
 A fleet deployment model to minimize the covering time of maritime rescue 

missions 

Submitted by 

Xinyuan Chen, Assistant Professor 
College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, 

Nanjing, China 
Email: xinyuan.chen@nuaa.edu.cn 

Ran Yan, Ph.D. Candidate 
Department of Logistics and Maritime Studies, The Hong Kong Polytechnic 

University, Hung Hom, Kowloon, Hong Kong, China 
E-mail: angel-ran.yan@connect.polyu.hk

Shining Wu, Assistant Professor 
Department of Logistics and Maritime Studies, The Hong Kong Polytechnic 

University, Hung Hom, Kowloon, Hong Kong, China 
E-mail: sn.wu@polyu.edu.hk

Zhiyuan Liu, Professor
Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation 

Center of Modern Urban Traffic Technologies, School of Transportation,  
Southeast University, China 
Email: zhiyuanl@seu.edu.cn 

Haoyu Mo, Ph.D. Student 
Society Hub, The Hong Kong University of Science and Technology (Guangzhou), 

 Guangzhou, China 
E-mail: hmoaa@connect.ust.hk

AND 

Shuaian Wang, Professor 
Department of Logistics and Maritime Studies, The Hong Kong Polytechnic 

University, Hung Hom, Kowloon, Hong Kong, China 
E-mail: wangshuaian@gmail.com

Corresponding Author 

Ran Yan 

This is an Accepted Manuscript of an article published by Taylor & Francis in Maritime policy and management on 31 Dec 2021 (Published online), 
available online: http://www.tandfonline.com/10.1080/03088839.2021.2017042.

This is the Pre-Published Version.



2 

 

A fleet deployment model to minimize the covering time of maritime rescue 

missions 

Abstract 

This paper investigates a covering time minimization problem of the maritime rescue missions 

that arise in practical rescue operations in the context of Hong Kong waters. In this problem, a 

fleet of heterogeneous vessels is deployed at marine police bases to deal with emergencies. 

Once an emergency rescue request is received, the marine police should send sufficient vessels 

to arrive at the incident site as soon as possible to provide critical medical service to the injured 

or the sick and then transport patients to emergency medical facilities. A basic question to the 

rescue missions is that what is the minimal covering time that marine police could promise to 

arrive at any incident site in its responsible water district. The shorter time the water district 

can be covered, the more likely lives and properties can be saved and the better the rescue 

service is. To address this problem, this paper formulates a mixed-integer programming model. 

Considering the expensive computational effort associated with solving this model, a two-stage 

method is proposed. Extensive numerical experiments and a case study are performed to 

demonstrate the efficiency of the proposed algorithm and illustrate how our model can be 

applied to solve practical problems. Our study contributes to the stream of research on maritime 

rescue problem that is gaining increasing concern in recent years. The proposed method can 

help rescue agency to provide faster response to rescue missions. 

Keywords: maritime rescue; minimal covering time; fleet deployment; mixed-integer 

programming problem 
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1 Introduction 

The maritime industry, including navigation, shipping, and marine engineering, is one of the 

largest industries on the planet and has a direct impact on much of our everyday life. Nowadays, 

around 90% of world trade is transported by the international shipping industry. Meanwhile, 

the offshore oil exploration and production industry and the cruise sector have experienced a 

significant qualitative and quantitative expansion (Northeast Maritime Institute, 2018; Qi et al., 

2021).  

To run a successful and sustainable maritime industry (Wang et al., 2021), ensuring 

maritime safety is one of the most essential prerequisites and requires determination and 

substantial effort (Jiang et al., 2020; Nguyen, 2020). The International Maritime Organization 

(IMO) developed and adopted various conventions and standards regarding maritime safety, 

including, but not limited to, the International Convention for the Safety of Life at Sea, the 

International Convention on Maritime Search and Rescue, the Convention on the International 

Regulations for Preventing Collisions at Sea, the International Convention for Safe Containers, 

and the Convention for the Suppression of Unlawful Acts Against the Safety of Maritime 

Navigation (IMO, 2021; Yan et al., 2020, 2021a; Yan et al., 2021b). These conventions can be 

summarized into two categories. The first category is for reduction of incidents risk/probability 

by setting specific codes and standards, and providing necessary guidelines, such as codes for 

cargo stowage and securing, and for ships carrying timber deck cargoes. The second category 

is for coping with the aftermath of an incident, i.e., maritime search and rescue (MSAR). 

Besides the IMO, many coastal countries around the world also developed their arrangements 

to fulfill their responsibilities related to ports, shipping, and maritime emergencies. 

Although a variety of efforts have been made to minimize the risks and threats at sea, 

maritime casualties and incidents still cannot be eliminated at the sea. The European Maritime 

Safety Agency reported that 3174 occurrences were reported in the year 2018, and over 23,000 

marine casualties or incidents were recorded in their database during 2011–2018 (European 

Maritime Safety Agency, 2019). The U.S. Coast Guard recorded a total of 1067 injury/death 
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cases and 15,097 vessel events between 2002–2015 (The U.S. Coast Guard, 2015). The Hong 

Kong (HK) Maritime Department reported 2915 reported accidents during 2012–2020 which 

resulted in a total of 73 lives lost and 648 lives injured within HK waters (HK Marine 

Department, 2020). Facing a large number of casualties occurring at sea, quick response to an 

incident is crucial for MSAR which receives much attention from the public. For instance, in 

the sinking of MV Sewol, a disaster occurred on 16 April 2014 when the ferry MV Sewol sunk 

during its trip from Incheon towards Jeju in South Korea, the heavy casualties were in part due 

to a slow and badly coordinated coast guard response. It is believed that more can be saved if 

the Korea Coast Guard had provided better response because even fishing boats and other 

commercial vessels that arrived later but put rescue into action earlier saved more than the coast 

guard did (The Chosun Ilbo, 2014). Besides responding quickly, rescue vessels should be 

capable of providing pre-hospital emergency medical service to the sick or injured at the scene 

before transporting them to an emergency medical facility (Cheng and Liang, 2014; Wu et al., 

2020). In brief, efficient and effective marine rescue operation is of great significance to 

provide instantaneous help for victims in danger and reduces the fatality rate at sea.  

Hong Kong is one of the world’s most important maritime hubs, which is home to the 

fourth-largest ship register, with a total of about 130 million gross tonnes, and the eighth-

busiest container port (World Shipping Council, 2021). Maritime and port industry in HK is 

playing a significant role in contributing to achieving sustainable development, economic 

growth, livelihoods, and has traditionally been one of the key pillars of HK’s vibrant economy. 

The HK waters have one of the heaviest maritime traffic flow around the world due to a wide 

range of vibrant maritime transportation between the Pearl River Delta and the rest of the world, 

including shipping, fishing, cruise tours, and tugging, etc. The location and movement of ships 

in HK waters can be found on an online website called MarineTraffic*, which shows the whole 

HK waters are covered by various types of ships. The large traffic volume and narrow waters 

 
* https://www.marinetraffic.com/  
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bring about risks to maritime safety. Therefore, providing effective management of MSAR 

resources and prompt response to an incident in HK waters are meaningful to increasing the 

confidence for carrying out maritime economic activities, providing a secure environment for 

tourism, commerce, transportation, preventing sea pollution, and protecting maritime resources. 

Hong Kong maritime rescue coordination center (MRCC), a branch of HK Marine 

Department, is a coordination center to coordinate resources (e.g., Marine Police, and 

Government Flying Service) from HK government departments to perform MSAR missions in 

HK territorial waters and an extensive area of the South China Sea. Since rescue vessels are 

the primal vehicles used to respond to maritime rescue requests and HK waters are the central 

district where the maritime traffic demands are concentrated, this study focuses on the vessel 

assets and their arrangement to fulfill MSAR missions within HK territorial waters.  

The HK MRCC has a standard operating procedure and guideline to deal with various 

maritime incidents. When a vessel encounters an emergency, a message should be sent to 

MRCC which should contain the ship’s name, position, number of injuries and their condition, 

the extent of ship's damage, etc. Once receiving an emergency message from a vessel, marine 

officers will initially investigate and verify the reported distress to determine if an MSAR 

response is needed. If the need is validated, the officers will evaluate the nature of the distress 

and consider the availability of MSAR resources. Then, an MSAR plan will be developed and 

the officers will coordinate resources to execute this plan. Officers will be fully engaged in the 

rescue mission, updating information on the distress situation, coordinating support requests, 

and documenting all activities associated with the mission. When all rescue activity has 

terminated, a report will be prepared and submitted to the Director of Marine (HK MRCC, 

2020).  

The overall rescue process suggests that the marine officers play the key role in a rescue 

mission as they are responsible for evaluating the emergency, developing an MSAR plan, 

engaging in tracking the progress of each resource responding to the rescue, preparing and 

submitting mission report. The marine officers should be experienced persons who hold sea-
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going master mariner class I certificate and have undergone intensive training in MSAR 

techniques. During a rescue mission, the marine officers will use their professional judgment 

to coordinate resources. However, decisions based on only experience and intuition may be 

suboptimal since rescue decision process is usually dynamic and very complicated because of 

lots of contingencies and the large number of factors to take into account. Green and Kolesar 

(2004) pointed out that management science (MS)/operations research (OR) applications play 

an important role in enhancing the efficiency of minimizing the impact of emergencies, which 

is particularly applicable to MSAR operations in HK which has one of the heaviest maritime 

traffic flow around the world.  

The response time to arrive at an incident spot, which is defined as the time from the 

dispatch of rescue force until the arrival of the rescued at the destination spot, is a useful 

performance measurement to evaluate the efficiency of rescue operations. Considering that the 

incidents may happen at any spot in waters, the response times to rescue requests are variable 

and random. Therefore, a conservative and robust performance indicator to measure the service 

of the MSAR missions is the maximal time that the HK rescue force needs to arrive at any 

requested spot, which is termed covering time of the water district. Note that in practice it is 

very common for emergency services to set a service pledge for this covering time. Once 

promising a limit of the covering time, rescue force needs to arrive at the scene within this limit 

no matter where the incident happens. The MRCC's service level is higher if it can give a 

stricter service pledge and is capable of achieving it. While there are many factors that can 

affect actual response time, rescue fleet deployment is in no doubt one of the most important 

decisions that play crucial roles in determining the covering time a priori. In this study we 

propose a mixed-integer programming model for a tactical vessel deployment problem, where 

the objective is to minimize the covering time. We analyze the properties of the optimal 

decision. Considering the computation time of off-the-shelf solvers increases rapidly as the size 

of the problem grows, a two-stage method is proposed to solve this problem.  
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1.1 Literature review 

In our literature review, we specifically address two areas of research. First, we treat related 

optimization problems of other fields with a similar orientation. Then, we further address the 

literature dedicated to MSAR problems.  

