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Summary
Although Hotelling’s T2 test has been a widely used test for hypothesis testing problems on the

mean vectors, it is not well definedwhen the data dimension is larger than the sample size. Demp-

ster’s non-exact test, as a remedy for the Hotelling’s T2 test, is known to be more powerful than

the Hotelling’s T2 test and is well defined even when the dimension is much larger than the sam-

ple size. However, Dempster’s non-exact test will lose powerwhen the variances of the covariates

are different. In this paper, we propose a Standardized Dempster’s non-exact test for the clas-

sical mean testing problem. The proposed test is more powerful for data with heteroscedastic

features, and is applicable to the high dimensional case. An approximate distribution of the test

statistic has been established, and to better control the type I error rate when the sample size is

small, we further constructed a Monte Carlo version of the proposed standardized Dempster’s

non-exact test. Various simulation studies and a real data application were conducted with com-

parison to other popular tests. The numerical results showed that while the type I error rates

were well controlled, the testing power of our proposed test was generally higher than those of

other tests.
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1 INTRODUCTION

Comparing themean vectorwith a constant vector under theGaussian assumption arises naturally in awide range of applications such as, genomics,
medical imaging, risk management, and signal processing. The most classical testing method is probably the Hotelling’s T2 test (henceforth HT
test) which is well-defined when the vector dimension p is smaller than the sample size n (Hotelling 1992). However, with the rapid development
of modern data technology, such as computing and gene sequencing technology, high-dimensional data where the dimension p could be much
larger than the sample size n are frequently encountered in many applications. Under the p > n setting, the HT test is no longer applicable, owing
to the fact that the sample covariance matrix is no longer invertible. Even when p < n − 1, the power of the HT test can be adversely affected if
the sample covariance matrix is nearly singular (Bai & Saranadasa 1996; Pan & Zhou 2011; Wang, Peng, & Li 2015).

As a remedy for the ill-conditioned sample covariance matrix under high dimensionality, Dempster proposed a non-exact significance test
(henceforth DT test) for the one and two sample mean-comparison problem (Dempster 1958 1960), where the testing statistic is approximately
following a F distribution. Bai and Saranadasa (1996) (henceforth BS test) proposed to replace the irreversible sample covariance matrix by the
identity matrix under the assumption that p/n → γ > 0. Chen and Qin (2010) (henceforth CQ test) modified the BS test and introduced a test
statistic by removing the cross-product terms. Pan and Zhou (2011) used the linear spectral statistics to obtain the central limit theorem (CLT) of
Hotelling’s T2 test when p/n→ γ ∈ (0, 1). M. S. Srivastava and Du (2008) (henceforth SD test) andM. S. Srivastava (2009) (henceforth S test) used
the information from the diagonal elements of the sample covariance matrix to construct their tests when p ≥ n, and established some related
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CLTs. Park and Ayyala (2013) proposed a new scalar transform invariant test and derived the asymptotic null distribution and power under weaker
assumptions than those for the S test (M. S. Srivastava 2009). Further related studies on the mean vector testing problem can also be found in Fan
and Fan (2008), Thulin (2014), Tony Cai, Liu, and Xia (2014), Liu, Liu, Zheng, and Shi (2017), Wang et al. (2015), Li, Hu, Bai, Yin, and Zou (2017),
R. Srivastava, Li, and Ruppert (2016) and Z. Hu, Tong, and Genton (2019), among others.

Despite there are many different tests, Dempster’s test has been one of the most useful methods in practice. On one hand, Dempster’s test
not only serves as a replacement for the Hotelling’s T2 to test the hypothesis when the number of sample is smaller than the dimension, but
also is more powerful than the Hotelling’s T2 when the dimension p is moderately large such that Hotelling’s T2 is well defined (J. Hu & Bai
2016). On the other hand, Dempster’s test was found to be more powerful than most tests, including the BS test, the CQ test, and the S test
(M. S. Srivastava 2007) when the variance of the features are the same. However, if the features are heteroscedastic, i.e., having different variances,
Dempster’s test would lose power dramatically; see for example Remark 1 in Section 2.1 for more discussions. To deal with the power loss under
heteroscedasticity, in this paper, we propose a “standardized Dempster’s non-exact test", which generalizes the classical Dempster’s non-exact test
via a standardization procedure. The standardized Dempster’s non-exact test inherits the advantages of the Dempster’s non-exact test, and can be
applied to the high dimensional circumstance with p = o(exp{cn}) for some positive constant c. Although the original Dempster’s test is defined
for a general covariance matrix where the diagonal elements (i.e., the variances) are not required to be the same, we have found in our numerical
studies that the additional standardization step could significantly increase the testing power under heteroscedasticity. We have showed that the
proposed test statistic is approximately following an F distribution, and to alleviate the instability of the type I error in the case where the sample
size is small, we have further constructed a Monte Carlo type of the standardized Dempster’s non-exact test.

