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Abstract

This study examines the pricing strategy of a parking sharing platform that rents the 
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(price charged on users and rent paid to parking owners or sharers) would affect the parking 
choice equilibrium and several system efficiency metrics. It is shown that the platform is 
profitable when some parking owners have a relatively small inconvenience cost from sharing 
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1 Introduction

In many large cities, finding a suitable and vacant parking space is a headache for many

private car drivers, and constitutes an non-negligible proportion of the trip travel time.

Moreover, the cruising for parking can add to the problems of chronic congestion and chok-

ing pollution (Arnott and Inci, 2006; Shoup, 2006; Van Ommeren et al., 2012; Liu and

Geroliminis, 2016). For instance, Ayala et al. (2011) found that each year in Chicago, there

are 63 million vehicle miles traveled due to looking for vacant spaces to park, which generate

48,000 tons of carbon dioxide.

However, in the context of growing car ownership and shrinking usable land in cities,

it is infeasible to solve the parking problem by simply continuing the construction of new

parking facilities. Instead, many studies have proposed and evaluated parking pricing, park-

ing reservation, parking permit systems or mechanisms to effectively manage parking supply

and traffic congestion (Arnott et al., 1991, 2015; Zhang et al., 2011; Qian et al., 2012; Yang

et al., 2013; Liu et al., 2014; Inci and Lindsey, 2015; Chen et al., 2015; Mackowski et al.,

2015; Chen et al., 2016; Lei and Ouyang, 2017). A latest review of economic analysis and

modeling of parking was provided by Inci (2015). Some recent studies looked at the parking

spot allocation and pricing problem using game theory or incorporating the parking search-

ing process as part of the network traffic equilibrium (He et al., 2015; Boyles et al., 2015).

Besides, there is a branch of studies looking into park-and-ride facilities in a multi-modal

system (Wang et al., 2004; Liu et al., 2009; Liu and Geroliminis, 2017).

Peer-to-peer markets, collectively known as the sharing economy, have emerged as alter-

native suppliers of goods and services traditionally provided by long-established industries

(e.g., Airbnb, Uber, Didi Chuxing). Parking sharing emerges as a new way of more effi-

ciently utilizing existing parking facilities. It utilizes existing gaps intended for parking cars

when the parking owner is not using it. Many parking spaces are only used part time by

the parking owners who live in one location and work in another. Furthermore, the parking

utilization and availability patterns follow predictable daily, weekly and annual cycles. For

example, in the Randwick City Council (a Local Government Area in Sydney that covers

a number of suburbs), there are 85,138 employed residents but only 57,355 local jobs as of

2019 (http://economy.id.com.au/randwick). Since some local jobs are taken by residents

in other local government areas, there must be more than 27,783 local residents working

elsewhere, where some of them might be able to share their private parking spaces. In

this context, Randwick City Council is examining the potential to introduce parking shar-

ing programs in the area (https://www.infrastructure.gov.au/cities/smart-cities/

collaboration-platform/integrated-smart-parking-system.aspx), especially in the
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high parking demand suburbs, such as the popular beachside suburb Coogee and the suburb

Randwick (i.e., the administrative centre of Randwick City Council).

With the rapid development of information and communications technology and espe-

cially the latest rise of the mobile internet, private parking sharing is enabled through

an “e-parking platform” to help match the supply with the demand. In fact, some e-

parking platforms (or shared parking apps) have already appeared in the smartphone

era, and are reshaping the parking industries and our daily lives. For example, Divvy

(https://www.divvyparking.com/) and Oscar (https://www.sharewithoscar.com.au/)

both operate in main cities in Australia (e.g., Sydney, Melbourne, and Brisbane), J-

Park (http://www.jiepark.com/) operates in Shanghai, China, and Moby (https://www.

mobypark.com) operates in The Netherlands and France. The emergence of e-parking plat-

forms and/or apps not only help alleviate the aforementioned shortage of parking spaces,

but also provide the owners a way to make additional money from their idle parking spaces.

Guo et al. (2016) was among the earliest to develop a simulation based approach for

decision making of repurchasing private parking spots and selling them to public users. Shao

et al. (2016) then explored shared parking reservation and allocation problems and proposed

integer linear programming models to optimize the allocation of parking requests to specific

parking spots in order to maximize the parking utilization or the number of accepted parking

requests. Recently, Xu et al. (2016) modeled the private parking spot sharing problem

during working hours by using the market design theory where money flow is allowed in the

matching mechanisms. These studies often focused on the optimization of platform’s user-

space matching strategies under given demand and supply of parking sharing. However, the

platform’s pricing strategies, which have strong impacts on the volume of parking demand

and supply, have not been fully examined. More recently, Xiao et al. (2020) and Zhang et al.

(2020) examined the parking sharing pricing problem, where Xiao et al. (2020) focused on

auction mechanisms and Zhang et al. (2020) emphasized the spatial distribution of parking.

The models in these studies have limited analytical tractability for generating insights and

policy implications.

This study makes an attempt to optimize the pricing strategies of parking sharing plat-

forms, considering the reaction of parking space users and private parking space owners. In

particular, we consider an urban area with both public curbside parking and private parking

that can be potentially shared. The rent offered by the platform determines the number of

private parking space owners who would like to rent their space out for sharing, and the

platform’s parking charge as well as the level of competition for both shared parking and

free curbside parking determine the parking demand for both types of parking. All users

are assumed to be rational, seeking to minimize their individual travel costs. They have
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full information regarding the parking pricing and capacities, which allows them to make

rational decisions. Given the parking sharing platform’s pricing strategy, a parking choice

equilibrium of travelers is reached when no traveler can further reduce his or her travel cost

by changing his/her parking choice. By modeling and analyzing the parking choice equi-

librium under any pricing strategies of the parking platform, we examine the properties of

pricing strategies that are best for the platform’s revenue or social welfare. The pricing

strategies of the platform can substantially affect the parking demand and supply, as well

as the platform’s performance. This highlights the importance to appropriately explore the

pricing strategies of the parking sharing platform operator. In summary, this study improves

and enhances our understanding of the parking sharing, pricing, and management, and also

enriches the literature on the two-sided markets, where ride sharing/sourcing has attracted

much more attention (Agatz et al., 2012; Wang et al., 2016; Zha et al., 2016; Chen et al.,

2017; Liu et al., 2017; Zhang et al., 2017; Wang et al., 2018; Bai et al., 2019).

The remainder of the paper is structured as follows. Section 2 describes the parking

sharing problem involving private car travelers, parking owners, and parking sharing platform

operator, and presents the basic formulations. Section 3 formulates travelers’ parking choice

equilibrium under given supplies of public curbside parking and private shared parking, and

graphically illustrates the choice equilibrium in the two dimensional domain of shared parking

fee and shared parking supply (or rent). Moreover, the pricing strategies of the parking

platform operator to achieve two different objectives, i.e., platform revenue maximization (a

private operator) and social cost minimization (a public operator), are analyzed. Section

4 numerically examines the models in this paper and also provides further understanding.

Section 5 discusses the analysis and results. Finally, Section 6 concludes the paper.

2 Problem description and basic formulation

In this section, we start with a description of the rush-hour commuting problem in the pres-

ence of a parking sharing e-platform, and then describe behaviors of three parties involved:

drivers (or travelers) who require a parking space; individual parking owners (or sharers) who

may share their private parking spaces; and the operator of the parking sharing platform.

Consider an urban area with a mixed land use of residential and business functionalities

(typically this will be suburbs or sub-centers in cities or metropolitan areas). Suppose there

is a total number of n users who need to park their cars every day after the commuting

trips in the area. A number of mf public curbside parking spaces are available in the

area. Besides the curbside parking spaces involving cruising-for-parking, there are private

residential parking in the area. The residents who own private parking are potential private
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parking suppliers or sharers. Their spaces are vacant during a certain period of time when

they drive to work elsewhere. The total number of such potential parking sharers is Ms.

If sufficient rents are paid to these potential parking sharers, they will share their private

parking spaces.

2.1 Travelers

Travelers who require a parking space have two options: (i) search and park at curbside

parking spaces; and (ii) park at the shared but guaranteed (and reserved) parking space

through parking sharing service. Note that while we only model two parking options here,

the parking choice equilibrium model in this study can be readily extended to incorporate

other travel alternatives, such as garage parking and public transit, where the cost formu-

lations of these alternatives should also be formulated then. Here we do not try to provide

an exhaustive modelling of all travel alternatives, but aim to derive analytical insights on

the parking sharing problem where the insights can be well traced back to the modelling

framework. We adopted a tractable and stylized model with only two parking options. This

is sufficient to serve the goal of this study, i.e., we model shared parking while we account

for the fact that users will shift to other modes when shared parking is more costly. It is also

noteworthy that we did not exclude the possibility that the parking sharing operator may

integrate local garage parking into its platform, where the garage parking operator/owner

can be regarded as an owner of a certain number of parking spaces.

Under the first option (curbside parking), travelers’ individual parking cost is

cf = cf (nf ) = α · t (nf ) + q, (1)

where nf is the number of drivers that choose curbside parking, t (nf ) is the expected cruising

time for finding a vacant curbside parking space given the curbside flow nf , α is the value

of driving time, and q is the public curbside parking fee.

More specifically, the cruising time for parking is assumed to be an increasing and convex

function of the parking occupancy rate
nf
mf

, i.e., t (nf ) = κ
(
nf
mf

)
, where κ (·) is the cruising

time function. This is similar to a number of parking studies in the literature (Anderson

and De Palma, 2004; Calthrop and Proost, 2006; Qian and Rajagopal, 2014, 2015; Liu

and Geroliminis, 2016; Arnott and Williams, 2017; Gu et al., 2020). Observe that this

study models the recurrent parking sharing problem at the strategic level rather than the

operational level. Therefore, the approach is aggregate and static. The cruising time here is

an “expected” cruising time, which is calculated based on the curbside flow at the parking

choice equilibrium (which can be regarded a long-term “expected” flow). From day to day,
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an individual traveler might experience a different cruising time, where the average should

approach this “expected” cruising time.

Moreover, we assume that when
nf
mf
≥ 1, κ→ +∞ (e.g., if

nf
mf

= 1.1, κ→ +∞); and when
nf
mf

< 1, κ < +∞. This treatment can be regarded as a soft parking capacity constraint,

which ensures that nf < mf is automatically satisfied at the parking choice equilibrium to be

introduced in Section 3.1 (so the curbside parking occupancy rate will never go beyond ONE

and κ → +∞ never occurs). The treatment of “κ → +∞ if
nf
mf
≥ 1” does not correspond

to any real situation but is a technique to implicitly enforce a capacity constraint. The

cruising time formulation captures the trend that if parking occupancy rate is higher, it is

more difficult to find a vacant parking space (takes a longer time). Also, the “convexity

of cruising time function” captures that on average, when the parking occupancy rate is

higher, a further increase in the occupancy yields a larger increase in cruising time. We also

let t−1(·) denote the inverse function of t(·).
Under the second option (shared parking), travelers can drive to the area and then park

at the shared (and reserved) parking space without searching. However, he or she has to pay

a shared parking fee for using the shared parking. Parking cost for him or her is

cs = p, (2)

where p is the fee for a shared space. The users pay this price to the e-platform operator for

the shared parking space. As mentioned earlier, the platform operator has to pay a rent to

the parking owner, i.e., “repurchase” in Guo et al. (2016), which will be further discussed in

Section 2.3.