There exist quite a few studies that treat similar coverage optimization problems in other 

domains. For instance, the facility location covering problem. The seminar model is the set 

covering location problem which objective is minimizing the facility location cost such that a 

certain coverage level is obtained. In other words, the set covering problem addresses the 

problem of deciding the facility location to ensure a certain level of coverage to all demands. 

Further studies investigate facility location decision under a variety of extensions, such as the 

maximal covering (Church and ReVelle, 1974; White and Case, 1974), multiple coverage 

(Daskin and Stern, 1981), backup coverage (Batta and Mannur, 1990), P-center or minimax 

problem (Lin and Lin, 2018), etc. Another line of studies relates the covering problem to the 

vehicle touring (Laporte, 2009), location routing (Nagy and Salhi, 2007), traveling salesman 

(Bektas, 2006), where the visiting path is variable and the possible objective is minimizing the 

travel distance/time. The covering problem has been widely investigated in the domain of 

safety and emergency management (Bao et al., 2021; Huang et al., 2021), such as the maximum 

expected covering model to locate and dispatch ambulances (Ansari et al., 2017), the 

hierarchical objective set covering model for ambulances deployment (Daskin and Stern, 1981), 

the probabilistic location model (Daskin, 1983),  to name a few. 

While there is extensive literature related to emergency management, few studies consider 

optimization and evaluation of MSAR problems. The topics in MSAR can be classified into 

three categories. The first category integrates search and rescue operation which is suitable for 

the scenarios that incident location is uncertain (Abi-Zeid and Frost, 2005; Abi-Zeid et al., 

2011). The second category aims to evaluate the performance of fleet deployment plan (Karatas 

et al., 2020; Tozan and Karatas, 2018), and the last category is to manage the MSAR resources 

to improve the search and rescue services (Akbari et al., 2018a; Akbari et al., 2018b; Azofra et 
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al., 2007; Hornberger et al., 2021; Karatas, 2021; Razi and Karatas, 2016; Wagner and 

Radovilsky, 2012). Our research falls within this third category.  

Table 1 summarizes the literature on MSAR resources management (i.e., third category). 

Among them, the studies that try to improve the response time include Pelot et al. (2015), Razi 

and Karatas (2016), Akbari et al. (2018a), Akbari et al. (2018b), Karatas (2021), and 

Hornberger et al. (2021). All of them consider multi-objective and multiple criteria to optimize 

and evaluate their MSAR resource deployment plan. Response time reduction is one objective 

among them. To calculate the response time between a boat station and accident spot, the 

studied water area has to be discretized, i.e., partitioned the water area into a set of zones/grids 

(details will be described in Section 2.2). In theory, to obtain an accurate estimate of response 

time, the size of zones should be sufficient small. However, the computational cost grows 

dramatically as the size of zone set increases. To address this issue, the common idea is to 

control the problem scale. Two general approaches are adopted in the abovementioned studies. 

Razi and Karatas (2016) and Hornberger et al. (2021) apply the zonal distribution (ZD) model 

which is originally proposed by Azofra et al. (2007). The spirit of ZD model is to 

cluster/aggregate the accident spots into a small number of zones and use a centroid called 

“super-accident” to represent a group of accidents. Due to the rough representation of water 

zones, the estimated response time is inaccurate. Other studies, i.e., Pelot et al. (2015), Akbari 

et al. (2018a), Akbari et al. (2018b), and Karatas (2021), reduce the size of problem by 

adjusting or controlling the size of grids/zones. Typically, they use various grid cell size: small 

size (0.25 × 0.25 degree), medium size (0.5 × 0.5 degree), and large size (1.0 × 1.0 degree) 

to control the problem size. The selection criteria of grid size are the density of accidents and 

the distance from coastline. The area with higher accident density or closer to the coastline will 

be represented by smaller grid. Even with the small size grid (0.25 × 0.25 degree), it is at least 

a 20 × 20 km2 area, let alone the large size grid which is 16 times as large.  

Insert Table 1 here 
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1.2 Objectives and contributions 

In summary, existing MSAR resource management models are usually formulated as a multi-

objective problem, thus, they can only give a rough estimation of the response time. Moreover, 

due to the complexity of these models, their responsible water districts (which are mainly open 

waters) were either clustered into a small number of zones according to the historical accident 

records or represented by oversize grids, which make their problem easy to tackle but the 

estimated rescue time is inaccurate. By comparison, this study focuses on the covering time 

minimization problem and considers features such as heterogeneous vessel capacity and speeds, 

rescue capacity requirement, and geographical shapes. By an in-depth analysis of the properties 

of the proposed model, we design an efficient solution approach to addressing large-scale 

problems and provide much more accurate estimation of the maritime rescue time. To the best 

of our knowledge, our study is the first to focus on the optimization of covering time for MSAR.  

The remainder of this paper is organized as follows. In Section 2, we provide a detailed 

description of the problem considered and formulates a mixed-integer programming model for 

the problem. In Section 3, we analyze the model. In Section 4, we present a two-stage method 

to deal with the expensive computation effort associated with the large-scale variables. To test 

the performance of the proposed algorithm, we conduct extensive numerical experiments and 

a case study in Section 5. Finally, we present the conclusions and future research directions in 

Section 6. 

2  Problem statement 

The MSAR operation in HK waters is coordinated by the HK MRCC and undertaken by the 

Marpol. Figure 1 shows the overview of this area, which is a 1,651 km2 area enclosed by the 

border (dash-dot ring) and coastline (solid rings). The rescue requests could happen in any spot 

in this area. When a rescue request is received, the Marpol should send sufficient rescue vessels 

to arrive at the scene as soon as possible. Currently, the Marpol operates a fleet of over 110 

vessels to fulfill its responsibilities in a wide range of operational environments. However, not 
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all of these vessels are suitable to fulfill the rescue missions. Generally, the vessels that are 

suitable for rescue operations should be large enough to accommodate rescue equipment and 

injured and be fast enough to arrive at the scene. Therefore, we select three types of vessels to 

carry out the missions: (i) MSAR launches with a length of more than 30 meters, (ii) MSAR 

launches between 15-30 meters, and (iii) MSAR boats under 15 meters in length. A total of 

nine Marpol bases are located on the coastline of HK’s islands, which are represented by 

hexagon nodes in Figure 1. The rescue operation of Marpol in this problem involves decisions 

of two levels, both tactical and operational. At the first level (tactical one), the Marpol assigns 

vessels to Marpol bases. Following this, at the second level (operational one), the vessels to 

execute MSAR mission should be selected according to the rescue demands, location of the 

bases, and the event spot. These two-level decisions are interconnected and thus require 

formulating a mathematical optimization problem to search for the optimal solution.   

Insert Figure 1 here 

2.1 An illustration of the covering problem 

In this section, we illustrate the covering problem and its solution by using several simplified 

examples. Suppose that the map is represented by a two-dimensional plane with axes u and v. 

The water district is the area enclosed by a circle with center (0, 0) and radius r. There are two 

bases, located at (-1, 0) and (1, 0) respectively. The operator currently has four small vessels, 

two medium vessels, and two large vessels, with capacity 2, 3, and 4, respectively. A rescue 

team with total capacity no less than c  is required at each base. At first glance, the problem 

seems easy, and it is intuitive to split the fleet equally between two bases because the water 

area is symmetric and accidents occur independently. However, it may not be optimal to do so. 

First, we consider a case (Case 1 in Table 2 and Figure 2) where the radius of the water area is 

1.5, the speeds of the small, medium, and large vessels are 4, 3, and 1, respectively, and a 

qualified rescue team requires a total capacity no less than 7 (referred to as the rescue capacity 

requirement and denoted by c ). Then, we find by simple analysis that the optimal vessel 
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allocation plan is symmetric: allocate two small vessels and one medium vessel to each base to 

carry out rescue missions. The large vessels are not used and can be allocated anywhere. Each 

base is assigned a half circle area. We further consider three other cases in which the parameters 

change a little. We find that the optimal solution becomes asymmetric when the radius of the 

water area increases to 3 (in Case 2), or the speed of the originally unused large vessels 

increases to 2 (in Case 3), or the rescue capacity requirement increases to 8 (in Case 4). The 

setting and solutions of these four examples are summarized in Table 2. Figure 2 illustrates the 

service regions assigned to each base: the red region is covered by the base at (-1, 0) and the 

green region is covered by the base at (1, 0). The points that have the largest covering time 

(annotated by CT) are marked by a “*” on the graphs.  

Insert Table 2 here 

Insert Figure 2 here 

The results of these simplified examples demonstrate how sensitive the solution is to input 

information. Even with a small change in the parameters, the optimal vessel allocation and 

dispatch plans may entirely change. The shapes of the assigned service regions may be irregular 

(e.g., non-convex) even when the water area and problem parameters are symmetric. Therefore, 

solving the covering problem is can be very challenging and hence requires not only intuitive 

practices but also a systematic approach to find out the optimal solution.  

2.2 Water district discretization 

The covering time minimization problem belongs to the category of covering problem. An 

intuitive idea is to assume each Marpol base as the center of a circle and to use these circles to 

cover the water district regulated by the Marpol. Then, this problem can be formulated as a 

linear programming problem. However, the real-world situation is more complicated. As 

shown in Figure 1, there are many islands in HK waters and the coastlines of these islands are 

irregular. The vessels cannot arrive at all area with a straight path, and in most situations, the 

voyage trajectory is a polyline. Considering this constraint, we first propose a discretization 
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modeling approach. Specifically, we partition the water district into a set of small square zones, 

as illustrated in Figure 3, and then bypass the obstacles. After partition, the water district is 

discretized in the way that each square zone is represented by its centroid. The centroids are 

those “destination” nodes where the rescue force is destined. Once the set of centroids is 

defined, the rescue path, i.e., the shortest path between a Marpol base to the event point, over 

the water area can be derived. Theoretically, smaller zones (finer partition) lead to a more 

accurate rescue path. However, it also increases the size of the problem and the computation 

time. In practice, the size of zones depends on specific requirement such as how accurate we 

want the discrete approximation of the map be, how complicated the costal line is, the obstacles 

in waters, etc. Once the set of centroids is defined, the shortest travel distance between these 

centroids and Marpol bases can be derived.  