In what follows, we first review the Dempster’s non-exact test in Section 2.1. The proposed standardized Dempster’s non-exact test and related
theoretical properties are presented in Section 2.2. To better capture the null distribution and control the type I error rate when the sample size
is relatively small, we further propose a Monte Carlo version of our test in Section 2.3. Numerical studies with comparison to other popular tests,
including the BS test, the S test, and the DT test are provided in Section 3. Conclusions are provided in Section 4, and all technical proofs are
neglected to the Appendix.

1.1 Methods

1.2 Retrospection of the Dempster’s non-exact test
Let xi = (xi1, · · · , xip)′, i = 1, · · · , n be independent and identically distributed (i.i.d.) p-dimensional normal random samples with mean µ =

(µ1, . . . , µp)′ and covariance matrix Σ = (σij)p×p. Here both µ and Σ are unknown, and Σ is positive definite. Denote the sample data matrix as
Xn×p = (x1, x2, · · · , xn)′, i.e., each row of X stands for a sample and each column stands for a variable. Without loss of generality, we consider the
following one-sample hypothesis testing problem

H0 : µ = 0 ↔ H1 : µ 6= 0 (1)

with unknown µ andΣ. The general testing problemH0 : µ = µ0 with a given µ0 can be converted to the above problem (1) by rewriting µ−µ0 as µ.
Let x̄ = 1

n

n∑
i=1

xi = (x̄1, . . . , x̄p)′ be the sample mean vector, with x̄j = 1
n

n∑
i=1

xij, 1 ≤ j ≤ p, being the sample means of each component, and

denote the sample covariance matrix as

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)′ = (sij)p×p.

Dempster (1958 1960) proposed a non-exact significance test for the hypothesis testing problem (1) via an orthogonal transformation of the
data. Specifically, let A be a n× n orthogonal matrix such that the first row of A is set to be

√
n
( 1

n
,

1

n
,

1

n
, · · · ,

1

n

)
.

By transforming X into X∗ = AX, the first row of X∗ would become the grand mean of X:
√

nx̄′ =
√

n(x̄1, . . . , x̄p). Denote the ith row of X∗ to be
X∗i
′, i = 1, · · · , n. Under this orthogonal transformation, we have:

EX∗1
′ =
√
nµ′ =

√
n(µ1, . . . , µp),

EX∗i
′ = 0, 2 ≤ i ≤ n,

V ar(X∗i ) = Σ, 1 ≤ i ≤ n.

Under the null hypothesis, X∗1 ,X
∗
2 , · · · ,X∗n have the same mean and covariance matrix. So Dempster proposed a significance test

TD = Q1/[(Q2 + · · ·+ Qn)/(n− 1)], (2)
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where Qi = X∗
′

i X∗i is the squared length of X∗i , i = 1, · · · , n. Denote

Sh = nx̄x̄′ = n


x̄2

1 x̄1x̄2 · · · x̄1x̄p

x̄2x̄1 x̄2
2 · · · x̄2x̄p

...
...

...
...

x̄px̄1 x̄px̄2 · · · x̄2
p

 ,

and

Se = (n− 1)S = (X− 1n×1x̄′)′(X− 1n×1x̄′)

=


x11 − x̄1 x21 − x̄1 · · · xn1 − x̄1

x12 − x̄2 x22 − x̄2 · · · xn2 − x̄2

...
...

...
...

x1p − x̄p x2p − x̄p · · · xnp − x̄p




x11 − x̄1 x12 − x̄2 · · · x1p − x̄p

x21 − x̄1 x22 − x̄2 · · · x2p − x̄p

...
...

...
...

xn1 − x̄1 xn2 − x̄2 · · · xnp − x̄p

 .

We have
tr(Sh) = nx̄′x̄ = X∗

′
1 X

∗
1 = Q1,

and

tr(Se) =

n∑
i=1

p∑
j=1

(xij − x̄j)
2 = tr(X′X− nx̄′x̄) = tr(X∗X∗

′
)− Q1 = Q2 + · · ·+ Qp.

Consequently, Dempster’s test statistic (2) reduces to:

TD = (n− 1)tr(Sh)/tr(Se) =
nx̄′x̄

tr(S)
.

Note that TD appears as the ratio of the between-class variability and the within-class variability, which relates the test to the classical theory in
linear regression. Further interpretation of Dempster’s test via a multivariate linear model can be found in Fujikoshi, Himeno, and Wakaki (2004)
and M. S. Srivastava and Fujikoshi (2006).

When the variables are normally distributed, and under the null hypothesis µ = 0, Dempster showed that Q1, · · · ,Qn are independently
distributed as a positive quadratic form, and each Qi can be well approximated by a χ2-shaped distribution: Qi ∼ mχ2

r . As a result, we have,
approximately,

TD ∼ Fr,(n−1)r.

