ω) be the spectral power estimate of the output of BSS. Let P̂YI

(ω)

be the spectral power estimate of the interference speech. Let P̂ỸI
(ω) be the

spectral power estimate of the output of BSS when the interference speech is
active alone. The normalized interference suppression is defined by

SUPPI = 10× log10

∫ π
−π P̂ỸI

(ω)dω

Cd
∫ π
−π P̂YI

(ω)dω

where Cd is defined by

Cd =

∫ π
−π P̂Y (ω)dω∫ π
−π P̂Ỹ (ω)dω

.

5.2. Preliminary Results

To investigate the behaviour of BSS in reverberant environments, consider
a convolutive BSS model containing two acoustic sensors. One sensor is fixed
at centre of the acoustic scene where the horizontal coordinate is (3, 3) and the
other sensor is varied among the the area encircled by the black dashed line in
Figure 3a. Figures 3b, 3c and 3d show the suppression capability (SUPPI) as
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a function of sensor location variables when T60 is chosen as 0ms, 100ms and
200ms respectively. The mesh plots provide a clear relationship between the
position of the sensor and the suppression as RT varies.

For a lower RT (T60 = 0 or 100ms), the 2-elements acoustic sensor array
achieves a good suppression capability when the unfixed sensor is closer to the
interference source. This is consistent with the fact that BSS behaves as a
nulling beamformer where the sensor is closest to the interference to perform
nulling. For the case of T60 = 200ms, we observe a different fluctuation pattern
on SUPPI. The suppression capability changes rapidly with the change of the
sensor locations. With the increment of T60 from 0 to 200ms, more and more
local minima or maxima can be observed. It is evident that SUPPI has a spuri-
ous behaviour in the presence of acoustic reverberation. This is because as RT
increases, the number of reflected signals increases and the problem becomes
highly underdetermined. In this case, it is difficult to find the global optima
because the sensor placement optimization can get trapped in a state of local
optimum [34]. Therefore, we use the proposed hybrid descent method in Algo-
rithm 1 to address the problem. The following subsection presents the complete
experimental analysis of the proposed system.

5.3. Experimental Results

5.3.1. Setup

We consider the convolutive BSS model containing 2, 3 or 4 sensors. The
initial horizontal coordinates of the acoustic sensor array are shown in Table 3.
In the optimization process, the initial horizontal coordinates can be randomly
chosen because the genetic algorithm can simultaneously generate many initial
guesses for the horizontal coordinates. For the comparison of the separated
speech by the BSS system, the initial positions of the acoustic sensor array
are deliberately placed close the original sources. All the sensors can be varied
among the area encircled by the black dashed line in Figure 3a.

2 sensors 3 sensors 4 sensors
(3,1.5) (3,1.5) (3,1.5)
(3,4.5) (3,3) (3,2.17)

- (3,4.5) (3,3.83)
- - (3,4.5)

Table 3: Initial horizontal coordinates of the acoustic sensor array.

5.3.2. Computational Time

A comparison is made between the computational time for both the heuristic
algorithm (GA) and the gradient-based method (SQP). This comparison was
made for the case of 2 sensors and with a reverberation time T60 = 0 and the ex-
periment was repeated twenty times. From Table 4, we can see that the heuristic
method requires longer average time to converge compared to the gradient-based
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Figure 3: Configuration of acoustic scene and mesh plots for SUPPI value when T60 is chosen
as 0ms, 100ms and 200ms.

method. However, for non-convex optimization, the faster convergence time of
the gradient-based method comes at the expense of local optima.

GA SQP
Mean 3113.64 (s) 739.67 (s)
Std. 731.18 433.68

Table 4: Statistics of computational time

5.3.3. Suppression Performance

Figures 4a, 5a and 6a plot the suppression measure of the interference signals
when the convolutive BSS model is applied with both the optimized position
and the initialized position of the acoustic sensor array. Evidently, the proposed
optimized BSS system outperforms the unoptimized case by at least 10dB across
the RTs. It is interesting to note that the performance improvement is fairly
consistent even up the case of RT=500ms. To further compare the quality
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improvement of the enhanced speech, Figures 4b, 5b and 6b plot the perceptual
evaluation of speech quality (PESQ) [35] measure for the received and separated
speech (enhanced speech). Again, the results demonstrate that the PESQ score
of the proposed system is greatly improved especially for lower values of RTs.
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Figure 5: Suppression measure and PESQ measure of the WASN with 3 sensors.

5.3.4. Effect of the Number of the Sensors

Figure 7 shows the separation performance between the proposed systems
and the fixed arrays as the number of sensors vary. The dash lines denote the
SUPPI value with respect to the initial acoustic sensor arrays in Table 3. The
solid lines denote the SUPPI value with respect to the optimized acoustic sensor
arrays derived from Algorithm 1. For both unoptimized and optimized cases,
the performance increases gradually as the number of sensors grows. Consis-
tent with the previous results, the suppression capability reduces as RT rises.
However, it is clear that for all cases considered, the optimized acoustic sensor
array outperform the unoptimized array.
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5.3.5. Optimized Sensor Positions