Travelers have to make choices between curbside and shared parking spaces to minimize

their travel cost. This results in a parking choice equilibrium (formally formulated in Sec-

tion 3.1), at which no one can reduce individual travel cost through unilaterally changing

his or her parking choice. It is assumed that the parking choice is purely based on the costs

formulated in Eq. (1) and Eq. (2) for the two parking options and parking at any available

space is feasible and acceptable. This treatment simplifies the spatial dimension and other

heterogeneous features of parking, as well as individual-specific user preference over parking.

This treatment will be more accurate for small regions such as suburbs (for instance, the

area size of a popular suburb Coogee in Sydney is less than 2 km2). However, this treatment

tends to overestimate the shareability of parking spaces and the matching between demand

and supply (even for small regions). A user-parking matching function similar to driver-rider

matching in taxi or ride-sourcing studies might be incorporated in a future study to accom-

modate this. The current study can be regarded as an optimistic situation and provides an
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efficiency upper bound in terms of parking utilization.

When we consider the parking choice equilibrium, the difference between the two prices,

i.e., q and p, matters. Thus, to economize the notation and presentation, we let q = 0,

and p then represents the relative price of shared parking against public curbside parking.

However, this can be readily extended to the case with a non-zero curbside parking fee.

Given the numbers of travelers that choose curbside and shared parking, i.e., nf and ns,

where nf + ns = n, the total user cost is

TC = cf · nf + cs · ns. (3)

2.2 Parking owners (or sharers)

There are Ms residents who are parking owners as well as potential parking sharers. These

residents may drive to other areas to work and leave their parking spaces vacant during the

daytime. When sharing their spaces, they will incur an inconvenience cost δ. It is assumed

that δ is distributed over [δl,+∞) with a probability distribution function f(δ) and cumu-

lative distribution function F (δ), where δl ≥ 0. It is noteworthy that the inconvenience of

individual parking owners to share their spaces is private information. However, the plat-

form may conduct surveys to calibrate the distribution of inconvenience among the parking

owners (potential parking sharers). This paper assumes that the platform operator knows

the distribution F (δ). This information can be utilized to determine its pricing strategies.

For analytical purpose, we adopt the following assumption for F (δ) and f(δ).

Assumption 1. The cumulative distribution function F (δ) is twice differentiable such that

f ′(δ) exists, and the probability distribution function satisfies f(δ) > 0 on [δl,+∞).

Assumption 1 indicates that the probability distribution function f(·) is smooth and F (·)
is strictly increasing before F reaches ONE. We further let F−1(·) denote the inverse function

of F (·) for 0 ≤ F ≤ 1, where F−1(0) = δl.

If a rent r is paid to the parking owners by the platform operator, the parking owners

with an inconvenience cost δ ≤ r (who can benefit from sharing their spaces) will “sell the

right-of-use” of their parking spaces to the platform operator. The realized shared parking

supply under a given rent r is

ms = F (r) ·Ms. (4)

It is obvious that ms ≤ Ms. Moreover, ns ≤ ms also holds, i.e., the total number of drivers

using the shared parking spaces should be less than or equal to the total number of available

6

https://dx.doi.org/10.1287/trsc.2021.1103



ones (or the “expected” shared parking occupancy rate is no greater than 100%). This study

focuses on r ≥ δl since r < δl yields the same outcome as r = δl, where ms = 0.

Given the rent r ≥ δl, the total net benefit of parking owners equals the total parking

rent minus the total inconvenience cost caused, i.e.,

Rs(r) =

[
F (r) · r −

∫ r

δl

δ · f(δ) · dδ
]
·Ms. (5)

It can be readily verified that the net benefit of parking owners Rs is non-decreasing with

respect to r.

2.3 Parking sharing platform operator

The shared parking operator charges the parking users a fee of p for a shared parking space,

and compensates a private parking sharer a fee of r or we call it “rent”. The interactions

among the operator, the parking users and owners are illustrated in Figure 1. The pricing

strategies of the parking sharing platform, i.e., the combinations of p and r, will influence

the shared parking demand and supply, as well as the platform’s performance. In Section 3,

we will explore the pricing strategies of a private platform operator for revenue maximization

and those of a public operator for social cost minimization or system optimum. We will also

compare the pricing strategies and system performance metrics under private and public

operators.

Figure 1: Interactions among the platform operator, parking users and owners

A private parking sharing platform operator decides its pricing strategy, i.e., p and r, to

maximize its net revenue, which is

Rp(p, r) = ns · p−ms · r, (6)

subject to users’ parking choices and parking owners’ sharing decisions, i.e., ns will depend

on p; and ms will depend on r; and furthermore ns is constrained by ms.
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A public (or regulated) platform operator concerns the total social cost of the three

parties (i.e., travelers, owners, and the operator), which is

TSC = TC −Rs −Rp (7)

where TC is defined in Eq. (3), and Rs is defined in Eq. (5), and Rp is defined in Eq. (6).

The social cost excludes money transfers between different parties involved (those between

the platform operator and the parking users and those between the platform operator and

the parking owners or sharers).

3 Parking choice equilibrium and pricing strategies

In this section, we firstly describe and identify the parking choice equilibrium under given

parking prices and capacities, and then discuss the pricing strategies for revenue maximiza-

tion (a private operator) and social cost minimization (a public operator).

3.1 Parking choice equilibrium

In this section, we formulate travelers’ parking choice problem given the pricing strategy

(p, r) of the platform operator and the curbside parking supply mf . Note that, once r is

given, the shared parking supply ms is also given. The parking choice equilibrium is a

variant of the classic User Equilibrium traffic assignment problem with capacity constraints

(Nie et al., 2004), where a traveler minimizes his or her cost when making parking choice

decisions subject to the parking capacity constraints.

We begin with listing Assumption 2, which means that there is always sufficient parking

supply for the n travelers and guarantees that the static parking choice problem has one

feasible solution at least.

Assumption 2 (Sufficient Parking). It is assumed that mf +ms > n.

Observe that we consider a long-term equilibrium of parking choice. The equilibrium

parking occupancy rate is no greater than ONE, i.e., we have nf < mf and ns ≤ ms. To

have a feasible solution we should have n = nf +ns < mf +ms. The above assumption helps

reflect that parking has capacity limits and parking occupancy does not go beyond ONE,

which is appropriate for a static equilibrium problem. If one incorporates the time dimension

and considers dynamics of parking inflow and outflow, certainly the total number of parking

users can go beyond the number of parking spaces. However, that does not conflict with the

current formulation, where the current study focuses on an average state for a given duration
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within the day and parking occupancy rate never goes beyond ONE. Generally speaking,

in the long-term, the number of travelers that choose to drive is governed by the parking

supply as travelers will shift to other travel modes (e.g., public transit, shared-ride) when

parking is costly (either costly searching time or costly fees for reserved spaces).

At the parking choice equilibrium, no parking user can reduce individual cost by unilat-

erally changing his or her parking choice. The underlying assumption of the parking choice

equilibrium is that parking users are rational, and they try to minimize their individual

travel costs. Moreover, they have information regarding the parking pricing and capacities,

which allow them to make rational decisions.

The User Equilibrium conditions for the parking choice problem with parking capacity

constraint reads in the following form, given nf + ns = n, nf ≥ 0 and ns ≥ 0:

nf > 0⇒ cf = c∗ (8a)

nf = 0⇒ cf ≥ c∗ (8b)

ns > 0⇒ cs + λ = c∗ (8c)

ns = 0⇒ cs + λ ≥ c∗. (8d)

where c∗ = min {cf , cs + λ}, and λ is a multiplier associated with the shared parking capacity

constraint defined as follows:

λ (ms − ns) = 0;ms − ns ≥ 0;λ ≥ 0. (9)

λ > 0 ⇒ ms = ns and λ = 0 ⇒ ms ≥ ns. The multiplier λ is the shadow price that

reflects the additional indirect cost experienced by the shared parking users to ensure the

chosen option (e.g., book the shared space in advance). The multiplier λ will also appear

in Eq. (12), where detailed derivations are provided in Appendix A.1. Similar observations

(indirect cost due to, e.g., advance booking) have been made for high-speed railway ticket

booking in the study of Xu et al. (2018). Future studies can optimize the parking reservation

schemes for parking sharing services at the operational level (Shao et al., 2016).

Following the well-known Beckmann’s formulation (Beckmann et al., 1956), the mini-

mization problem below can be constructed to obtain the parking choice equilibrium, i.e.,

min z (nf , ns) =

∫ nf

0

cf (w) dw +

∫ ns

0

csdw (10)
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subject to

nf + ns = n; (11a)

ns ≤ ms; (11b)

nf ≥ 0, ns ≥ 0. (11c)

where Eq. (11a) is the flow conservation condition, Eq. (11b) is the shared parking capacity

constraint, Eq. (11c) ensures non-negativity of the parking flows. Note that the curbside

parking capacity constraint nf < mf will be automatically satisfied after solving the above

minimization problem since the cruising time t (nf ) → +∞ when nf ≥ mf (this can be

regarded as a soft capacity constraint) and the total parking supply is sufficient, i.e., mf +

ms > n. Since the cost functions cf and cs are continuous and cf is strictly increasing, one

can readily verify that there exists a unique solution to the above minimization problem,

i.e., the parking choice equilibrium is unique.

For the minimization problem in Eq. (10) subject to the constraints in Eq. (11), we

can write down its Lagrangian function (refer to Appendix A.1 for details), where u and λ

denote the Lagrange multipliers associated with flow conservation in Eq. (11a) and the shared

parking capacity constraint in Eq. (11b), respectively. We then can derive the following

optimality conditions (similar Karush-Kuhn-Tucker (KKT) conditions can be found in, e.g.,

Hearn, 1980):

nf · (cf − u) = 0 (12a)

cf − u ≥ 0 (12b)

nf ≥ 0 (12c)

ns · (cs + λ− u) = 0 (12d)

cs + λ− u ≥ 0 (12e)

ns ≥ 0 (12f)

λ · (ms − ns) = 0 (12g)

ms − ns ≥ 0 (12h)

λ ≥ 0 (12i)

nf + ns = n (12j)

At equilibrium, u is equal to c∗ in Eq. (8), and the multiplier λ associated with the shared

parking capacity is identical to that defined in Eq. (9). One can readily verify the equiva-

lence between KKT conditions and User Equilibrium conditions. The proof of equivalence
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is standard in the User Equilibrium traffic assignment literature and thus is omitted. It

is noteworthy that on the left-hand sides of conditions in Eq. (12), the costs (e.g., cf ) are

functions. These functions should be evaluated when we identify possible equilibrium solu-

tions below. Moreover, these functions should be evaluated when we analyze the revenue

maximization in Section 3.2 since it is subject to the parking choice equilibrium.