Here r and m are generally unknown and needs to be estimated (Dempster 1958). Bai and Saranadasa (1996) pointed out that

r =
(tr(Σ))2

tr(Σ2)
and m =

tr(Σ2)

tr(Σ)
. (3)

From equation (3), we have r =
(tr(Σ))2

tr(Σ2)
= p

a2
1

a2
, where ai = tr(Σi)/p, i = 1, 2. By replacing Σ with the sample covariance matrix S, we can obtain

the following consistent estimators for a1, a2 and r:

â1 =
tr(S)

p
, â2 =

(n− 1)2

(n− 2)(n + 1)

1

p

[
tr(S2)−

(tr(S))2

n− 1

]
, r̂ = p

â2
1

â2
. (4)

Subsequently, TD approximately follows the F-distribution with b̂rc and b(n− 1)̂rc degrees of freedom. Here the symbol b·c is the largest integer
function.
Remark 1. When Σ = σ2I, i.e., a homoscedastic case, Bai and Saranadasa (1996) and M. S. Srivastava (2007) established the asymptotic power for
Dempster’s test, and found that it is more powerful than other tests. Although Dempster’s test does not require the variances of the variables to
be the same, it would lose power dramatically under heteroscedasticity. To see this, let’s take the following two-dimensional case as an example.
Consider two scenarios where themeans for both scenarios are the same, while the covariance matrix for the first (homoscedastic) scenario is given
as diag{3, 3}, and the covariance matrix for the other (heteroscedastic) scenario is diag{1, 5}. When the sample size is large enough, the sample
mean and the trace of the sample covariance matrix for the homoscedastic scenario will be very close to those in the heteroscedastic scenario,
resulting in very close values for the test statistic TD. However, the value of tr(S2) for the homoscedastic case would be around 18, while for the
heteroscedastic case it would be around 26. Note that the larger value of tr(S2) under heteroscedasticity leads to smaller degrees of freedom in
the approximated F distribution. Consequently, even though the means for these two scenarios are the same, it is much harder to reject under the
heteroscedastic scenario.
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1.3 The standardized Dempster’s non-exact test
To alleviate the power loss issue discussed in Remark 1, in the following, we propose a standardized Dempster’s non-exact test. Let Vp×p =

diag(σ11, · · · , σpp) be the diagonal matrix of variances, with σii being the variance of variable Xi, i = 1, · · · , p. We first look at the ideal case by
assuming that V is known. Intuitively, we can obtain equal variances by transforming the data into

Y = XV −
1
2 = (y1, y2, · · · , yn)′.

Here yi = V−
1
2 xi, i = 1, . . . , n are the corresponding transformed samples. We shall use ΣY to denote the covariance matrix of yi. Clearly the yi’s

are still independent of each other. Under this standardization, we have

ȳ = (ȳ1, · · · , ȳp)′ =
(
σ
− 1

2
11 x̄1, · · · , σ

− 1
2

pp x̄p
)′

= V −
1
2 x̄.

The covariance matrix of data Y is

SY =
1

n− 1

n∑
i=1

(yi − ȳ)(yi − ȳ)′ = V−
1
2 SV−

1
2 .

Furthermore, we can obtain

nȳ′ȳ = n(V−
1
2 x̄)′(V−

1
2 x̄) = nx̄′V−1x̄,

tr(SY) = tr(V−
1
2 SV−

1
2 ) = tr(SV−1).

So we can get the ideal standardized Dempster’s test statistic for the mean testing problem (1) as follows

TiSDT :=
nȳ′ȳ

tr(SY)
=

nx̄′V−1x̄

tr(SV−1)
. (5)

Following the so-called χ2-approximation arguments for the Dempster’s non-exact test in Dempster (1958 1960), we immediately have the
following result.

Lemma 1. Suppose we have n independent samples xi = (xi1, · · · , xip)′ ∼ N(0,Σ), i = 1, · · · , n,. Let V = diag(Σ) be the diagonal matrix obtained
by setting the off-diagonal elements of Σ to be zero. By transforming Y = XV−

1
2 , we approximately have

TiSDT =
nx̄′V −1x̄

tr(SV −1)
∼ Fr∗,(n−1)r∗ ,

here r∗ = p
b2

1
b2
, with bi = tr(Σi

Y)/p = tr(V−
1
2 ΣV−

1
2 )i/p, i = 1, 2.

Practically, the covariance matrix Σ and diagonal matrix V are both unknown, hence TiSDT and the degree parameters in its approximate
distribution are unknown. We thus propose to use the following sample analog of TiSDT as the test statistic:

TSDT =
nx̄′D−1x̄

tr(SD−1)
=

n

p
x̄′D−1x̄. (6)

Here D = diag(s11, · · · , spp) is the diagonal matrix of the sample variances, and in the last step we have used the fact that tr(SD−1) =

tr(D−
1
2 SD−

1
2 ) = p. Theorem 1 below shows that when the sample size is large enough, the sample version TSDT is very close to the ideal

standardized Dempster’s test statistic TiSDT.