Insert Figure 3 here 

2.3 The mathematical formulation 

After the discretization of waters, the covering time minimization (MCT) problem can be 

formulated as a mixed-integer programming problem, where the objective is to minimize the 

covering time to the event spot and the constraints are to specify the interconnections between 

the fleet deployment plan, the mission assignment plan, the vessel attributions, Marpol base 

locations, and rescue capacity requirements. Before formulating the mixed-integer 

programming problem, we list the notation used in the model as follows: 
Sets 

I   The set of marine police bases 

J   The set of zones 

J  The restricted set of zones 

K   The set of marine police vessels 

Indices 

i   The index of marine bases 
j   The index of zones 
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k   The index of marine police vessels 

Parameters 

ks   The speed of marine police vessel k   

kc   The rescue capacity of marine police vessel k  

,i jl   The travel distance from marine base i  to zone j   

, ,i j kt   The travel time of vessel k  from marine base i  to zone j   

c   The number of casualties in an event, which is also the rescue capacity requirement 

Decision Variables 

,i kx   A binary decision variable which equals 1 if and only if vessel k  is deployed in 

base i   

,k jy   A binary decision variable which equals 1 if and only if vessel k  is assigned to 

sail to zone j   

, ,i j kz   A binary decision variable which equals 1 if and only if vessel k  is deployed in 

base i  and assigned to sail to zone j  

, ,i j kτ   An intermediate decision variable 

t   A covering time promised by the marine police that they can arrive at any event 

scene with this time 

2.3.1 The mixed-integer programming model 

According to the report of HK Marine Department (2020), the number of recorded 

incidents/cases are 312, 302, 358, 319, 319, 368, 335, 321, and 281, respectively, between 2012 

and 2020. On average, 0.89 case happen every day, which means the frequency of doing the 

rescue missions is rare in a day. Therefore, we assume only one event happens during the 

rescuing process and all the vessels are standing by in their marine bases. Let I  denote the set 

of Marpol bases, and i  denote the index of a Marpol base. The HK water district is partitioned 

into a set of zones J  and j  denotes the index of one zone. The travel distance from Marpol 

base i  to zone j  is denoted as ,i jl . We assume the rescue vessels always choose the shortest 
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travel path whose length is denoted by ,i jl . Let 𝐾𝐾 denote the fleet of vessels operated by the 

Marpol and  𝑘𝑘 ∈ {1, 2,⋯ , card(𝐾𝐾)} denote the index of one vessel, where card(⋅) denotes the 

cardinality of a set. The speed and rescue capacity of vessel k  is denoted as ks  and kc , 

respectively. The travel time of vessel k  from marine base i  to zone j  is determined by ,i jl  

and ks , i.e., , , ,i j k i j kt l s= . For a zone j , the response time and rescue capacity of fleet depend 

on the selection of vessels. Namely, the selection of vessels determines the travel time and 

rescue capacity for zone j . Appropriate deployment and selection of vessels determine the 

minimal covering time. Then, we have the following optimization problem: 

[MCT] 

 min
𝑋𝑋,𝑌𝑌,𝑍𝑍

𝑡𝑡  (1) 

subject to 

 , , , , , , , , ,i j k i j k i j kt z i I j J k Kτ = ⋅ ∀ ∈ ∈ ∈ ,  (2) 

 , , , , ,i j k t i I j J k Kτ ≤ ∀ ∈ ∈ ∈ ,  (3) 

 , ,k k j
k K

c y c j J
∈

⋅ ≥ ∀ ∈∑ ,  (4) 

 , 1,i k
i I

x k K
∈

= ∀ ∈∑ ,  (5) 

 , , , , 1, , ,i j k i k k jz x y i I j J k K≥ + − ∀ ∈ ∈ ∈ ,  (6) 

 , , , , , ,i j k i kz x i I j J k K≤ ∀ ∈ ∈ ∈ ,  (7) 

 , , , , , ,i j k k jz y i I j J k K≤ ∀ ∈ ∈ ∈ ,  (8) 

 { }, 0,1 , ,i kx i I k K= ∀ ∈ ∈ ,  (9) 

 { }, 0,1 , ,k jy k K j J= ∀ ∈ ∈ ,  (10) 

 { }, , 0,1 , , , ,i j kz i I j J k K= ∀ ∈ ∈ ∈   (11) 
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where ,i kx , ,k jy , and , ,i j kz  are decision variables. ,i kx  decides whether deploy vessel k  to 

base i , ,k jy  decides whether assign the task of sailing from zone j  to vessel k , and , ,i j kz  

decides whether vessel k  starts from base i  and sails to zone j . For ease of notation, we let 

X  denote the matrix ,i kx   , Y  denote the matrix ,k jy   , and Z  denote the three-

dimensional array , ,i j kz   , where i I∈ , j J∈ , k K∈ . The objective function (1) is to 

minimize the covering time t . Constraint (2) defines a type of intermediate variable , ,i j kτ  

which equals , ,i j kt  if vessel k  starts from base i  and sails to zone j . Otherwise, , ,i j kτ  equals 

0. In other words, if , ,i j kz  equals 1, we concern about the specific cruising time , ,i j kt , and wish 

to select the smallest one from all the possible combinations. Otherwise, as no task is assigned 

to vessel k , it will not sail to zone j , and thus , ,i j kτ  is set to 0. Constraint (3) requires the 

covering time t  is no less than , , , , ,i j k i I j J k Kτ ∀ ∈ ∈ ∈ . Constraints (4) requires the rescue 

capacity provided by the marine policy is no less than a predetermined requirement, which is 

an important indicator of service level in practice. If a single vessel is not able to satisfy the 

predetermined rescue capacity requirement, more vessels at bases would be selected to satisfy 

this constraint. The rescue capacity of this task is defined as the sum of rescue capacities of 

selected vessels. Constraint (5) ensures each vessel is deployed to a base. Constraints (6)–(8) 

define the relationship between ,i kx , ,k jy , and , ,i j kz . Constraints (9)–(11) ensure the domain 

of decision variables.  

The proposed model can be solved by off-the-shelf solvers. However, to guarantee the 

solution accuracy, the water district should be partitioned into many small zones. According to 

our experiment, although the off-the-shelf solvers can efficiently handle small-scale problems, 

the computation time and requirement of computer memory grow rapidly or even exponentially 

as the number of zones, i.e., J , increases. Take the HK water district as an example, there 
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exist nine Marpol bases and approximately 30 vessels can fulfill the rescue missions. However, 

to ensure the solution accuracy, the number of zones should be large enough, e.g., at least 

thousands of zones. The off-the-shelf solvers fail to find the optimal fleet deployment plan 

within an acceptable time range. In fact, Kouvelis and Yu (1997) show in Chapter 3 of their 

book that most classic robust discrete optimization problems belong to the NP-hard class. Our 

problem, with a minimax objective in essence as discussed in the next section, is a robust 

discrete optimization problem and computationally complex. In our study, to handle a large 

number of variables generated by a realistic discrete approximation, we first simplify the 

problem based on several properties of the optimal solution.  

3 Problem simplification 

In this section, we analyze the problem and show several important properties of the optimal 

solution. These properties allow us to simplify the problem by reducing its scale and provide 

intuitions for the design of a two-stage algorithm in the next section.  

Note that the decisions of the [MCT] problem consist of a vessel allocation plan specified 

by X  and a vessel dispatch plan specified by Y . The variables 𝑧𝑧𝑖𝑖,𝑗𝑗,𝑘𝑘 ’s can be uniquely 

determined by X  and Y  according to constraints (6)–(8). By separating the decisions X  and 

Y , we can transform the [MCT] problem into a two-stage problem: a problem to determine the 

optimal allocation of vessels across bases (referred to as the [MCT-allocation] problem) and 

then a sub-problem to optimally dispatch the allocated vessels to cover all zones (referred to as 

the [MCT-dispatch] sub-problem). We analyze this two-stage problem backward.  

First, the optimal dispatch sub-problem at the second stage given a specific allocation plan 

𝑋𝑋 can be formulated as follows.  

[MCT-dispatch] 

min
𝑌𝑌,𝑍𝑍

𝑡𝑡 

subject to constraints (2)–(4), (6)–(8), (10), and (11), 
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where the value of 𝑋𝑋 is given and 𝑌𝑌 and 𝑍𝑍 are decision variables. We let 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽) denote the 

optimal objective value of the [MCT-dispatch] sub-problem on the set of zones 𝐽𝐽 for a given 

allocation plan 𝑋𝑋 and let it be infinity if the sub-problem has no feasible solution. Likewise, let 

𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽) be the optimal value of the problem on a subset of zones 𝐽𝐽. In particular, 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) is 

the optimal value of the problem restricted to a single zone 𝑗𝑗 and hence is the shortest response 

time in which sufficient rescue vessel(s) is/are deployed to zone 𝑗𝑗 given 𝑋𝑋, which is referred to 

as the covering time of the zone under a vessel allocation plan. Then, 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽) is referred to as 

the covering time of an area consisting of all zones 𝑗𝑗 ∈ 𝐽𝐽. It is equal to the maximum of all the 

covering times of the zones in the area, i.e., 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽) = max
𝑗𝑗∈𝐽𝐽

{𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗)} . Furthermore, 

𝐶𝐶𝐶𝐶(𝑋𝑋,  𝐽𝐽1 ∪ 𝐽𝐽2) = max{𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽1),𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽2)}.  

Second, knowing the allocated vessels will be optimally dispatched by solving [MCT-

dispatch], the vessel allocation problem at the first stage is to find out the minimum covering 

time of the area, which can be formulated as follows.  

[MCT-allocation] 

min
𝑋𝑋

𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽) 

subject to constraints (5) and (9). 

According to the above decomposition, we can see that the [MCT] problem is in fact a 

min-max-min problem † where the objective is to minimize the maximum of the shortest 

response times of all zones. Since we need to take into account all zones in the problem, it is 

intuitive that only those far away from the bases are effective in determining the optimal 

solution. The following lemma and propositions substantiate this intuition.  

For two zones 𝑗𝑗 and 𝑗𝑗′, we define 𝑗𝑗 ≺𝐼𝐼 𝑗𝑗′ if 𝑙𝑙𝑖𝑖,𝑗𝑗 ≤ 𝑙𝑙𝑖𝑖,𝑗𝑗′ for all 𝑖𝑖 ∈ 𝐼𝐼 and there exists one 𝑖𝑖′ 

such that the inequality is strict, i.e., 𝑙𝑙𝑖𝑖′,𝑗𝑗 < 𝑙𝑙𝑖𝑖′,𝑗𝑗′ . This relationship means that a zone 𝑗𝑗  is 

uniformly closer than a zone 𝑗𝑗′ with regard to the set of bases 𝐼𝐼. With the notation ≺, we can 

 
† The first “min” is over all vessel allocation plans; the “max” is over all zones; the second “min” is over all bases. 
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define the “inner” part of 𝐽𝐽 with regard to bases 𝐼𝐼 as 𝐽𝐽° ≔ { 𝑗𝑗: ∃ 𝑗𝑗′ ∈ 𝐽𝐽 s.t. 𝑗𝑗 ≺𝐼𝐼 𝑗𝑗′}, which is the 

set of all interior zones. Let 𝐽𝐽𝑏𝑏 ≔ 𝐽𝐽\ 𝐽𝐽° denote the set of all boundary zones.  