While the parking choice equilibrium has a unique solution under a given pair of shared

parking price and supply (p,ms) (or a pair of price and rent (p, r)), the solution varies with

(p,ms) (or (p, r)). Four possible scenarios of equilibrium solutions can arise under different

(p,ms):

Scenario I: ns = n, nf = 0, i.e., all travelers choose shared parking, and no traveler choose

curbside parking;

Scenario II: ns = ms, nf = n−ms, i.e., travelers choose both shared parking and curbside

parking, and all realized shared parking spaces are utilized;

Scenario III: 0 < ns < ms, nf > 0, i.e., travelers choose both shared parking and curbside

parking, but the realized shared parking is not fully utilized;

Scenario IV: ns = 0, nf = n, i.e., all travelers choose curbside parking and no travelers

choose shared parking.

From Eq. (12), it is not difficult to see that Scenario I occurs when ms ≥ n and p ≤ αt (0).

In this case, the shared parking price is sufficiently low, and the shared parking supply is

sufficiently large to meet all parking demand, so all travelers choose shared parking. Scenario

II occurs when ms < n and p ≤ αt (0), and ms < n− t−1
(
p
α

)
, αt (0) < p < αt (n), in which

case the shared parking price is low, but the shared parking supply is insufficient to satisfy

all demand. Scenario III corresponds to an interior parking choice equilibrium when cs = cf .

Such interior equilibrium occurs when αt (0) < p < αt (n), ms ≥ n− t−1
(
p
α

)
, i.e., the shared

parking supply is sufficient given the price. And travelers parking choice in this case satisfies

(ns, nf ) =
(
n− t−1

(
p
α

)
, t−1

(
p
α

))
. Finally, Scenario IV occurs when p ≥ αt (n), in which

case the shared parking price is always higher than curbside parking cost, so no one choose

shared parking. A graphical illustration of the above four scenarios is provided in Figure 2.

The Origin in Figure 2 is (p = 0,ms = 0).
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Figure 2: Parking choice equilibrium in the domain of (p,ms)

As shared parking supply ms is endogenously determined by parking rent r, Figure 3

further converts all the terms related to ms in Figure 2 into r (through replacing ms with

ms = F (r) ·Ms or equivalently r = F−1
(
ms
Ms

)
), to display the possible equilibrium solutions

under given (p, r). Note that F−1 (0) = δl, so we only need to focus on r ≥ δl. Furthermore,

as mentioned earlier, the feasible domain for the parking sharing problem is constrained by

ms ≤Ms, so Scenario I in Figure 2 may or may not exist, depending on Ms > n or Ms ≤ n.

When Ms ≥ n, one may let r ≥ F−1
(

n
Ms

)
, and thus ms ≥ n may occur. In this case, all

the four categories of equilibrium solutions in Figure 2 could arise, as shown in Figure 3(a).

The Origin in Figure 3(a) is (p = 0, r = δl). The four curves dividing the domain of (p, r) into

four regions are: (i) r = F−1
(

n
Ms

)
and p ∈ [0, αt(0)], and (ii) p = αt(0) and r ≥ F−1

(
n
Ms

)
,

and (iii) p = αt(n) and r ≥ δl, and (iv) r = F−1
(
n−t−1( pα)

Ms

)
and p ∈ [αt(0), αt(n)]. These

four curves in Figure 3(a) are the counterparts of the four curves marked in Figure 2.

When Ms < n, ms will always be less than n even if we set a very large r. As shown

in Figure 3(b), the equilibrium solution (n, 0) in Figure 2 can never occur. Similarly, the

Origin in Figure 3(b) is (p = 0, r = δl). The two curves, i.e., “p = αt(n) and r ≥ δl” and

“r = F−1
(
n−t−1( pα)

Ms

)
and p ∈ (αt(n−Ms), αt(n)]”, divide the domain of (p, r) into three

regions (Region I does not exist in this case and (ns, nf ) = (n, 0) can never arise).
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Figure 3: Parking choice equilibrium in the domain of (p, r): (a) Ms ≥ n; (b) Ms < n

Figure 3 clearly shows that the parking choice equilibrium varies significantly in the

domain of (p, r). A platform operator can vary (p, r) (decision variables or pricing strategy)

to achieve revenue maximization (a private operator) or social cost minimization (a public

operator). These are discussed in the next two subsections.

3.2 Revenue maximization

We now consider a revenue-maximizing operator. It aims to maximize its net revenue (or

profit), i.e.,

max : Rp(p, r) (13)

subject to travelers’ parking choice equilibrium formulated in Section 3.1, and the parking

owners’ supplying equilibrium introduced in Section 2.2, where Rp(p, r) is given in Eq. (6).

In the following, Proposition 3.1 and Proposition 3.2 discuss the optimal price and rent to

maximize net revenue, the corresponding optimal parking supply and flows, and the resultant

system efficiency metrics (i.e., user cost, owners’ benefit, platform revenue). Proposition 3.3

discusses how the inconvenience cost distribution of parking owners and curbside parking cost

conditions/parameters (cruising time function and value of time) may affect the profitability

of the platform operator.

Let (prm, rrm) be the solution to the revenue maximization problem in Eq. (13). Observe

that we also use the subscript ‘rm’ for other notations to indicate the correspondence to

revenue maximization. It is noteworthy that we have prm ≥ 0 and rrm ≥ δl for a revenue-

maximizing operator. Firstly, as mentioned earlier r < δl would simply yield zero parking

owners to share their parking spaces and the platform operator has zero net revenue. This is

never better than letting r = δl. Secondly, if p < 0, one can readily verify that the operator

must be better off by increasing p to zero.
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Proposition 3.1. The optimal pricing strategy to maximize the platform operator’s net

revenue, i.e., (prm, rrm), satisfies the following:

(i) when Ms ≥ n, rrm = F−1
(
n−t−1

(
prm

α

)
Ms

)
and prm ∈ [αt(0), αt(n)];

(ii) when Ms < n, rrm = F−1
(
n−t−1

(
prm

α

)
Ms

)
and prm ∈ (αt(n−Ms), αt(n)].

The proof of Proposition 3.1 is relayed to Appendix A.2. Proposition 3.1 defines a subset

of the domain (p, r), which contains the revenue-maximizing solution (prm, rrm). This subset

is exactly the curve “r = F−1
(
n−t−1( pα)

Ms

)
and p ∈ [αt(0), αt(n)]” in Figure 3(a) for the

case with Ms ≥ n, and is the curve “r = F−1
(
n−t−1( pα)

Ms

)
and p ∈ (αt(n−Ms), αt(n)]” in

Figure 3(b) for the case with Ms < n. The property that rrm = F−1
(
n−t−1

(
prm

α

)
Ms

)
is later

utilized to further examine (prm, rrm) and the profitability of the sharing platform operator.

One can readily verify from Proposition 3.1 the following two implications (more detailed

discussions provided in Appendix A.3). First, under revenue maximization, all shared park-

ing spaces rented from parking owners should be used, and thus no rent from the operator

is wasted, i.e., ns = ms = F (r)Ms. Second, the shared parking fee is equal to the cruising

time cost of curbside parking users, i.e., p = αt (nf ) or cs = cf , where a lower fee fails to

fully utilize the profitability from a shared parking space and a higher fee will push users

away.

The above results for revenue maximization can be summarized as: ns = ms = F (r)Ms,

r = F−1
(
n−t−1( pα)

Ms

)
or equivalently p = αt (n− F (r)Ms). By embedding these conditions

into Eq. (6), we can obtain Rp as a function of r, i.e.,

Rp = F (r)Ms · (αt (n− F (r)Ms)− r) (14)

As stated earlier, F (·) is assumed differentiable to allow analytical tractability. By looking

at the first derivative of Eq. (14) with respect to r, we can further explore the properties of

(prm, rrm) and the corresponding shared parking supply and system efficiency metrics (i.e.,

the total user cost TC, the net benefit of parking owners Rs, and the platform operator’s

net revenue Rp). Note that Rp in Eq. (14) may not be concave with respect to r and the

first-order optimality condition (i.e., dRp
dr

= 0) is only a necessary condition for an interior

optimum, as will be discussed shortly. For comparison purpose, we let TC0 = n · α · t(n),

R0
s = 0, and R0

p = 0, which are the total user cost, net benefit of parking owners, and

platform operator’s net revenue before introducing the parking sharing, respectively.
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Proposition 3.2. Given the inconvenience distribution F (δ) where f(δ) > 0 for δ ∈
[δl,+∞), under revenue maximization:

(i) if δl < αt(n), prm > rrm > δl, and the shared parking supply is positive, i.e., mrm
s > 0,

and the net revenue of the platform operator is positive, i.e., Rp(p
rm, rrm) > 0;

(ii) if δl < αt(n), the revenue-maximizing pricing strategy, i.e., (ppm, rrm), yields a Win-

Win-Win situation, i.e., TC < TC0, Rs > R0
s, and Rp > R0

p;

(iii) the optimal shared parking supply satisfies the following: mrm
s < Ms < n when Ms < n

and mrm
s < n ≤ Ms when Ms ≥ n and t(0) is sufficiently small, i.e., some but not all

potential shared parking supply should be rented.

The proof of Proposition 3.2 is relayed to Appendix A.4. In Proposition 3.2, δl is the

minimum inconvenience cost experienced by some parking owners if they choose to share

their spaces and αt(n) = cf (n) is the curbside parking user cost when all travelers choose

curbside parking. Proposition 3.2(i) indicates that as along as there exist a group of parking

owners with sufficiently small inconvenience to share their parking spaces, i.e., δl < αt(n),

the platform can gain a positive net revenue by buying their parking and “sell the right of

use” to parking users. The operator can empirically evaluate whether δl < αt(n) holds in an

urban area to assess the potential profitability of running parking sharing in the area. It is

evident that if δl is small (e.g., equals zero) and α or t(n) is large, parking sharing platform

is more likely to earn positive net revenue.

Proposition 3.2(ii) indicates that with a revenue-maximizing operator, a Win-Win-Win

situation for the parking users, parking owners (or sharers), and the platform operator can

be achieved. This is further discussed as follows. For the travelers, after parking sharing is

introduced, equilibrium travel cost is reduced due to more parking options, which results in

less cruising cost (−TC can be regarded as the total utility). For the Ms parking owners,

some of them (ms owners) with the smallest inconvenience will share their parking, and they

are strictly better off and others (i.e., Ms −ms owners) are at least not worse off. For the

platform operator, it is already shown in Proposition 3.2(i) that the platform can earn a

positive revenue.