Theorem 1. Let D = diag(s11, · · · , spp) be the diagonal matrix of the sample variances. Assume that (i) there exists a constant C > 1 such that
C−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C, with λmin(Σ) and λmax(Σ) being the smallest and largest eigenvalues of Σ respectively; (ii) log p

n
→ 0. We then

have
nx̄′V −1x̄

tr(SV −1)
−
n

p
x̄′D−1x̄ = oP (1), n→∞.

Theorem 1 implies that TSDT = TiSDT + op(1), which, by Slutsky’s theorem, indicates that the asymptotic distribution of TSDT is the same as
that of TiSDT. The condition log p

n
→ 0 here implies that our proposed test (6) is valid for the high dimensional case where p = o(exp{cn}) for

some constant c > 0.
Next we derive the sample estimator for the unknown degree parameter r∗ of the approximated null distribution in Lemma 1. Note that b1 =

tr(V
− 1

2 ΣV
− 1

2 )
p

= 1. We only need to estimate b2 and r∗. Similar to (4), we propose to estimator b2 by:

b̂2 =
(n− 1)2

(n− 2)(n + 1)

1

p
[tr(SD−1)2 −

(tr(SD−1))2

n− 1
]

=
(n− 1)2

(n− 2)(n + 1)

1

p

p∑
i=1

p∑
j=1

sijsji

siisjj
−

(n− 1)p

(n− 2)(n + 1)
.
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Here in the last step we have used the fact that

tr(D−
1
2 SD−

1
2 D−

1
2 SD−

1
2 ) = tr(SD−1SD−1) =

p∑
i=1

p∑
j=1

sijsji

siisjj
.

Then we can estimate the degree parameter r∗ by:
r̂∗ = p

b21

b̂2
=

p

b̂2
.

From Lemma 1 and Theorem 1, we immediately have the following Theorem:

Theorem 2. Let x1, x2, · · · , xn ∈ Rp be i.i.d. samples from N(0,Σ), and let the standardized Dempster’s test statistic TSDT be defined as in (6).
Under the assumptions of Theorem 1, we have approximately,

n

p
x̄′D−1x̄ ∼ F(br̂∗c,b(n−1)r̂∗c).

For the mean testing problem (1), Theorem 2 indicates that under the null hypothesis, the standardized test statistic TSDT approximately follows
the F distribution with degree parameters (b̂r∗c, b(n− 1)̂r∗c).

1.4 The Monte Carlo type of standardized Dempster’s non-exact test
From Theorem 2 we have, the standardized Dempster’s non-exact test statistic TSDT converges to statistic TiSDT in probability when sample size
n→∞. However, when the sample size is small, the difference between these two statistics might result in an inaccurate type I error rate. In fact,
as we shall see in our simulation studies, when the sample size is small, the type I error rates will be inflated by the extra variability caused by the
estimation error of the test statistic. In this circumstance, we propose a Monte Carlo type of the standardized Dempster’s test (SDTMC) which can
better control the type I error rates.

Based on the expression of TSDT defined in equation (6) and the approximate distribution F(br̂∗c,b(n−1)̂r∗c), we can calculate the original p-
value: q0 = 1− F(br̂∗c,b(n−1)̂r∗c)(TSDT). The Monte Carlo progress is implemented as follows. Generate n new samples from distribution N(0, S),
where 0 is the null hypothesis mean of the population, and S is the sample covariance of initial data. We treat it as the population covariance of
the Monte Carlo regenerate data X∗. Calculate the sample mean, the sample covariance matrix of the new data, and obtain a new p-value. We
repeat the above Monte Carlo progress for K times independently and denote the p-values as q1, q2, · · · , qK. The final p-value of the SDTMC test
is calculated as pmc = #{qi ≤ q0}/K. The number of repetitions should be sufficiently large to better capture of the empirical null distribution of
TSDT, and K = 1000 is used in our numerical studies.

2 SIMULATION STUDY

In this section, we use various simulation studies to study the performance of the standardized Dempster’ non-exact testing method TSDT with
comparison to other popular tests. When sample size is relatively small, we also study the performance of the Monte Carlo type of standardized
Dempster’s non-exact test TSDTMC

.
The simulation data are generated from the normal distribution N(µ,Σ), here we consider four different variance matrices:

• IHO case (the Independent homoscedastic case): Σ1 = I;

• IHE case (the Independent heteroscedastic case): Σ2 =

(
Ip/2 0

0 5Ip/2

)
;

• DHO case (Dependent homoscedastic case): Σ3 = (ρij)p×p, ρij = ρ|i−j|;

• DHE case (Dependent heteroscedastic case): Σ4 = Σ3 −Σ1 + Σ2. The off-diagonal element of Σ4 is ρij = ρ|i−j|, and the diagonal element
of Σ4 is 1 or 5.