Lemma 1. Given any vessel allocation plan 𝑋𝑋, 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽°) ≤ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽𝑏𝑏) = 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽), that is,  

𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽°

{ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) } ≤  𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽𝑏𝑏

{ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) } = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽

{ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) }. 

This lemma shows that given any vessel allocation plan 𝑋𝑋, solving the [MCT-dispatch] 

sub-problem involves only zones in 𝐽𝐽𝑏𝑏 and is independent of zones in 𝐽𝐽°. By this result, we 

have the following proposition for the [MCT] problem.  

Proposition 1. A vessel allocation plan 𝑋𝑋∗ is optimal for [MCT] on 𝐽𝐽 if and only if it is optimal 

for [MCT] on 𝐽𝐽𝑏𝑏. That is, the [MCT] problem on 𝐽𝐽 and the [MCT] problem on 𝐽𝐽𝑏𝑏 have the same 

optimal solution(s) and optimal objective value. 

For ease of exposition, we call that two optimization problems are equivalent if they have 

the same optimal solution(s) and optimal objective value. Proposition 1 states that the [MCT] 

problem on 𝐽𝐽 is equivalent to the problem restricted to 𝐽𝐽𝑏𝑏, with all interior zones removed from 

the problem. Thus, if we eliminate all constraints regarding 𝑗𝑗 ∈ 𝐽𝐽° in [MCT], the problem can 

be simplified without sacrificing accuracy. The reduction of computation efforts can be very 

substantial since there are usually a lot more interior zones than boundary zones.  

Besides eliminating interior zones, we further examine how the distance of a zone affects 

whether a zone is effective or ineffective in solving [MCT]. Let 𝑙𝑙⋅,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 ≔  min
𝑖𝑖
�𝑙𝑙𝑖𝑖,𝑗𝑗� denote the 

distance from a zone 𝑗𝑗 to its closest base and 𝑙𝑙 ̅ ≔ max
𝑗𝑗
� 𝑙𝑙⋅,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚� be the largest of these values 

among all zones. Let 
{ } { }

min
,: :

min max
jnear

k k

J
l lj J

s s
⋅  = ∈ ≤ 

  
. Under an allocation plan, we call 

a base is capacitated if the total capacity of vessels assigned to it is no less than 𝑐𝑐̅ and is 

incapacitated otherwise. Let an admissible allocation plan be defined as an allocation plan such 

that if ∑ 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘𝑘𝑘∈𝐾𝐾 < 𝑐𝑐̅ for some base 𝑖𝑖, then 𝑐𝑐𝑘𝑘′ > ∑ 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖′,𝑘𝑘𝑘𝑘∈𝐾𝐾 − 𝑐𝑐̅ for any 𝑥𝑥𝑖𝑖′,𝑘𝑘′ = 1. That is, 

in an admissible plan, if a base 𝑖𝑖 is incapacitated (i.e., the total capacity of vessels assigned to 

it is less than 𝑐𝑐̅), then the other bases should not be assigned redundant vessel(s). Intuitively, it 
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does not make sense and is not optimal to consider inadmissible allocation plan in solving the 

[MCT] problem.   

Proposition 2. Suppose there are sufficient vessels that all bases are capacitated in any 

admissible allocation plan. Then, if 
𝑙𝑙⋅,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚{𝑠𝑠𝑘𝑘} ≤
𝑙𝑙̅

𝑚𝑚𝑚𝑚𝑚𝑚{𝑠𝑠𝑘𝑘} for a zone 𝑗𝑗, the [MCT] problem on 𝐽𝐽 is 

equivalent to the [MCT] problem on { }\J j . Furthermore, the [MCT] problem on 𝐽𝐽  is 

equivalent to the [MCT] problem on \ nearJ J . 

Note that the prerequisite condition of Proposition 2 can be verified by showing that the 

set of admissible allocation plan(s) with incapacitated base(s) is empty, which can be done by 

formulating an auxiliary mixed-integer programming problem and showing it does not have 

any feasible solution. Note that there is a fixed fleet for the HK Marpol’s problem we consider 

in the case study in Section 5.3. The fleet is sufficient to satisfy this condition if the rescue 

capacity requirement 𝑐𝑐̅ is small enough. Therefore, we are also interested in finding out the 

largest 𝑐𝑐̅ such that all bases are capacitated in any admissible allocation plan, or the smallest 𝑐𝑐̅ 

such that there exists incapacitated base(s) in some admissible allocation plan. We refer to the 

latter as the critical rescue capacity 𝑐̃𝑐  (CRC) in our paper. Assume that all 𝑐𝑐𝑘𝑘 ’s and 𝑐𝑐̅ are 

integers and let 𝑀𝑀 = ∑ 𝑐𝑐𝑘𝑘𝑘𝑘∈𝐾𝐾  be a “large” constant. To address this CRC optimization (CRCO) 

problem, we formulate a mixed-integer programming problem using a Big-M method, which 

is expressed as follows: 

[CRCO] 

 min
𝑋𝑋,𝑐𝑐,𝑝𝑝,𝑝𝑝𝑖𝑖

𝑐𝑐  (12) 

subject to 

 , 1, ,i k i kk K
M p c x c i I

∈
⋅ ≥ ∀+− ∈∑   (13) 

 𝑀𝑀 ⋅ 𝑝𝑝𝑖𝑖 ≤ 𝑀𝑀 + ∑ 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘𝑘𝑘∈𝐾𝐾 − 𝑐𝑐,∀𝑖𝑖 ∈ 𝐼𝐼,  (14) 

 , ,ip p i I≤ ∀ ∈   (15) 
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 ( ) 1,i
i I

p p card I
∈

≥ − +∑   (16) 

 ( ) ( ), , ,1 1 1, , ,k i k i i k k i k
k K

c x M p M p M x c x c i I k K
∈

+ ⋅ + − + − ≥ − + ∀ ∈ ∈∑   (17) 

 ,c M p≥ ⋅   (18) 

 { }, 0,1 , ,ip p i I∈ ∀ ∈    

 0,c ≥    

and constraints (5) and (9), 

where 𝑝𝑝𝑖𝑖’s and 𝑝𝑝 are binary variables that denote whether a base is or all bases are capacitated, 

and 𝑐𝑐 is the capacity requirement. Given an allocation plan 𝑋𝑋, constraints (13) and (14) help to 

mark all capacitated bases with 𝑝𝑝𝑖𝑖 = 1 and all incapacitated bases with 𝑝𝑝𝑖𝑖 = 0. Specifically, 

constraints (13) require that 𝑝𝑝𝑖𝑖 = 1 if the capacity allocated to base i is no smaller than c. 

Constraints (14) require that 𝑝𝑝𝑖𝑖 = 0  if the capacity allocated to base i is less than c. By 

constraints (15) and (16), the variable 𝑝𝑝 is assigned a value 1 if all bases are capacitated and 0 

otherwise. Constraints (17) guarantees that the allocation plan 𝑋𝑋 is admissible. That is, any 

capacitated base should not be assigned redundant vessel(s) if all bases are not capacitated 

under the plan 𝑋𝑋. For example, if 𝑝𝑝 = 1, or 𝑝𝑝𝑖𝑖 = 0, or 𝑥𝑥𝑖𝑖,𝑘𝑘 = 0, constraint (17) is trivial since 

M is large. Otherwise, if 𝑝𝑝 = 0, 𝑝𝑝𝑖𝑖 = 1, and 𝑥𝑥𝑖𝑖,𝑘𝑘 = 1, then constraint (17) reduces to 𝑐𝑐𝑘𝑘 ≥

∑ 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘𝑘𝑘∈𝐾𝐾 − 𝑐𝑐 + 1, which ensures that any vessel 𝑘𝑘 assigned to a capacitated base 𝑖𝑖 is not 

redundant if not all bases are capacitated. Constraint (18) prompts the solver to find an 

allocation plan with incapacitated base(s). The objective (12) of [CRC] problem is to find the 

smallest capacity requirement such that there exists incapacitated base(s) in some admissible 
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allocation plan. Let 𝑐̃𝑐 be the optimal objective value of (12) and hence be defined as the critical 

rescue capacity value. Then, if the predetermined rescue capacity requirement 𝑐̄𝑐 < 𝑐̃𝑐, there are 

sufficient vessels that all bases are capacitated in any admissible allocation plan. In other words, 

Proposition 2 can be applied to further reduce the size of 𝐽𝐽0 when 𝑐̄𝑐 < 𝑐̃𝑐.  

Besides, we further provide in the following proposition some sufficient conditions that 

are easier to verify. Rank the rescue capacities of all vessels in descending order and let 𝑐𝑐(𝑘𝑘)
↓  be 

the kth-largest value.  

Proposition 3. All bases are capacitated in any admissible allocation plan if any of the 

following conditions hold. 

(i). card({𝑘𝑘 ∈ 𝐾𝐾: 𝑐𝑐𝑘𝑘 ≥ 𝑐𝑐̅}) ≥ card(𝐼𝐼). 

(ii). All 𝑐𝑐𝑘𝑘’s and 𝑐𝑐̅ are integer-valued and ∑ 𝑐𝑐𝑘𝑘𝑘𝑘∈𝐾𝐾 ≥ card(𝐼𝐼) ∙ 𝑐𝑐̅ + ∑ (𝑐𝑐(𝑘𝑘)
↓card(𝐼𝐼)−1

𝑘𝑘=1 − 1). 

The first condition means that there are more vessels with sufficient capacity than bases. 

The second condition requires that the total capacity of all vessels should be larger than 

card(𝐼𝐼) ∙ 𝑐𝑐̅ plus a redundant term ∑ (𝑐𝑐(𝑘𝑘)
↓card(𝐼𝐼)−1

𝑘𝑘=1 − 1) that is needed because a vessel cannot 

be divided. Put it differently, this condition can be rewritten as card(𝐼𝐼) − 1 + ∑ 𝑐𝑐(𝑘𝑘)
↓card(𝐾𝐾)

𝑘𝑘=card(𝐼𝐼) ≥

card(𝐼𝐼) ∙ 𝑐𝑐̅ , which means that the total rescue capacity is sufficient to satisfy the total 

requirement ( card(𝐼𝐼) ∙ 𝑐𝑐̅ ) even if the largest card(𝐼𝐼) − 1  vessels are replaced with unit-

capacity vessels.  

According to Propositions 1 and 2, one can solve the [MCT] problem with all interior 

zones and near zones eliminated from the problem and still obtain the optimal solution to the 

original one on the whole area 𝐽𝐽. The insights of these two results are as follows. The zones 

lying in inner part of the region can be automatically covered if the boundary zones are covered. 