Proposition 3.2(iii) indicates the potential shared parking supply Ms should not be fully

utilized in order to maximize revenue. This is because to fully utilize Ms it is too costly (the

rent paid is too large). It is worth mentioning that t(0) is very likely to be small, since when

no travelers using curbside parking, finding a vacant space costs almost zero cruising time

(e.g., travelers may find a vacant space immediately after they enter the parking area, note

that access time to parking area is not included in t).

We now further look at the solution (prm, rrm). Based on Eq. (26) in Appendix A.4, i.e.,

the first derivative of Eq. (14) with respect to r, and letting dRp
dr

= 0, one can further verify
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that an interior optimal rent rrm solves:

f(r)Ms [αt− r] = F (r)Ms [αt′f(r)Ms + 1] , (15)

where t = t (n− F (r)Ms) and t′ = t′ (n− F (r)Ms). Observe that Rp is not necessarily con-

cave with respect to r, which is subject to the shapes of F (·) and t (·). The above first-order

optimality condition is only necessary for an interior optimum but not sufficient. In Eq. (15),

f(r)Ms [αt− r] is the marginal revenue change due to the marginal change in the number of

shared-parking users, and F (r)Ms [αt′f(r)Ms + 1] is the change due to the marginal change

in the shared parking price and rent. Furthermore, we have prm = αt (n− F (rrm)Ms).

Given the (prm, rrm), one can readily obtain that nrms = mrm
s = F (rrm)Ms and nrmf =

n− F (rrm)Ms.

Proposition 3.2(i) also shows that prm > rrm. One can further quantify the ratio of prm

and rrm given a specific distribution of inconvenience among the potential parking suppliers

Ms. In particular, suppose the inconvenience of parking sharers is uniformly distributed

over [δl, δu], and δu is sufficiently large (rrm < δu), the optimal pricing strategy (prm, rrm) to

maximize Rp given in Eq. (30) should satisfy

prm

rrm
> 2. (16)

The derivation of Eq. (16) is discussed in Appendix A.5. The price-to-rent ratio indeed

reflects the return on unit rent paid. Eq. (16) says that given the assumed inconvenience

cost distribution in the above, at revenue maximization, one dollar rent should generate

more than two dollars income.

While rrm can occur in the interior, multiple optimal solutions may exist and dRp
dr

= 0 is

only a necessary condition. If d2Rp
dr2

< 0 (i.e., Rp in Eq. (14) is strictly concave with respect

to r), we have a unique rrm. For example, if the inconvenience is quite evenly distributed,

i.e., f ′(r) → 0, and t′ ≥ 0.5Mst
′′ (t = t (·) is expected cruising time, t′ and t′′ are the first

and second derivatives, respectively), one can verify that d2Rp
dr2

< 0, and we have a unique

optimal pricing strategy.

We proceed to examine how the inconvenience cost distribution of parking owners and

cost of choosing curbside parking (cruising time function of curbside parking and value of

time) may affect the profitability of the platform operator.

Proposition 3.3. Ceteris paribus, (i) if two distributions of the inconvenience δ satisfy

F1 (δ) ≤ F2 (δ) for any δ, the maximum net revenue of the platform operator under F2 (δ)

will be no less than that under F1 (δ); (ii) if two potential shared parking supplies satisfy
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Ms,1 ≤Ms,2, the maximum revenue of the platform operator under Ms,2 will be no less than

that under Ms,1; (iii) if two cruising time function satisfy t1 (nf ) ≤ t2 (nf ), the maximum

revenue of the platform operator under t2 (nf ) will be no less than that under t1 (nf ); (iv) if

two values of time satisfy α1 ≤ α2, the maximum revenue of the platform operator under α2

will be no less than that under α1.

The proof of Proposition 3.3 is relayed to Appendix A.6. Proposition 3.3(i) and Propo-

sition 3.3(ii) indicate that when more parking owners have smaller inconvenience due to

parking sharing, i.e., F2(δ) ≤ F1(δ) or Ms,1 ≤Ms,2, it is more likely for the platform to gain

a larger net revenue (mainly due to cheaper shared parking). Proposition 3.3(iii) and Propo-

sition 3.3(iv) indicate that when curbside parking is more costly, i.e., t2 ≥ t1 or α2 ≥ α1,

it is more likely for the platform to gain a larger revenue (mainly due to a less competitive

travel alternative, i.e., more costly curbside parking).

3.3 Social cost minimization (or system optimum)

We now discuss a public operator to minimize social cost, and the system optimal parking

flow and shared parking supply pattern (i.e., system optimum). The problem is to minimize

the total social cost:

min : TSC (17)

subject to the travelers’ parking choice equilibrium, and the parking owners’ sharing equi-

librium. Based on Eq. (3), Eq. (5), Eq. (6), and Eq. (7), we have

TSC = cfnf +

∫ r

δl

δf(δ)Msdδ. (18)

One can see from the above that the total social cost contains two parts: the parking

searching cost of travelers choosing curbside parking, and the inconvenience cost of the

parking sharers who supplied a private parking space.

In the following, Proposition 3.4 discusses the system optimal parking flow pattern and

its implications. Proposition 3.5 discusses the optimal price and rent to minimize the total

social cost and the corresponding system efficiency metrics, and further compares system

optimum with revenue maximization. Proposition 3.6 discusses how the inconvenience cost

distribution of parking owners and curbside parking cost conditions/parameters (cruising

time function and value of time) may affect the minimum total social cost. Note that dis-

cussions below on these propositions also emphasize the difference between system optimum

and revenue maximization.
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Similar to revenue maximization (see Remark A.1), under system optimum, we should

have ms = ns. This is explained as follows. Firstly, the capacity constraint ms ≥ ns always

holds. Secondly, if ms > ns, by reducing ms to ns, while travelers’ parking choice does not

change as well as their costs, the inconvenience cost of parking owners can be saved (for

ms − ns parking owners). The saving amount is equal to
∫ F−1(msMs )
F−1( nsMs )

δf(δ)Msdδ.

Since ms = ns holds under system optimum, r in Eq. (18) can be replaced by r =

F−1
(
ns
Ms

)
, and the total social cost can be written as a function of nf and ns, subject to

nf + ns = n. We can then define the following Lagrangian:

L(nf , ns, ν) = cfnf +

∫ F−1( nsMs )

δl

δf(δ)Msdδ + ν · (n− nf − ns), (19)

where we further have
∂L

∂nf
= cf + nf

dcf
dnf
− ν. (20)

∂L

∂ns
= F−1

(
ns
Ms

)
− ν. (21)

∂L

∂ν
= n− nf − ns. (22)

We are now ready to examine the system optimal parking flows and shared parking

supply, which are denoted by (nsof , n
so
s ) and mso

s , where nsos = mso
s .

Proposition 3.4. The parking supply and choice pattern under system optimum satisfies

the following:

(i) if α (t(n) + nt′(n)) ≤ δl, no shared parking should be rented, i.e., nsos = mso
s = 0, and if

α (t(n) + nt′(n)) > δl, some shared parking should be rented and used, i.e., nsos = mso
s > 0;

(ii) for an interior optimal solution where nsof > 0 and nsos > 0, α
(
t(nsof ) + nsof t

′(nsof )
)

=

F−1
(
nsos
Ms

)
holds, i.e., the marginal cost of an additional cruising driver for curbside parking

is equal to the inconvenience cost of an additional parking owner who supplies a shared space.

Proof. If α (t(n) + nt′(n)) ≤ δl, based on Eq. (20) and Eq. (21) one can readily verify that
∂L
∂nf
≤ ∂L

∂ns
always holds, which mean that we should set nsof = n and nsos = 0 (mso

s should

also be zero in order to save inconvenience cost). This verifies Proposition 3.4(i).

When we consider an interior optimal solution where nsof > 0 and nsos > 0, based on

Eq. (20) and Eq. (21), we have ∂L
∂nf

= ∂L
∂ns

= 0 and thus α
(
t(nsof ) + nsof t

′(nsof )
)

= F−1
(
nsos
Ms

)
.

This verifies Proposition 3.4(ii).

In Proposition 3.4(i), δl is the minimum inconvenience cost and α (t(n) + nt′(n)) =
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cf (n) + n
dcf (n)

dn
is the marginal cost when all travelers choose curbside parking. Proposi-

tion 3.4(i) indicates that when there exists a group of parking owners with sufficiently small

inconvenience to share their parking spaces, i.e., δl < α (t(n) + nt′(n)), the platform should

rent some private parking and “sell the right of use” to parking users in order to minimize

total social cost. The operator can empirically evaluate whether δl < α (t(n) + nt′(n)) holds

in an urban area to assess the potential of parking sharing to reduce social cost.

Proposition 3.4(ii) states that, when we have an interior system optimum parking flow

pattern, the marginal cost of an additional cruising driver, i.e., α · (t+ nf t
′), should equal

the marginal cost of an additional driver that chooses shared parking, which is exactly the

inconvenience cost due to supplying an additional shared space (incurred by the additional

parking owner), i.e., F−1
(
ns
Ms

)
. For the sharing problem, the social cost includes those

of both parking users and parking sharers (a two-sided market), and the system optimum

balances the marginal costs from both sides. An interior system optimum (nsof , n
so
s ) can be

determined by simultaneously solving α (t(nf ) + nf t
′(nf )) = F−1

(
ns
Ms

)
and nf +ns = n, the

solution of which is unique given that t(·) is increasing and convex and F−1(·) is increasing

or at least non-decreasing.

From the condition α (t(nf ) + nf t
′(nf )) = F−1

(
ns
Ms

)
in Proposition 3.4(ii), we can further

verify that a more costly curbside parking (i.e., a larger α or a larger t(nf ) given the same nf )

will yield a smaller nsof and a larger nsos , and more parking owners with a smaller inconvenience

cost will yield a smaller nsof and a larger nsos .

Proposition 3.5. Given the inconvenience distribution F (δ) where f(δ) > 0 for [δ,+∞),

under system optimum,

(i) if δl < α (t(n) + nt′(n)), we have rso = F−1
(
nsos
Ms

)
> δl and pso ≤ αt(nsof ) < rso,

and the net revenue of the platform operator is negative or more specifically Rp (pso, rso) ≤
−nsof

[
αnsof t

′(nsof )
]
< 0;

(ii) if δl < α (t(n) + nt′(n)), the social-cost-minimizing pricing strategy, i.e., (pso, rso), yields

a Win-Win-Lose situation, i.e., TC < TC0, Rs > R0
s, and Rp < R0

p;

(iii) suppose we have interior parking flow solutions under both revenue maximization and

system optimum, then rso > rrm and pso < prm, and at the same time nsos > nrms and

nsof < nrmf .