The variables in the IHO case are all independent of each other and have equal variances, it is the simplest case. Although the variables in the
IHE case are also independent of each other, they have different variances. In the DHO and DHE cases, the variables are dependent, and in the
following simulations we choose ρ = 0.2. The numerical results in this section are all based on 1 000 replicates and the significance level α is set
to be 0.05.
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2.1 Some existing mean tests
As we have introduced in the Introduction section, there are some other classic testing methods for the mean test problem. Besides of the
Dempster’s non-exact test (DT), we shall compare our proposed tests with the following tests as well:

• BS test: Bai and Saranadasa (1996) proposed the BS test for testing the hypothesis (1). The statistic of BS test is given as

TBS =
nx̄′x̄− tr(S)√

2n(n−1)
(n−2)(n+1)

[
tr(S)2 − (trS)2

n−1

] .
Under the null hypothesis, TBS is asymptotically distributed as N(0, 1) under some conditions.

• SD test: Denote R = D
− 1

2
S SD−

1
2 to be the sample correlation matrix of data X. M. S. Srivastava and Du (2008) proposed SD test with the

test statistic
TSD =

nx̄′D−1x̄− (n− 1)p/(n− 3)√
2(tr(R2)− p2/(n− 1))cp,n

,

where the adjustment coefficient cp,n = 1 + trR2

p3/2 .

• S test: M. S. Srivastava (2009) proposed the S test with test statistic

TS =
nx̄′D−1x̄− (n− 1)p/(n− 3)√

2(tr(R2)− p2/(n− 1))
.

M. S. Srivastava and Du (2008) considered the normality sample of xi while M. S. Srivastava (2009) discussed the non-normality of xi without
cm,n. Under the null hypothesis, TSD and TS are asymptotically following the N(0, 1) distribution. The two statistics TSD, TS, and the standardized
Dempster’ non-exact test all use the information from the diagonal elements of the singular sample covariance matrix S, while TBS chooses to use
the sum of the sii.

2.2 Type-I error rate
We first evaluate the type I error rates of the standardized Dempster’ non-exact testing method, TSDT, the Dempster’ non-exact test TDT, and the
Monte Carlo type of standardized Dempster’s non-exact test TSDTMC

when sample size n ≤ 200. In this part, we consider three different settings
for the sample size n and the dimension p: (A) with p : n = 0.5 : 1; (B) with p : n = 1 : 1 and (C) with p : n = 1.5 : 1.

A large number of simulations were conducted with the sample size changing from 20 to 1, 000. The 95% empirical confidence interval for the
type I error rate over the 1, 000 replicates is (0.0365, 0.0635). Figure A1 and Figure A2 present the type I error rates under settings (A)-(C) for the
IHO and IHE cases. Similarly, the type I error rates of TSDT and TDT for the DHO and DHE cases are provided in Figures A3 and A4.

From Figures A1 to A4 we can see that, for almost all situations, the Dempster’ non-exact test can control the estimated type I error rates well.
When the sample size is moderately large (n ≥ 200), the standardized Dempster’ non-exact testing method can control the the estimated type I
error rates around the nominal levels. But when the sample size is very small, the estimated type I error rates of TSDT appear to be inflated, while
the TSDTMC

method can control the type I error rates well. These simulation results suggest that as long as the sample size is not too small, the
approximate null distribution in Theorem 2 is working reasonable well and the proposed standardized Dempster’s test can be applied to the mean
test problem. When sample size is relatively small, we can also use TSDTMC

method as a supplement method to better control the type I error rate.

2.3 Power comparisons for large sample
We consider the numerical performance of the standardized Dempster’s non-exact testing method TSDT, and mainly compare it with the TDT, TS,
and TBS tests (introduced in Section 3.1) under various parameter settings. The covariance matrix is set separately for the IHO, IHE, DHO, DHE
cases.We consider two types of alternative hypothesis: (A1) we set the means of the first p1 variables to be µ0, i.e., µ′ = (µ0, . . . , µ0, 0, . . . , 0); (A2)
we set the means of the first p1 variables to be µ0, and the means of the last p1 variables to be−µ0, i.e., µ′ = (µ0, . . . , µ0, 0, . . . , 0,−µ0, . . . ,−µ0).
Case A1 portrays the phenomenon that the non-zero mean has the same changing direction, while case A2 represents the phenomenon that the
non-zero mean has different directions. Case A2 is much common in real life. The parameter p1, representing the non-zero value number of µ,
is set as 10% of the total parameter numbers. We set n = 500 and 1000 for this power comparison study. When n = 500, the variable number
is set to be 100, 500, 1000, and when n = 1000, we set p = 500, 1000, 1500. The different choices of p are corresponding to three different
circumstances: p < n, p = n and p > n . In each parameter setting, different values of µ0 are chosen to compare the power. Tables 1-4 provide the
power comparison results under different parameter settings for the IHO, IHE, DHO, and DHE cases, separately.
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TABLE 1 Power comparison at significance level 0.05 for IHO case.