Zones that are close enough to the bases can always be covered within a reasonable time no 

matter what covering plans are used. 
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4 The solution procedure 

In this section, we introduce our approach to solving the [MCT] problem, which splits the 

solution procedure into two stages. In the first stage, we eliminate all zones in 𝐽𝐽° and 𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 

restrict the problem to a smaller effective zone set. Specifically, let 𝐽𝐽0 ≔ 𝐽𝐽𝑏𝑏\ 𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  if the 

condition of Proposition 2 holds and let 𝐽𝐽0 ≔ 𝐽𝐽𝑏𝑏 otherwise. Then, in the second stage, we solve 

the [MCT] problem for the restricted zone set 𝐽𝐽0 by the off-the-shelf solver. The proposed 

approach is then termed two-stage (TS) method. Note that in the step of deriving 𝑙𝑙⋅,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, i.e., in 

line 13, a slight modification is made to further simplify this operation. Specifically, we replace 

J  with bJ  to further restrict the feasible space. It is easy to see that 𝑙𝑙 ̅ ≔ max
𝑗𝑗∈𝐽𝐽

� 𝑙𝑙⋅,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚� =

max
𝑗𝑗∈𝐽𝐽°∪𝐽𝐽𝑏𝑏

� 𝑙𝑙⋅,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚� = max
𝑗𝑗∈𝐽𝐽𝑏𝑏

� 𝑙𝑙⋅,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚�, since 𝑗𝑗 ≺𝐼𝐼 𝑗𝑗′ for ∀𝑗𝑗 ∈ 𝐽𝐽°, 𝑗𝑗′ ∈ 𝐽𝐽𝑏𝑏.  

Algorithm 1: The TS method 
1 Input: Read travel distance .i jl  between each Marpol base and zone, original zone set 

J , and a fleet of Marpol vessels K . Obtain the required rescue capacity requirement 
c . Calculate the critical rescue capacity c  required by Proposition 2. 

2 Stage 1 (Lines 3–18): 
3 Let bJ J= . 
4 For each zone j  in zone set bJ  
5  For each zone j′  in J   
6   If j j′≠  
7    If  𝑙𝑙𝑖𝑖,𝑗𝑗 ≤ 𝑙𝑙𝑖𝑖,𝑗𝑗′ for all 𝑖𝑖 ∈ 𝐼𝐼 
8     If  𝑙𝑙𝑖𝑖,𝑗𝑗 < 𝑙𝑙𝑖𝑖,𝑗𝑗′ for one 𝑖𝑖 ∈ 𝐼𝐼 
9      Remove 𝑗𝑗 from the zone set bJ . 
10 Let 0 = bJ J .  
11 If 𝑐̄𝑐 < 𝑐̃𝑐 
13  For each zone j  in zone set bJ  
14   Let 𝑙𝑙⋅,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 equals the travel distance from a zone j to its closest base. 
15  Let 𝑙𝑙 ̅equals the maximum travel distance among { }min

, , b
jl j J⋅ ∀ ∈ . 

16  For each zone j  in zone set bJ  

17   If 
{ } { }

min
,

min max
j

k k

l l
s s

⋅ ≤  

18    Remove j  from 0J . 
19 Stage 2 (Line 20): 
20 Solve the [MCT] problem for the restricted zone set 0J  by the off-the-shelf solver. 
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We also present another greedy algorithm to solve the [MCT] problem. Our plan is to 

compare the TS with the off-the-shelf solver in small instances, and then compare the TS with 

the greedy algorithm in large instances to demonstrate the superiority of the TS algorithm in 

both aspects of solving velocity and accuracy. Particularly, the greedy algorithm makes the 

locally optimal choice at each stage. In many problems, a greedy strategy, although optimality 

is not guaranteed, may yield locally optimal solutions that well approximate the globally 

optimal solution. Detailed steps of the greedy algorithm to solve the [MCT] problem is 

presented as follows. 

Algorithm 2: The greedy algorithm for the [MCT] problem 

1 
Input: Travel distance between each Marpol base and zone, ,i jl , and a fleet of Marpol 
vessels K . 

2 Sort all the k K∈  according to the decreasing order of cruising speed ks . 
3 For each zone j J∈  
4  Choose the nearest Marpol base i  for zone j , ( )Base j i= . 
5  Record the travel distance between the selected i  and zone j , 𝑙𝑙⋅,𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚. 
6 For each Marpol i I∈  

7  
Choose the longest distance among zones linked to i , i.e., ( )Base j i=  and record the 
corresponding travel distance, il . 

8 Sort all the i I∈  according to the decreasing order of il . 
9 For each Marpol i I∈  
10  If K ≠ ∅  
11   Let 0sa =   
12   While sa c<  and K ≠ ∅  
13    Assign the first vessel k  in K  to Marpol base i . 
14    Remove k  from K . 
15    + ksa sa c= . 
16 While K ≠ ∅  
17  Select a  k  from K  and randomly assign it to a base. 
18  Remove k  from K . 

5 Numerical experiments 

In this section, we perform extensive computational experiments to demonstrate the 

applicability and effectiveness of the proposed model and the solution approach. A real case 

study is also conducted based on the HK water district which is divided into 19785 zones. The 
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experiments are performed on two sets of instances, i.e., sets A and B, with different input 

parameters. The instances in set A are small-scale instances solved directly by the off-the-shelf 

solver, i.e., Gurobi, and indirectly by TS method. The instances in set B are large/practical 

scale instances that are solved by the TS and the greedy algorithm. The experiments are coded 

in Python calling Gurobi of version 9.03 and implemented on a computer with AMD 8 Cores 

2.9 GHz central processing unit (CPU) and 16GB RAM.  

5.1 Instance generation  

To test the performance of the proposed algorithm, we study 28 instances in set A and 24 

instances in set B. The input parameters related to the model are described as follows. To begin 

with, the number of zones J  are set as 100 and 600 in set A and as 3000 and 4500 in set B, 

respectively. For each input of J , we generate 5 random instances in set A and 3 random 

instances in set B. Here, we let l  denote the index of an instance. The number of Marpol bases 

I   is set to be 3 and 8 in set A and set B, respectively. The zones and Marpol bases in these 

instances are randomly selected from the HK waters, within a real-world background. The 

corresponding travel distance between Marpol base i  and zone j  is also derived based on 

their real location. The number of rescue vessels K  is randomly chosen from { }5 10 15 20   ， ， ，  

in set A and { }20, 25, 30  in set B. As abovementioned, the rescue vessels can be categorized 

into three categories: small size, medium size, and large size. Vessels with different sizes have 

different cruising speeds and rescue abilities: smaller vessels have faster speed, while larger 

vessels have higher rescue capacity. Table 3 shows the specific parameters used in the 

numerical experiments in detail. We assume 20% vessels are large size, 40% vessels are 

medium size, and 40% vessels are small size in the fleet. We also vary the rescue capacity 

requirement 𝑐𝑐̅ to see how it affects the minimal covering times and the performance of our 

algorithm. For notational simplicity, we denote an instance by |𝐽𝐽| − 𝑙𝑙 − |𝐾𝐾|(𝑐𝑐̅), where J  is 
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the number of zones, l  is the index for the instance in a group of instances that share the same 

J , K  is the number of rescue vessels, and 𝑐𝑐̅ is the rescue capacity requirements.  

Insert Table 3 here 

5.2 Computational results 

Instances in set A are solved by the Gurobi and TS methods. The results obtained by the two 

solution methods for these instances are shown in Table 4. In this table, the performance of the 

Gurobi and TS for solving each instance is measured by the objective function value, i.e., MCT, 

and the CPU time. In addition, the relative difference of the CPU time (TRD) required by the 

Gurobi and TS is reported in the last column, which is defined as 100% × (𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇/𝐶𝐶𝑇𝑇𝐺𝐺). In this 

equation, TSCT  is the TS’s CPU time and GCT  is the Gurobi’s CPU time. 

Insert Table 4 here 

As expected, the proposed TS method obtains the optimal solution and is superior to 

Gurobi in the aspect of computation time in all testing instances. Even in the smallest testing 

instances, the CPU time of TS is much smaller than Gurobi. In addition, Gurobi is more 

sensitive to the number of variables (zones). When the number of zones increases from 100 to 

600, the average computation time of Gurobi grows from 5.78 seconds to 1055.78 seconds, 

about 182.66 times larger. By comparison, the average computation time of TS changes from 

0.037 seconds to 0.066 seconds, about 1.78 times larger. Moreover, the computation time of 

Gurobi is also sensitive to the rescue capacity requirement, i.e., constraint (4) in the [MCT] 

model. We take the instances 600-1-20(𝑐𝑐̅) for example, when the rescue capacity requirement 

varies between 2 and 50, the computation time of Gurobi various between 172.25 seconds and 

1518.62 seconds, the ratio of the maximal to the minimal computation time is 8.82. By 

comparison, the TS’s ratio between the maximal and minimal computation time is 3.00 which 

is much smaller than Gurobi. Other instances show a similar phenomenon. Overall, the TS 
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outperforms Gurobi in terms of the solution speed for solving the instances in set A. Meanwhile, 

the TS is able to solve the problem to optimum in all instances.  

We proceed to investigate the effects of Proposition 1 and 2 in reducing the size of zones. 

As shown in Table 5, the original zone set is first eliminated by Proposition 1, and then further 

reduced by Proposition 2. The remaining number of zones after zone elimination (Proposition 

1 or 2) is reported in the column of “Number of zones”, and the ratio between the remaining 

number of zones and original number of zones is reported in the column of “Reduced ratio”. 

The critical capacity value for the condition of Proposition 2 is provided in the last column.  

Table 5 reflects that most zones can be eliminated by applying Proposition 1. Especially 

for the case of 100-3-15, 600-4-10, and 600-5-5, only one zone is left in the reduced zone set. 

Even in the worst case, i.e., 100-2-10, 90% of zones are identified and eliminated. Proposition 

2 further largely restricts the zone size in the case of 100-2-10, 600-1-20, and 600-2-15. After 

applying Proposition 1 and 2, average 98.05% zones and 98.62% zones are eliminated 

respectively, in the testing instances, and consequently, a very limited number of zones are 

identified as effective in solving the problem. Considering the powerful effect of Proposition 

1 and 2, it is not surprising the TS method achieves such huge performance improvement. 

Insert Table 5 here 

Instances in set B are solved by the TS and greedy algorithm. The results obtained by the 

two solution methods for these instances are reported in Table 6. The performance of the TS 

and greedy algorithm for solving each instance is measured by the objective function value, 

i.e., MCT, and the CPU time. The difference of the solved MCT between the TS and greedy 

algorithm is reported in the column of “Gap”.  