The proof of Proposition 3.5 is relayed to Appendix A.7. Proposition 3.5(i) follows Propo-

sition 3.4(i). Besides illustrating the potential of parking sharing to reduce total social cost,

Proposition 3.5(i) says that pso < rso and to minimize social cost the platform experiences

a loss no less than nsof
[
αnsof t

′(nsof )
]
. It is noteworthy that pso is not unique and can be any

value less than αt(nsof ).
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By comparing Proposition 3.4(i) and Proposition 3.5(i) for system optimum and Propo-

sition 3.2(i) for revenue maximization, we can see that the condition δl < α (t(n) + nt′(n))

to ensure mso
s > 0 is more relaxed than the condition δl < αt(n) to ensure mrm

s > 0. This

is because, the platform’s profitability relies on cheap shared parking at the individual user

level, i.e., δl < rrm < prm = αt(nrmf ) ≤ αt(n); and the capability to reduce social cost relies

on cheap shared parking at the system level (marginal cost α (t(n) + nt′(n)) appears). It

is obvious that δl < αt(n) is a subset of δl < α (t(n) + nt′(n)). This implies that when

introducing parking sharing is profitable for a private operator, it can reduce social cost

under a public operator for sure. However, being able to reduce social cost under a public

operator does not guarantee the profitability of parking sharing even with a private operator

to maximize its net revenue. In short, a public operator is more likely to be incentivized to

introduce parking sharing than a private operator.

In comparison with the Win-Win-Win situation in Proposition 3.2(ii) under revenue max-

imization, Proposition 3.5(ii) establishes the existence of a Win-Win-Lose situation under

social cost minimization. This implies that subsidy is required to persuade a private operator

to manage the parking sharing system in a social-cost-minimizing way. The required subsidy

amount is no less than nsof
[
αnsof t

′(nsof )
]

(as presented in Proposition 3.5(i)) to ensure non-

negative net revenue for the platform and there is no need to provide a subsidy greater than

Rp (prm, rrm) + nsof
[
αnsof t

′(nsof )
]
. We will more systematically discuss the implementation of

system optimum and the regulation of a revenue-maximizing operator to reduce total social

cost in Section 5.

Proposition 3.5(iii) further compares the parking flows, i.e., nf and ns, shared parking

supply ms, and shared parking price and rent, i.e., p and r, under revenue maximization and

system optimum. Proposition 3.5(iii) clearly indicates that (considering interior solutions)

more shared parking should be rented under system optimum in order to reduce parking

cruising externality and a lower shared parking price should be set to attract travelers to

use shared parking, while less shared parking should be rented under revenue maximization

which results in a higher cruising time cost as well as a higher shared parking price.

It should be noted that lower parking cost due to parking sharing may induce additional

car traffic. Therefore, whether or not such a platform should be subsidized has to take into

account how much additional demand will be induced and the generated negative externality.

This should be further examined in a framework with other travel and parking alternatives.

Proposition 3.6. Ceteris paribus, (i) if two distributions of the inconvenience δ satisfy

F1 (δ) ≤ F2 (δ) for any δ, the minimum total social cost under F2 (δ) will be no larger

than that under F1 (δ); (ii) if two potential shared parking supplies satisfy Ms,1 ≤ Ms,2, the

minimum total social cost under Ms,2 will be no larger than that under Ms,1; (iii) if two
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cruising time function satisfy t1 (nf ) ≥ t2 (nf ), the minimum total social cost under t2 (nf )

will be no greater than that under t1 (nf ); (iv) if two values of time satisfy α1 ≥ α2, the

minimum total social cost under α2 will be no greater than that under α1.

The proof of Proposition 3.6 is relayed to Appendix A.8. Proposition 3.6 examines how

the inconvenience cost distribution of parking owners and curbside parking cost (cruising

time function and value of time) may affect the minimum total social cost involving the

parking users and owners, and the platform operator.

Proposition 3.6(i) and Proposition 3.6(ii) indicate that when more parking owners have

smaller inconvenience due to parking sharing, i.e., F2(δ) ≤ F1(δ) or Ms,1 ≤ Ms,2, it is

more likely for the system to achieve a smaller minimum total social cost. These are in

line with Proposition 3.3(i) and Proposition 3.3(ii) for revenue maximization, where smaller

inconvenience indicates more profitability. Together these results indicate when more parking

owners have smaller inconvenience due to parking sharing, profitability of the platform and

the capability of introducing parking sharing to reduce social cost are both better.

Proposition 3.6(iii) and Proposition 3.6(iv) indicate that when curbside parking is less

costly, i.e., t2 ≤ t1 or α2 ≤ α1, it is more likely for the system to achieve a smaller total

social cost. These are different from Proposition 3.3(iii) and Proposition 3.3(iv) for revenue

maximization, where more costly curbside parking (i.e., t2 ≥ t1 or α2 ≥ α1) yields better

profitability. This is because, less costly curbside parking means less externality from using

curbside parking as well as potential smaller social cost. However, less costly curbside parking

implies that a revenue-maximizing operator has to set a lower shared parking fee in order

to attract users (curbside parking is competing with shared parking) and thus ends up with

less net revenue.

4 Numerical studies

This section presents numerical results to illustrate the proposed model and analysis. We

examine the platform’s net revenue, parking owners’ net benefit, total social cost, and total

user cost under different pricing strategies of the platform operator. We summarize the ba-

sic numerical setting in Table 1. AUD represents Australian Dollar, which is the monetary

unit used in this paper. 37.60 AUD/hr is the average of private and business time values

based on recommended data by Transport for New South Wales (TfNSW), i.e., TfNSW

Economic Parameter Values (https://www.transport.nsw.gov.au/projects/project-delivery-

requirements/evaluation-and-assurance/resources). The total demand, the total curbside

parking supply, the total potential shared parking supply and the distribution of inconve-
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nience cost are all assumed. The demand and supply values are in the suburb-level rather

than large downtown level. For the distribution of inconvenience cost, Section 4.2 conducts

sensitivity analysis and examines how the distribution variations might affect the results.

Section 4.1 discusses the difference between revenue maximization, system optimum, and

original user equilibrium without parking sharing under the benchmark numerical setting.

Section 4.3 discusses a revenue-maximizing operator under pricing regulation.

Table 1: Basic numerical settings

Parameters or Functions Specification

Total demand N = 4000

Value of driving (cruising) time α = 37.60 (AUD per hour)

Total curbside parking supply mf = 4200

Total potential shared parking supply Ms = 4200

Distribution of inconvenience cost F (δ) = 1− e−0.1δ where δ ≥ δl = 0

The cruising time function (in minutes) is as follows: when
nf
mf
≤ 0.6, κ

(
nf
mf

)
=

0.5/
(

1− nf
mf

)
and otherwise κ

(
nf
mf

)
= κ0exp

(
κ1

nf
mf

)
where κ1 = 2.907 × 10−4 and

κ2 = 7.12. Note that κ is continuous at
nf
mf

= 0.6. Figure 4 displays the cruising time

against parking occupancy rate. As can be seen, when the parking occupancy rate exceeds

80%, the parking cruising time starts to grow more sharply. While the cruising time setting

is assumed, it is comparable to (but slightly larger than) the cruising time in Gu et al. (2020)

based on survey data and parking occupancy information.
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Figure 4: The cruising time function: cruising time vs. occupancy rate
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4.1 Benchmark Case

This subsection compares the difference between revenue maximization, system optimum,

and original user equilibrium without parking sharing under the benchmark numerical set-

ting.

In Table 2, we summarize the pricing strategies, i.e., shared parking fee p and the rent

r, the operator’s net revenue, i.e., Rp in Eq. (6), the net benefit of parking sharers, i.e., Rs

in Eq. (5), the total social cost, i.e., TSC in Eq. (7), and the total user cost, i.e., TC in

Eq. (3) under Revenue Maximization (RM) and System Optimum (SO), respectively. Also,

we compare them with those under the Original User Equilibrium (OUE), where parking

sharing is not introduced.

As can be seen in Table 2, in the RM case, the platform operator has a substantial net

revenue, while in the SO case, the platform operator has to be subsidized (a negative revenue

of −4.661× 103). However, while the RM case can yield a positive revenue for the operator,

the social cost is increased by (1.846− 0.517)× 104, and the total user cost is increased by

(2.020− 0.346)×104 as against the SO case. This is mainly due to that there are less shared

parking users and more curbside parking users in the RM case than the SO case, and there

are more cruising for parking. It is also noteworthy that in the SO case, the parking owners

or sharers as a whole are also better off when compared with the RM case (2.934 > 0.181).

The above results indicate that parking sharing should be regulated to achieve higher social

efficiency. However, subsidies are needed to sustain the SO.

Besides, if we compare the RM and SO cases with the OUE case without parking sharing,

we see that both the total social cost and the total user cost are reduced through parking

sharing. A Win-Win-Win situation is achieved for RM when compared with OUE, and a

Win-Win-Lose situation is achieved for SO when compared with OUE. These results are

consistent with the analysis in Section 3.

Table 2: Comparison of three cases: RM, SO, and OUE (monetary unit: AUD)

Cases (p, r) Rp(103) Rs(103) TSC(104) TC(104)

RM (5.05, 0.95) 1.562 0.181 1.846 2.020

SO (0.86, 4.13) -4.661 2.934 0.517 0.346

OUE (0, 0) 0.000 0.000 3.821 3.821

Note: Rp: parking operator’s net revenue in Eq. (6); Rs: net
benefit of parking sharers in Eq. (5); TSC: total social cost in
Eq. (7); TC: total user cost in Eq. (3) (these four metrics are also
evaluated in Table 3 and Table 4.)
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4.2 Inconvenience cost distribution

In Section 4.1, the inconvenience cost distribution is assumed as follows: F (δ) = 1− e−0.1δ

where δ ≥ 0 (the benchmark case: RM and SO). To examine the effect of inconvenience cost

distribution, we consider two additional cases, i.e., F (δ) = 1− e−0.05δ and F (δ) = 1− e−0.2δ,
and compare the results. Table 3 summarizes the pricing strategies, the operator’s net

revenue, the net benefit of parking sharers, the total social cost, and the total user cost

under RM and SO for the two cases (the same metrics as those in Table 2).

Table 3: Comparison of RM and SO under different distributions of inconvenience cost
(monetary unit: AUD)

Cases (p, r) Rp(103) Rs(103) TSC(104) TC(104)

RM-1 (F (δ) = 1− e−0.05δ) (5.89, 1.43) 1.293 0.207 2.207 2.357

SO-1 (F (δ) = 1− e−0.05δ) (1.27, 6.68) -6.452 3.983 0.756 0.509

RM-2 (F (δ) = 1− e−0.2δ) (4.53, 0.56) 1.766 0.125 1.623 1.812

SO-2 (F (δ) = 1− e−0.2δ) (0.78, 2.18) -2.078 1.618 0.358 0.312

When compared with the benchmark case with F (δ) = 1 − e−0.1δ associated with RM

and SO in Table 2, F (δ) = 1 − e−0.05δ indicates that more parking owners have a larger

inconvenience cost, and is associated with RM-1 and SO-1 in Table 3, and F (δ) = 1− e−0.2δ

indicates that more parking owners have a smaller inconvenience cost, and is associated with

RM-2 and SO-2 in Table 3.