Case A1 A2
n p µ0 TS TBS TDT TSDT µ0 TS TBS TDT TSDT

500

100 0.06 0.272 0.266 0.336 0.351 0.04 0.249 0.251 0.306 0.312
100 0.08 0.591 0.585 0.658 0.663 0.06 0.692 0.688 0.750 0.756
500 0.04 0.257 0.251 0.351 0.383 0.03 0.304 0.305 0.405 0.430
500 0.06 0.760 0.750 0.824 0.838 0.04 0.666 0.665 0.746 0.768
1000 0.03 0.174 0.170 0.259 0.286 0.02 0.145 0.144 0.218 0.248
1000 0.05 0.766 0.765 0.850 0.877 0.03 0.502 0.498 0.611 0.644

1000

500 0.03 0.288 0.291 0.387 0.408 0.02 0.250 0.251 0.338 0.346
500 0.04 0.684 0.683 0.781 0.791 0.03 0.782 0.783 0.844 0.854
1000 0.02 0.135 0.133 0.204 0.219 0.02 0.421 0.423 0.511 0.539
1000 0.03 0.481 0.484 0.585 0.605 0.03 0.966 0.964 0.983 0.982
1500 0.02 0.200 0.203 0.278 0.294 0.015 0.249 0.253 0.333 0.348
1500 0.03 0.688 0.682 0.769 0.787 0.02 0.572 0.578 0.680 0.697

TABLE 2 Power comparison at significance level 0.05 for IHE case.

Case A1 A2
n p µ0 TS TBS TDT TSDT µ0 TS TBS TDT TSDT

500

100 0.06 0.272 0.066 0.095 0.351 0.06 0.357 0.139 0.178 0.431
100 0.08 0.591 0.107 0.147 0.663 0.08 0.712 0.270 0.327 0.787
500 0.04 0.257 0.069 0.091 0.383 0.04 0.340 0.116 0.165 0.466
500 0.06 0.760 0.127 0.187 0.838 0.05 0.622 0.201 0.279 0.712
1000 0.04 0.418 0.054 0.101 0.555 0.03 0.237 0.078 0.129 0.359
1000 0.05 0.766 0.103 0.170 0.877 0.04 0.542 0.164 0.239 0.690

1000

500 0.03 0.288 0.066 0.091 0.408 0.03 0.398 0.136 0.181 0.509
500 0.04 0.684 0.097 0.153 0.791 0.04 0.827 0.278 0.367 0.890
1000 0.02 0.135 0.054 0.071 0.219 0.02 0.175 0.083 0.112 0.280
1000 0.03 0.481 0.082 0.126 0.605 0.03 0.629 0.205 0.285 0.751
1500 0.02 0.200 0.059 0.080 0.294 0.02 0.264 0.093 0.131 0.370
1500 0.03 0.688 0.103 0.141 0.787 0.03 0.827 0.257 0.364 0.885

From Tables 1 and 3 we can see that, for the homoscedastic cases, TSDT and TDT have almost the same power, and appear to be more powerful
than TS and TBS. The results for case A1 and case A2 are very similar, which suggests that the direction change of the mean will not affect the
power of all the four methods.

The situation is much different for the heteroscedastic case. From Table 2 and Table 4 we can see that the power loss of TBS and TDT is serious.
For example, from case A1 in Table 2 we can observe that, when n = 500, p = 1000 and µ0 = 0.05, the power of TSDT is 0.877, while the power
of TBS and TDT are only 0.103 and 0.170. Overall, our proposed test TSDT is the most powerful method among the four tests for all the parameter
settings under the heteroscedastic cases. On the other hand, the power of TS is also much higher than those of TDT and the TBS. This validates
the assertion that the TS has higher power than TDT and TBS under the heteroscedastic cases (Park & Ayyala 2013; M. S. Srivastava & Du 2008).

2.4 Power comparisons for small sample
We also compare the power performances of the new methods TSDT, TSDTMC

with TDT, TS and TBS tests for small sample settings. Here we
choose sample size n = 50, dimension p = 200. The Monte Carlo resampling times of TSDTMC

are set as K = 1000. Different nonzero values of
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TABLE 3 Power comparison at significance level 0.05 for DHO case.