Insert Table 6 here 

As shown in Table 6, the greedy algorithm can return near-optimal solutions when the 

rescue capacity requirement is not large. For example, the greedy algorithm returns the same 

objective value generated by TS in instances 3000-1-25(2), 3000-1-25(20), 3000-2-20(2), 

3000-3-25(2), and 4500-1-25(2). However, the gap rapidly increases when the rescue capacity 
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requirement rises. We then derive the relative gap (RG) of the solution obtained by the TS 

against the solution obtained by the greedy algorithm, which is defined as 100% × (𝑜𝑜𝑜𝑜𝑗𝑗𝐺𝐺 −

𝑜𝑜𝑜𝑜𝑗𝑗𝑇𝑇𝑇𝑇)/𝑜𝑜𝑜𝑜𝑗𝑗𝑇𝑇𝑇𝑇. In this equation, Gobj  is the objective value obtained by the greedy algorithm, 

and TSobj  is the objective value obtained by the TS. The results are RG are reported in the last 

column of Table 6. It can be seen that the errors resulted from the greedy algorithm is 

significant. As the rescue capacity requirement rises, the RG can be larger than 60. This 

indicates that although the greedy algorithm can obtain the near-optimal solutions at specific 

scenarios, e.g., when the rescue capacity requirement is low, its performance drops rapidly at 

other scenarios, e.g., when increasing the requirement of rescue capacity. When it comes to the 

computation time, the greedy method is more stable than the TS. This is mainly because the 

greedy algorithm makes one locally optimal choice at each stage, reducing each given problem 

into a smaller one, rather than making decisions based on all the feasible space as in the TS. 

Therefore, it fails to produce the optimal solution with various rescue capacity requirements in 

the [MCT] problem.  

Table 7 shows the effects of Proposition 1 and 2 in reducing the size of zones in larger 

instances. Similar to Table 5, the performance of Propositions 1 and 2 are reflected by the 

“Number of zones” and “Reduced ratio”. The critical capacity value is shown in the last column. 

Generally, the performance of Proposition 1 and 2 is better in larger instances. In the first round, 

after applying Proposition 1, average 99.16% zones are identified as ineffective and removed. 

Moreover, even in the worst case, i.e., 3000-2-20, 98.73% zones are identified which reflects 

the efficient and stable performance of Proposition 1. In the second round, after applying 

Proposition 2, more ineffective zones are identified and removed which further reduces the size 

of zone sets. The critical capacity values are obtained by solving the [CRCO] problem and 

reported in the last column. The effectiveness of zone elimination operation provides a solid 

foundation for TS to tackle large/huge scale problems.  

Insert Table 7 here 
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We proceed to perform a comparison before and after applying Proposition 2 and report 

the results in Table 8. In this table, the objective value is reported in column “MCT” and the 

computation time is reported in column “CPU time”. To meet the condition of Proposition 2, 

the rescue capacity requirement should below the critical capacity value reported in the last 

column of Table 7. Consistent with the theory, TS method returns the optimal solution in all 

testing instances in set B. Although TS is already very efficient by applying Proposition 1, its 

performance can be further enhanced by applying both Propositions 1 and 2. In majority of 

testing instances, the CPU time can be significantly reduced. Only one exception is the case of 

3000-3-25(5), in which solution time is a bit longer than the strategy of only applying 

Proposition 1. 

Insert Table 8 here 

5.3 Case study 

The HK Marpol is responsible for the HK water district with 1651 km2. To obtain the minimal 

covering time of this district by solving the [MCT] problem. We divide the HK water district 

into 19785 discrete squared zones. Each zone is represented by its centroid, as shown in Figure 

4. In Figure 4, small blue points represent the zones that are eliminated by Proposition 1; larger 

orange dots represent the zones that are further eliminated by Proposition 2; orange dots with 

a cross in them represent the remaining zones. Obviously, the majority of zones are eliminated. 

Specifically, 105 zones are left after applying Proposition 1 and 94 zones are left after applying 

Propositions 1 and 2. 99.47% zones are removed in the first round of zone elimination and 

99.52% zones are removed in the second round of zone elimination.  

A total of nine Marpol bases are located on the coastlines of islands, which is indicated by 

the red square nodes in Figure 4. The shortest cruising distance from a Marpol base to each 

zone is already derived and taken as input of this problem. The vessels that can fulfill the rescue 

missions are summarized in Table 9, which can be classified into three groups (large, medium, 

and small) according to their sizes. The numbers of large, medium, and small vessels are set to 
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be 6, 17, and 5, respectively, to obtain some insights. The vessels are deployed to different 

Marpol bases. Once a rescue request is received, the Marpol should send sufficient vessels to 

the accident site. Therefore, it is of significant responsibility for the HK Marpol to 

appropriately deploy the fleet and provide a reliable minimal covering time that they are able 

to arrive at any accident site within this period. More detailed description of the case is 

presented in Appendix A.1.  

Insert Figure 4 here 

Insert Table 9 here 

We solve this problem by TS. The detailed setting of this algorithm is the same as the 

above instances. The optimal vessel deployment plan and minimal covering time are obtained 

and shown in this section and Appendix A.2. It should be mentioned that addressing this real-

world case by Gurobi is computationally expensive. According to our experiment, the 16GB 

RAM computer encounters the “out of memory” issue even on a simplified HK water district 

with 4922 discretized zones, not to mention the fine-partitioned case with 19785 zones we 

consider. Then, a workstation with 64GB RAM and Intel 24 Cores 2.19 GHz CPU solve this 

simplified case in 107127.87 seconds (over 29 hours). By comparison, the proposed TS can 

find the optimal solution in a much shorter time than Gurobi, which is 31.00 seconds on the 

computer. A rescue vessel deployment plan obtained in one run is shown in Table 10, and the 

corresponding minimal covering time is 19.28 minutes. We note that the fleet deployment plan 

can be varied among different runs since the optimal solutions are not unique, but the minimal 

covering time is identical at 19.28 minutes.  

Insert Table 10 here 

We proceed to study the effects of rescue capacity requirements and report them in Table 

11. Specifically, we set five different rescue capacity requirements, which are 2, 5, 10, 15, and 

20, referred to as level i to level v. The critical capacity value is found to be 16 by solving the 

[CRCO]. The objective value of MCT gradually increases when the rescue capacity 

requirement increases. It can be seen that the fleet deployment plan is various under different 
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rescue capacity settings. The Marpol can select the most suitable deployment plan based on 

their demands in practice and adjust their deployment plan, when adopting the proposed model.  

Insert Table 11 here 

We also study the effect of the fineness of the discretization. Specifically, we examine the 

covering time solution in a coarse-grained discrete zone set that contains 4922 zones. The size 

of zones is four times larger than the size of zones in the fine-grained setting (19785 discrete 

zones). The results are shown in Table 12. The relative difference in the third row is defined as  

( )100% f c fRD CT CT CT= × −  where fCT  is the covering time concerning the fine-grained 

setting and cCT  is the covering time concerning the coarse-grained setting.  

Insert Table 12 here 

Generally, although the size of zones in the coarse-grained setting is four times large as 

the size of zones in the fine-grained setting, the difference between covering time solutions is 

marginal. Therefore, we can see that the model is not sensitive to the fineness of the 

discretization.  

6 Conclusions 

Maritime safety is an essential prerequisite of running a successful maritime industry. MSAR 

operations, which provide promptly help for victims in danger, is of great importance for 

building a safe maritime hub. We study in this paper a covering time minimization problem in 

which the MSAR operator aims to minimize the maximal response time to arrive at any incident 

spot in a water district by appropriately deploying the rescue fleet to existing Marpol bases. 

We formulate a mixed-integer programming model, [MCT] model, for the considered problem 

and analyze the properties of the optimal solution. Considering the expensive computation cost 

of using off-the-shelf solvers for the problem, a tailored two-stage algorithm is proposed based 

on the special characteristics of the problem. Extensive numerical experiments are conducted, 

and the results demonstrate that the algorithm outperforms other solution methods for solving 
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the [MCT] problem with different sizes. We also apply the algorithm to solve a practical 

problem faced by HK Marpol, which further demonstrates the efficiency of the algorithm.  

Our study can be of great value to HK MRCC, the agency that is responsible for MSAR 

missions in HK waters, and to MSAR operators in other areas. By using our approach, the 

MSAR operator can obtain the following deliverables: (1) a tactical vessel allocation plan (e.g., 

made quarterly, biannually, or yearly), (2) an operational vessel dispatch plan when an 

emergency occurs, (3) the covering times of the whole water district and the sub-region 

responsible by each Marpol base. Knowing the last one, the MSAR operator can also set a 

service pledge of the response time, by which it can drive frontline rescuers to work at their 

best to meet this achievable optimal goal (thereby better accomplishing the ultimate goal of 

saving life) and to publicize its superior service level (thereby to gain advantage in global 

maritime centers competition).  

Considering that the consequence of mishandling an incident is disastrous, we adopt a 

robust optimization approach to model the maritime search and rescue problem and to solve a 

conservative solution. For future studies, it is interesting to consider location-dependent 

incident chances and model the [MCT] problem as one that minimizes the expected response 

time under uncertainties.  
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Appendix 

Appendix A. Supplementary data in the case study 

We present the supplementary data in the case study in this appendix. 

A.1. Input data of the real case faced by HK Marpol 

The input data of the real case faced by HK Marpol is listed as follows. The HK water 

district is divided into 19785 zones with each zone representing a 300 300×  square meters 
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water area. The centroid of each zone is taken as the zone’s representative. Nine maritime bases 

are located along the coastline in the Kowloon Peninsula, Hong Kong Island, and its offshore 

islands (Peng Chau island, Cheung Chau island, and Lamma Island). The specific longitude 

and latitude of each maritime base are provided in Table A.1 and are shown in Figure 4. The 

shortest travel distances between each base and zone are precalculated and taken as input 

parameters.  

Insert Table A.1 here 

 

A.2. Fleet deployment results and the minimal covering time  

Table A.2 reports the fleet deployment plan in the HK water district when different service 

levels are desired. The service levels are reflected by the minimum rescue capacity guaranteed 

for each rescue mission. The solutions are generated by the TS method. The corresponding 

minimal covering time is presented in Table 11. The fleet deployment plan at level (i) is 

reported in Table 10.  

Insert Table A.2 here 

 

Appendix B. Proofs 

In this section, provide proofs for our results.  

Proof of Lemma 1. First, it follows directly from the definition of 𝐽𝐽°  and 𝐽𝐽𝑏𝑏  that 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽°

{ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) } ≤  𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽𝑏𝑏

{ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) }. 

Second, since 𝐽𝐽 = 𝐽𝐽° ∪ 𝐽𝐽𝑏𝑏, we must have 

 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽

{ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) } = max � 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽𝑏𝑏

{ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) } ,𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽°

{ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) } � = 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽𝑏𝑏

{ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝑗𝑗) }. 

Proof of Proposition 1. Note that an allocation plan 𝑋𝑋∗ is an optimal solution to [MCT] on 𝐽𝐽 

iff 𝐶𝐶𝐶𝐶(𝑋𝑋∗, 𝐽𝐽) ≤ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽) , ∀𝑋𝑋 . Similarly, 𝑋𝑋∗  is an optimal solution to [MCT] on 𝐽𝐽𝑏𝑏  iff 
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𝐶𝐶𝐶𝐶(𝑋𝑋∗, 𝐽𝐽𝑏𝑏) ≤ 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽𝑏𝑏), ∀𝑋𝑋. Thus, the proposition immediately holds by Lemma 1 which 

states that 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽) = 𝐶𝐶𝐶𝐶(𝑋𝑋, 𝐽𝐽𝑏𝑏), ∀𝑋𝑋.   