We have the following main observations from the results in Table 2 and Table 3. First,

the difference between revenue maximization and system optimum remains with alternative

inconvenience cost distributions.

Second, in terms of both p and r, RM-1 > RM > RM-2 and SO-1 > SO > SO-2.

This means that when more parking owners have a smaller inconvenience cost, a revenue-

maximizing or social-cost-minimizing operator should set a smaller shared parking rent as

the same rent attracts more supply, and a smaller shared parking price in order to attract

more demand. The combined effects of reduced price and rent when more parking owners

have a smaller inconvenience cost yield either larger net revenue or smaller social cost, i.e.,

in terms of platform revenue, RM-1 < RM < RM-2, and in terms of total social cost, SO-1 >

SO > SO-2. In short, a revenue-maximizing operator can take advantage of the profitability

from the low-cost shared parking while a social-cost-minimizing operator saves inconvenience

cost associated with shared parking. Furthermore, in terms of total social cost, RM-1 > RM

> RM-2; and in terms of operator’s net revenue, SO-1 < SO < SO-2. This means that when
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more parking owners have a smaller inconvenience cost, while the objective is to maximize

revenue, the total social cost is smaller; and while the objective is to minimize total social

cost, the net revenue is larger (however, it is still negative).

Third, in terms of the total net benefit of the parking owners, RM-1 > RM > RM-2 and

SO-1 > SO > SO-2. This means that while more parking owners have a smaller inconvenience

cost, due to a reduced rent (as discussed in the above) for both revenue maximization and

system optimum, the net benefit of parking owners decreases, i.e., the reduction in rent

cannot be recovered by the reduction in inconvenience cost.

Fourth, in terms of the price-to-rent ratio, i.e., p/r, RM-1 < RM < RM-2 and SO-1 < SO

< SO-2. This means that when more parking owners have a smaller inconvenience cost, while

optimal prices and rents decrease (for both revenue maximization and system optimum), the

relative magnitude of optimal price against the optimal rent increases. This reflects a better

return on unit rent paid when more parking owners have a smaller inconvenience cost.

Fifth, as discussed in the above, when more parking owners have a smaller inconvenience

cost, the revenue-maximizing or social-cost-minimizing shared parking price is smaller. This

further results in a lower user cost as users pay less, i.e., in terms of total user cost, RM-1

> RM > RM-2 and SO-1 > SO > SO-2.

4.3 Price-constrained revenue maximization

We now further discuss a revenue-maximizing platform operator’s while the shared parking

price is regulated by the transport authority through setting an upper bound for the price,

pu.

Table 4 summarizes the operator’s net revenue, the net benefit of the parking sharers,

the total social cost, and the total user cost under four different price bounds, 4.00, 3.34,

2.00 and 0.86, respectively (the same metrics as those in Table 2). A price bound pu of 3.34

yields the minimum total social cost under a revenue-maximizing operator, and 0.86 equals

the optimal price at system optimum. The other value is randomly selected for comparison.

For illustration purpose, the revenue maximization and system optimum without pricing

regulation in Table 2 are included in Table 4.

We have several observations from Table 4. First, the revenue-maximizing shared parking

price under pricing regulation is equal to the pricing bound pu, i.e., when the bound is less

than the optimal price under no regulation, the revenue-maximizing operator sets the price

to the allowed maximum.

Second, an appropriate pricing regulation is able to help reduce total social cost, e.g.,

TSC = 1.178 × 104 under p ≤ 3.34 is much less than 1.846 × 104 under no regulation.
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However, a lower pricing bound does not necessarily reduce total social cost, i.e., in terms of

total social cost, RM (p ≤ 0.86) > RM > RM (p ≤ 2.00) > RM (p ≤ 4.00) > RM (p ≤ 3.34).

This is because, a too small bound will drive the revenue-maximizing operator to set a very

low rent and thus does not take full advantage of the shared parking in order to reduce

parking cruising and make parking easier. Indeed, when pu is reduced from a larger value

to the critical value3.34, a smaller pricing bound helps reduce social cost; and if we further

reduce pu from 3.34, a lower pricing bound will increase the total social cost and total user

cost.

Third, the observation on total social cost is consistent with that on the optimal rent (as

well as the sharers’ total net benefit) where SO > RM (p ≤ 3.34) > RM (p ≤ 4.00) > RM

(p ≤ 2.00) > RM > RM (p ≤ 0.86).

Fourth, pricing regulation may also help reduce total user cost, i.e., in terms of total user

cost, RM (p ≤ 3.34) < RM (p ≤ 4.00) < RM (p ≤ 2.00) < RM. However, a too low pricing

bound may indeed increase total user cost since shared parking is not well utilized to make

parking easier, i.e., in terms of total user cost, RM (p ≤ 0.86) > RM.

Fifth, while pricing regulation might help reduce total social cost, the effectiveness of

the pricing regulation is limited to a certain extent where an efficiency gap exists, i.e.,

TSC = 1.178× 104 under RM (p ≤ 3.34) and 0.517× 104 under SO.

Table 4: RM under pricing regulation (monetary unit: AUD)

Cases (p, r) Rp(103) Rs(103) TSC(104) TC(104)

RM (5.05, 0.95) 1.562 0.181 1.846 2.020

SO (0.86, 4.13) -4.661 2.934 0.517 0.346

RM (p ≤ 4.00) (4.00, 1.32) 1.387 0.343 1.427 1.600

RM (p ≤ 3.34) (3.34, 1.61) 1.081 0.503 1.178 1.336

RM (p ≤ 2.00) (2.00, 0.98) 0.400 0.192 1.807 1.866

RM (p ≤ 0.86) (0.86, 0.43) 0.076 0.038 2.732 2.744

5 Managerial insights

This section discusses the main results in this paper and their implications. In summary,

this study examines the parking sharing problem in an urban area with mixed land use,

where the parking sharing platform operator can temporarily purchase a certain number of

parking spaces from parking owners and rent them to parking users.
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It is found that a private revenue-maximizing operator should set a shared parking price

equal to the curbside parking cost such that the two parking options (shared parking and

curbside parking) are indifferent to users. Under-pricing does not take full advantage of the

profitability from the shared spaces and over-pricing will push parking users away (Propo-

sition 3.1 and Lemma A.2). We also found that the revenue-maximizing operator should

set the rent such that the rented shared parking spaces from owners are fully utilized by

users. Over-supply will simply waste rent from the operator’s point of view (Proposition 3.1

and Lemma A.1). For social cost minimization, over-supply is not beneficial either, since it

simply increases the inconvenience cost of parking owners while has no positive effect.

We further establish a condition δl < cf (n), i.e., the minimum inconvenience cost is

smaller than the curbside parking cost when all users choose curbside parking, which ensures

that a revenue-maximizing operator will yield a Win-Win-Win situation, i.e., total user cost

is strictly reduced, total net benefit of parking owners is strictly positive, and the operator’s

net revenue is strictly positive (Proposition 3.2). This result highlights that the profitability

of introducing parking sharing relies on the existence of potential sharers, the inconvenience

cost of whom is smaller than curbside parking cost when there is no shared parking.

For a public social-cost-minimizing operator, we establish a condition δl < cf (n)+n
dcf (n)

dn

that yields a Win-Win-Lose situation, i.e., the total user cost is strictly reduced, total net

benefit of parking owners is strictly positive, while the operator’s net revenue must be neg-

ative (Proposition 3.5). Moreover, the total social cost is also strictly reduced against the

case without parking sharing. This result indicates that the possibility of parking sharing

to reduce social cost relies on the existence of parking owners whose inconvenience cost is

smaller than the marginal curbside parking cost when there is no shared parking. It is note-

worthy that δl < cf (n) + n
dcf (n)

dn
is more relaxed than δl < cf (n). This implies that (i) a

public social-cost-minimizing operator is more likely to be incentivized to introduce parking

sharing than a private revenue-maximizing operator; (ii) introducing parking sharing is more

likely to help reduce social cost than producing profit for the platform operator.

Moreover, for a public social-cost-minimizing operator, if introducing parking sharing

can help reduce total social cost, at the system optimal parking flow pattern, the marginal

cost of an additional cruising driver for curbside parking is equal to the inconvenience cost

of an additional parking owner who supplies a shared space (Proposition 3.4). This result

is unique for the two-sided market problem, where the social cost includes those of parking

users and owners (i.e., the demand and supply sides in the two-sided market), the system

optimum should balances the marginal costs from the two sides. We also found that, under

a social-cost-minimizing operator, a more costly curbside parking (i.e., a larger α or a larger

t(nf ) given the same nf ) will yield a smaller nsof and a larger nsos , and more parking owners
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with a smaller inconvenience cost will yield a smaller nsof and a larger nsos .

We also examine how the inconvenience cost distribution of parking owners and curbside

parking cost (cruising time function and value of time) may affect the profitability and the

total social cost after introducing parking sharing. When more parking owners have smaller

inconvenience due to parking sharing, profitability of the platform and the capability to

reduce social cost are both better. When curbside parking is less costly (smaller cruising

time under the same flow or smaller value of time), the shared parking is less profitable since

the parking alternative is more competitive. However, less costly curbside parking is socially

preferable.

The implementation of system optimum (social cost minimization) with either subsidy

or pricing bound is discussed. For a social-cost-minimizing platform operator which is di-

rectly controlled by the transport authority, it can set the system optimal pricing strat-

egy, i.e., (pso, rso), but then requires a subsidy of at least nsof
[
αnsof t

′(nsof )
]

to maintain

break-even. For a private profit-driven operator without any regulations, a subsidy of

Rp (prm, rrm) + nsof
[
αnsof t

′(nsof )
]

is required to persuade the operator to set the system op-

timal pricing strategy. For a private profit-driven operator under shared parking pricing

regulation (from local authorities), we numerically show in Section 4.3 that an appropriate

shared parking price bound can help reduce total social cost while the operator may still

obtain a positive revenue. However, an over-small pricing bound may indeed not only reduce

the platform operator’s net revenue, but also increase the total social cost and total user

cost. This is because, the over-small pricing bound drives the private profit-driven operator

to reduce its rent and thus parking supply significantly, resulting in inefficient utilization of

existing parking facilities.