Case A1 A2
n p µ0 TS TBS TDT TSDT µ0 TS TBS TDT TSDT

500

100 0.06 0.278 0.269 0.333 0.343 0.05 0.440 0.430 0.491 0.499
100 0.08 0.548 0.545 0.614 0.627 0.06 0.651 0.645 0.706 0.714
500 0.04 0.250 0.248 0.321 0.345 0.03 0.291 0.291 0.388 0.405
500 0.06 0.722 0.721 0.794 0.806 0.04 0.642 0.639 0.718 0.735
1000 0.04 0.400 0.398 0.502 0.533 0.02 0.147 0.146 0.212 0.240
1000 0.05 0.718 0.706 0.788 0.829 0.03 0.471 0.470 0.573 0.605

1000

500 0.03 0.273 0.273 0.362 0.365 0.02 0.231 0.226 0.306 0.312
500 0.04 0.641 0.645 0.721 0.729 0.03 0.730 0.724 0.812 0.818
1000 0.02 0.139 0.137 0.185 0.198 0.02 0.389 0.390 0.493 0.506
1000 0.03 0.463 0.459 0.558 0.577 0.025 0.712 0.704 0.807 0.823
1500 0.02 0.187 0.186 0.257 0.273 0.015 0.230 0.227 0.321 0.340
1500 0.03 0.639 0.636 0.732 0.749 0.02 0.542 0.541 0.645 0.665

TABLE 4 Power comparison at significance level 0.05 for DHE case.

Case A1 A2
n p µ0 TS TBS TDT TSDT µ0 TS TBS TDT TSDT

500

100 0.06 0.279 0.062 0.094 0.333 0.06 0.360 0.126 0.180 0.428
100 0.08 0.560 0.106 0.135 0.641 0.08 0.682 0.282 0.343 0.751
500 0.04 0.262 0.071 0.096 0.352 0.04 0.328 0.118 0.176 0.436
500 0.06 0.754 0.129 0.179 0.840 0.05 0.615 0.211 0.279 0.718
1000 0.04 0.399 0.067 0.105 0.543 0.03 0.229 0.08 0.125 0.330
1000 0.05 0.730 0.102 0.166 0.831 0.04 0.528 0.172 0.254 0.659

1000

500 0.03 0.299 0.061 0.090 0.391 0.03 0.401 0.126 0.184 0.493
500 0.04 0.664 0.095 0.154 0.743 0.04 0.785 0.288 0.389 0.866
1000 0.02 0.150 0.056 0.073 0.212 0.02 0.177 0.082 0.105 0.256
1000 0.03 0.462 0.085 0.126 0.594 0.03 0.620 0.185 0.274 0.720
1500 0.02 0.204 0.062 0.077 0.297 0.02 0.267 0.094 0.128 0.376
1500 0.03 0.637 0.096 0.139 0.754 0.03 0.784 0.278 0.384 0.863

mean are chosen for comparison under this small sample study. In particular, the circumstance µ0 = 0 corresponds to the null hypothesis that all
components of mean are 0. The simulation replication is 1000 for all parameter settings. The simulation results are listed in Table 5.

From Table 5, we can see that although the proposed method TSDT obtains the highest power in all the considered methods, its type I error
rates inflate under this small size setting. The TBS and TDT can control the type I error rates well. TSDTMC

has similar type I error rates as those
of TS, and can better control the type-I error than TSDT. On the other hand, TSDTMC

obtains more power than TS, TBS, and the traditional TDT

method for all circumstances.

2.5 Real data analysis
We apply the four testing methods to the monthly precipitation data of Quebec in Canada. The data covers the monthly mean precipitation of
Quebec from April 1943 to December 2018, which can be found at http://climate.weather.gc.ca. Considering the data of the whole year, we adopt
the data from January 1944 to December 2018. There are in total 900 samples, with 75 samples for each month. The mean monthly precipitation
of Quebec for each month found from the web is (90, 71, 90, 81, 106, 114, 128, 117, 126, 102, 102, 104)′ from January to December, and we set it
as the mean vector µ0 in the null hypothesis. Then we treat the January to December monthly precipitation vector of each year as the random
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TABLE 5 Power comparison at significance level 0.05 for small samples.

Case µ0

A1
µ0

A2
TS TBS TDT TSDT TSDTMC

TS TBS TDT TSDT TSDTMC

IHO
0 0.075 0.053 0.049 0.117 0.076 0.10 0.206 0.178 0.230 0.386 0.289

0.15 0.229 0.204 0.266 0.422 0.349 0.15 0.603 0.565 0.650 0.793 0.714

IHE
0 0.075 0.049 0.049 0.117 0.073 0.15 0.289 0.109 0.141 0.502 0.411

0.15 0.229 0.068 0.092 0.422 0.346 0.20 0.633 0.201 0.260 0.814 0.736

DHO
0 0.07 0.051 0.048 0.122 0.071 0.10 0.210 0.165 0.229 0.393 0.294

0.15 0.231 0.200 0.263 0.431 0.325 0.15 0.604 0.575 0.641 0.772 0.699

DHE
0 0.068 0.05 0.051 0.115 0.072 0.15 0.286 0.104 0.148 0.491 0.387

0.15 0.238 0.062 0.099 0.400 0.321 0.2 0.594 0.216 0.288 0.789 0.702

vector Xi = (Xi,1, · · · ,Xi,12), i = 1944, · · · , 2018. The mean of Xi is the same as µ. We aim to test the mean hypothesis testing problem

H0 : µ = µ0; ↔ H1 : µ 6= µ0.