Figure 8-10 show the optimized locations of sensors when the number of
sensors is chosen as 2, 3 and 4. It is noted that the optimized acoustic sensor
array tends to cluster around the interference source when T60 is less than or
equal to 200ms. Taking advantage of close placement, the BSS system can
achieve a significant suppression for the interference signal. When T60 is greater
than 200ms, more and more acoustic signals are reflected by the walls and the
optimized acoustic sensor array spreads out. This is because more and more
reverberant signals need to be suppressed. This is consistent to that reported
by [5] where BSS tries to suppress the interference signal by forming a null on
it. Moreover, It also coincides with the different pattern of SUPPI fluctuation
in Figures 3b, 3c and 3d. As the RT increases, then the array element spreads
itself. Interestingly, the optimized geometry is consistent with the suppression
performance for the case of T60 equaling 400ms and 500ms, where very little
improvement was observed. This can be understood from the optimized location
for 2, 3 and 4 sensors for both RTs as they are very similar with the converged
geometry.

5.3.6. Convergence Analysis

Figure 11 shows the evaluation of the objective function as a function of
iterations for the case of 4 microphones with T60 = 0ms or 100ms. Interestingly,
Figure 11a reveals that there is a plateauing effect at around iteration 4 − 6,
suggesting the solution is trapped in a local optima. However, a huge jump is
registered at the next iteration. This clearly illustrates how the proposed hybrid
method untraps itself from a local optima in search of a global optima, hence
increased performance. From both the figures, we can observe the significant
improvement of the objective function value when the iteration is less than 10.
The objective function then starts to plateau and converge. When the iteration
is greater than 15, the change of objective function value is only incremental,
which suggests that the hybrid heuristic method is converged.
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Figure 7: The suppression measure of the interference signal between the proposed method
and the fixed array for different reverberation time.

5.4. General Discussions and Analysis

From the experimental results, we can observe that a higher RT leads to a
worse separation performance.Figure 3b, 3c and 3d show the mesh plots as a
function of suppression capability versus the sensor position for different rever-
beration times. The plots clearly show as the RT increases, there exists spurious
number of optimal points. This is because as the reverberation time increases,
the number of reflected signal increases. These reflected signals act as additional
sources, which invariably cause the problem to be underdetermined as there are
now many more source compared to the number of sensors. The spurious points
are a result of BSS extracting those reflected signals as opposed to the direct
path signals. It can be seen that when the RT is lower, then the set of location
corresponding to the highest suppression is more clustered. On the other words,
the separation problem becomes more difficult as many more sources need to
be separated in the case of a higher RT.

Given a fixed T60, it can be observed that the performance of optimized
BSS system becomes better with the increment of number of sensors. How-
ever, without the optimization of sensor locations, system performance cannot
be simply improved by increasing the number of sensors. Moreover, an inap-
propriate placement of sensors can undermine the BSS system. For example,
when T60 is chosen as 200ms, 300ms, 400ms and 500ms, the initial acoustic
sensor array with 3 sensors has a poorer performance compared with 2 sensors.
On the other hand, the optimized acoustic sensor array consisting of 2 sensors
can easily outperform the initialized acoustic sensor array containing 4 sensors
when the acoustic reverberation exists. Regardless, all suppression performance
improves as the spatial information is optimized.

Interestingly, the optimized acoustic sensor arrays also exhibit some similar
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Figure 8: Optimized locations of 2 sensors with T60 chosen as 0ms, 100ms, 200ms, 300ms,
400ms and 500ms.

placement patterns. For a lower RT (T60 = 0 or 100ms), the sensors tend to
cluster closer to the interference source. This is because the BSS model behaves
like a null beamformer. As RT increases, the sensors are more scattered as
more and more reverberant signals are deemed to be the interference sources.
The results also show that, up to a certain RT (T60 = 400ms or 500ms), the
change in the placement of the optimized acoustic sensor arrays is minimal.
This is primarily attributed to the overdetermined situation as RT increases,
which completely saturates the separation performance akin to a plateauing
effect. This also corroborates for the cases with less number of sensors as the
placement movement saturates even quicker since there is now even less degrees
of freedom.

The proposed approach has shown that the optimization of placement of
the sensors greatly improves the separation performance for a blind source sep-
aration system. Assuming that the position of the source largely remains the
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Figure 9: Optimized locations of 3 sensors with T60 chosen as 0ms, 100ms, 200ms, 300ms,
400ms and 500ms.

same, e.g., source is sitting on a chair, then the sensor optimization will need
to be performed initially during the calibration stage. Once the positions are
identified, then any existing real-time BSS systems [36, 37, 38] can be readily
deployed.

6. Conclusion

The paper presented a hybrid heuristic method to optimize the sensor place-
ment for a BSS system. This is because the sensor optimization problem is
highly non-linear and a conventional search algorithm will fail. The hybrid ap-
proach provides the rapid convergence of the gradient descent method coupled
with local optima protection from the genetic algorithm. Clearly, the findings
show that the sensors positions greatly impact the performance of a BSS sys-
tem. The results indicate that the sensors tend to cluster on the desired source
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Figure 10: Optimized locations of 4 sensors with T60 chosen as 0ms, 100ms, 200ms, 300ms,
400ms and 500ms.

when the RT is low. This is however less obvious when the RT increases from
200 ms onwards as the problem becomes underdetermined. All in all, the ex-
periments show that there is a marked increase in the separation performance
as the spatial information is optimized.
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