We also numerically examine the impact of the inconvenience cost distribution in Sec-

tion 4.2 (the numerical findings do not exclude other inconvenience cost distribution depen-

dent possibilities). We found that, when more parking owners have a smaller inconvenience

cost, a revenue-maximizing or social-cost-minimizing operator should set a smaller shared

parking rent as the same rent attracts more supply, and should also set a smaller shared

parking price in order to attract more demand. The combined effects of reduced price and

rent when more parking owners have a smaller inconvenience cost yield either a larger net

revenue or a smaller social cost. However, even if more parking owners have a smaller incon-

venience cost, the impact of the reduced optimal rent is more significant than the smaller

inconvenience cost, and thus total net benefit of the parking owners becomes smaller. More-

over, while the optimal prices and rents decrease (for both revenue maximization and system

optimum) when more parking owners have a smaller inconvenience cost, the price-to-rent

ratio, i.e., p/r, will increase, which reflects a better return on unit rent paid to parking
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owners.

6 Conclusion

This paper studies the optimal pricing strategies of a parking sharing platform to either

maximize its net revenue or minimize the total social cost, considering the reactions of

parking users and private parking owners to the pricing strategy. In an urban area with

both shared parking and curbside parking, the rent offered by the platform determines the

number of private parking space owners who would like to rent their space out for sharing, and

the platform’s charge as well as the level of competition between alternative parking options

determines the parking demand for both types of parking. A parking choice equilibrium is

proposed to determine the number of shared parking users under any given pricing strategy

of the platform.

We analytically identified how the parking choice equilibrium of users will vary with the

shared parking fee and the shared parking capacity. We further established the parking

sharing platform operator’s pricing strategies under revenue maximization and social cost

minimization and compared different efficiency metrics.

While the introduction of parking sharing platform holds the potential to yield positive

outcomes for the platform operator and the society, it relies on several conditions. First, there

are such urban areas with mixed land use, where some residents’ parking spaces are near the

workplace of others. Second, some of these residents have a relatively small inconvenience

and safety concern about sharing their spaces. Third, the additional car traffic induced by

the additional parking supply from the sharing platform and its potential negative externality

should be managed (elastic demand is not considered in this paper). Otherwise, the road

may be much more congested due to more parking options, and users are worse off on the

road.

This study improves and enhances our understanding of the parking sharing, pricing, and

management. Beyond this, the study also further enriches the literature on the two-sided

markets, where ride sharing/sourcing has attracted much more attention (Wang et al., 2016;

Zha et al., 2016; Chen et al., 2017). Given the fast growth of the sharing economy worldwide,

this paper delivers insightful information to both parking business stakeholders and policy

makers.

This study can be further extended in several directions. Firstly, this study adopts an

aggregate model for an urban area with mixed land use to examine the parking sharing prob-

lem and the spatial dimension of parking is ignored. In future studies, a general road and

parking network with spatial heterogeneity such as those in Boyles et al. (2015) or a num-
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ber of parking clusters distributed over space can be considered. Secondly, this study does

not model other travel alternatives for travelers. Future research may examine the parking

sharing problem in the context of a multi-modal system, especially when the public transit

service is responsive to roadway conditions and should be optimized simultaneously (Zhang

et al., 2014, 2016). Thirdly, the current study assumes a dominating parking sharing plat-

form operator. This can be extended to the cases with multiple operators where competition

exists among different operators. Fourthly, the current study adopts steady-state or static

parking flow analysis, i.e., the time dimension of parking is not considered. A future study

can further explore the parking sharing and parking pricing problem in a time-dependent

context such as those in Zhang et al. (2008), and might also incorporate micro-level traveler

behaviors, e.g., a traveler looking for vacant curbside spaces might change his or her mind

and shift to shared parking during the parking search process.
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A Appendices

A.1 Derivations of optimality conditions in Section 3.1

We can write down the following Lagrangian function for the minimization problem in

Eq. (10)

Lz (nf , ns, λ, u) =

∫ nf

0

cf (w) dw +

∫ ns

0

csdw − λ (ms − ns) + u (n− ns − nf ) (23)

where u and λ denote the Lagrange multipliers associated with the flow conservation con-

straint in Eq. (11a) and the shared parking capacity constraint in Eq. (11b), respectively.
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The optimality conditions can be derived as follows:

∂Lz
∂nf

≥ 0, nf ≥ 0,
∂Lz
∂nf

nf = 0; (24a)

∂Lz
∂ns
≥ 0, ns ≥ 0,

∂Lz
∂ns

ns = 0; (24b)

∂Lz
∂λ
≥ 0, λ ≥ 0,

∂Lz
∂λ

λ = 0; (24c)

∂Lz
∂u

= 0. (24d)

or in detailed form as follows:

cf − u ≥ 0, nf ≥ 0, (cf − u)nf = 0; (25a)

cs + λ− u ≥ 0, ns ≥ 0, (cs + λ− u)ns = 0; (25b)

ms − ns ≥ 0, λ ≥ 0, (ms − ns)λ = 0; (25c)

n− ns − nf = 0. (25d)

which are identical to the optimality conditions in Eq. (12).

A.2 Proof of Proposition 3.1

Proof. We start with the case when Ms ≥ n. It suffices to show that for any pricing strategy

(p, r) not satisfying the conditions: r = F−1
(
n−t−1( pα)

Ms

)
and p ∈ [αt(0), αt(n)], we can find

a pair (p, r) satisfying these conditions that yields a larger net revenue or at least the same

revenue.

Firstly, we consider (p, r) in Region I in Figure 3. As shown Figure 3(a), p ≤ αt(0)

and r ≥ F−1
(

n
Ms

)
. The net revenue np − rF (r)Ms is then less than or equal to

nαt(0) − F−1
(

n
Ms

)
F
(
F−1

(
n
Ms

))
Ms, where the equality holds only when p = αt(0) and

r = F−1
(

n
Ms

)
. This means that for Region I the revenue is maximized at the boundary

with p = αt(0) and r = F−1
(

n
Ms

)
, which satisfies the conditions given in Proposition 3.1(i).

Secondly, we consider (p, r) in Region II, where for given r, we have p ≤ αt (n− F (r)Ms),

or equivalently r ≤ F−1
(
n−t−1( pα)

Ms

)
. The net revenue is pF (r)Ms − rF (r)Ms, which is less

than or equal to αt (n− F (r)Ms)F (r)Ms − rF (r)Ms, where the equality hols only when

p = αt (n− F (r)Ms). This means that for any (p, r) in Region II, we can improve the revenue

by setting p = αt (n− F (r)Ms), which satisfies the conditions given in Proposition 3.1(i).
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We now consider (p, r) in Region III, where for given p, we have r ≥ F−1
(
n−t−1( pα)

Ms

)
.

The revenue is p ·
(
n− t−1

(
p
α

))
− rF (r)Ms, which is less than or equal to p ·

(
n− t−1

(
p
α

))
−

F−1
(
n−t−1( pα)

Ms

)
F

(
F−1

(
n−t−1( pα)

Ms

))
Ms. This means that for any (p, r) in Region III, we

can improve the revenue by setting r = F−1
(
n−t−1( pα)

Ms

)
, which satisfies the conditions given

in Proposition 3.1(i).

Lastly, we consider (p, r) in Region IV, where for any r, we have p ≥ αt(n). The revenue

is equal to p · 0 − rF (r)Ms, which is less than or equal to p · 0 − 0 · F (0)Ms, where the

equality only holds when r = 0. This means that there is no need to consider the whole

Region IV when examining optimal pricing strategy, where the maximum revenue is zero,

which is achieved by letting r = 0 and p = αt(n). The point of (r = 0, p = αt(n)) satisfies

the conditions given in Proposition 3.1(i).

For the case with Ms < n, the proof is similar to that for the case with Ms ≥ n, which

is omitted here. This completes the proof.

A.3 Further Implications of Proposition 3.1

Remark A.1. At the parking choice equilibrium under the revenue-maximizing pricing strat-

egy (prm, rrm), we should have ns = ms, i.e., all shared parking spaces will be used.

Remark A.1 says that the shared parking spaces repurchased by the platform should

be fully utilized under a profit-maximizing sharing platform operator. This can be readily

derived from Proposition 3.1. Proposition 3.1 indicates that any (p, r) in the interior of

Region I, Region III, and Region IV will be non-optimal in terms of maximizing revenue.

Therefore, ns = F (r)Ms = ms when r > δl; and ns = 0 = ms when r = δl (as discussed

earlier we do not consider r < δl), i.e., we should always have ns = ms.

We further explain Remark A.1 as follows. Firstly, if ms = 0, then we must have

ns = ms = 0. For ms > 0, if ns < ms under (prm, rrm), we can reduce the rent by a small

amount ∆r where [F (rrm)− F (rrm −∆r)] ·Ms ≤ ms − ns. Doing so, the operator will save

a rent in the amount of rrm ·ms− (rrm −∆r) · (ms − [F (rrm)− F (rrm −∆r)] ·Ms) (reduced

rent per shared parking space, and reduced number of rented shared parking). However, as

ms− [F (rrm)− F (rrm −∆r)] ·Ms ≥ ns and parking price prm does not change, the operator

will receive the same parking fees from the travelers, i.e., ns · prm. Therefore, the original

rrm must not be optimal.

Remark A.2. The revenue-maximizing pricing strategy (prm, rrm) satisfies prm = αt (nf ),

i.e., the parking fee is equal to the cruising time cost of curbside parking users.
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Remark A.2 says that a revenue-maximizing sharing platform operator would set the

price of parking spaces to the level thus travelers will be indifferent between the two parking

options: shared and free curbside parking. This can be readily derived from Proposition 3.1.

Based on Proposition 3.1, we have rrm = F−1
(
n−t−1

(
prm

α

)
Ms

)
, which is equivalent to prm =

αt (n− F (rrm)Ms), where F (rrm)Ms = ms = ns following Remark A.1. Therefore, prm =

αt (n− ns) = αt (nf ).

Remark A.2 is further explained as follows. Firstly prm > αt (nf ) cannot occur if nf > 0.

This is because if prm > αt (nf ) then cs > cf , and no users will choose shared parking spaces,

i.e., ns = 0, and the operator will earn zero amount parking fees while it has to pay rents to

the parking owners. However, by reducing prm until ns > 0, the operator can earn a positive

amount. Secondly, if prm < αt (nf ), the platform operator can increase the price to αt (nf )

where no users will shift his or her choice, but additional profit of [α · t (nf )− prm] · ns can

be gained.

A.4 Proof of Proposition 3.2

Proof. We first prove Proposition 3.2(i). The first derivative of Rp in Eq. (14) with respect

to r is
dRp

dr
= f(r)Ms [αt− r]− F (r)Ms [αt′f(r)Ms + 1] (26)

where t = t (n− F (r)Ms) and t′ = t′ (n− F (r)Ms).

We examine the first-order derivative of Rp with respect to r around r = δl. Based on

Eq. (26), we have
dRp

dr

∣∣∣∣
r=δl

= Msf(0)αt (n) > 0 (27)

Since dRp
dr

is continuous over r, Eq. (27) means that there must exist a sufficiently small ε

such that for r ∈ [δl, δl + ε], we have dRp
dr

> 0. Therefore, we can always set r = δl + ε

(then p = αt (n− F (δl + ε)Ms)) such that Rp(p, r) > 0. This implies that rrm > δl, and

Rp(p
rm, rrm) ≥ Rp(αt (n− F (δl + ε)Ms) , δl + ε) > 0.