Proof of Proposition 2. If the condition of the proposition holds, on the one hand, the response 

time to a zone 𝑗𝑗 under any admissible allocation plan is at most 
𝑙𝑙⋅,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚

min{𝑠𝑠𝑘𝑘}, where min{𝑠𝑠𝑘𝑘} is a 

lower bound of the speeds of the vessels used to serve zone 𝑗𝑗. On the other hand, the covering 

time of the whole water district is no smaller than the covering time of the “farthest” served by 

fastest vessel(s), which is 𝑙𝑙 ̅

max{𝑠𝑠𝑘𝑘}.  

Therefore, if  
𝑙𝑙⋅,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚

min{𝑠𝑠𝑘𝑘} ≤
𝑙𝑙̅

max{𝑠𝑠𝑘𝑘} for some zone 𝑗𝑗, then this zone is ineffective in determining 

the covering time of the water district, which is the maximum response time of all zones. The 

[MCT] problem is unaffected with or without this zone. The same argument applies when all 

zones in 𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛are eliminated. 

Proof of Proposition 3. We prove by contradiction. Suppose that there exists a base i such that 

it is incapacitated, i.e., ∑ 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘𝑘𝑘∈𝐾𝐾 < 𝑐𝑐̅ under an admissible allocation plan X. We discuss the 

two conditions separately.  

(i) Noting that base i is incapacitated, any vessel assigned to it should have capacity less 

than 𝑐𝑐̅. Thus, all vessels that have capacity larger than 𝑐𝑐̅ are assigned to other bases, i.e., those 

in 𝐼𝐼\{𝑖𝑖}. If the first condition of the proposition holds, i.e., card({𝑘𝑘 ∈ 𝐾𝐾: 𝑐𝑐𝑘𝑘 ≥ 𝑐𝑐̅}) ≥ card(𝐼𝐼), 

there must exist one base (e.g., 𝑖𝑖′) that is assigned more than one vessels with capacity larger 

than 𝑐𝑐̅. Any one of these vessels is redundant at base 𝑖𝑖′, which contradicts the assumption that 

X is admissible.  

(ii) Since X is admissible, there should be no redundant vessel at other bases. That is, for 

any 𝑖𝑖′ ∈ 𝐼𝐼\{𝑖𝑖}, we have ∑ 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖′,𝑘𝑘𝑘𝑘∈𝐾𝐾 < 𝑐𝑐̅ + 𝑐𝑐𝜅𝜅(𝑖𝑖′) , where 𝜅𝜅(𝑖𝑖′) denote the index of an arbitrary 

vessel that is assigned to base 𝑖𝑖′ . Because all 𝑐𝑐𝑘𝑘 ’s and 𝑐𝑐̅ are integer-valued, the inequality 

reduces to ∑ 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖′,𝑘𝑘𝑘𝑘∈𝐾𝐾 ≤ 𝑐𝑐̅ + 𝑐𝑐𝜅𝜅(𝑖𝑖′) − 1. Therefore,  

��𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖′,𝑘𝑘
𝑘𝑘∈𝐾𝐾𝑖𝑖′≠𝑖𝑖

≤ [card(𝐼𝐼) − 1](𝑐𝑐̅ − 1) + �𝑐𝑐𝜅𝜅�𝑖𝑖′�
𝑖𝑖′≠𝑖𝑖

≤ [card(𝐼𝐼) − 1](𝑐𝑐̅ − 1) + � 𝑐𝑐(𝑘𝑘)
↓

card(𝐼𝐼)−1

𝑘𝑘=1

 , 
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where 𝜅𝜅(𝑖𝑖′)’s in the first inequality are arbitrarily selected. Combining the second inequality 

and the incapacitated condition ∑ 𝑐𝑐𝑘𝑘𝑥𝑥𝑖𝑖,𝑘𝑘𝑘𝑘∈𝐾𝐾 < 𝑐𝑐̅ yields 

�𝑐𝑐𝑘𝑘
𝑘𝑘∈𝐾𝐾

< card(𝐼𝐼) ∙ 𝑐𝑐̅ − [card(𝐼𝐼) − 1] + � 𝑐𝑐(𝑘𝑘)
↓

card(𝐼𝐼)−1

𝑘𝑘=1
 , 

which contradicts the second condition of the proposition. 
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Table 1 Summary of literature on the MSAR resources management 

Paper Problem and major considerations Approach 

Azofra et al. 

(2007) 

Sea rescue resource location; characteristics of 

the accident, the vessel and the damage 

produced; cost-effectiveness 

Gravitational models (Individual 

distribution model, Zonal 

distribution model) 

Wagner and 

Radovilsky 

(2012) 

The United States Coast Guard boat fleet 

allocation; risk-management capability; 

Integer linear programming; 

value-at-risk; robust optimization 

Pelot et al. (2015) Locating maritime search and rescue vessels; 

boat range; bi-objective 

Maximal covering location 

problem (MCLP); capacity limits 

MCLP; stochastic factors CLP 

Razi and Karatas 

(2016) 

Locating search and rescue boats; multi-

objective; density and types of incidents; 

resource capabilities, geographical factors; 

governments’ business rules 

Analytical Hierarch Process; zonal 

distribution model; multi-

objective mixed integer program 

Akbari et al. 

(2018a) 

Location of maritime search and rescue 

resources; simulated demand; multiple criteria 

Maximal covering location 

problem; p-median problem;  

Akbari et al. 

(2018b) 

Location-allocation of maritime search and 

rescue vessels; multiple criteria; multi-objective 

Goal programming multi-

objective model; 

Karatas (2021) Location and allocation of search and rescue 

boats and helicopters; demand uncertainty; 

seasonally relocation of vessels 

Dynamic multi-objective mixed 

integer linear programming 

model; simulated incident 

scenarios 

Hornberger et al. 

(2021) 

Heterogeneous search and rescue asset location; Stochastic zonal distribution; bi-

objective integer linear program 
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Table 2 Worded examples of covering problem 

Vessel size Rescue capacity Number of vessels Speed 

Small (S) 2 4 𝑣𝑣𝑠𝑠 

Medium (M) 3 2 𝑣𝑣𝑚𝑚 

Large (L) 4 2 𝑣𝑣𝑙𝑙 

 Base 1 at (-1, 0) Base 2 at (1, 0)  

Case 1: (𝑣𝑣𝑠𝑠,𝑣𝑣𝑚𝑚, 𝑣𝑣𝑙𝑙) = (4, 3, 1), 𝑟𝑟 = 1.5, 𝑐𝑐̅ = 7.   

Optimal allocation S×2, M×1 S×2, M×1  

Dispatched capacity 7 7  

Bottleneck speed 3 3  

Assigned service region {𝑢𝑢 ≤ 0} {𝑢𝑢 > 0}  

Covering time of the assigned region √𝟏𝟏𝟏𝟏/𝟔𝟔 √𝟏𝟏𝟏𝟏/𝟔𝟔  

Case 2: (𝑣𝑣𝑠𝑠,𝑣𝑣𝑚𝑚, 𝑣𝑣𝑙𝑙) = (4, 3, 1), 𝑟𝑟 = 2, 𝑐𝑐̅ = 7.   

Optimal allocation M×1, L×1 S×4  

Dispatched capacity 7 8  

Bottleneck speed 1 4  

Assigned service region {(𝑢𝑢 + 17/15)2 + 𝑣𝑣2 ≤ (8/15)2} remaining area  

Covering time of the assigned region 2/3 𝟑𝟑/𝟒𝟒  

Case 3: (𝑣𝑣𝑠𝑠,𝑣𝑣𝑚𝑚, 𝑣𝑣𝑙𝑙) = (4, 3, 2), 𝑟𝑟 = 1.5, 𝑐𝑐̅ = 7.   

Optimal allocation M×1, L×1 S×4  

Dispatched capacity 7 8  

Bottleneck speed 2 4  

Assigned service region {(𝑢𝑢 + 5/3)2 + 𝑣𝑣2 ≤ (4/3)2} remaining area  

Covering time of the assigned region �𝟏𝟏𝟏𝟏/𝟒𝟒𝟒𝟒 �𝟏𝟏𝟏𝟏/𝟒𝟒𝟒𝟒  

Case 4: (𝑣𝑣𝑠𝑠,𝑣𝑣𝑚𝑚, 𝑣𝑣𝑙𝑙) = (4, 3, 1), 𝑟𝑟 = 1.5, 𝑐𝑐̅ = 8.   

Optimal allocation M×2, L×1 S×4  

Dispatched capacity 10 8  

Bottleneck speed 1 4  

Assigned service region {(𝑢𝑢 + 17/15)2 + 𝑣𝑣2 ≤ (8/15)2} remaining area  

Covering time of the assigned region �𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑 �𝟏𝟏𝟏𝟏/𝟑𝟑𝟑𝟑  
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Table 3 Marpol vessels for rescue missions 

Vessel Type Speed (knot) Service Capacity (passengers) 
Large Marpol Launch 25 10 

Medium Marpol Launch 45 5 
Small Marpol Launch 60 2 
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Table 4 Results of instances in Set A 

Instances Gurobi TS method TRD (%) MCT (min) CPU Time (sec) MCT (min) CPU Time (sec) 
100-1-5(2) 30.84 0.36 30.84 0.02 5.556 