The sample size for each month is 75, which can be treated as small sample testing problem, so we analysis it with TSDTMC
also. The p-value of TS,

TBS, TDT, TSDT and TSDTMC
are listed in Table 6. All of the five testing methods have similar testing results, and all reject the null hypothesis.

TABLE 6 Real data analysis of monthly precipitation data.

Method TS TBS TDT TSDT TSDTMC

p-value 2.78e-6 3.68e-7 4.04e-4 6.58e-4 6e-4

3 CONCLUSION

In this paper, we propose a standardizedDempster’ non-exact testingmethodTSDT for themean testing problem of populations, and aMonte Carlo
type standardized Dempster’ non-exact testing method TSDTMC

as a supplement for the small sample case. While the proposed testing method
has similar performance as the Dempster’ non-exact test when the variances of each variant are the same, it can significantly alleviate the dramatic
power loss issue of the Dempster’ non-exact test under heteroscedasticity. We have found through our numerical study that the proposed test
outperforms other main competitors including TS and TBS. The approximate distribution of our proposed test TSDTT has been established under
the assumption that log p

n
→ 0, indicating that our method can be applied to high dimensional data where the dimension p can be much larger

than the sample size n. When the sample size is too small, the standardized Dempster’ non-exact test may be inflated by the finite sample error,
and we have proposed a Monte Carlo version of the standardized Dempster’ non-exact test to better recover the null distribution of the proposed
standardized Dempster’ non-exact test.
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APPENDIX

A PROOF OF THEOREM 1

For a matrix A, let ‖A‖2 =
√
λmax(A′A) be the spectral norm of A. For the sample mean vector x̄, under the null hypothesis that µ = 0 we have

Ex̄′x̄ = trE(x̄x̄′) = n−1tr(Σ).

By the assumption that λmax(Σ) = O(1), we have
tr
(Σ

n

)
= O

( p
n

)
.

Consequently we have n
p

x̄′x̄ = OP(1).
Note that D − V = diag(s11 − σ11, s22 − σ22, · · · , spp − σpp). From Bernstein’s inequality (Jiang 2013), we have for any η > 2, there exists a

large enough constant C0 such that

P

(
|sii − σii| > C0

√
log(np)

n

)
≤ (np)−η . (A1)

Consequently we have

‖D − V ‖2 = λmax(D − V ) = OP

(√
log(np)

n

)
= op(1).

On the other hand, by condition λmax(Σ) = O(1), we have λmax(V) = O(1). Therefore, we have

‖D‖2 6 ‖V ‖2 + ‖D − V ‖2 = O(1) +OP

(√
log(np)

n

)
= OP (1).

Similarly, from (A1) and the fact that λmin(Σ) = O(1), we also have

λmin(D) = OP (1).

Therefore, we have ∣∣∣∣nx̄′D−1x̄

p
−

n

p
x̄′V−1x̄

∣∣∣∣ =
n

p
|x̄′(D−1 − V−1)x̄|

6
n

p
x̄′x̄‖D−1 − V−1‖2

6
n

p
x̄′x̄‖D−1‖2‖V−1‖2‖V − D‖2

= oP(1).

Equivalently, we have,
nx̄′D−1x̄

p
−
n

p
x̄′V −1x̄ = oP (1). (A2)

On the other hand, noticing that tr(SD−1)
p

=
tr(D−1/2SD−1/2)

p
= 1, we have

tr(SV−1)

p
=

tr(S(V−1 − D−1))

p
+

tr(SD−1)

p

≤ ‖V−1 − D−1‖2
tr(S)

p
+ 1

= oP(1).

Therefore, we have
trSV −1

p

P−→
trSD−1

p
= 1. (A3)

Combining equation (A2) and equation (A3), we have
nx̄′V−1x̄

tr(SV−1)
−

n

p
x̄′D−1x̄ =

nx̄′V−1x̄

p

p

tr(SV−1)
−

n

p
x̄′D−1x̄

=
nx̄′V−1x̄

p
(1 + oP(1))−

n

p
x̄′D−1x̄

= oP(1). #
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FIGURE A1 Type I error rates of TDT, TSDT and TSDTMC
methods for IHO case under significance level α = 0.05. The upper and bottom dashed

lines represent the lines of type I error equals 0.0365 and 0.0635, respectively.
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FIGURE A2 Type I error rates of TDT, TSDT and TSDTMC
methods for IHE case under significance level α = 0.05. The upper and bottom dashed

lines represent the lines of type I error equals 0.0365 and 0.0635, respectively.
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