Since f(δ) > 0 over [δl,+∞), rrm > δl leads to a supply mrm
s > 0. Furthermore,

0 < Rp(p
rm, rrm) = prmns − rrmms ≤ prmms − rrmmrm

s and thus prm > rrm. This completes

the proof for Proposition 3.2(i).

We now prove Proposition 3.2(ii). We first look at Rp. Based on Proposition 3.2(i),

we have rrm > δl and Rp(p
rm, rrm) > 0 = R0

p. Also note that prm = αt (n− F (rrm)Ms).

We further look at TC. Given rrm > δl, we have nrmf = n − F (rrm)Ms < n and nrms =

F (rrm)Ms = mrm
s > 0. Also, under revenue maximization, prm = αt

(
nrmf

)
. The total
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cost of users is TC = prmnrms + αt
(
nrmf

)
nrmf = αt (n− F (rrm)Ms)n. It can be readily

verified that TC < TC0 since n − F (rrm)Ms < n. We finally look at Rs. Since rrm > δl,

Rs = rrm
∫ rrm
δl

f (δ)Msdδ > 0, i.e., Rs > R0
s. This completes the proof for Proposition 3.2(ii).

We now further prove Proposition 3.2(iii). For the case with Ms < n, it is obvious that

to achieve ms = Ms, we should let r →∞, and

dRp

dr

∣∣∣∣
r=∞

= Ms [f(∞) (αt (n−Ms)−∞)− (αt′ (n−Ms) f(∞)Ms + 1)] < 0 (28)

indicating r →∞ is non-optimal, and we should have rrm < +∞ and thus mrm
s < Ms.

For the case with Ms ≥ n, when r = F−1
(

n
Ms

)
, we have

dRp

dr

∣∣∣∣
r=F−1( n

Ms
)

=

Ms

[
f

(
F−1

(
n

Ms

))(
αt (0)− F−1

(
n

Ms

))
− n

Ms

(
αt′ (0) f

(
F−1

(
n

Ms

))
Ms + 1

)]
(29)

When t(0) is sufficiently small, i.e., t(0) < t′(0)n +
F−1( n

Ms
)+ n

Ms
1

f(F−1( n
Ms ))

α
, one can verify

that dRp
dr

< 0. Therefore, it is non-optimal to set r ≥ F−1
(

n
Ms

)
. It follows that to maximize

revenue we should have rrm < F−1
(

n
Ms

)
and thus mrm

s < n ≤Ms. This completes the proof

for Proposition 3.2(ii).

A.5 The price-to-rent ratio under revenue maximization

Suppose the inconvenience of parking sharers is uniformly distributed over [δl, δu] and δl < δu.

We now briefly explain the result in Eq. (16). In the revenue maximization regime, based

on previous analysis in Section 3, we have the following results. Firstly, p = αt (nf ) and

thus nf = t−1
(
p
α

)
and ns = n − t−1

(
p
α

)
. Secondly, given parking rent r, the number

of sharers is equal to ms = r Ms

δu−δl
based on the uniform distribution for δ. Thirdly, to

maximize net revenue, we should have ns = ms. Therefore, n − t−1
(
p
α

)
= r Ms

δu−δl
, and thus

r = [n−t−1
(
p
α

)
]· δu−δl

Ms
, or alternatively, p = αt

(
n− r Ms

δu−δl

)
. The net revenue of the platform

operator under a uniform distribution for δ can then be written as follows:

Rp = r
Ms

δu − δl
·
[
αt

(
n− r Ms

δu − δl

)
− r
]
. (30)
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The first derivative of Eq. (30) with respect to r is

dRp

dr
=

Ms

δu − δl
· (αt− r) + r

Ms

δu − δl
·
(
αt′ ·

(
− Ms

δu − δl

)
− 1

)
, (31)

where t = t
(
n− r Ms

δu−δl

)
and t′ =

dt
(
n−r Ms

δu−δl

)
d
(
n−r Ms

δu−δl

) . At the equilibrium, a marginal change in r

will lead to a marginal change in the corresponding shared parking price p = αt
(
n− r Ms

δu−δl

)
and in the number of shared parking users ns = ms = r Ms

δu−δl
.

A necessary condition for an interior optimal solution for r is dRp
dr

= 0, and we immediately

have

rrm =
αt

αt′ Ms

δu−δl
+ 2

, (32)

Note that in Eq. (32) t and t′ both depend on rrm, and prm = αt. Therefore, we have
prm

rrm
= αt′ Ms

δu−δl
+ 2 > 2.

A.6 Proof of Proposition 3.3

Proof. For Proposition 3.3(i), it suffices to show that for a given pair (p1, r1) and an incon-

venience distribution of F1 with a net revenue of Rp,1, we can always find a pair of (p2, r2)

thus the net revenue Rp,2 under an inconvenience distribution of F2 will be no less than Rp,1.

Under F1, the total net revenue is Rp,1 = p1ns − r1ms, where ms = F1(r1)Ms. We can

define r2 by solving the equation F1(r1)Ms = F2(r2)Ms = ms. Since F1 (δ) ≤ F2 (δ), we have

r1 ≥ r2. We can set p2 = p1. It follows that the shared parking supply ms and the total

number of shared parking users at the parking choice equilibrium ns will remain the same,

where the total net revenue is Rp,2 = p2ns − r2ms. The difference between the two revenues

is Rp,2 −Rp,1 = (r1 − r2)ms ≥ 0.

The proof for Proposition 3.3(ii) is similar to that for Proposition 3.3(i), which is omitted.

For Proposition 3.3(iii), it suffices to show that for a given pair (p1, r1) and a cruising

time function of t1 with a net revenue of Rp,1, we can always find a pair of (p2, r2) thus the

net revenue Rp,2 under a cruising time function of t2 will be no less than Rp,1.

Under t1, the total net revenue is Rp,1 = p1ns − r1ms, where ns ≤ ms = F (r1)Ms and

p1 ≤ αt1(n− ns). Under t2, we can set r2 = r1 thus ms remain identical. Moreover, we can

set p2 = αt2(n − ns) ≥ αt1(n − ns) ≥ p1 where ns remain unchanged at the parking choice

equilibrium. Thus, Rp,2 = p2ns − r2ms and Rp,2 −Rp,1 = (p2 − p1)ms ≥ 0.

The proof for Proposition 3.3(iv) is similar to that for Proposition 3.3(iii), which is

omitted.
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A.7 Proof of Proposition 3.5

Proof. Based on Proposition 3.4(i), if δl < α (t(n) + nt′(n)), we have nsos = ms > 0.

It follows that rso = F−1
(
nsos
Ms

)
> F−1 (0) = δl. Moreover, to support the system

optimum as an equilibrium solution, pso ≤ αt(nsof ). Based on Proposition 3.4(ii), we

have α
(
t(nsof ) + nsof t

′(nsof )
)

= F−1
(
nsos
Ms

)
. Thus, pso + αnsof t

′(nsof ) ≤ rso. It follows that

Rp (pso, rso) = nsos (pso − rso) ≤ −nsos
[
αnsof t

′(nsof )
]
< 0. This completes the proof for Propo-

sition 3.5(i).

The proof for Proposition 3.5(ii) on system optimum is similar to that for Proposi-

tion 3.2(ii) on revenue maximization, which is omitted.

We now verifies Proposition 3.5(iii) by contradiction. Suppose Proposition 3.5(iii) is

not true and nsos ≤ nrms and nsof ≥ nrmf . It follows that mso
s ≤ mrm

s , rso ≤ rrm, and

F−1
(
nsos
Ms

)
≤ F−1

(
nrms
Ms

)
.

For an interior system optimum solution, based on Proposition 3.4(ii), we have

α
(
t(nsof ) + nsof t

′(nsof )
)

= F−1
(
nsos
Ms

)
. For an interior revenue maximization solution, based

on Proposition 3.2(i), we have F−1
(
nrms
Ms

)
= rrm < prm = αt(nrmf ). F−1

(
nsos
Ms

)
≤ F−1

(
nrms
Ms

)
then leads to α

(
t(nsof ) + nsof t

′(nsof )
)
< αt(nrmf ), and thus nsof < nrmf since t(·) is increasing

and convex. This contradicts with nsos ≤ nrms and nsof ≥ nrmf . Therefore, we should have

nsos > nrms and nsof < nrmf . It follows that rso > rrm and pso ≤ αt(nsof ) < αt(nrmf ) = prm.

This completes the proof.

A.8 Proof of Proposition 3.6

Proof. For Proposition 3.6(i), it suffices to show that for a given pair (p1, r1) and an in-

convenience distribution of F1 with a total social cost of TSC1, we can always find a pair

of (p2, r2) thus the net revenue TSC2 under an inconvenience distribution of F2 will be no

greater than TSC1.

Under F1, the total social cost is TSC1 = nfαt (nf ) +
∫ r1
δl
δf(δ)Msdδ, where ms =

F1(r1)Ms. We can define r2 by solving the equation F1(r1)Ms = F2(r2)Ms = ms. Since

F1 (δ) ≤ F2 (δ), we have r1 ≥ r2. We can set p2 = p1. It follows that the shared parking

supply ms and the total number of curbside parking users at the parking choice equilibrium

nf will remain the same, where the total social cost is TSC2 = nfαt (nf ) +
∫ r2
δl
δf(δ)Msdδ.

The difference between the two total social costs is TSC2 − TSC1 = −
∫ r1
r2
δf(δ)Msdδ ≤ 0

since r1 ≥ r2.

The proof for Proposition 3.6(ii) is similar to that for Proposition 3.6(i), which is omitted.

For Proposition 3.6(iii), it suffices to show that for a given pair (p1, r1) and a cruising
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time function of t1 with a total social cost of TSC1, we can always find a pair of (p2, r2) thus

the total social cost T2 under a cruising time function of t2 will be no greater than TSC1.

Under t1, the total social cost is TSC1 = nfαt1 (nf ) +
∫ r1
δl
δf(δ)Msdδ, where ns ≤

ms = F (r1)Ms and p1 ≤ αt1(nf ). Under t2, we can set r2 = r1 thus ms remain identi-

cal. Moreover, we can set p2 ≤ αt2(nf ), and nf (as well as ns) remain unchanged. Thus,

TSC2 = nfαt2 (nf ) +
∫ r2
δl
δf(δ)Msdδ and TSC2 − TSC1 = nfα(t2 (nf ) − t1 (nf )) ≤ 0 since

t2 (nf ) ≤ t1 (nf ).

The proof for Proposition 3.6(iv) is similar to that for Proposition 3.6(iii), which is

omitted.
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