100-1-5(20) 74.06 0.03 74.06 0.01 33.333 
100-2-10(2) 29.53 1.81 29.53 0.08 4.420 
100-2-10(20) 39.50 4.68 39.50 0.09 1.923 
100-2-10(40) 91.70 0.99 91.70 0.04 4.040 
100-3-15(2) 30.29 1.89 30.29 0.01 0.529 
100-3-15(20) 40.39 7.56 40.39 0.02 0.265 
100-3-15(50) 72.70 8.85 72.70 0.02 0.226 
100-3-15(70) 72.70 0.77 72.70 0.02 2.597 
100-4-20(2) 28.53 3.27 28.53 0.02 0.612 
100-4-20(20) 38.04 6.62 38.04 0.05 0.755 
100-4-20(50) 40.53 28.16 40.53 0.04 0.142 
100-4-20(70) 68.48 22.92 68.48 0.04 0.175 
100-4-20(90) 73.09 3.51 73.09 0.03 0.855 
100-5-15(2) 29.02 2.25 29.02 0.03 1.333 
100-5-15(20) 38.70 5.05 38.70 0.05 0.990 
100-5-15(50) 69.66 9.47 69.66 0.04 0.422 
100-5-15(70) 73.09 0.69 73.09 0.02 2.899 
600-1-20(2) 30.46 172.25 30.46 0.08 0.046 
600-1-20(20) 40.62 1192.07 40.62 0.27 0.023 
600-1-20(50) 42.42 1518.62 42.42 0.24 0.016 
600-1-20(70) 73.11 1789.10 73.11 0.21 0.012 
600-1-20(90) 101.82 12.85 101.82 0.08 0.623 
600-2-15(2) 30.17 123.13 30.17 0.03 0.024 
600-2-15(20) 40.23 989.64 40.23 0.04 0.004 
600-2-15(50) 72.41 692.69 72.41 0.05 0.007 
600-2-15(70) 76.45 0.84 76.45 0.02 2.381 
600-3-20(2) 30.38 300.72 30.38 0.03 0.010 
600-3-20(20) 40.51 1242.21 40.51 0.05 0.004 
600-3-20(50) 41.49 1428.45 41.49 0.04 0.003 
600-3-20(70) 72.93 926.90 72.93 0.04 0.004 
600-3-20(90) 74.68 2.75 74.68 0.03 1.091 
600-4-10(2) 32.08 26.64 32.08 0.02 0.075 
600-4-10(20) 42.78 194.10 42.78 0.03 0.015 
600-4-10(40) 77.00 8.01 77.00 0.02 0.250 
600-5-5(2) 42.40 29.65 42.40 0.02 0.067 

600-5-5(20) 101.77 0.23 101.77 0.01 4.348 
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Table 5 Remaining number of zones after applying Proposition 1 and 2 for instances in set A 

Instances 
Original 

number of 
zones 

Remaining zones after 
applying Proposition 1 

Remaining zones after applying 
Proposition 2 

Number of 
zones 

Reduced 
ratio 

Number of 
zones 

Reduced 
ratio 

Critical 
capacity 

100-1-5 100 2 98.00% 2 98.00% − 
100-2-10 100 10 90.00% 6 94.00% 10 
100-3-15 100 1 99.00% 1 99.00% − 
100-4-20 100 2 98.00% 1 99.00% − 
100-5-15 100 2 98.00% 2 98.00% − 
600-1-20 600 8 98.67% 5 99.17% 26 
600-2-15 600 3 99.50% 2 99.67% 18 
600-3-20 600 2 99.67% 2 99.67% − 
600-4-10 600 1 99.83% 1 99.83% − 
600-5-5 600 1 99.83% 1 99.83% − 
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Table 6 Results of instances in Set B 

Instances Greedy algorithm TS method Gap RG(%) MCT (min) CPU Time (sec) MCT (min) CPU Time (sec) 
3000-1-25(2) 28.74 3.63 28.74 0.08 0.00 0.00 

3000-1-25(20) 28.74 3.39 28.74 0.35 0.00 0.00 
3000-1-25(50) 45.04 3.62 43.11 0.54 1.93 4.48 
3000-1-25(80) 68.98 3.56 68.98 0.19 0.00 0.00 
3000-1-25(100) 106.14 3.41 77.61 0.22 28.53 36.76 
3000-2-20(2) 19.09 3.45 19.09 1.79 0.00 0.00 

3000-2-20(20) 30.79 3.44 27.37 22.13 3.42 12.50 
3000-2-20(50) 45.58 3.47 43.54 12.15 2.04 4.69 
3000-2-20(70) 73.89 3.43 65.70 10.40 8.19 12.47 
3000-2-20(90) 109.39 3.42 78.37 4.93 31.02 39.58 
3000-3-25(2) 19.09 3.54 19.09 1.39 0.00 0.00 

3000-3-25(20) 24.93 3.43 24.93 12.81 0.00 0.00 
3000-3-25(50) 44.87 3.47 43.54 11.57 1.33 3.05 
3000-3-25(80) 73.89 3.69 45.81 13.18 28.08 61.30 
3000-3-25(100) 109.39 3.42 78.37 6.22 31.02 39.58 
4500-1-25(2) 28.74 5.16 28.74 0.13 0.00 0.00 

4500-1-25(20) 28.74 5.10 28.74 0.36 0.00 0.00 
4500-1-25(50) 45.04 5.01 43.11 0.54 1.93 4.48 
4500-1-25(80) 68.98 5.08 68.98 0.18 0.00 0.00 
4500-1-25(100) 106.14 5.41 77.61 0.24 28.53 36.76 
4500-2-30(2) 19.09 5.07 19.09 6.94 0.00 0.00 

4500-2-30(20) 24.71 5.13 24.71 51.70 0.00 0.00 
4500-2-30(50) 44.47 5.22 36.50 61.67 7.97 21.84 
4500-2-30(80) 45.58 5.25 43.54 52.23 2.04 4.69 
4500-2-30(100) 73.89 5.01 46.89 78.39 27.00 57.58 
4500-2-20(120) 109.39 5.25 78.37 28.27 31.02 39.58 
4500-3-25(2) 19.09 5.15 19.09 4.73 0.00 0.00 

4500-3-25(20) 24.93 5.05 24.93 28.01 0.00 0.00 
4500-3-25(50) 44.87 5.07 43.54 54.67 1.33 3.05 
4500-3-25(80) 73.89 5.09 45.81 42.99 28.08 61.30 
4500-3-25(100) 109.39 5.23 78.37 36.74 31.02 39.58 
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Table 7 Remaining number of zones after applying Proposition 1 and 2 for instances in set B 

Instances 
Original 

number of 
zones 

Remaining zones after 
applying Proposition 1 

Remaining zones after applying 
Proposition 2 

Number of 
zones 

Reduced 
ratio 

Number of 
zones 

Reduced 
ratio 

Critical 
capacity 

3000-1-25 3000 5 99.83% 2 99.93% 8 
3000-2-20 3000 38 98.73% 33 98.90% 5 
3000-3-25 3000 33 98.90% 29 99.03% 8 
4500-1-25 4500 7 99.84% 4 99.91% 8 
4500-2-30 4500 53 98.82% 48 98.93% 11 
4500-3-25 4500 52 98.84% 46 98.98% 8 
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Table 8 Performance comparison between Proposition 1 and 2 for instances in set B 

Instances Gurobi Zone elimination by  
Proposition 1 

Zone elimination by  
Proposition 1 and 2 

MCT (min) MCT (min) CPU Time (sec) MCT (min) CPU Time (sec) 
3000-1-25(2) 28.74 28.74 0.21 28.74 0.08 
3000-1-25(5) 28.74 28.74 0.23 28.74 0.09 
3000-1-25(8) 28.74 28.74 0.32 28.74 0.16 
3000-2-20(2) 19.09 19.09 2.13 19.09 1.79 
3000-2-20(5) 23.06 23.06 3.62 23.06 2.90 
3000-3-25(2) 19.09 19.09 2.70 19.09 1.39 
3000-3-25(5) 19.09 19.09 3.80 19.09 4.51 
3000-3-25(8) 23.06 23.06 10.73 23.06 6.66 
4500-1-25(2) 28.74 28.74 0.21 28.74 0.13 
4500-1-25(5) 28.74 28.74 0.23 28.74 0.18 
4500-1-25(8) 28.74 28.74 0.31 28.74 0.27 
4500-2-30(2) 19.09 19.09 9.43 19.09 6.94 
4500-2-30 (5) 19.09 19.09 9.73 19.09 8.20 

4500-2-30 (10) 23.06 23.06 22.30 23.06 14.87 
4500-2-30 (11) 24.71 24.71 39.82 24.71 36.93 
4500-3-25(2) 19.09 19.09 5.45 19.09 4.73 
4500-3-25(5) 19.09 19.09 12.80 19.09 6.64 
4500-3-25(8) 23.06 23.06 20.08 23.06 14.81 
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Table 9 Rescue vessels regulated by the HK Marpol 

Vessel size Vessel speed (Knot) Rescue capacity (Passengers) Number of vessels 
Large 25 10 6 

Medium 45 5 17 
Small 60 2 5 
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Table 10 A developed deployment plan 

Base Index Fleet deployment plan (level i) 
Large Medium Small 

1 1 0 1 
2 1 1 0 
3 1 2 0 
4 0 3 0 
5 1 1 0 
6 1 2 0 
7 1 1 1 
8 0 5 2 
9 0 2 1 
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Table 11 Effects of rescue capacity requirements on the minimal covering time  

Rescue capacity requirement level i level ii level iii level iv level v 
Covering time (min) 19.28 25.10 25.10 25.70 25.70 

CPU time with Proposition 1 (sec) 37.00 39.68 63.09 59.43 110.09 
CPU time with Propositions 1 and 2 (sec) 21.77 17.01 59.79 61.67 – 
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Table 12 Covering time with respect to the fineness of the discretization 

Rescue capacity requirement level i level ii level iii level iv level v 
Fine-grained setting (min) 19.28 25.10 25.10 25.70 25.70 

Coarse-grained setting (min) 19.09 23.64 23.64 25.45 25.45 
Relative difference (RD) 0.99% 5.82% 5.82% 0.97% 0.97% 

 

  



51 

 

Table A.1 Maritime bases in HK water district 

Base Index Base Name Longitude Latitude 
1 Marine West Division 114.017 22.358 
2 Peng Chau Police Post 114.037 22.282 
3 Cheung Chau Division 114.032 22.200 
4 Lamma Island Police Post 114.113 22.216 
5 Sok Kwu Wan Police Post 114.137 22.211 
6 Marine South Division 114.166 22.235 
7 Marine Harbour Division 114.230 22.284 
8 Marine East Division 114.280 22.377 
9 Marine North Division 114.219 22.407 
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Table A.2 Fleet deployment plans in HK water district with various service levels 

Base Index Fleet deployment plan (level ii) 

 

Fleet deployment plan (level iii) 
Large Medium Small Large Medium Small 

1 0 3 3 0 0 5 
2 0 3 1 1 1 0 
3 1 1 0 1 0 0 
4 1 1 0 1 0 0 
5 1 1 0 1 0 0 
6 1 1 0 1 1 0 
7 0 3 0 1 3 0 
8 1 1 0 0 10 0 
9 1 3 1 0 2 0 

 

Base Index Fleet deployment plan (level iv)  Fleet deployment plan (level v) 
Large Medium Small  Large Medium Small 

1 0 3 0  0 4 0 
2 1 1 1 1 2 0 
3 1 1 0 2 0 0 
4 1 1 0 0 2 0 
5 1 0 3 1 0 0 
6 1 1 0 1 1 1 
7 0 5 0 1 1 2 
8 0 4 1 0 3 2 
9 1 1 0 0 4 0 
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Figure 1 Water district regulated by the Hong Kong Marine Police 
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Figure 2 The assigned service regions in the four worked examples 
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Figure 3 Illustration of water district discretization 
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Figure 4 Water district discretization and representation 
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